1
|
Wise JTF, Kondo K. Increased Lipogenesis Is Important for Hexavalent Chromium-Transformed Lung Cells and Xenograft Tumor Growth. Int J Mol Sci 2023; 24:17060. [PMID: 38069382 PMCID: PMC10707372 DOI: 10.3390/ijms242317060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Hexavalent chromium, Cr(VI), is a known carcinogen and environmental health concern. It has been established that reactive oxygen species, genomic instability, and DNA damage repair deficiency are important contributors to the Cr(VI)-induced carcinogenesis mechanism. However, some hallmarks of cancer remain under-researched regarding the mechanism behind Cr(VI)-induced carcinogenesis. Increased lipogenesis is important to carcinogenesis and tumorigenesis in multiple types of cancers, yet the role increased lipogenesis has in Cr(VI) carcinogenesis is unclear. We report here that Cr(VI)-induced transformation of three human lung cell lines (BEAS-2B, BEP2D, and WTHBF-6) resulted in increased lipogenesis (palmitic acid levels), and Cr(VI)-transformed cells had an increased expression of key lipogenesis proteins (ATP citrate lyase [ACLY], acetyl-CoA carboxylase [ACC1], and fatty acid synthase [FASN]). We also determined that the Cr(VI)-transformed cells did not exhibit an increase in fatty acid oxidation or lipid droplets compared to their passage-matched control cells. Additionally, we observed increases in ACLY, ACC1, and FASN in lung tumor tissue compared with normal-adjacent lung tissue (in chromate workers that died of chromate-induced tumors). Next, using a known FASN inhibitor (C75), we treated Cr(VI)-transformed BEAS-2B with this inhibitor and measured cell growth, FASN protein expression, and growth in soft agar. We observed that FASN inhibition results in a decreased protein expression, decreased cell growth, and the inhibition of colony growth in soft agar. Next, using shRNA to knock down the FASN protein in Cr(VI)-transformed BEAS-2B cells, we saw a decrease in FASN protein expression and a loss of the xenograft tumor development of Cr(VI)-transformed BEAS-2B cells. These results demonstrate that FASN is important for Cr(VI)-transformed cell growth and cancer properties. In conclusion, these data show that Cr(VI)-transformation in vitro caused an increase in lipogenesis, and that this increase is vital for Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- James T. F. Wise
- Wise Laboratory of Nutritional Toxicology and Metabolism, School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, 269 Knapp Hall, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, College of Agriculture, Louisiana State University, Baton Rouge, LA 70803, USA
- School of Nutrition and Food Sciences, Louisiana State University Agriculture Center, Baton Rouge, LA 70803, USA
- Division of Nutritional Sciences, Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University Graduate School, Tokushima City 770-8509, Japan
| |
Collapse
|
2
|
Pal S, Sharma A, Mathew SP, Jaganathan BG. Targeting cancer-specific metabolic pathways for developing novel cancer therapeutics. Front Immunol 2022; 13:955476. [PMID: 36618350 PMCID: PMC9815821 DOI: 10.3389/fimmu.2022.955476] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a heterogeneous disease characterized by various genetic and phenotypic aberrations. Cancer cells undergo genetic modifications that promote their proliferation, survival, and dissemination as the disease progresses. The unabated proliferation of cancer cells incurs an enormous energy demand that is supplied by metabolic reprogramming. Cancer cells undergo metabolic alterations to provide for increased energy and metabolite requirement; these alterations also help drive the tumor progression. Dysregulation in glucose uptake and increased lactate production via "aerobic glycolysis" were described more than 100 years ago, and since then, the metabolic signature of various cancers has been extensively studied. However, the extensive research in this field has failed to translate into significant therapeutic intervention, except for treating childhood-ALL with amino acid metabolism inhibitor L-asparaginase. Despite the growing understanding of novel metabolic alterations in tumors, the therapeutic targeting of these tumor-specific dysregulations has largely been ineffective in clinical trials. This chapter discusses the major pathways involved in the metabolism of glucose, amino acids, and lipids and highlights the inter-twined nature of metabolic aberrations that promote tumorigenesis in different types of cancer. Finally, we summarise the therapeutic interventions which can be used as a combinational therapy to target metabolic dysregulations that are unique or common in blood, breast, colorectal, lung, and prostate cancer.
Collapse
Affiliation(s)
- Soumik Pal
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Amit Sharma
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Sam Padalumavunkal Mathew
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India,Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India,*Correspondence: Bithiah Grace Jaganathan,
| |
Collapse
|
3
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
4
|
Bourouh M, Marignani PA. The Tumor Suppressor Kinase LKB1: Metabolic Nexus. Front Cell Dev Biol 2022; 10:881297. [PMID: 35573694 PMCID: PMC9097215 DOI: 10.3389/fcell.2022.881297] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Liver kinase B1 (LKB1) is a multitasking tumor suppressor kinase that is implicated in multiple malignancies such as lung, gastrointestinal, pancreatic, and breast. LKB1 was first identified as the gene responsible for Peutz-Jeghers syndrome (PJS) characterized by hamartomatous polyps and oral mucotaneous pigmentation. LKB1 functions to activate AMP-activated protein kinase (AMPK) during energy stress to shift metabolic processes from active anabolic pathways to active catabolic pathways to generate ATP. Genetic loss or inactivation of LKB1 promotes metabolic reprogramming and metabolic adaptations of cancer cells that fuel increased growth and division rates. As a result, LKB1 loss is associated with increased aggressiveness and treatment options for patients with LKB1 mutant tumors are limited. Recently, there has been new insights into the role LKB1 has on metabolic regulation and the identification of potential vulnerabilities in LKB1 mutant tumors. In this review, we discuss the tumor suppressive role of LKB1 and the impact LKB1 loss has on metabolic reprograming in cancer cells, with a focus on lung cancer. We also discuss potential therapeutic avenues to treat malignancies associated with LKB1 loss by targeting aberrant metabolic pathways associated with LKB1 loss.
Collapse
Affiliation(s)
- Mohammed Bourouh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Halifax, Halifax, NS, Canada
| | - Paola A Marignani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University Halifax, Halifax, NS, Canada
| |
Collapse
|
5
|
Siritutsoontorn S, Sukjoi W, Polyak SW, Akekawatchai C, Jitrapakdee S. Differential growth inhibition, cell cycle arrest and apoptosis of MCF-7 and MDA-MB-231 cells to holocarboxylase synthetase suppression. Biochem Biophys Res Commun 2022; 593:108-115. [PMID: 35063765 DOI: 10.1016/j.bbrc.2022.01.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Holocarboxylase synthetase (HLCS) catalyzes the covalent attachment of biotin onto the biotin-dependent carboxylases. Recent studies have shown that HLCS is over-expressed in breast cancer patients. Here we investigated the functional roles of free biotin and HLCS in supporting growth and migration of breast cancer cell lines. Depletion of biotin from culture medium markedly reduced biotinylation of the two most abundant biotin-carboxylases, acetyl-CoA carboxylase and pyruvate carboxylase. This was accompanied by a marked decrease in cell growth. Suppression of HLCS expression in the low invasive breast cancer cell line MCF-7 resulted in an 80% reduction of biotinylated ACC, but not PC. HLCS knockdown MCF-7 cell lines showed 40-50% reduction of proliferation and 35% reduction of migration, accompanied by G1 cell cycle-arrest-induced apoptosis. In contrast, knockdown of HLCS expression in the highly invasive cell line MDA-MB-231 resulted in only marginal reduction of biotinylation of both ACC and PC, accompanied by 30% reduction of proliferation and 30% reduction of migration. Our studies provide new insights to use HLCS as a novel anti-cancer drug target.
Collapse
Affiliation(s)
| | - Witchuda Sukjoi
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Steven W Polyak
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia, 5001
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Li L, Meng Y, Wu X, Li J, Sun Y. Bromodomain-containing protein 4 inhibitor JQ1 promotes melanoma cell apoptosis by regulating mitochondrial dynamics. Cancer Sci 2021; 112:4013-4025. [PMID: 34252226 PMCID: PMC8486215 DOI: 10.1111/cas.15061] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Although the role of bromodomain-containing protein 4 (BRD4) in ovarian cancer, pancreatic cancer, lymphoma, and many other diseases is well known, its function in cutaneous melanoma is only partially understood. The results of the present study show that the BRD4 inhibitor JQ1 promotes the apoptosis of B16 melanoma cells by altering mitochondrial dynamics, thereby inducing mitochondrial dysfunction and increasing oxidative stress. We found that treatment of B16 cells with different concentrations of JQ1 (125 nmol/L or 250 nmol/L) significantly downregulated the expression of protein subunits involved in mitochondrial respiratory chain complexes I, III, IV, and V, increased reactive oxygen species, induced energy metabolism dysfunction, significantly enhanced apoptosis, and activated the mitochondrial apoptosis pathway. At the same time, JQ1 inhibited the activation of AMP-activated protein kinase, a metabolic energy sensor. In addition, we found that the mRNA and protein levels of mitochondrial dynamin-related protein 1 increased, whereas the levels of mitochondrial fusion protein 1 and optic atrophy protein 1 decreased. Mechanistically, we determined that JQ1 inhibited the expression of c-Myc and altered mitochondrial dynamics, eventually leading to changes in the mitochondrial function, metabolism, and apoptosis of B16 melanoma cells.
Collapse
Affiliation(s)
- Liyuan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China.,Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yan Meng
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Xiaolin Wu
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Jiajing Li
- Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yuxin Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
7
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
8
|
LKB1 loss is associated with glutathione deficiency under oxidative stress and sensitivity of cancer cells to cytotoxic drugs and γ-irradiation. Biochem Pharmacol 2018; 156:479-490. [PMID: 30222967 DOI: 10.1016/j.bcp.2018.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/13/2018] [Indexed: 01/25/2023]
Abstract
The liver kinase B1 (LKB1) gene is a tumor suppressor associated with the hereditary Peutz-Jeghers syndrome and frequently mutated in non-small cell lung cancer and in cervical cancer. Previous studies showed that the LKB1/AMPK axis is involved in regulation of cell death and survival under metabolic stress. By using isogenic pairs of cancer cell lines, we report here that the genetic loss of LKB1 was associated with increased intracellular levels of total choline containing metabolites and, under oxidative stress, it impaired maintenance of glutathione (GSH) levels. This resulted in markedly increased intracellular reactive oxygen species (ROS) levels and sensitivity to ROS-induced cell death. These effects were rescued by re-expression of LKB1 or pre-treatment with the anti-oxidant and GSH replenisher N-acetyl cysteine. This role of LKB1 in response to ROS-inducing agents was largely AMPK-dependent. Finally, we observed that LKB1 defective cells are highly sensitive to cisplatin and γ-irradiation in vitro, suggesting that LKB1 mutated tumors could be targeted by oxidative stress-inducing therapies.
Collapse
|
9
|
A conserved mammalian mitochondrial isoform of acetyl-CoA carboxylase ACC1 provides the malonyl-CoA essential for mitochondrial biogenesis in tandem with ACSF3. Biochem J 2017; 474:3783-3797. [PMID: 28986507 DOI: 10.1042/bcj20170416] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 01/06/2023]
Abstract
Mitochondrial fatty acid synthesis (mtFAS) is a highly conserved pathway essential for mitochondrial biogenesis. The mtFAS process is required for mitochondrial respiratory chain assembly and function, synthesis of the lipoic acid cofactor indispensable for the function of several mitochondrial enzyme complexes and essential for embryonic development in mice. Mutations in human mtFAS have been reported to lead to neurodegenerative disease. The source of malonyl-CoA for mtFAS in mammals has remained unclear. We report the identification of a conserved vertebrate mitochondrial isoform of ACC1 expressed from an ACACA transcript splicing variant. A specific knockdown (KD) of the corresponding transcript in mouse cells, or CRISPR/Cas9-mediated inactivation of the putative mitochondrial targeting sequence in human cells, leads to decreased lipoylation and mitochondrial fragmentation. Simultaneous KD of ACSF3, encoding a mitochondrial malonyl-CoA synthetase previously implicated in the mtFAS process, resulted in almost complete ablation of protein lipoylation, indicating that these enzymes have a redundant function in mtFAS. The discovery of a mitochondrial isoform of ACC1 required for lipoic acid synthesis has intriguing consequences for our understanding of mitochondrial disorders, metabolic regulation of mitochondrial biogenesis and cancer.
Collapse
|
10
|
Sereni MI, Baldelli E, Gambara G, Ravaggi A, Hodge KA, Alberts DS, Guillen-Rodriguez JM, Dong T, Memo M, Odicino F, Angioli R, Liotta LA, Pecorelli SL, Petricoin EF, Pierobon M. Kinase-driven metabolic signalling as a predictor of response to carboplatin-paclitaxel adjuvant treatment in advanced ovarian cancers. Br J Cancer 2017; 117:494-502. [PMID: 28664915 PMCID: PMC5558684 DOI: 10.1038/bjc.2017.195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/19/2017] [Accepted: 06/01/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The biological mechanisms underlying early- and advanced-stage epithelial ovarian cancers (EOCs) are still poorly understood. This study explored kinase-driven metabolic signalling in early and advanced EOCs, and its role in tumour progression and response to carboplatin-paclitaxel treatment. METHODS Tumour epithelia were isolated from two independent sets of primary EOC (n=72 and 30 for the discovery and the validation sets, respectively) via laser capture microdissection. Reverse phase protein microarrays were used to broadly profile the kinase-driven metabolic signalling of EOC with particular emphasis on the LBK1-AMPK and AKT-mTOR axes. Signalling activation was compared between early and advanced lesions, and carboplatin-paclitaxel-sensitive and -resistant tumours. RESULTS Advanced EOCs were characterised by a heterogeneous kinase-driven metabolic signature and decreased phosphorylation of the AMPK-AKT-mTOR axis compared to early EOC (P<0.05 for AMPKα T172, AMPKα1 S485, AMPKβ1 S108, AKT S473 and T308, mTOR S2448, p70S6 S371, 4EBP1 S65, GSK-3 α/β S21/9, FOXO1 T24/FOXO3 T32, and FOXO1 S256). Advanced tumours with low relative activation of the metabolic signature and increased FOXO1 T24/FOXO3 T32 phosphorylation (P=0.041) were associated with carboplatin-paclitaxel resistance. CONCLUSIONS If validated in a larger cohort of patients, the decreased AMPK-AKT-mTOR activation and phosphorylation of FOXO1 T24/FOXO3 T32 may help identify carboplatin-paclitaxel-resistant EOC patients.
Collapse
Affiliation(s)
- Maria Isabella Sereni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Guido Gambara
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Antonella Ravaggi
- Division of Gynecologic Oncology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - K Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - David S Alberts
- The University of Arizona Cancer Center, 3838N Campbell Ave, Tucson, AZ 85719, USA
| | | | - Ting Dong
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Franco Odicino
- Division of Gynecologic Oncology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Sergio L Pecorelli
- Division of Gynecologic Oncology, ‘Angelo Nocivelli’ Institute of Molecular Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, Manassas, VA 20110, USA
| |
Collapse
|
11
|
Van Tongelen A, Loriot A, De Smet C. Oncogenic roles of DNA hypomethylation through the activation of cancer-germline genes. Cancer Lett 2017; 396:130-137. [DOI: 10.1016/j.canlet.2017.03.029] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/19/2022]
|
12
|
Bonanno L, De Paoli A, Zulato E, Esposito G, Calabrese F, Favaretto A, Santo A, Conte AD, Chilosi M, Oniga F, Sozzi G, Moro M, Ciccarese F, Nardo G, Bertorelle R, Candiotto C, De Salvo GL, Amadori A, Conte P, Indraccolo S. LKB1 Expression Correlates with Increased Survival in Patients with Advanced Non–Small Cell Lung Cancer Treated with Chemotherapy and Bevacizumab. Clin Cancer Res 2017; 23:3316-3324. [DOI: 10.1158/1078-0432.ccr-16-2410] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/16/2022]
|
13
|
Bonastre E, Brambilla E, Sanchez-Cespedes M. Cell adhesion and polarity in squamous cell carcinoma of the lung. J Pathol 2016; 238:606-16. [PMID: 26749265 DOI: 10.1002/path.4686] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023]
Abstract
Lung cancer is a deadly disease that can roughly be classified into three histopathological groups: lung adenocarcinomas, lung squamous cell carcinomas (LSCCs), and small cell carcinomas. These types of lung cancer are molecularly, phenotypically, and regionally diverse neoplasms, reflecting differences in their cells of origin. LSCCs commonly arise in the airway epithelium of a main or lobar bronchus, which is an important line of defence against the external environment. Furthermore, most LSCCs are characterized histopathologically by the presence of keratinization and/or intercellular bridges, consistent with the molecular features of these tumours, characterized by high levels of transcripts encoding keratins and proteins relevant to intercellular junctions and cell polarity. In this review, the relationships between the molecular features of LSCCs and the types of cell and epithelia of origin are discussed. Recurrent alterations in genes involved in intercellular adhesion and cell polarity in LSCCs are also reviewed, emphasizing the importance of the disruption of PAR3 and the PAR complex. Finally, the possible functional effects of these alterations on epithelial homeostasis, and how they contribute to the development of LSCC, are discussed.
Collapse
Affiliation(s)
- Ester Bonastre
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Brambilla
- Department of Pathology, Institut Albert Bonniot, INSERM U823, University Joseph Fourier, CHU, Grenoble Hopital Michallon, Grenoble, France
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
14
|
Guo Q, Liu Z, Jiang L, Liu M, Ma J, Yang C, Han L, Nan K, Liang X. Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase. Mol Med Rep 2016; 13:2590-6. [PMID: 26847819 PMCID: PMC4768996 DOI: 10.3892/mmr.2016.4830] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022] Open
Abstract
Metformin, the most widely administered oral anti-diabetic therapeutic agent, exerts its glucose-lowering effect predominantly via liver kinase B1 (LKB1)-dependent activation of adenosine monophosphate-activated protein kinase (AMPK). Accumulating evidence has demonstrated that metformin possesses potential antitumor effects. However, whether the antitumor effect of metformin is via the LKB1/AMPK signaling pathway remains to be determined. In the current study, the effects of metformin on proliferation, cell cycle progression, and apoptosis of human non-small cell lung cancer (NSCLC) H460 (LKB1-null) and H1299 (LKB1-positive) cells were assessed, and the role of LKB1/AMPK signaling in the anti-growth effects of metformin were investigated. Cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle distribution and apoptosis were assessed by flow cytometry, and protein expression levels were measured by western blotting. Metformin inhibited proliferation, induced significant cell cycle arrest at the G0–G1 phase and increased apoptosis in NSCLC cells in a time- and concentration-dependent manner, regardless of the level of LKB1 protein expression. Furthermore, knockdown of LKB1 with short hairpin RNA (shRNA) did not affect the antiproliferative effect of metformin in the H1299 cells. Metformin stimulated AMPK phosphorylation and subsequently suppressed the phosphorylation of mammalian target of rapamycin and its downstream effector, 70-kDa ribosomal protein S6 kinase in the two cell lines. These effects were abrogated by silencing AMPK with small interfering RNA (siRNA). In addition, knockdown of AMPK with siRNA inhibited the effect of metformin on cell proliferation in the two cell lines. These results provide evidence that the growth inhibition of metformin in NSCLC cells is mediated by LKB1-independent activation of AMPK, indicating that metformin may be a potential therapeutic agent for the treatment of human NSCLC.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Zhiyan Liu
- Department of Respiration, Xi'an Central Hospital, Xi'an, Shaanxi 710003, P.R. China
| | - Lili Jiang
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Mengjie Liu
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Jiequn Ma
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Yang
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Lili Han
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Kejun Nan
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xuan Liang
- Department of Oncology, First Affiliated Hospital, Xi'an Jiaotong University Medical College, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Grossi V, Lucarelli G, Forte G, Peserico A, Matrone A, Germani A, Rutigliano M, Stella A, Bagnulo R, Loconte D, Galleggiante V, Sanguedolce F, Cagiano S, Bufo P, Trabucco S, Maiorano E, Ditonno P, Battaglia M, Resta N, Simone C. Loss of STK11 expression is an early event in prostate carcinogenesis and predicts therapeutic response to targeted therapy against MAPK/p38. Autophagy 2015; 11:2102-2113. [PMID: 26391455 PMCID: PMC4824604 DOI: 10.1080/15548627.2015.1091910] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in men; however, the molecular mechanisms leading to its development and progression are not yet fully elucidated. Of note, it has been recently shown that conditional stk11 knockout mice develop atypical hyperplasia and prostate intraepithelial neoplasia (PIN). We recently reported an inverse correlation between the activity of the STK11/AMPK pathway and the MAPK/p38 cascade in HIF1A-dependent malignancies. Furthermore, MAPK/p38 overactivation was detected in benign prostate hyperplasia, PIN and PCa in mice and humans. Here we report that STK11 expression is significantly decreased in PCa compared to normal tissues. Moreover, STK11 protein levels decreased throughout prostate carcinogenesis. To gain insight into the role of STK11-MAPK/p38 activity balance in PCa, we treated PCa cell lines and primary biopsies with a well-established MAPK14-MAPK11 inhibitor (SB202190), which has been extensively used in vitro and in vivo. Our results indicate that inhibition of MAPK/p38 significantly affects PCa cell survival in an STK11-dependent manner. Indeed, we found that pharmacologic inactivation of MAPK/p38 does not affect viability of STK11-proficient PCa cells due to the triggering of the AMPK-dependent autophagic pathway, while it induces apoptosis in STK11-deficient cells irrespective of androgen receptor (AR) status. Of note, AMPK inactivation or autophagy inhibition in STK11-proficient cells sensitize SB202190-treated PCa cells to apoptosis. On the other end, reconstitution of functional STK11 in STK11-deficient PCa cells abrogates apoptosis. Collectively, our data show that STK11 is a key factor involved in the early phases of prostate carcinogenesis, and suggest that it might be used as a predictive marker of therapeutic response to MAPK/p38 inhibitors in PCa patients.
Collapse
Affiliation(s)
- Valentina Grossi
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit; Department of Emergency and Organ Transplantation (DETO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Giovanna Forte
- Cancer Genetics Laboratory; IRCCS “S. de Bellis”; Castellana Grotte (BA), Italy
| | - Alessia Peserico
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
- National Cancer Institute; IRCCS Oncologico Giovanni Paolo II; Bari, Italy
| | - Antonio Matrone
- Developmental Biology and Cancer; UCL Institute of Child Health; London , UK
| | - Aldo Germani
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Monica Rutigliano
- Urology, Andrology and Kidney Transplantation Unit; Department of Emergency and Organ Transplantation (DETO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Alessandro Stella
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Rosanna Bagnulo
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Daria Loconte
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Vanessa Galleggiante
- Urology, Andrology and Kidney Transplantation Unit; Department of Emergency and Organ Transplantation (DETO); University of Bari ‘Aldo Moro’; Bari, Italy
| | | | - Simona Cagiano
- Department of Pathology; University of Foggia; Foggia, Italy
| | - Pantaleo Bufo
- Department of Pathology; University of Foggia; Foggia, Italy
| | - Senia Trabucco
- Department of Pathology; University of Bari ‘Aldo Moro’; Bari, Italy
| | - Eugenio Maiorano
- Department of Pathology; University of Bari ‘Aldo Moro’; Bari, Italy
| | - Pasquale Ditonno
- Urology, Andrology and Kidney Transplantation Unit; Department of Emergency and Organ Transplantation (DETO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Michele Battaglia
- Urology, Andrology and Kidney Transplantation Unit; Department of Emergency and Organ Transplantation (DETO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Nicoletta Resta
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
| | - Cristiano Simone
- Division of Medical Genetics; Department of Biomedical Sciences and Human Oncology (DIMO); University of Bari ‘Aldo Moro’; Bari, Italy
- Cancer Genetics Laboratory; IRCCS “S. de Bellis”; Castellana Grotte (BA), Italy
| |
Collapse
|
16
|
Kim GE, Ross JL, Xie C, Su KN, Zaha VG, Wu X, Palmeri M, Ashraf M, Akar JG, Russell KS, Akar FG, Young LH. LKB1 deletion causes early changes in atrial channel expression and electrophysiology prior to atrial fibrillation. Cardiovasc Res 2015; 108:197-208. [PMID: 26378152 PMCID: PMC4571838 DOI: 10.1093/cvr/cvv212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 07/09/2015] [Accepted: 07/14/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Liver kinase B1 (LKB1) is a protein kinase that activates the metabolic regulator AMP-activated protein kinase (AMPK) and other related kinases. Deletion of LKB1 in mice leads to cardiomyopathy and atrial fibrillation (AF). However, the specific role of the LKB1 pathway in early atrial biology remains unknown. Thus, we investigated whether LKB1 deletion altered atrial channel expression and electrophysiological function in a cardiomyocyte-specific knockout mouse model. METHODS AND RESULTS We performed a systematic comparison of αMHC-Cre LKB1(fl/fl) and littermate LKB1(fl/fl) male mice. This included analysis of gene expression, histology, and echocardiography, as well as cellular and tissue-level electrophysiology using patch-clamp recordings in vitro, optical mapping ex vivo, and ECG recordings in vivo. At postnatal day 1, atrial depolarization was prolonged, and Nav1.5 and Cx40 expression were markedly down-regulated in MHC-Cre LKB1(fl/fl) mice. Inward sodium current density was significantly decreased in MHC-Cre LKB1(fl/fl) neonatal atrial myocytes. Subsequently, additional alterations in atrial channel expression, atrial fibrosis, and spontaneous onset of AF developed by 2 weeks of age. In adult mice, abnormalities of interatrial conduction and bi-atrial electrical coupling were observed, likely promoting the perpetuation of AF. Mice with AMPK-inactivated hearts demonstrated modest overlap in channel expression with MHC-Cre LKB1(fl/fl) hearts, but retained normal structure, electrophysiological function and contractility. CONCLUSIONS Deletion of LKB1 causes early defects in atrial channel expression, action potential generation and conduction, which precede widespread atrial remodelling, fibrosis and AF. LKB1 is critical for normal atrial growth and electrophysiological function.
Collapse
Affiliation(s)
- Grace E Kim
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Jenna L Ross
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Chaoqin Xie
- Cardiovascular Research Center, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Kevin N Su
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Vlad G Zaha
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xiaohong Wu
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Monica Palmeri
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mohammed Ashraf
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Joseph G Akar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kerry S Russell
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Fadi G Akar
- Cardiovascular Research Center, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Lawrence H Young
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
17
|
Obesity and cancer progression: is there a role of fatty acid metabolism? BIOMED RESEARCH INTERNATIONAL 2015; 2015:274585. [PMID: 25866768 PMCID: PMC4383231 DOI: 10.1155/2015/274585] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/24/2014] [Indexed: 12/30/2022]
Abstract
Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.
Collapse
|
18
|
Calles A, Sholl LM, Rodig SJ, Pelton AK, Hornick JL, Butaney M, Lydon C, Dahlberg SE, Oxnard GR, Jackman DM, Jänne PA. Immunohistochemical Loss of LKB1 Is a Biomarker for More Aggressive Biology in KRAS-Mutant Lung Adenocarcinoma. Clin Cancer Res 2015; 21:2851-60. [PMID: 25737507 DOI: 10.1158/1078-0432.ccr-14-3112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/23/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE LKB1 loss is common in lung cancer, but no assay exists to efficiently evaluate the presence or absence of LKB1. We validated an IHC assay for LKB1 loss and determined the impact of LKB1 loss in KRAS-mutant non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN We optimized and validated an IHC assay for LKB1 (clone Ley37D/G6) using a panel of lung cancer cell lines and tumors with known LKB1 mutations, including 2 patients with Peutz-Jeghers syndrome (PJS) who developed lung adenocarcinoma. We retrospectively analyzed tumors for LKB1 using IHC from 154 KRAS-mutant NSCLC patients, including 123 smokers and 31 never-smokers, and correlated the findings with patient and tumor characteristics and clinical outcome. RESULTS LKB1 expression was lost by IHC in 30% of KRAS-mutant NSCLC (smokers 35% vs. never-smokers 13%, P = 0.017). LKB1 loss did not correlate with a specific KRAS mutation but was more frequent in tumors with KRAS transversion mutations (P = 0.029). KRAS-mutant NSCLC patients with concurrent LKB1 loss had a higher number of metastatic sites at the time of diagnosis (median 2.5 vs. 2, P = 0.01), higher incidence of extrathoracic metastases (P = 0.01), and developed brain metastasis more frequently (48% vs. 25%, P = 0.02). There was a nonsignificant trend to worse survival in stage IV KRAS-mutant NSCLC patients with LKB1 loss. CONCLUSIONS LKB1 IHC is a reliable and efficient assay to evaluate for loss of LKB1 in clinical samples of NSCLC. LKB1 loss is more common in smokers, and is associated with a more aggressive clinical phenotype in KRAS-mutant NSCLC patients, accordingly to preclinical models.
Collapse
Affiliation(s)
- Antonio Calles
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ashley K Pelton
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mohit Butaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christine Lydon
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Suzanne E Dahlberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey R Oxnard
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - David M Jackman
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Pasi A Jänne
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
19
|
Lam DC, Luo SY, Deng W, Kwan JS, Rodriguez-Canales J, Cheung AL, Cheng GH, Lin CH, Wistuba II, Sham PC, Wan TS, Tsao SW. Oncogenic mutation profiling in new lung cancer and mesothelioma cell lines. Onco Targets Ther 2015; 8:195-209. [PMID: 25653542 PMCID: PMC4303463 DOI: 10.2147/ott.s71242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Thoracic tumor, especially lung cancer, ranks as the top cancer mortality in most parts of the world. Lung adenocarcinoma is the predominant subtype and there is increasing knowledge on therapeutic molecular targets, namely EGFR, ALK, KRAS, and ROS1, among lung cancers. Lung cancer cell lines established with known clinical characteristics and molecular profiling of oncogenic targets like ALK or KRAS could be useful tools for understanding the biology of known molecular targets as well as for drug testing and screening. Materials and methods Five new cancer cell lines were established from pleural fluid or biopsy tissues obtained from Chinese patients with primary lung adenocarcinomas or malignant pleural mesothelioma. They were characterized by immunohistochemistry, growth kinetics, tests for tumorigenicity, EGFR and KRAS gene mutations, ALK gene rearrangement and OncoSeq mutation profiling. Results These newly established lung adenocarcinoma and mesothelioma cell lines were maintained for over 100 passages and demonstrated morphological and immunohistochemical features as well as growth kinetics of tumor cell lines. One of these new cell lines bears EML4-ALK rearrangement variant 2, two lung cancer cell lines bear different KRAS mutations at codon 12, and known single nucleotide polymorphism variants were identified in these cell lines. Discussion Four new lung adenocarcinoma and one mesothelioma cell lines were established from patients with different clinical characteristics and oncogenic mutation profiles. These characterized cell lines and their mutation profiles will provide resources for exploration of lung cancer and mesothelioma biology with regard to the presence of known oncogenic mutations.
Collapse
Affiliation(s)
- David Cl Lam
- Department of Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Susan Y Luo
- Department of Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wen Deng
- School of Nursing, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Johnny Sh Kwan
- Department of Psychiatry, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA
| | - Annie Lm Cheung
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Grace Hw Cheng
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chi-Ho Lin
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA
| | - Pak C Sham
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Thomas Sk Wan
- Department of Pathology, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Sai-Wah Tsao
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
20
|
Dietary lipids and adipocytes: potential therapeutic targets in cancers. J Nutr Biochem 2014; 26:303-11. [PMID: 25524629 DOI: 10.1016/j.jnutbio.2014.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 12/22/2022]
Abstract
Lipids play an important role to support the rapid growth of cancer cells, which can be derived from both the endogenous synthesis and exogenous supplies. Enhanced de novo fatty acid synthesis and mobilization of stored lipids in cancer cells promote tumorigenesis. Besides, lipids and fatty acids derived from diet or transferred from neighboring adipocytes also influence the proliferation and metastasis of cancer cells. Indeed, the pathogenic roles of adipocytes in the tumor microenvironment have been recognized recently. The adipocyte-derived mediators or the cross talk between adipocytes and cancer cells in the microenvironment is gaining attention. This review will focus on the impacts of lipids on cancers and the pathogenic roles of adipocytes in tumorigenesis and discuss the possible anticancer therapeutic strategies targeting lipids in the cancer cells.
Collapse
|
21
|
Jacobsen B, Kriegbaum MC, Santoni-Rugiu E, Ploug M. C4.4A as a biomarker in pulmonary adenocarcinoma and squamous cell carcinoma. World J Clin Oncol 2014; 5:621-632. [PMID: 25302166 PMCID: PMC4129527 DOI: 10.5306/wjco.v5.i4.621] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/10/2014] [Accepted: 06/16/2014] [Indexed: 02/06/2023] Open
Abstract
The high prevalence and mortality of lung cancer, together with a poor 5-year survival of only approximately 15%, emphasize the need for prognostic and predictive factors to improve patient treatment. C4.4A, a member of the Ly6/uPAR family of membrane proteins, qualifies as such a potential informative biomarker in non-small cell lung cancer. Under normal physiological conditions, it is primarily expressed in suprabasal layers of stratified squamous epithelia. Consequently, it is absent from healthy bronchial and alveolar tissue, but nevertheless appears at early stages in the progression to invasive carcinomas of the lung, i.e., in bronchial hyperplasia/metaplasia and atypical adenomatous hyperplasia. In the stages leading to pulmonary squamous cell carcinoma, expression is sustained in dysplasia, carcinoma in situ and invasive carcinomas, and this pertains to the normal presence of C4.4A in squamous epithelium. In pulmonary adenocarcinomas, a fraction of cases is positive for C4.4A, which is surprising, given the origin of these carcinomas from mucin-producing and not squamous epithelium. Interestingly, this correlates with a highly compromised patient survival and a predominant solid tumor growth pattern. Circumstantial evidence suggests an inverse relationship between C4.4A and the tumor suppressor LKB1. This might provide a link to the prognostic impact of C4.4A in patients with adenocarcinomas of the lung and could potentially be exploited for predicting the efficacy of treatment targeting components of the LKB1 pathway.
Collapse
|
22
|
Kim WG, Choi HJ, Kim TY, Shong YK, Kim WB. The effect of 5-aminoimidazole-4-carboxamide-ribonucleoside was mediated by p38 mitogen activated protein kinase signaling pathway in FRO thyroid cancer cells. Korean J Intern Med 2014; 29:474-81. [PMID: 25045295 PMCID: PMC4101594 DOI: 10.3904/kjim.2014.29.4.474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/23/2013] [Accepted: 09/01/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a cellular energy sensor that monitors intracellular AMP/adenosine triphosphate (ATP) ratios and is a key regulator of the proliferation and survival of diverse malignant cell types. In the present study, we investigated the effect of activating AMPK by 5-aminoimidazole-4-carboxamide-ribonucleotide (AICAR) in thyroid cancer cells. METHODS We used FRO thyroid cancer cells harboring the BRAF(V600E) mutation to examine the effect of AICAR on cell proliferation and cell survival. We also evaluated the involvement of mitogen-activated protein kinase (MAPK) pathways in this effect. RESULTS We found that AICAR treatment promoted AMPK activation and suppressed cell proliferation and survival by inducing p21 accumulation and activating caspase-3. AICAR significantly induced activation of p38 MAPK, and pretreatment with SB203580, a specific inhibitor of the p38 MAPK pathway, partially but significantly rescued cell survival. Furthermore, small interfering RNA targeting AMPK-α1 abolished AICAR-induced activation of p38 MAPK, p21 accumulation, and activation of caspase-3. CONCLUSIONS Our findings demonstrate that AMPK activation using AICAR inhibited cell proliferation and survival by activating p38 MAPK and proapoptotic molecules in FRO thyroid cancer cells. These results suggest that the AMPK and p38 MAPK signaling pathways may be useful therapeutic targets to treat thyroid cancer.
Collapse
Affiliation(s)
- Won Gu Kim
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - Tae Yong Kim
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Kee Shong
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Bae Kim
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Increased expression of phospho-acetyl-CoA carboxylase protein is an independent prognostic factor for human gastric cancer without lymph node metastasis. Med Oncol 2014; 31:15. [PMID: 24924473 DOI: 10.1007/s12032-014-0015-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
Upregulation of acetyl-CoA carboxylase (ACC), as a rate-limiting enzyme of fatty acid synthesis,has been recognized in multiple human cancers, implicating a critical role in cancer development and progression; yet, its role in gastric cancer still remains unclear. In the present study, we detected ACC and phosphorylated form of ACC (pACC) expression in gastric cancers and explored its clinical significance. Tissue microarray blocks containing primary gastric cancer and adjacent normal mucosa specimens obtained from 1,072 Chinese patients were used for the detection of ACC and pACC expression by immunohistochemistry. Gastric cancer cell lines were treated by metformin, and pACC was measured by Western blotting. ACC overexpression was observed in all the tumor specimens. High expression of pACC was found in 630 (58.8 %) of the 1,072 primary tumors and in 237 (66.6 %) of the 356 primary tumors without lymph node metastasis. Absent/low expression of pACC significantly correlated with advanced T stage (P < 0.001), tumor size (P = 0.010), lymph node metastasis (P < 0.001), advanced disease stage (P < 0.001), and poor histological differentiation (P = 0.014) in 1,072 primary tumors, and with advanced T stage (P = 0.015), tumor size (P = 0.017), and poor histological differentiation (P = 0.001) in 356 tumors without lymph node metastasis. Kaplan-Meier analysis showed that high expression of pACC is strongly related to better survival rates in all gastric cancer patients (P = 0.006). Cox regression analysis revealed that pACC is an independent prognostic factor only in patients without lymph node metastasis (P = 0.016). Metformin treatment leaded to increased expression of pACC, which, in turn, resulted in the reduction of cell proliferation and colony formation of gastric cancer cells (P < 0.05). Increased activation of ACC is frequent in human gastric cancer, and downregulation of pACC is an important prognostic factor, suggesting that ACC/pACC might be a potential target for cancer intervention.
Collapse
|
24
|
Zhang X, Chen H, Wang X, Zhao W, Chen JJ. Expression and transcriptional profiling of the LKB1 tumor suppressor in cervical cancer cells. Gynecol Oncol 2014; 134:372-8. [PMID: 24792998 DOI: 10.1016/j.ygyno.2014.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To characterize the biological activities of LKB1, examine LKB1 protein expression and identify LKB1-regulated genes that may serve as therapeutic targets in cervical cancer. METHODS Proliferation of cervical cancer HeLa cells expressing LKB1 was examined. LKB1 expression in normal cervical tissues and cervical cancers was assessed by immunohistochemistry. Gene expression profiles of cervical cancer HeLa cells stably expressing LKB1 were analyzed by microarray. Differentially expressed genes were analyzed using Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) PATHWAY database. Quantitative RT-PCR was used to validate the microarray data. The expression of lipid phosphatase inositol polyphosphate 4-phosphatase type II (INPP4B) was confirmed by western blotting. RESULTS Expression of LKB1 inhibited HeLa cell proliferation, activated AMPK and was lost in more than 50% of cervical carcinomas. More than 200 genes were differentially expressed between HeLa cells with and without LKB1. Bioinformatics analysis with GO annotation indicated that LKB1 plays a role in receiving diverse stimuli and converting them into molecular signals. KEGG PATHWAY analysis showed that 8 pathways were significantly regulated. These include arginine and proline metabolism and inositol phosphate metabolism. The differential expression of 7 randomly selected genes was confirmed by quantitative RT-PCR. Furthermore, the steady-state level of INPP4B protein was up-regulated in LKB1-overexpressing cells. CONCLUSIONS This study establishes LKB1 as an important tumor suppressor in cervical cancer and sheds light on a novel signaling pathway regulated by LKB1.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Microbiology, Shandong University School of Medicine, Jinan, Shandong, China; Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01532, USA
| | - Hanxiang Chen
- Department of Microbiology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Xiao Wang
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, China
| | - Weiming Zhao
- Department of Microbiology, Shandong University School of Medicine, Jinan, Shandong, China.
| | - Jason J Chen
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01532, USA; Cancer Research Center, Shandong University School of Medicine, Jinan, Shandong, China.
| |
Collapse
|
25
|
Nakada Y, Stewart TG, Peña CG, Zhang S, Zhao N, Bardeesy N, Sharpless NE, Wong KK, Hayes DN, Castrillon DH. The LKB1 tumor suppressor as a biomarker in mouse and human tissues. PLoS One 2013; 8:e73449. [PMID: 24086281 PMCID: PMC3783464 DOI: 10.1371/journal.pone.0073449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 07/21/2013] [Indexed: 11/18/2022] Open
Abstract
Germline mutations in the LKB1 gene (also known as STK11) cause the Peutz-Jeghers Syndrome, and somatic loss of LKB1 has emerged as causal event in a wide range of human malignancies, including melanoma, lung cancer, and cervical cancer. The LKB1 protein is a serine-threonine kinase that phosphorylates AMP-activated protein kinase (AMPK) and other downstream targets. Conditional knockout studies in mouse models have consistently shown that LKB1 loss promotes a highly-metastatic phenotype in diverse tissues, and human studies have demonstrated a strong association between LKB1 inactivation and tumor recurrence. Furthermore, LKB1 deficiency confers sensitivity to distinct classes of anticancer drugs. The ability to reliably identify LKB1-deficient tumors is thus likely to have important prognostic and predictive implications. Previous research studies have employed polyclonal antibodies with limited success, and there is no widely-employed immunohistochemical assay for LKB1. Here we report an assay based on a rabbit monoclonal antibody that can reliably detect endogenous LKB1 protein (and its absence) in mouse and human formalin-fixed, paraffin-embedded tissues. LKB1 protein levels determined through this assay correlated strongly with AMPK phosphorylation both in mouse and human tumors, and with mRNA levels in human tumors. Our studies fully validate this immunohistochemical assay for LKB1 in paraffin-embedded formalin tissue sections. This assay should be broadly useful for research studies employing mouse models and also for the development of human tissue-based assays for LKB1 in diverse clinical settings.
Collapse
Affiliation(s)
- Yuji Nakada
- Department of Pathology and Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thomas G. Stewart
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center and University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Christopher G. Peña
- Department of Pathology and Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Song Zhang
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Ni Zhao
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center and University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Norman E. Sharpless
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center and University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kwok-Kin Wong
- Department of Medicine, Harvard of Medical School and Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - D. Neil Hayes
- Departments of Medicine and Genetics, The Lineberger Comprehensive Cancer Center and University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (DNH); (DHC)
| | - Diego H. Castrillon
- Department of Pathology and Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: (DNH); (DHC)
| |
Collapse
|
26
|
Lo AKF, Lo KW, Ko CW, Young LS, Dawson CW. Inhibition of the LKB1-AMPK pathway by the Epstein-Barr virus-encoded LMP1 promotes proliferation and transformation of human nasopharyngeal epithelial cells. J Pathol 2013; 230:336-46. [PMID: 23592276 DOI: 10.1002/path.4201] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 12/22/2022]
Abstract
The association of Epstein-Barr virus (EBV) infection with the development of nasopharyngeal carcinoma (NPC) is well established. Latent membrane protein 1 (LMP1), the major oncogene encoded by EBV, is believed to play a crucial role in NPC pathogenesis by virtue of its ability to constitutively activate multiple cell signalling pathways. The LKB1-AMPK pathway is a master regulator of cellular metabolism that, via modulation of energy metabolism, has tumour suppressor activity. In this study we identify a novel ability of LMP1 to inhibit the LKB1-AMPK pathway through phosphorylation of LKB1 at serine 428 with subsequent suppression of the phosphorylation of AMPK and its substrates, ACC and Raptor. We show that MEK/ERK-MAPK signalling, activated by the CTAR1 domain of LMP1, is responsible for LKB1-AMPK inactivation. In addition, reactivation of AMPK signalling by AMPK activator, AICAR, abolished LMP1-induced cellular transformation (proliferation and anchorage-independent growth) in nasopharyngeal epithelial cells. Immunohistochemical staining revealed that a low level of phosphorylated AMPK is common in primary NPC specimens, and that this correlated significantly with the expression of LMP1. AICAR treatment inhibited the proliferation and anchorage-independent growth of NPC cells as well as potentiating the cytotoxic effect of the chemotherapeutic drug 5-fluorouracil. The current findings demonstrate that LMP1-mediated AMPK inactivation contributes to the proliferation and transformation of epithelial cells, thereby implicating the LKB1-AMPK pathway in the EBV-driven pathogenesis of NPC. Our findings also suggest that AMPK activators could be used to enhance the efficacy of conventional chemotherapeutic agents in the treatment of local and metastatic NPC.
Collapse
Affiliation(s)
- Angela Kwok-Fung Lo
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | | | |
Collapse
|
27
|
Zhong DS, Sun LL, Dong LX. Molecular mechanisms of LKB1 induced cell cycle arrest. Thorac Cancer 2013; 4:229-233. [PMID: 28920233 DOI: 10.1111/1759-7714.12003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/02/2012] [Indexed: 01/13/2023] Open
Abstract
LKB1 is a serine/threonine protein kinase mutated in patients with Peutz-Jeghers syndrome. Biallelic inactivation of LKB1 is present in up to 30% of cases of non-small cell lung cancer (NSCLC). As a tumor suppressor, LKB1 functions in arresting the cell cycle and inhibiting cell growth. LKB1 leads to induction of p21/WAF1 expression in a p53-dependent mechanism, which is mediated by cytoplasmic LKB1 initiating negative regulation of cell growth or nuclear LKB1 directly involved in transcriptional regulation of p21/WAF1. Alternatively, p53 and p21/WAF1-independent mechanism of regulating cell cycle by LKB1 is also reported.
Collapse
Affiliation(s)
- Dian-Sheng Zhong
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lin-Lin Sun
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Li-Xia Dong
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Ly6/uPAR-related protein C4.4A as a marker of solid growth pattern and poor prognosis in lung adenocarcinoma. J Thorac Oncol 2013; 8:152-60. [PMID: 23287851 DOI: 10.1097/jto.0b013e318279d503] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We have recently shown that the protein C4.4A is induced in early precursor lesions of pulmonary adenocarcinomas and squamous cell carcinomas. In the present study, we aimed at analyzing the impact of C4.4A on the survival of non-small cell lung cancer patients and determining whether its unexpected expression in adenocarcinomas could be attributed to a specific growth type (lepidic, acinar, papillary, micropapillary, solid). METHODS Sections from the center and periphery of the primary tumor, as well as N2-positive lymph node metastases, were stained by immunohistochemistry for C4.4A and scored semi-quantitatively for intensity and frequency of positive tumor cells. RESULTS C4.4A score (intensity × frequency) in the tumor center was a highly significant prognostic factor in adenocarcinomas (n = 88), both in univariate (p = 0.004; hazard ratio [95% confidence interval] = 1.44 [1.12-1.85]) and multivariate statistical analysis (p = 0.0005; hazard ratio = 1.65 [1.24-2.19]), demonstrating decreasing survival with increasing score. In contrast, C4.4A did not provide prognostic information in squamous cell carcinomas (n = 104). Pathological stage was significant in both groups. In the adenocarcinomas, C4.4A expression was clearly associated with, but a stronger prognostic factor than, solid growth. CONCLUSIONS The present results substantiate the potential value of C4.4A as a prognostic marker in pulmonary adenocarcinomas seen earlier in a smaller, independent patient cohort. Importantly, we also show that C4.4A is a surrogate marker for adenocarcinoma solid growth. Recent data suggest that C4.4A is negatively regulated by the tumor suppressor liver kinase B1, which is inactivated in some adenocarcinomas, providing a possible link to the impact of C4.4A on the survival of these patients.
Collapse
|
29
|
Annunziata C, Buonaguro L, Losito S, Buonaguro FM, Tornesello ML. Somatic mutations of STK11 gene in human papillomavirus positive and negative penile cancer. Infect Agent Cancer 2013; 8:2. [PMID: 23305393 PMCID: PMC3584742 DOI: 10.1186/1750-9378-8-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human papillomavirus (HPV) infection accounts for about 40-50% of all cases of penile carcinoma suggesting that other factors, including host genetic status, are involved in neoplastic transformation. In this perspective, STK11 gene, which has been found frequently mutated in HPV-related cervical carcinoma, has been analyzed in HPV-positive and HPV-negative invasive penile cancers to establish its mutational status and the possible correlation of HPV infection with specific genetic alterations. METHODS Genomic DNAs extracted from 26 cases of penile squamous cell carcinoma were analyzed for genetic alterations in the exons 1 to 9 of STK11 gene by quantitative real-time PCR. Ratios of potentially deleted and non-deleted exons were indicative of specific loss of STK11 coding regions. DNA samples of 5 cancer cases were subjected to standard PCR amplification of STK11 exons 1 to 9 and analyzed for somatic mutations by direct nucleotide sequencing analysis. RESULTS Heterozygous deletions of STK11 exon 1 and 2 were identified in 2 out of 14 HPV-positive (14.3%) and 1 out of 12 HPV-negative cases (8.3%). Complete nucleotide sequencing analysis of exons 1 to 9 showed a single nucleotide change upstream the exon 2 coding region in 1 out of 5 penile carcinoma samples. CONCLUSIONS The present results suggest that single nucleotide mutations and/or deletions of STK11 gene are rare events in penile cancer. Moreover, no significant association was observed between STK11 alterations and HPV infection in these tumors.
Collapse
Affiliation(s)
- Clorinda Annunziata
- Molecular Biology and Viral Oncology, National Cancer Institute "Fond. Pascale", Cappella Cangiani, 80131, Naples, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology, National Cancer Institute "Fond. Pascale", Cappella Cangiani, 80131, Naples, Italy
| | - Simona Losito
- Department of Pathology, National Cancer Institute "Fond. Pascale", Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology, National Cancer Institute "Fond. Pascale", Cappella Cangiani, 80131, Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology, National Cancer Institute "Fond. Pascale", Cappella Cangiani, 80131, Naples, Italy
| |
Collapse
|
30
|
Theodoropoulou S, Brodowska K, Kayama M, Morizane Y, Miller JW, Gragoudas ES, Vavvas DG. Aminoimidazole carboxamide ribonucleotide (AICAR) inhibits the growth of retinoblastoma in vivo by decreasing angiogenesis and inducing apoptosis. PLoS One 2013; 8:e52852. [PMID: 23300996 PMCID: PMC3536763 DOI: 10.1371/journal.pone.0052852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/23/2012] [Indexed: 01/22/2023] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma.
Collapse
Affiliation(s)
- Sofia Theodoropoulou
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Katarzyna Brodowska
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maki Kayama
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yuki Morizane
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan W. Miller
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Evangelos S. Gragoudas
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Demetrios G. Vavvas
- Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Retina Service, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ghahhari NM, Ghahhari HM, Kadivar M. Could a Possible Crosstalk between AMPK and TGF-β Signaling Pathways Be a Key Player in Benign and Malignant Salivary Gland Tumors? Oncol Res Treat 2012. [DOI: 10.1159/000345131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Zhang F, Du G. Dysregulated lipid metabolism in cancer. World J Biol Chem 2012; 3:167-74. [PMID: 22937213 PMCID: PMC3430731 DOI: 10.4331/wjbc.v3.i8.167] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/09/2012] [Accepted: 08/16/2012] [Indexed: 02/05/2023] Open
Abstract
Alteration of lipid metabolism has been increasingly recognized as a hallmark of cancer cells. The changes of expression and activity of lipid metabolizing enzymes are directly regulated by the activity of oncogenic signals. The dependence of tumor cells on the dysregulated lipid metabolism suggests that proteins involved in this process are excellent chemotherapeutic targets for cancer treatment. There are currently several drugs under development or in clinical trials that are based on specifically targeting the altered lipid metabolic pathways in cancer cells. Further understanding of dysregulated lipid metabolism and its associated signaling pathways will help us to better design efficient cancer therapeutic strategy.
Collapse
Affiliation(s)
- Feng Zhang
- Feng Zhang, Guangwei Du, Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, United States
| | | |
Collapse
|
33
|
Tanwar PS, Kaneko-Tarui T, Zhang L, Tanaka Y, Crum CP, Teixeira JM. Stromal liver kinase B1 [STK11] signaling loss induces oviductal adenomas and endometrial cancer by activating mammalian Target of Rapamycin Complex 1. PLoS Genet 2012; 8:e1002906. [PMID: 22916036 PMCID: PMC3420942 DOI: 10.1371/journal.pgen.1002906] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/03/2012] [Indexed: 02/06/2023] Open
Abstract
Germline mutations of the Liver Kinase b1 (LKB1/STK11) tumor suppressor gene have been linked to Peutz-Jeghers Syndrome (PJS), an autosomal-dominant, cancer-prone disorder in which patients develop neoplasms in several organs, including the oviduct, ovary, and cervix. We have conditionally deleted Lkb1 in Müllerian duct mesenchyme-derived cells of the female reproductive tract and observed expansion of the stromal compartment and hyperplasia and/or neoplasia of adjacent epithelial cells throughout the reproductive tract with paratubal cysts and adenomyomas in oviducts and, eventually, endometrial cancer. Examination of the proliferation marker phospho-histone H3 and mammalian Target Of Rapamycin Complex 1 (mTORC1) pathway members revealed increased proliferation and mTORC1 activation in stromal cells of both the oviduct and uterus. Treatment with rapamycin, an inhibitor of mTORC1 activity, decreased tumor burden in adult Lkb1 mutant mice. Deletion of the genes for Tuberous Sclerosis 1 (Tsc1) or Tsc2, regulators of mTORC1 that are downstream of LKB1 signaling, in the oviductal and uterine stroma phenocopies some of the defects observed in Lkb1 mutant mice, confirming that dysregulated mTORC1 activation in the Lkb1-deleted stroma contributes to the phenotype. Loss of PTEN, an upstream regulator of mTORC1 signaling, along with Lkb1 deletion significantly increased tumor burden in uteri and induced tumorigenesis in the cervix and vagina. These studies show that LKB1/TSC1/TSC2/mTORC1 signaling in mesenchymal cells is important for the maintenance of epithelial integrity and suppression of carcinogenesis in adjacent epithelial cells. Because similar changes in the stromal population are also observed in human oviductal/ovarian adenoma and endometrial adenocarcinoma patients, we predict that dysregulated mTORC1 activity by upstream mechanisms similar to those described in these model systems contributes to the pathogenesis of these human diseases. Peutz-Jeghers Syndrome patients have autosomal dominant mutations in the LKB1/STK11 gene and are prone to developing cancer, predominantly in the intestinal tract but also in other tissues, including the reproductive tracts and gonads. To elucidate the mechanisms disrupted by the loss of LKB1 in the reproductive tract, we have developed a mouse model with deletion of Lkb1 specifically in stromal cells of gynecologic tissues. These mice show stromal cell expansion and develop oviductal adenomas and endometrial cancer. Deletion of either Tsc1 or Tsc2 genes, which are mutated in patients with Tuberous Sclerosis Complex and whose protein products are indirect downstream targets of LKB1 signaling, resulted in some of the same defects observed in Lkb1 mutant mice. Activation of mammalian Target Of Rapamycin Complex 1 (mTORC1), a common effector of disrupted LKB1, TSC1, and TSC2 signaling, was observed in all mutant tissues examined, suggesting that uninhibited mTORC1 activity is necessary for the phenotypes. Suppression of mTORC1 signaling by rapamycin reduced tumor burden in Lkb1 mutant mice, confirming the link between dysregulation of mTORC1 to development of the Lkb1 mutant phenotype and suggesting that therapeutic targeting of LKB1/TSC1/TSC2/mTORC1 signaling would benefit human Peutz-Jeghers Syndrome and Tuberous Sclerosis patients with reproductive tract disease.
Collapse
Affiliation(s)
- Pradeep S. Tanwar
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tomoko Kaneko-Tarui
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - LiHua Zhang
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Yoshihiro Tanaka
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Christopher P. Crum
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jose M. Teixeira
- Vincent Center for Reproductive Biology, Department of Obstetrics, Gynecology, and Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Abstract
In humans, the LKB1 gene is located on the short arm of chromosome 19, which is frequently deleted in lung tumors. Unlike most cancers of sporadic origin, in non-small cell lung cancer (NSCLC) nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. In NSCLC, LKB1 inactivation strongly predominates in adenocarcinomas from smokers and coexists with mutations at other important cancer genes, including KRAS and TP53. Remarkably, LKB1 alterations frequently occur simultaneously with inactivation at another important tumor suppressor gene, BRG1 (also called SMARCA4), which is also located on chromosome 19p. The present review considers the frequency and pattern of LKB1 mutations in lung cancer and the distinct biological pathways in which the LKB1 protein is involved in the development of this type of cancer. Finally, the possible clinical applications in cancer management, especially in lung cancer treatment, associated with the presence of absence of LKB1 are discussed.
Collapse
Affiliation(s)
- Montse Sanchez-Cespedes
- Programa Epigenetica i Biologia del Cancer-PEBC, Institut Investigacions Biomediques Bellvitge, Hospital Duran i Reynals, Av. Gran Via de l'Hospitalet, 199-203, 08907, Hospitalet de Llobregat-Barcelona, Spain.
| |
Collapse
|
35
|
Scott KEN, Wheeler FB, Davis AL, Thomas MJ, Ntambi JM, Seals DF, Kridel SJ. Metabolic regulation of invadopodia and invasion by acetyl-CoA carboxylase 1 and de novo lipogenesis. PLoS One 2012; 7:e29761. [PMID: 22238651 PMCID: PMC3253107 DOI: 10.1371/journal.pone.0029761] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/04/2011] [Indexed: 01/04/2023] Open
Abstract
Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis.
Collapse
Affiliation(s)
- Kristen E. N. Scott
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Frances B. Wheeler
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Amanda L. Davis
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Michael J. Thomas
- Department of Biochemistry, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - James M. Ntambi
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Darren F. Seals
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| | - Steven J. Kridel
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
- Comprehensive Cancer Center, Wake Forest School of Medicine, Winston Salem, North Carolina, United States of America
| |
Collapse
|
36
|
William WN, Kim JS, Liu DD, Solis L, Behrens C, Lee JJ, Lippman SM, Kim ES, Hong WK, Wistuba II, Lee HY. The impact of phosphorylated AMP-activated protein kinase expression on lung cancer survival. Ann Oncol 2012; 23:78-85. [PMID: 21430184 PMCID: PMC3276321 DOI: 10.1093/annonc/mdr036] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The aim of this study is to investigate the prognostic role of phosphorylated AMP-activated protein kinase (pAMPK) in surgically resected non-small-cell lung cancer (NSCLC). METHODS Immunohistochemical staining of pAMPK was carried out on tissue microarrays containing 463 samples obtained from patients with NSCLC and correlated with clinicopathological characteristics and survival. RESULTS pAMPK expression levels were significantly higher in never smokers versus former smokers versus current smokers (P=0.045). A positive pAMPK expression was associated with increased overall survival (OS) and recurrence-free survival (RFS) (P=0.0009 and P=0.0007, respectively). OS and RFS were statistically superior in pAMPK-positive than in pAMPK-negative patients with adenocarcinoma (ADC; median OS: 5.6 and 4.2 years, respectively, P=0.0001; median RFS: 5.0 and 2.4 years, respectively, P=0.001), whereas they were similar in those patients with squamous cell carcinoma. Multivariate analysis confirmed that pAMPK positivity was associated with OS [hazard ratio (HR)=0.574, 95% confidence interval (CI) 0.418-0.789, P=0.0006) and RFS (HR=0.608, 95% CI 0.459-0.807, and P=0.0006), independent of clinical covariates. CONCLUSIONS High pAMPK expression levels are associated with increased survival in patients with NSCLC, especially those with ADC. Our results support further evaluation of AMP-activated protein kinase as a potential prognostic and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- W N William
- Departments of Thoracic/Head & Neck Medical Oncology
| | - J-S Kim
- Departments of Thoracic/Head & Neck Medical Oncology
| | - D D Liu
- Departments of Biostatistics
| | - L Solis
- Departments of Biostatistics Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - C Behrens
- Departments of Thoracic/Head & Neck Medical Oncology
| | - J J Lee
- Departments of Biostatistics
| | - S M Lippman
- Departments of Thoracic/Head & Neck Medical Oncology
| | - E S Kim
- Departments of Thoracic/Head & Neck Medical Oncology
| | - W K Hong
- Departments of Thoracic/Head & Neck Medical Oncology
| | - I I Wistuba
- Departments of Thoracic/Head & Neck Medical Oncology; Departments of Biostatistics Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - H-Y Lee
- Departments of Thoracic/Head & Neck Medical Oncology; Departments of College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Liu J, Li M, Song B, Jia C, Zhang L, Bai X, Hu W. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urol Oncol 2011; 31:264-70. [PMID: 21676631 DOI: 10.1016/j.urolonc.2011.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/30/2010] [Accepted: 01/01/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To evaluate the effects of metformin on renal cell carcinoma (RCC) and its underlying mechanisms. MATERIALS AND METHODS We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and colony formation assays to investigate the effects of metformin on RCC cell growth. Flow cytometry was used to evaluate the cell cycle changes after metformin treatment. We further determined the possible signaling molecules involved in this process by immunoblot analysis of various proteins. Furthermore, a xenograft model was used to study the effects of metformin on RCC tumor growth. RESULTS We demonstrated that metformin effectively inhibits cell proliferation in 786-O and OS-RC-2 RCC cell lines. Moreover, metformin down-regulated cyclin D1 expression and induced G0/G1 cell cycle arrest in these cells. Further study revealed metformin induced the activation of AMP-activated protein kinase (AMPK), and inhibited mammalian target of rapamycin (mTOR), which is a central regulator of protein synthesis and cell growth, and negatively regulated by AMPK. Most importantly, daily treatment of mice with metformin prevented RCC tumor growth in a xenograft model. CONCLUSIONS Metformin was able to induce G0/G1 cell cycle arrest and inhibit RCC growth in vitro and in vivo. These results suggest that metformin may be a potential therapeutic agent for the treatment of RCC.
Collapse
Affiliation(s)
- Jun Liu
- The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Gill RK, Yang SH, Meerzaman D, Mechanic LE, Bowman ED, Jeon HS, Roy Chowdhuri S, Shakoori A, Dracheva T, Hong KM, Fukuoka J, Zhang JH, Harris CC, Jen J. Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene 2011; 30:3784-91. [PMID: 21532627 DOI: 10.1038/onc.2011.98] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
LKB1/STK11 is a tumor suppressor and a negative regulator of mammalian target of rapamycin signaling. It is inactivated in 30% of lung cancer cell lines but only 5-15% of primary lung adenocarcinomas. There is evidence that homozygous deletion (HD) of chromosome 19p at the LKB locus contributes to the inactivation of the gene in primary human lung cancers. Here, we used several complementary genetic approaches to assess the LKB1 locus in primary non-small cell lung cancers (NSCLCs). We first analyzed 124 NSCLC cases for allelic imbalance using eight microsatellite markers on chromosome 19p, which revealed an overall rate of 65% (80 of 124) loss of heterozygosity (LOH). We next used chromogenic in situ hybridization (CISH) to directly examine the chromosomal status of the LKB1 locus. In all, 65 of 124 LOH tested samples were available for CISH and 58 of those (89%) showed either loss of one copy of chromosome 19p (LOH, 40 of 65 cases, 62%) or both copies (HD 18 of 65 cases, 28%). The occurrence of HD was significantly more frequent in Caucasian (35%) than in African-American patients (6%) (P=0.04). A total of 62 of 124 samples with LOH at one or both markers immediately flanking the LKB1 gene were further analyzed by directly sequencing the complete coding region, which identified 7 of 62 (11%) tumors with somatic mutations in the gene. Jointly, our data identified total inactivation of the LKB1 gene by either HD or LOH with somatic mutation in 39% of tested samples, whereas loss of chromosome 19p region by HD or LOH at the LKB1 region occured in 90% of NSCLC.
Collapse
Affiliation(s)
- R K Gill
- Laboratory of Human Carcinogenesis, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wu J, Ji F, DI W, Chen H, Wan Y. Activation of acetyl-coenzyme A carboxylase is involved in Taxol-induced ovarian cancer cell death. Oncol Lett 2011; 2:543-547. [PMID: 22866118 DOI: 10.3892/ol.2011.286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/09/2011] [Indexed: 11/05/2022] Open
Abstract
Acetyl-coenzyme A carboxylase (ACC) is an attractive target for research into the treatment of a variety of human diseases, including diabetes, obesity and cancer. Mounting evidence suggests that the inhibition of ACC induced of cancer cell apoptosis. However, whether the inhibition of ACC regulates apoptosis in CaOV3 cancer cells has yet to be addressed. This study investigated the cytotoxic mechanism of action of ACC inhibition. Results showed that 5-(tetradecyloxy)-2-furoic acid (TOFA), an ACC inhibitor, enhanced Taxol-induced CaOV3 human ovarian cancer cell apoptosis. Notably, when TOFA was administered as a monotherapy, it induced CaOV3 cell apoptosis. Pre-treatment with the EGFR inhibitor PD153035 was found to markedly enhance ACC phosphorylation, whereas AMP-activated protein kinase (AMPK) activator AICAR was found to marginally enhance ACC phosphorylation. Taken together, the data showed ACC is a potential novel molecular target of Taxol. Additionally, ACC inhibition partially contributed to the cytotoxic effect of Taxol in ovarian cancer cells.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Dermatology, China Medical University, Shenyang, Liaoning 110001
| | | | | | | | | |
Collapse
|
40
|
Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010; 6:457-70. [PMID: 20222801 DOI: 10.2217/fon.09.174] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AMPK is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for metabolic syndrome and Type 2 diabetes. Recent studies indicate that AMPK plays a role in linking metabolic syndrome and cancer. AMPK is an essential mediator of the tumor suppressor LKB1 and could be suppressed in cancer cells containing loss-of-function mutations of LKB1 or containing active mutations of B-Raf, or in cancers associated with metabolic syndrome. The activation of AMPK reprograms cellular metabolism and enforces metabolic checkpoints by acting on mTORC1, p53, fatty acid synthase and other molecules for regulating cell growth and metabolism. In keeping with in vitro studies, recent epidemiological studies indicate that the incidence of cancer is reduced in Type 2 diabetes treated with metformin, an AMPK activator. Thus, AMPK is emerging as an interesting metabolic tumor suppressor and a promising target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, MA 02118, USA.
| | | | | |
Collapse
|
41
|
Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1805:141-52. [PMID: 20122995 DOI: 10.1016/j.bbcan.2010.01.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/11/2010] [Accepted: 01/24/2010] [Indexed: 12/12/2022]
Abstract
Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes. This review summarizes the recent information about the mechanistic link of these genes to oncogenesis and their potential utility as diagnostic markers as well as for therapeutic targets. We particularly focus on three groups of genes; GLUT1, G6PD, TKTL1 and PGI/AMF in glycolytic pathway, ACLY, ACC1 and FAS in lipogenesis and RRM2, p53R2 and TYMS for nucleotide synthesis. All these genes are highly up-regulated in a variety of tumor cells in cancer patients, and they play active roles in tumor progression rather than expressing merely as a consequence of phenotypic change of the cancer cells. Molecular dissection of their orchestrated networks and understanding the exact mechanism of their expression will provide a window of opportunity to target these genes for specific cancer therapy. We also reviewed existing database of gene microarray to validate the utility of these genes for cancer diagnosis.
Collapse
Affiliation(s)
- Eiji Furuta
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | |
Collapse
|
42
|
Ebi H, Tomida S, Takeuchi T, Arima C, Sato T, Mitsudomi T, Yatabe Y, Osada H, Takahashi T. Relationship of Deregulated Signaling Converging onto mTOR with Prognosis and Classification of Lung Adenocarcinoma Shown by Two Independent In silico Analyses. Cancer Res 2009; 69:4027-35. [DOI: 10.1158/0008-5472.can-08-3403] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Fan D, Ma C, Zhang H. The molecular mechanisms that underlie the tumor suppressor function of LKB1. Acta Biochim Biophys Sin (Shanghai) 2009; 41:97-107. [PMID: 19204826 DOI: 10.1093/abbs/gmn011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Germline mutations of the LKB1 tumor suppressor gene result in Peutz-Jeghers syndrome (PJS) characterized by intestinal hamartomas and increased incidence of epithelial cancers. Inactivating mutations in LKB1 have also been found in certain sporadic human cancers and with particularly high frequency in lung cancer. LKB1 has now been demonstrated to play a crucial role in pulmonary tumorigenesis, controlling initiation, differentiation, and metastasis. Recent evidences showed that LKB1 is a multitasking kinase, with great potential in orchestrating cell activity. Thus far, LKB1 has been found to play a role in cell polarity, energy metabolism, apoptosis, cell cycle arrest, and cell proliferation, all of which may require the tumor suppressor function of this kinase and/or its catalytic activity. This review focuses on remarkable recent findings concerning the molecular mechanism by which the LKB1 protein kinase operates as a tumor suppressor and discusses the rational treatment strategies to individuals suffering from PJS and other common disorders related to LKB1 signaling.
Collapse
Affiliation(s)
- Dahua Fan
- Department of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, China
| | | | | |
Collapse
|
44
|
Rodriguez-Nieto S, Sanchez-Cespedes M. BRG1 and LKB1: tales of two tumor suppressor genes on chromosome 19p and lung cancer. Carcinogenesis 2009; 30:547-54. [PMID: 19176640 DOI: 10.1093/carcin/bgp035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Losses of heterozygosity (LOH) of the short arm of chromosome 19 are frequent in lung cancer, suggesting that one or more tumor suppressor genes are present in this region. The LKB1 gene, also called STK11, is somatically inactivated through point mutations and large deletions in lung tumors, demonstrating that LKB1 is a target of the LOH of this chromosomal arm. Data from several independent groups have provided information about the profiles of lung tumors with LKB1 inactivation and it is generally agreed that this alteration strongly predominates in non-small cell lung cancer, in particular adenocarcinomas, in smokers. The LKB1 protein has serine-threonine kinase activity and is involved in the regulation of the cell energetic checkpoint through the phosphorylation and activation of adenosine monophosphate-dependent kinase (AMPK). LKB1 is also involved in other processes such as cell polarization, probably through substrates other than AMPK. Interestingly, another gene on chromosome 19p, BRG1, encoding a component of the SWI/SNF chromatin-remodeling complex, has emerged as a tumor suppressor gene that is altered in lung tumors. Similar to LKB1, BRG1 is somatically inactivated by point mutations or large deletions in lung tumors featuring LOH of chromosome 19p. These observations suggest an important role for BRG1 in lung cancer and highlight the need to further our understanding of the function of Brahma/SWI2-related gene 1 (BRG1) in cancer. Finally, simultaneous mutations at LKB1 and BRG1 are common in lung cancer cells, which exemplifies how a single event, LOH of chromosome 19p in this instance, targets two different tumor suppressors.
Collapse
Affiliation(s)
- Salvador Rodriguez-Nieto
- Genes and Cancer Group, Programa de Epigenetica y Biologia del Cancer (PEBC), Institut d'Investigacions Biomediques Bellvitge (IDIBELL), Hospital Durant i Reynals, 08907-L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
45
|
Abstract
While normal tissues are tightly regulated by nutrition and a carefully balanced system of glycolysis and fatty acid synthesis, tumor cells are under significant evolutionary pressure to bypass many of the checks and balances afforded normally. Cancer cells have high energy expenditure from heightened proliferation and metabolism and often show increased lipogenesis. Fatty acid synthase (FASN), the enzyme responsible for catalyzing the ultimate steps of fatty acid synthesis in cells, is expressed at high levels in tumor cells and is mostly absent in corresponding normal cells. Because of the unique expression profile of FASN, there is considerable interest not only in understanding its contribution to tumor cell growth and proliferation, but also in developing inhibitors that target FASN specifically as an anti-tumor modality. Pharmacological blockade of FASN activity has identified a pleiotropic role for FASN in mediating aspects of proliferation, growth and survival. As a result, a clearer understanding of the role of FASN in tumor cells has been developed.
Collapse
|
46
|
Pearson HB, McCarthy A, Collins CMP, Ashworth A, Clarke AR. Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res 2008; 68:2223-32. [PMID: 18381428 DOI: 10.1158/0008-5472.can-07-5169] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutation of LKB1 is the key molecular event underlying Peutz-Jeghers syndrome, a dominantly inherited condition characterized by a predisposition to a range of malignancies, including those of the reproductive system. We report here the use of a Cre-LoxP strategy to directly address the role of Lkb1 in prostate neoplasia. Recombination of a LoxP-flanked Lkb1 allele within all four murine prostate lobes was mediated by spontaneous activation of a p450 CYP1A1-driven Cre recombinase transgene (termed AhCre). Homozygous mutation of Lkb1 in males expressing AhCre reduced longevity, with 100% manifesting atypical hyperplasia and 83% developing prostate intraepithelial neoplasia (PIN) of the anterior prostate within 2 to 4 months. We also observed focal hyperplasia of the dorsolateral and ventral lobes (61% and 56% incidence, respectively), bulbourethral gland cysts associated with atypical hyperplasia (100% incidence), hyperplasia of the urethra (39% incidence), and seminal vesicle squamous metaplasia (11% incidence). PIN foci overexpressed nuclear beta-catenin, p-Gsk3 beta, and downstream Wnt targets. Immunohistochemical analysis of foci also showed a reduction in Pten activation and up-regulation of both p-PDK1 (an AMPK kinase) and phosphorylated Akt. Our data are therefore consistent with deregulation of Wnt and phosphoinositide 3-kinase/Akt signaling cascades after loss of Lkb1 function. For the first time, this model establishes a link between the tumor suppressor Lkb1 and prostate neoplasia, highlighting a tumor suppressive role within the mouse and raising the possibility of a similar association in the human.
Collapse
Affiliation(s)
- Helen B Pearson
- Cardiff University, School of Biosciences, Cardiff, Wales, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Amin RMS, Hiroshima K, Miyagi Y, Kokubo T, Hoshi K, Fujisawa T, Nakatani Y. Role of the PI3K/Akt, mTOR, and STK11/LKB1 pathways in the tumorigenesis of sclerosing hemangioma of the lung. Pathol Int 2008; 58:38-44. [PMID: 18067639 DOI: 10.1111/j.1440-1827.2007.02186.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the histogenesis of sclerosing hemangioma (SH) of the lung is now thought to be respiratory epithelial in origin, the genetic abnormalities that mediate its development are not known. Because pathophysiology of several syndromes associated with benign tumors may converge on the tuberous sclerosis complex (TSC), serine/threonine kinase 11 (STK11), and mammalian target of rapamycin (mTOR) pathways, the purpose of the present paper was to investigate their roles in the development of SH. Semiquantitative immunohistochemical analysis was done to assess the expression of phospho-mTOR, phospho-S6 ribosomal protein, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), phospho-Akt, STK11, tuberin, hamartin, vascular endothelial growth factor (VEGF), and hypoxia-inducible factor-1alpha (HIF-1alpha) in 19 cases of typical SH. To determine whether genetic alteration of STK11 is involved in the development of SH, all encoding exons of STK11 were analyzed by polymerase chain reaction (PCR) amplification and direct sequencing of genomic DNA of six specimens. The six specimens were also investigated for whether promoter hypermethylation exists as an alternative inactivating mechanism for STK11. All specimens showed moderate to marked reaction to phospho-S6 ribosomal protein and PTEN; 16 specimens (84%) showed slight to moderate reaction to phospho-mTOR, negative reaction to STK11, and slight to moderate reaction to hamartin; 11 (58%) showed slight to moderate reaction to phospho-Akt; 18 (95%) showed slight to moderate reaction to tuberin and positive reaction for HIF-1alpha; and 17 (90%) showed moderate reaction to VEGF. No somatic mutation of STK11 was found and the six specimens were unmethylated in the promoter region. These data imply that aberrant mTOR signaling may play a role in the development of SH, and its vascular nature may be due partially to high levels of VEGF caused by dysregulation of mTOR signaling.
Collapse
Affiliation(s)
- Randa M S Amin
- Department of Diagnostic Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI. The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 2008; 68:740-8. [PMID: 18245474 DOI: 10.1158/0008-5472.can-07-2989] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor LKB1 is mutated in 30% of non-small cell lung cancer (NSCLC) tumors and cell lines and is proposed to be a key regulator of epithelial cell polarity; however, how LKB1 regulates cancer cell polarity is not known. The experiments described herein show for the first time that LKB1 is a dynamic, actin-associated protein that rapidly polarizes to the leading edge of motile cancer cells. LKB1 proves to be essential for NSCLC polarity, because LKB1 depletion results in classic cell polarity defects, such as aberrant Golgi positioning, reduced lamellipodia formation, and aberrant morphology. To probe how LKB1 regulates these events, we show that LKB1 colocalizes at the cellular leading edge with two key components of the polarity pathway - the small rho GTPase cdc42 and its downstream binding partner p21-activated kinase (PAK). Importantly, LKB1 functionality is required for cdc42 polarization to the leading edge, maintaining active cdc42 levels, and downstream PAK phosphorylation. To do this, LKB1 interacts only with active form of cdc42 and PAK, but not with inactive cdc42. Taken together, these results show that LKB1 is a critical mediator of the NSCLC polarity program in lung cancer cells through a novel LKB1-cdc42-PAK pathway.
Collapse
Affiliation(s)
- Shumin Zhang
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30043, USA
| | | | | | | | | | | |
Collapse
|
49
|
Amin RMS, Hiroshima K, Iyoda A, Hoshi K, Honma K, Kuroki M, Kokubo T, Fujisawa T, Miyagi Y, Nakatani Y. LKB1 protein expression in neuroendocrine tumors of the lung. Pathol Int 2008; 58:84-8. [DOI: 10.1111/j.1440-1827.2007.02194.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Sanchez-Cespedes M. A role for LKB1 gene in human cancer beyond the Peutz-Jeghers syndrome. Oncogene 2007; 26:7825-32. [PMID: 17599048 DOI: 10.1038/sj.onc.1210594] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Germline LKB1 mutations are responsible for Peutz-Jeghers syndrome (PJS). Tumors at several locations frequently arise in these patients, confirming that LKB1 is linked to cancer predisposition and is therefore a bona fide tumor-suppressor gene. In humans, the LKB1 gene is located in the short arm of chromosome 19, which is frequently deleted in many tumors of sporadic origin. However, LKB1 alterations in tumors other than those of PJS are rarely reported. Notably, this is not the case for non-small-cell lung cancer, where nearly half of the tumors harbor somatic and homozygous inactivating mutations in LKB1. The present review considers the frequency and pattern of LKB1 gene mutations in sporadic cancers of various origins, and the role of the encoded protein in cancer development.
Collapse
Affiliation(s)
- M Sanchez-Cespedes
- Molecular Pathology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro, Madrid, Spain.
| |
Collapse
|