1
|
Djoukzoumka S, Mahamat Hassane H, Khan Payne V, Ibrahim MAM, Tagueu Kanté S, Mouliom Mfopit Y, Berger P, Kelm S, Simo G. Sodalis glossinidius and Wolbachia infections in wild population of Glossina morsitans submorsitans caught in the area of Lake Iro in the south of Chad. J Invertebr Pathol 2022; 195:107835. [DOI: 10.1016/j.jip.2022.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
2
|
Dieng MM, Dera KSM, Moyaba P, Ouedraogo GMS, Demirbas-Uzel G, Gstöttenmayer F, Mulandane FC, Neves L, Mdluli S, Rayaisse JB, Belem AMG, Pagabeleguem S, de Beer CJ, Parker AG, Van Den Abbeele J, Mach RL, Vreysen MJB, Abd-Alla AMM. Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication. Sci Rep 2022; 12:3322. [PMID: 35228552 PMCID: PMC8885713 DOI: 10.1038/s41598-022-06699-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.
Collapse
Affiliation(s)
- Mouhamadou M Dieng
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Kiswend-Sida M Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.,Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso
| | - Percy Moyaba
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Gisele M S Ouedraogo
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso
| | - Guler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Fernando C Mulandane
- University Eduardo Mondlane, Centro de Biotecnologia, Av. de Moçambique Km 1.5, Maputo, Mozambique
| | - Luis Neves
- University Eduardo Mondlane, Centro de Biotecnologia, Av. de Moçambique Km 1.5, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Sihle Mdluli
- Epidemiology Unit, Department of Veterinary Services, PO Box 4192, Manzini, Eswatini
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | | | - Soumaïla Pagabeleguem
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso.,University of Dedougou, B.P. 176, Dédougou 01, Burkina Faso
| | - Chantel J de Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.,Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | | | | | - Robert L Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.
| |
Collapse
|
3
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
4
|
A new automated chilled adult release system for the aerial distribution of sterile male tsetse flies. PLoS One 2020; 15:e0232306. [PMID: 32986707 PMCID: PMC7521752 DOI: 10.1371/journal.pone.0232306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
Tsetse eradication continues to be a top priority for African governments including that of Senegal, which embarked on a project to eliminate Glossina palpalis gambiensis from the Niayes area, following an area-wide integrated pest management approach with an SIT component. A successful SIT programme requires competitive sterile males of high biological quality. This may be hampered by handling processes including irradiation and the release mechanisms, necessitating continued improvement of these processes, to maintain the quality of flies. A new prototype of an automated chilled adult release system (Bruno Spreader Innovation, (BSI™)) for tsetse flies was tested for its accuracy (in counting) and release rate consistency. Also, its impact on the quality of the released sterile males was evaluated on performance indicators, including flight propensity, mating competitiveness, premating and mating duration, insemination rate of mated females and survival of male flies. The BSITM release system accurately counted and homogenously released flies at the lowest motor speed set (0.6 rpm), at a consistent rate of 60±9.58 males/min. Also, the release process, chilling (6 ± 1°C) and passing of flies through the machine) had no significant negative impact on the male flight propensity, mating competitiveness, premating and mating durations and the insemination rates. Only the survival of flies was negatively affected whether under feeding or starvation. The positive results of this study show that the BSI™ release system is promising for use in future tsetse SIT programmes. However, the negative impact of the release process on survival of flies needs to be addressed in future studies and results of this study confirmed under operational field conditions in West Africa.
Collapse
|
5
|
Ouedraogo GMS, Demirbas-Uzel G, Rayaisse JB, Gimonneau G, Traore AC, Avgoustinos A, Parker AG, Sidibe I, Ouedraogo AG, Traore A, Bayala B, Vreysen MJB, Bourtzis K, Abd-Alla AMM. Prevalence of trypanosomes, salivary gland hypertrophy virus and Wolbachia in wild populations of tsetse flies from West Africa. BMC Microbiol 2018; 18:153. [PMID: 30470187 PMCID: PMC6251090 DOI: 10.1186/s12866-018-1287-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.
Collapse
Affiliation(s)
- Gisele M S Ouedraogo
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.,Ecole National de l'Elevage et de la Santé Animale, 03 BP 7026, Ouagadougou 03, Burkina Faso.,Université Ouaga 1 Professeur Joseph Ki-Zerbo, BP 7021, Ouagadougou 01, Burkina Faso
| | - Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | - Geoffrey Gimonneau
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso.,CIRAD, UMR INTERTRYP, F-34398, Montpellier, France
| | - Astan C Traore
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.,Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC), Bamako, Mali
| | - Antonios Avgoustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Issa Sidibe
- Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC), Projet de Création de Zones Libérées Durablement de Tsé-tsé et de Trypanosomoses (PCZLD), Bobo-Dioulasso, Burkina Faso
| | - Anicet G Ouedraogo
- Institut du Développement Rural, Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Amadou Traore
- Institut de l'Environnement et des Recherches Agricoles (INERA), BP 8635, Ouagadougou 04, Burkina Faso
| | - Bale Bayala
- Université Ouaga 1 Professeur Joseph Ki-Zerbo, BP 7021, Ouagadougou 01, Burkina Faso
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, P.O. Box 100, A-1400, Vienna, Austria.
| |
Collapse
|
6
|
Karatepe B, Aksoy S, Karatepe M. Investigation of Wolbachia spp. and Spiroplasma spp. in Phlebotomus species by molecular methods. Sci Rep 2018; 8:10616. [PMID: 30006543 PMCID: PMC6045589 DOI: 10.1038/s41598-018-29031-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to determine the presence of Wolbachia spp. and Spiroplasma spp. in natural populations of sand flies in Turkey by molecular methods. A total of 40 Phlebotomus specimens (19 female and 21 male) were used in this study. Genomic DNA from whole sand flies was isolated and Wolbachia spp. infection prevalence was investigated by using Wolbachia gene specific primer sets (wsp and GroEL). In addition, the DNA were analyzed for the presence of Spiroplasma infections utilizing bacterium specific 16 S rDNA PCR-amplification primers. Results of this analysis showed a Wolbachia infection prevalence of 70% (28/40). There was no sex-bias in infection prevalence, being 76% (16/21) and 63% (12/19) in males and females, respectively. Analysis of Spiroplasma infections indicated that 26% (5/19) of female sand flies were positive for infection, while none of the screened males (0/21) were positive. Of the 40 sand fly samples, only 2 were found to be positive for both Wolbachia spp. and Spiroplasma spp. The present study demonstrates the presence of Wolbachia and Spiroplasma infections in the natural sand fly populations in Turkey. This is the first report on Spiroplasma infection in the sand flies from Turkey.
Collapse
Affiliation(s)
- Bilge Karatepe
- Niğde Ömer Halisdemir University, Bor Vocational School, Bor-Niğde, Turkey.
| | - Serap Aksoy
- Yale University, School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, USA
| | - Mustafa Karatepe
- Niğde Ömer Halisdemir University, Bor Vocational School, Bor-Niğde, Turkey
| |
Collapse
|
7
|
Abstract
Covering: 2010 up to 2017Life on Earth is characterized by a remarkable abundance of symbiotic and highly refined relationships among life forms. Defined as any kind of close, long-term association between two organisms, symbioses can be mutualistic, commensalistic or parasitic. Historically speaking, selective pressures have shaped symbioses in which one organism (typically a bacterium or fungus) generates bioactive small molecules that impact the host (and possibly other symbionts); the symbiosis is driven fundamentally by the genetic machineries available to the small molecule producer. The human microbiome is now integral to the most recent chapter in animal-microbe symbiosis studies and plant-microbe symbioses have significantly advanced our understanding of natural products biosynthesis; this also is the case for studies of fungal-microbe symbioses. However, much less is known about microbe-microbe systems involving interspecies interactions. Microbe-derived small molecules (i.e. antibiotics and quorum sensing molecules, etc.) have been shown to regulate transcription in microbes within the same environmental niche, suggesting interspecies interactions whereas, intraspecies interactions, such as those that exploit autoinducing small molecules, also modulate gene expression based on environmental cues. We, and others, contend that symbioses provide almost unlimited opportunities for the discovery of new bioactive compounds whose activities and applications have been evolutionarily optimized. Particularly intriguing is the possibility that environmental effectors can guide laboratory expression of secondary metabolites from "orphan", or silent, biosynthetic gene clusters (BGCs). Notably, many of the studies summarized here result from advances in "omics" technologies and highlight how symbioses have given rise to new anti-bacterial and antifungal natural products now being discovered.
Collapse
Affiliation(s)
- Navid Adnani
- University of Wisconsin Madison, School of Pharmacy, Div. of Pharmaceutical Sciences, 777 Highland Ave., Madison, WI 53705-2222, USA.
| | | | | |
Collapse
|
8
|
The Gut Microbiome of the Vector Lutzomyia longipalpis Is Essential for Survival of Leishmania infantum. mBio 2017; 8:mBio.01121-16. [PMID: 28096483 PMCID: PMC5241394 DOI: 10.1128/mbio.01121-16] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vector-borne disease leishmaniasis, caused by Leishmania species protozoa, is transmitted to humans by phlebotomine sand flies. Development of Leishmania to infective metacyclic promastigotes in the insect gut, a process termed metacyclogenesis, is an essential prerequisite for transmission. Based on the hypothesis that vector gut microbiota influence the development of virulent parasites, we sequenced midgut microbiomes in the sand fly Lutzomyia longipalpis with or without Leishmania infantum infection. Sucrose-fed sand flies contained a highly diverse, stable midgut microbiome. Blood feeding caused a decrease in microbial richness that eventually recovered. However, bacterial richness progressively decreased in L. infantum-infected sand flies. Acetobacteraceae spp. became dominant and numbers of Pseudomonadaceae spp. diminished coordinately as the parasite underwent metacyclogenesis and parasite numbers increased. Importantly, antibiotic-mediated perturbation of the midgut microbiome rendered sand flies unable to support parasite growth and metacyclogenesis. Together, these data suggest that the sand fly midgut microbiome is a critical factor for Leishmania growth and differentiation to its infective state prior to disease transmission. Leishmania infantum, a parasitic protozoan causing fatal visceral leishmaniasis, is transmitted to humans through the bite of the sand fly Lutzomyia longipalpis. Development of the parasite to its virulent metacyclic state occurs in the sand fly gut. In this study, the microbiota within the Lu. longipalpis midgut was delineated by 16S ribosomal DNA (rDNA) sequencing, revealing a highly diverse community composition that lost diversity as parasites developed to their metacyclic state and increased in abundance in infected flies. Perturbing sand fly gut microbiota with an antibiotic cocktail, which alone had no effect on either the parasite or the fly, arrested both the development of virulent parasites and parasite expansion. These findings indicate the importance of bacterial commensals within the insect vector for the development of virulent pathogens, and raise the possibility that impairing the microbial composition within the vector might represent a novel approach to control of vector-borne diseases.
Collapse
|
9
|
Ooi CP, Schuster S, Cren-Travaillé C, Bertiaux E, Cosson A, Goyard S, Perrot S, Rotureau B. The Cyclical Development of Trypanosoma vivax in the Tsetse Fly Involves an Asymmetric Division. Front Cell Infect Microbiol 2016; 6:115. [PMID: 27734008 PMCID: PMC5039179 DOI: 10.3389/fcimb.2016.00115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma vivax is the most prevalent trypanosome species in African cattle. It is thought to be transmitted by tsetse flies after cyclical development restricted to the vector mouthparts. Here, we investigated the kinetics of T. vivax development in Glossina morsitans morsitans by serial dissections over 1 week to reveal differentiation and proliferation stages. After 3 days, stable numbers of attached epimastigotes were seen proliferating by symmetric division in the cibarium and proboscis, consistent with colonization and maintenance of a parasite population for the remaining lifespan of the tsetse fly. Strikingly, some asymmetrically dividing cells were also observed in proportions compatible with a continuous production of pre- metacyclic trypomastigotes. The involvement of this asymmetric division in T. vivax metacyclogenesis is discussed and compared to other trypanosomatids.
Collapse
Affiliation(s)
- Cher-Pheng Ooi
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Sarah Schuster
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Christelle Cren-Travaillé
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Eloise Bertiaux
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Alain Cosson
- Trypanosomatids Infectious Processes Unit, Department of Infection and Epidemiology, Institut Pasteur Paris, France
| | - Sophie Goyard
- Trypanosomatids Infectious Processes Unit, Department of Infection and Epidemiology, Institut Pasteur Paris, France
| | - Sylvie Perrot
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur and INSERM U1201 Paris, France
| |
Collapse
|
10
|
Carpi G, Walter KS, Bent SJ, Hoen AG, Diuk-Wasser M, Caccone A. Whole genome capture of vector-borne pathogens from mixed DNA samples: a case study of Borrelia burgdorferi. BMC Genomics 2015; 16:434. [PMID: 26048573 PMCID: PMC4458057 DOI: 10.1186/s12864-015-1634-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/18/2015] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Rapid and accurate retrieval of whole genome sequences of human pathogens from disease vectors or animal reservoirs will enable fine-resolution studies of pathogen epidemiological and evolutionary dynamics. However, next generation sequencing technologies have not yet been fully harnessed for the study of vector-borne and zoonotic pathogens, due to the difficulty of obtaining high-quality pathogen sequence data directly from field specimens with a high ratio of host to pathogen DNA. RESULTS We addressed this challenge by using custom probes for multiplexed hybrid capture to enrich for and sequence 30 Borrelia burgdorferi genomes from field samples of its arthropod vector. Hybrid capture enabled sequencing of nearly the complete genome (~99.5 %) of the Borrelia burgdorferi pathogen with 132-fold coverage, and identification of up to 12,291 single nucleotide polymorphisms per genome. CONCLUSIONS The proprosed culture-independent method enables efficient whole genome capture and sequencing of pathogens directly from arthropod vectors, thus making population genomic study of vector-borne and zoonotic infectious diseases economically feasible and scalable. Furthermore, given the similarities of invertebrate field specimens to other mixed DNA templates characterized by a high ratio of host to pathogen DNA, we discuss the potential applicabilty of hybrid capture for genomic study across diverse study systems.
Collapse
Affiliation(s)
- Giovanna Carpi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA.
| | - Katharine S Walter
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA.
| | - Stephen J Bent
- Robinson Research Institute, University of Adelaide, 5005, Adelaide, SA, Australia.
| | - Anne Gatewood Hoen
- The Geisel School of Medicine, Dartmouth College, 03755, Hanover, NH, USA.
| | - Maria Diuk-Wasser
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA. .,Department of Ecology, Evolution and Environmental Biology, Columbia University, 10027, New York, NY, USA.
| | - Adalgisa Caccone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 06520, New Haven, CT, USA. .,Department of Ecology and Evolutionary Biology, Yale University, 06520, New Haven, CT, USA.
| |
Collapse
|
11
|
Abstract
The development, existence, and functioning of numerous animals and plants depend on their symbiotic interactions with other organisms, mainly microorganisms. In return, the symbionts benefit from safe habitats and nutrient-rich environments provided by their hosts. In these interactions, genetic changes in either of the partners may provide fitness advantages and become subjects to natural selection. Recent findings suggest that epigenetic changes, heritable or within the organism's life time, in either of the partners play significant roles in the establishment of symbiotic relationships. In this review, a variety of epigenetic effects underlying the most common host-symbiont interactions will be examined to determine to what extent these effects are shared in various interactions and how the epigenetic pathways could possibly be manipulated to benefit the interacting symbionts.
Collapse
Affiliation(s)
- Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health 2014; 107:285-92. [PMID: 24188239 DOI: 10.1179/2047773213y.0000000109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Symbiosis is a widespread biological phenomenon, and is particularly common in arthropods. Bloodsucking insects are among the organisms that rely on beneficial bacterial symbionts to complement their unbalanced diet. This review is focused on describing symbiosis, and possible strategies for the symbiont-based control of insects and insect-borne diseases, in three bloodsucking insects of medical importance: the flies of the genus Glossina, the lice of the genus Pediculus, and triatomine bugs of the subfamily Triatominae. Glossina flies are vector of Trypanosoma brucei, the causative agent of sleeping sickness and other pathologies. They are also associated with two distinct bacterial symbionts, the primary symbiont Wigglesworthia spp., and the secondary, culturable symbiont Sodalis glossinidius. The primary symbiont of human lice, Riesia pediculicola, has been shown to be fundamental for the host, due to its capacity to synthesize B-group vitamins. An antisymbiotic approach, with antibiotic treatment targeted on the lice symbionts, could represent an alternative strategy to control these ectoparasites. In the case of triatominae bugs, the genetic modification of their symbiotic Rhodococcus bacteria, for production of anti-Trypanosoma molecules, is an example of paratransgenesis, i.e. the use of symbiotic microorganism engineered in order to reduce the vector competence of the insect host.
Collapse
|
13
|
An investigation into the protein composition of the teneral Glossina morsitans morsitans peritrophic matrix. PLoS Negl Trop Dis 2014; 8:e2691. [PMID: 24763256 PMCID: PMC3998921 DOI: 10.1371/journal.pntd.0002691] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/24/2013] [Indexed: 11/23/2022] Open
Abstract
Background Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, but the mechanism of how trypanosomes do so is not understood. In order to better comprehend the molecular events surrounding trypanosome penetration of the tsetse PM, a mass spectrometry-based approach was applied to investigate the PM protein composition using Glossina morsitans morsitans as a model organism. Methods PMs from male teneral (young, unfed) flies were dissected, solubilised in urea/SDS buffer and the proteins precipitated with cold acetone/TCA. The PM proteins were either subjected to an in-solution tryptic digestion or fractionated on 1D SDS-PAGE, and the resulting bands digested using trypsin. The tryptic fragments from both preparations were purified and analysed by LC-MS/MS. Results Overall, nearly 300 proteins were identified from both analyses, several of those containing signature Chitin Binding Domains (CBD), including novel peritrophins and peritrophin-like glycoproteins, which are essential in maintaining PM architecture and may act as trypanosome adhesins. Furthermore, 27 proteins from the tsetse secondary endosymbiont, Sodalis glossinidius, were also identified, suggesting this bacterium is probably in close association with the tsetse PM. Conclusion To our knowledge this is the first report on the protein composition of teneral G. m. morsitans, an important vector of African trypanosomes. Further functional analyses of these proteins will lead to a better understanding of the tsetse physiology and may help identify potential molecular targets to block trypanosome development within the tsetse. African trypanosomes are transmitted by the haematophagous tsetse vector. For transmission to occur, bloodmeal ingested trypanosomes must overcome numerous barriers imposed by the fly. The first obstacle is the crossing of peritrophic matrix (PM), a cell-free structure that protects the midgut epithelial cells from coming under attack by the hosts' digestive enzymes, aids in water retention and helps prevent harmful pathogens from establishing a systemic infection. Trypanosomes cross the tsetse PM at least twice in their development but how they do so remains to be elucidated. Despite being a recognised barrier to trypanosome infections, there is limited knowledge of the molecular components of the tsetse PM. In this study we identified nearly 300 PM proteins using two mass spectrometry approaches. Several of the identified components were peritrophins, which are a key group of glycoproteins essential for PM integrity. In addition, we detected proteins from Sodalis glossinidius, a commensal bacterium linked to increased susceptibility to trypanosome infection in tsetse. Our study provides the first comprehensive identification of proteins from the tsetse PM, which provides a starting point for research into potential targets for vector control.
Collapse
|
14
|
Eleftherianos I, Atri J, Accetta J, Castillo JC. Endosymbiotic bacteria in insects: guardians of the immune system? Front Physiol 2013; 4:46. [PMID: 23508299 PMCID: PMC3597943 DOI: 10.3389/fphys.2013.00046] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2013] [Indexed: 12/18/2022] Open
Abstract
Insects have evolved obligate, mutualistic interactions with bacteria without further transmission to other eukaryotic organisms. Such long-term obligate partnerships between insects and bacteria have a profound effect on various physiological functions of the host. Here we provide an overview of the effects of endosymbiotic bacteria on the insect immune system as well as on the immune response of insects to pathogenic infections. Potential mechanisms through which endosymbionts can affect the ability of their host to resist an infection are discussed in the light of recent findings. We finally point out unresolved questions for future research and speculate how the current knowledge can be employed to design and implement measures for the effective control of agricultural insect pests and vectors of diseases.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Insect Infection and Immunity Lab, Department of Biological Sciences, Columbian College of Arts and Sciences, Institute for Biomedical Sciences, The George Washington University Washington, DC, USA
| | | | | | | |
Collapse
|
15
|
von Dohlen CD, Spaulding U, Shields K, Havill NP, Rosa C, Hoover K. Diversity of proteobacterial endosymbionts in hemlock woolly adelgid (Adelges tsugae) (Hemiptera: Adelgidae) from its native and introduced range. Environ Microbiol 2013; 15:2043-62. [PMID: 23452267 DOI: 10.1111/1462-2920.12102] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 01/19/2023]
Abstract
Knowledge of intraspecific variation in symbioses may aid in understanding the ecology of widespread insects in different parts of their range. We investigated bacterial symbionts of Adelges tsugae, a pest of hemlocks in eastern North America introduced from Asia. Amplification, cloning, and sequencing of bacterial 16S rDNA, in situ hybridizations, and electron microscopy revealed that A. tsugae harbours up to five bacterial phylotypes, according to population. Three Gammaproteobacteria species are maternally transmitted. The first, designated 'Ca. Pseudomonas adelgestsugas' resides in the haemocoel, and was detected in all populations except Taiwan. The second phylotype, 'Ca. Serratia symbiotica', resides in bacteriocytes of populations on Tsuga sieboldii in Japan and in E. North America. The third phylotype, designated 'Ca. Annandia adelgestsuga', clustered within a lineage of several insect endosymbionts that included Buchnera aphidicola. It was detected in bacteriocytes in all populations, and in salivary glands of first instars. Two Betaproteobacteria phylotypes were detected in some Japanese T. sieboldii and eastern North America populations, and were observed only in salivary glands with no evidence of maternal transmission. Our results support the ideas that symbiont gain and loss has been volatile in adelgids, and that symbionts may help to trace the source of invasive species.
Collapse
Affiliation(s)
- Carol D von Dohlen
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Mutika GN, Marin C, Parker AG, Boucias DG, Vreysen MJB, Abd-Alla AMM. Impact of salivary gland hypertrophy virus infection on the mating success of male Glossina pallidipes: consequences for the sterile insect technique. PLoS One 2012; 7:e42188. [PMID: 22912687 PMCID: PMC3418267 DOI: 10.1371/journal.pone.0042188] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/02/2012] [Indexed: 11/23/2022] Open
Abstract
Many species of tsetse flies are infected by a virus (GpSGHV) that causes salivary gland hypertrophy (SGH). Female Glossina pallidipes (Austen) with SGH symptoms (SGH+) have reduced fecundity and SGH+ male G. pallidipes are unable to inseminate female flies. Consequently, G. pallidipes laboratory colonies with a high prevalence of SGH have been difficult to maintain and have collapsed on several occasions. To assess the potential impact of the release of SGH+ sterile male G. pallidipes on the efficacy of an integrated control programme with a sterile insect technique (SIT) component, we examined the mating efficiency and behaviour of male G. pallidipes in field cages in relation to SGH prevalence. The results showed in a field cage setting a significantly reduced mating frequency of 19% for a male G. pallidipes population with a high prevalence of SGH (83%) compared to 38% for a male population with a low prevalence of SGH (7%). Premating period and mating duration did not vary significantly with SGH status. A high percentage (>80%) of females that had mated with SGH+ males had empty spermathecae. The remating frequency of female G. pallidipes was very low irrespective of the SGH status of the males in the first mating. These results indicate that a high prevalence of SGH+ in G. pallidipes not only affects colony stability and performance but, in view of their reduced mating propensity and competitiveness, releasing SGH+ sterile male G. pallidipes will reduce the efficiency of a sterile male release programme.
Collapse
Affiliation(s)
- Gratian N. Mutika
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Carmen Marin
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Drion G. Boucias
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Kariithi HM, Ahmadi M, Parker AG, Franz G, Ros VID, Haq I, Elashry AM, Vlak JM, Bergoin M, Vreysen MJB, Abd-Alla AMM. Prevalence and genetic variation of salivary gland hypertrophy virus in wild populations of the tsetse fly Glossina pallidipes from southern and eastern Africa. J Invertebr Pathol 2012; 112 Suppl:S123-32. [PMID: 22634094 DOI: 10.1016/j.jip.2012.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
The Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) is a rod-shaped, non-occluded double-stranded DNA virus that causes salivary gland hypertrophy (SGH) and reduced fecundity in the tsetse fly G. pallidipes. High GpSGHV prevalence (up to 80%) makes it impossible to mass-rear G. pallidipes colonies for the sterile insect technique (SIT). To evaluate the feasibility of molecular-based GpSGHV management strategies, we investigated the prevalence and genetic diversity of GpSGHV in wild populations of G. pallidipes collected from ten geographical locations in eastern and southern Africa. Virus diversity was examined using a total sequence of 1497 nucleotides (≈ 1% of the GpSGHV genome) from five putative conserved ORFs, p74, pif1, pif2, pif3 and dnapol. Overall, 34.08% of the analyzed flies (n=1972) tested positive by nested PCR. GpSGHV prevalence varied from 2% to 100% from one location to another but phylogenetic and gene genealogy analyses using concatenated sequences of the five putative ORFs revealed low virus diversity. Although no correlation of the virus diversity to geographical locations was detected, the GpSGHV haplotypes could be assigned to one of two distinct clades. The reference (Tororo) haplotype was the most widely distributed, and was shared by 47 individuals in seven of the 11 locations. The Ethiopian haplotypes were restricted to one clade, and showed the highest divergence (with 14-16 single nucleotide mutation steps) from the reference haplotype. The current study suggests that the proposed molecular-based virus management strategies have a good prospect of working throughout eastern and southern Africa due to the low diversity of the GpSGHV strains.
Collapse
Affiliation(s)
- H M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, IAEA, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schneider DI, Garschall KI, Parker AG, Abd-Alla AMM, Miller WJ. Global Wolbachia prevalence, titer fluctuations and their potential of causing cytoplasmic incompatibilities in tsetse flies and hybrids of Glossina morsitans subgroup species. J Invertebr Pathol 2012; 112 Suppl:S104-15. [PMID: 22516306 PMCID: PMC3625123 DOI: 10.1016/j.jip.2012.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 11/24/2022]
Abstract
We demonstrate the high applicability of a novel VNTR-based (Variable-Number-Tandem-Repeat) molecular screening tool for fingerprinting Wolbachia-infections in tsetse flies. The VNTR-141 locus provides reliable and concise differentiation between Wolbachia strains deriving from Glossina morsitans morsitans, Glossina morsitans centralis, and Glossina brevipalpis. Moreover, we show that certain Wolbachia-infections in Glossina spp. are capable of escaping standard PCR screening methods by 'hiding' as low-titer infections below the detection threshold. By applying a highly sensitive PCR-blot technique to our Glossina specimen, we were able to enhance the symbiont detection limit substantially and, consequently, trace unequivocally Wolbachia-infections at high prevalence in laboratory-reared G. swynnertoni individuals. To our knowledge, Wolbachia-persistence was reported exclusively for field-collected samples, and at low prevalence only. Finally, we highlight the substantially higher Wolbachia titer levels found in hybrid Glossina compared to non-hybrid hosts and the possible impact of these titers on hybrid host fitness that potentially trigger incipient speciation in tsetse flies.
Collapse
Affiliation(s)
- Daniela I Schneider
- Laboratories of Genome Dynamics, Department Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
19
|
Diversity of symbiotic organs and bacterial endosymbionts of lygaeoid bugs of the families blissidae and lygaeidae (hemiptera: heteroptera: lygaeoidea). Appl Environ Microbiol 2012; 78:2648-59. [PMID: 22307293 DOI: 10.1128/aem.07191-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present comparative data on the localization and identity of intracellular symbionts among the superfamily Lygaeoidea (Insecta: Hemiptera: Heteroptera: Pentatomomorpha). Five different lygaeoid species from the families Blissidae and Lygaeidae (sensu stricto; including the subfamilies Lygaeinae and Orsillinae) were analyzed. Fluorescence in situ hybridization (FISH) revealed that all the bugs studied possess paired bacteriomes that are differently shaped in the abdomen and harbor specific endosymbionts therein. The endosymbionts were also detected in female gonads and at the anterior poles of developing eggs, indicating vertical transmission of the endosymbionts via ovarial passage, in contrast to the posthatch symbiont transmission commonly found among pentatomoid bugs (Pentatomomorpha: Pentatomoidea). Phylogenetic analysis based on 16S rRNA and groEL genes showed that the endosymbionts of Ischnodemus sabuleti, Arocatus longiceps, Belonochilus numenius, Orsillus depressus, and Ortholomus punctipennis constitute at least four distinct clades in the Gammaproteobacteria. The endosymbiont phylogeny did not agree with the host phylogeny based on the mitochondrial cytochrome oxidase I (COI) gene, but there was a local cospeciating pattern within the subfamily Orsillinae. Meanwhile, the endosymbiont of Belonochilus numenius (Lygaeidae: Orsillinae), although harbored in paired bacteriomes as in other lygaeoid bugs of the related genera Nysius, Ortholomus, and Orsillus, was phylogenetically close to "Candidatus Rohrkolberia cinguli," the endosymbiont of Chilacis typhae (Lygaeoidea: Artheneidae), suggesting an endosymbiont replacement in this lineage. The diverse endosymbionts and the differently shaped bacteriomes may reflect independent evolutionary origins of the endosymbiotic systems among lygaeoid bugs.
Collapse
|
20
|
Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, Aksoy E, Dalaperas S, Abd-Alla A, Ouma J, Takac P, Aksoy S, Bourtzis K. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiol 2012; 12 Suppl 1:S3. [PMID: 22376025 PMCID: PMC3287514 DOI: 10.1186/1471-2180-12-s1-s3] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Wolbachia is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. Wolbachia is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including Glossina spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals. Results In the present study, we employed a Wolbachia specific 16S rRNA PCR assay to investigate the presence of Wolbachia in six different laboratory stocks as well as in natural populations of nine different Glossina species originating from 10 African countries. Wolbachia was prevalent in Glossina morsitans morsitans, G. morsitans centralis and G. austeni populations. It was also detected in G. brevipalpis, and, for the first time, in G. pallidipes and G. palpalis gambiensis. On the other hand, Wolbachia was not found in G. p. palpalis, G. fuscipes fuscipes and G. tachinoides. Wolbachia infections of different laboratory and natural populations of Glossina species were characterized using 16S rRNA, the wsp (Wolbachia Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which Wobachia genes were inserted into the tsetse flies fly nuclear genome. Conclusions Wolbachia infections were detected in both laboratory and natural populations of several different Glossina species. The characterization of these Wolbachia strains promises to lead to a deeper insight in tsetse flies-Wolbachia interactions, which is essential for the development and use of Wolbachia-based biological control methods.
Collapse
|
21
|
Neef A, Latorre A, Peretó J, Silva FJ, Pignatelli M, Moya A. Genome economization in the endosymbiont of the wood roach Cryptocercus punctulatus due to drastic loss of amino acid synthesis capabilities. Genome Biol Evol 2011; 3:1437-1448. [PMID: 22094859 PMCID: PMC3296467 DOI: 10.1093/gbe/evr118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2011] [Indexed: 02/07/2023] Open
Abstract
Cockroaches (Blattaria: Dictyoptera) harbor the endosymbiont Blattabacterium sp. in their abdominal fat body. This endosymbiont is involved in nitrogen recycling and amino acid provision to its host. In this study, the genome of Blattabacterium sp. of Cryptocercus punctulatus (BCpu) was sequenced and compared with those of the symbionts of Blattella germanica and Periplaneta americana, BBge and BPam, respectively. The BCpu genome consists of a chromosome of 605.7 kb and a plasmid of 3.8 kb and is therefore approximately 31 kb smaller than the other two aforementioned genomes. The size reduction is due to the loss of 55 genes, 23 of which belong to biosynthetic pathways for amino acids. The pathways for the production of tryptophan, leucine, isoleucine/threonine/valine, methionine, and cysteine have been completely lost. Additionally, the genes for the enzymes catalyzing the last steps of arginine and lysine biosynthesis, argH and lysA, were found to be missing and pseudogenized, respectively. These gene losses render BCpu auxotrophic for nine amino acids more than those corresponding to BBge and BPam. BCpu has also lost capacities for sulfate reduction, production of heme groups, as well as genes for several other unlinked metabolic processes, and genes present in BBge and BPam in duplicates. Amino acids and cofactors that are not synthesized by BCpu are either produced in abundance by hindgut microbiota or are provisioned via a copious diet of dampwood colonized by putrefying microbiota, supplying host and Blattabacterium symbiont with the necessary nutrients and thus permitting genome economization of BCpu.
Collapse
Affiliation(s)
- Alexander Neef
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud—Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Spain
- Departament de Genètica, Universitat de València, Spain
| | - Juli Peretó
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Spain
| | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud—Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Spain
- Departament de Genètica, Universitat de València, Spain
| | - Miguel Pignatelli
- Unidad Mixta de Investigación en Genómica y Salud—Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Spain
- Present address: European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Spain
- Unidad Mixta de Investigación en Genómica y Salud—Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Institut Cavanilles de Biodiversitat y Biologia Evolutiva, Universitat de València, Spain
- Departament de Genètica, Universitat de València, Spain
| |
Collapse
|
22
|
Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME JOURNAL 2011; 6:577-87. [PMID: 21938025 DOI: 10.1038/ismej.2011.125] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bat flies of the family Nycteribiidae are known for their extreme morphological and physiological traits specialized for ectoparasitic blood-feeding lifestyle on bats, including lack of wings, reduced head and eyes, adenotrophic viviparity with a highly developed uterus and milk glands, as well as association with endosymbiotic bacteria. We investigated Japanese nycteribiid bat flies representing 4 genera, 8 species and 27 populations for their bacterial endosymbionts. From all the nycteribiid species examined, a distinct clade of gammaproteobacteria was consistently detected, which was allied to endosymbionts of other insects such as Riesia spp. of primate lice and Arsenophonus spp. of diverse insects. In adult insects, the endosymbiont was localized in specific bacteriocytes in the abdomen, suggesting an intimate host-symbiont association. In adult females, the endosymbiont was also found in the cavity of milk gland tubules, which suggests uterine vertical transmission of the endosymbiont to larvae through milk gland secretion. In adult females of Penicillidia jenynsii, we discovered a previously unknown type of symbiotic organ in the Nycteribiidae: a pair of large bacteriomes located inside the swellings on the fifth abdominal ventral plate. The endosymbiont genes consistently exhibited adenine/thymine biased nucleotide compositions and accelerated rates of molecular evolution. The endosymbiont genome was estimated to be highly reduced, ~0.76 Mb in size. The endosymbiont phylogeny perfectly mirrored the host insect phylogeny, indicating strict vertical transmission and host-symbiont co-speciation in the evolutionary course of the Nycteribiidae. The designation 'Candidatus Aschnera chinzeii' is proposed for the endosymbiont clade.
Collapse
|
23
|
Habila N, Inuwa MH, Aimola IA, Udeh MU, Haruna E. Pathogenic mechanisms of Trypanosoma evansi infections. Res Vet Sci 2011; 93:13-7. [PMID: 21940025 DOI: 10.1016/j.rvsc.2011.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 11/19/2022]
Abstract
Insect-borne diseases exact a high public health burden and have a devastating impact on livestock and agriculture. To date, control has proved to be exceedingly difficult. One such disease that has plagued sub-Saharan Africa is caused by the protozoan African trypanosomes (Trypanosoma species) and transmitted by tsetse flies (Diptera: Glossinidae). This presentation describes Trypanosoma evansi (T. evansi) which causes the disease known as trypanosomosis (Surra) or trypanosomiasis in which several attempts have being made to unravel the clinical pathogenic mechanisms in T. evansi infections, yielding various reports which have implicated hemolysis associated to decrease in life span of erythrocytes and extensive erythrophagocytosis being among those that enjoy prominence. T. evansi generates Adenosine Triphosphate (ATP) from glucose catabolism which is required for the parasite motility and survival. Oxidation of the erythrocytes induces oxidative stress due to free radical generation. Lipid peroxidation of the erythrocytes causes membrane injury, osmotic fragility and destruction of the red blood cell (RBC) making anemia a hallmark of the pathology of T. evansi infections.
Collapse
Affiliation(s)
- Nathan Habila
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Nigeria.
| | | | | | | | | |
Collapse
|
24
|
Microbiome influences on insect host vector competence. Trends Parasitol 2011; 27:514-22. [PMID: 21697014 DOI: 10.1016/j.pt.2011.05.001] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 04/29/2011] [Accepted: 05/09/2011] [Indexed: 11/23/2022]
Abstract
Insect symbioses lack the complexity and diversity of those associated with higher eukaryotic hosts. Symbiotic microbiomes are beneficial to their insect hosts in many ways, including dietary supplementation, tolerance to environmental perturbations and maintenance and/or enhancement of host immune system homeostasis. Recent studies have also highlighted the importance of the microbiome in the context of host pathogen transmission processes. Here we provide an overview of the relationship between insect disease vectors, such as tsetse flies and mosquitoes, and their associated microbiome. Several mechanisms are discussed through which symbiotic microbes can influence the ability of their host to transmit pathogens, as well as potential disease control strategies that harness symbiotic microbes to reduce pathogen transmission through an insect vector.
Collapse
|
25
|
Benoit JB, Denlinger DL. Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1366-76. [PMID: 20206630 PMCID: PMC2918697 DOI: 10.1016/j.jinsphys.2010.02.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 05/26/2023]
Abstract
In this review, we describe water balance requirements of blood-feeding arthropods, particularly contrasting dehydration tolerance during the unfed, off-host state and the challenges of excess water that accompany receipt of the bloodmeal. Most basic water balance characteristics during the off-host stage are applicable to other terrestrial arthropods, as well. A well-coordinated suite of responses enable arthropods to conserve water resources, enhance their desiccation tolerance, and increase their water supplies by employing a diverse array of molecular, structural and behavioral responses. Water loss rates during the off-host phase are particularly useful for generating a scheme to classify vectors according to their habitat requirements for water, thus providing a convenient tool with potential predictive power for defining suitable current and future vector habitats. Blood-feeding elicits an entirely different set of challenges as the vector responds to overhydration by quickly increasing its rate of cuticular water loss and elevating the rate of diuresis to void excess water and condense the bloodmeal. Immature stages that feed on blood normally have a net increase in water content at the end of a blood-feeding cycle, but in adults the water content reverts to the pre-feeding level when the cycle is completed. Common themes are evident in diverse arthropods that feed on blood, particularly the physiological mechanisms used to respond to the sudden influx of water as well as the mechanisms used to counter water shortfalls that are encountered during the non-feeding, off-host state.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Entomology, Ohio State University, Columbus, OH, United States.
| | | |
Collapse
|
26
|
Kariithi HM, Ince IA, Boeren S, Vervoort J, Bergoin M, van Oers MM, Abd-Alla AMM, Vlak JM. Proteomic analysis of Glossina pallidipes salivary gland hypertrophy virus virions for immune intervention in tsetse fly colonies. J Gen Virol 2010; 91:3065-74. [PMID: 20719992 DOI: 10.1099/vir.0.023671-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many species of tsetse flies (Diptera: Glossinidae) can be infected by a virus that causes salivary gland hypertrophy (SGH). The genomes of viruses isolated from Glossina pallidipes (GpSGHV) and Musca domestica (MdSGHV) have recently been sequenced. Tsetse flies with SGH have reduced fecundity and fertility which cause a serious problem for mass rearing in the frame of sterile insect technique (SIT) programmes to control and eradicate tsetse populations in the wild. A potential intervention strategy to mitigate viral infections in fly colonies is neutralizing of the GpSGHV infection with specific antibodies against virion proteins. Two major GpSGHV virion proteins of about 130 and 50 kDa, respectively, were identified by Western analysis using a polyclonal rabbit antibody raised against whole GpSHGV virions. The proteome of GpSGHV, containing the antigens responsible for the immune-response, was investigated by liquid chromatography tandem mass spectrometry and 61 virion proteins were identified by comparison with the genome sequence. Specific antibodies were produced in rabbits against seven candidate proteins, including the ORF10/C-terminal fragment, ORF47 and ORF96 as well as proteins involved in peroral infectivity PIF-1 (ORF102), PIF-2 (ORF53), PIF-3 (ORF76) and P74 (ORF1). Antiserum against ORF10 specifically reacted to the 130 kDa protein in a Western blot analysis and to the envelope protein of GpSGHV, detected by using immunogold-electron microscopy. This result suggests that immune intervention of viral infections in colonies of G. pallidipes is a realistic option.
Collapse
Affiliation(s)
- Henry M Kariithi
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics 2010; 11:449. [PMID: 20649993 PMCID: PMC3091646 DOI: 10.1186/1471-2164-11-449] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/22/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. RESULTS A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. CONCLUSIONS The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the evolutionary transition from a free-living ancestor to a host-dependent lifestyle, with a massive proliferation of mobile genetic elements mainly of phage origin although with minor impact in the process of gene inactivation that is taking place in this bacterial genome. The metabolic analysis of the whole endosymbiotic consortia of tsetse flies have revealed a possible phenomenon of metabolic complementation between primary and secondary endosymbionts that can contribute to explain the co-existence of both bacterial endosymbionts in the context of the tsetse host.
Collapse
Affiliation(s)
- Eugeni Belda
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Barcelona, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles, Universitat de València, Spain
| | | | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Barcelona, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles, Universitat de València, Spain
| |
Collapse
|
28
|
Gosalbes MJ, Latorre A, Lamelas A, Moya A. Genomics of intracellular symbionts in insects. Int J Med Microbiol 2010; 300:271-278. [PMID: 20093081 DOI: 10.1016/j.ijmm.2009.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 12/03/2009] [Accepted: 12/20/2009] [Indexed: 02/07/2023] Open
Abstract
Endosymbiotic bacteria play a vital role in the evolution of many insect species. For instance, endosymbionts have evolved metabolically to complement their host's natural diet, thereby enabling them to explore new habitats. In this paper, we will review and give some examples of the nature of the metabolic coupling of different primary and secondary endosymbionts that have evolved in hosts with different nutritional diets (i.e., phloem, xylem, blood, omnivores, and grain). Particular emphasis is given to the evolutionary functional convergence of phylogenetically distant endosymbionts, which are evolving in hosts with similar diets.
Collapse
Affiliation(s)
- María José Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud Centro Superior de Investigación en Salud Pública (CSISP), Institut Cavanilles de Biodiversitat i Biologia Evolutiva (Universitat de València), Apartado Postal 22085, 46071 Valencia, Spain
| | | | | | | |
Collapse
|
29
|
Primary gut symbiont and secondary, Sodalis-allied symbiont of the Scutellerid stinkbug Cantao ocellatus. Appl Environ Microbiol 2010; 76:3486-94. [PMID: 20400564 DOI: 10.1128/aem.00421-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Symbiotic associations with midgut bacteria have been commonly found in diverse phytophagous heteropteran groups, where microbiological characterization of the symbiotic bacteria has been restricted to the stinkbug families Acanthosomatidae, Plataspidae, Pentatomidae, Alydidae, and Pyrrhocoridae. Here we investigated the midgut bacterial symbiont of Cantao ocellatus, a stinkbug of the family Scutelleridae. A specific gammaproteobacterium was consistently identified from the insects of different geographic origins. The bacterium was detected in all 116 insects collected from 9 natural host populations. Phylogenetic analyses revealed that the bacterium constitutes a distinct lineage in the Gammaproteobacteria, not closely related to gut symbionts of other stinkbugs. Diagnostic PCR and in situ hybridization demonstrated that the bacterium is extracellularly located in the midgut 4th section with crypts. Electron microscopy of the crypts revealed a peculiar histological configuration at the host-symbiont interface. Egg sterilization experiments confirmed that the bacterium is vertically transmitted to stinkbug nymphs via egg surface contamination. In addition to the gut symbiont, some individuals of C. ocellatus harbored another bacterial symbiont in their gonads, which was closely related to Sodalis glossinidius, the secondary endosymbiont of tsetse flies. Biological aspects of the primary gut symbiont and the secondary Sodalis-allied symbiont are discussed.
Collapse
|
30
|
Alves-Silva J, Ribeiro JMC, Van Den Abbeele J, Attardo G, Hao Z, Haines LR, Soares MB, Berriman M, Aksoy S, Lehane MJ. An insight into the sialome of Glossina morsitans morsitans. BMC Genomics 2010; 11:213. [PMID: 20353571 PMCID: PMC2853526 DOI: 10.1186/1471-2164-11-213] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/30/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood feeding evolved independently in worms, arthropods and mammals. Among the adaptations to this peculiar diet, these animals developed an armament of salivary molecules that disarm their host's anti-bleeding defenses (hemostasis), inflammatory and immune reactions. Recent sialotranscriptome analyses (from the Greek sialo = saliva) of blood feeding insects and ticks have revealed that the saliva contains hundreds of polypeptides, many unique to their genus or family. Adult tsetse flies feed exclusively on vertebrate blood and are important vectors of human and animal diseases. Thus far, only limited information exists regarding the Glossina sialome, or any other fly belonging to the Hippoboscidae. RESULTS As part of the effort to sequence the genome of Glossina morsitans morsitans, several organ specific, high quality normalized cDNA libraries have been constructed, from which over 20,000 ESTs from an adult salivary gland library were sequenced. These ESTs have been assembled using previously described ESTs from the fat body and midgut libraries of the same fly, thus totaling 62,251 ESTs, which have been assembled into 16,743 clusters (8,506 of which had one or more EST from the salivary gland library). Coding sequences were obtained for 2,509 novel proteins, 1,792 of which had at least one EST expressed in the salivary glands. Despite library normalization, 59 transcripts were overrepresented in the salivary library indicating high levels of expression. This work presents a detailed analysis of the salivary protein families identified. Protein expression was confirmed by 2D gel electrophoresis, enzymatic digestion and mass spectrometry. Concurrently, an initial attempt to determine the immunogenic properties of selected salivary proteins was undertaken. CONCLUSIONS The sialome of G. m. morsitans contains over 250 proteins that are possibly associated with blood feeding. This set includes alleles of previously described gene products, reveals new evidence that several salivary proteins are multigenic and identifies at least seven new polypeptide families unique to Glossina. Most of these proteins have no known function and thus, provide a discovery platform for the identification of novel pharmacologically active compounds, innovative vector-based vaccine targets, and immunological markers of vector exposure.
Collapse
|
31
|
Abd-Alla AMM, Kariithi HM, Parker AG, Robinson AS, Kiflom M, Bergoin M, Vreysen MJB. Dynamics of the salivary gland hypertrophy virus in laboratory colonies of Glossina pallidipes (Diptera: Glossinidae). Virus Res 2010; 150:103-10. [PMID: 20214934 DOI: 10.1016/j.virusres.2010.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/01/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. To better understand the impact of this virus in a laboratory colony of G. pallidipes, where the majority of flies are infected but asymptomatic, and to follow the development of SGH in the offspring of symptomatic infected flies, we examined the progeny of tsetse flies reared under different conditions. The results show that the progeny of asymptomatic parents did not develop SGH, while the progeny of symptomatic female flies mated with asymptomatic males developed a high rate of SGH (65% in male and 100% in females) and these flies were sterile. Stress in the form of high fly density in holding cages (180 flies/cage) and high temperature (30 degrees C) in the holding room did not affect the prevalence of the SGH. The virus is excreted in the saliva and there is a strong correlation between the infection status (negative, slight or strong by PCR) and the numbers of virus particles released into the blood on which the flies were fed. On average, around 10(2) and 10(7) virus particles were found in the blood after feeding asymptomatic or symptomatic infected flies respectively. Feeding the flies on new blood at every feed for three generations caused a significant reduction in the virus copy number in these flies when compared with the virus copy number in flies fed under the normal feeding regime. The results of these studies allowed the initiation of colony management protocols that aim to minimize the risk of horizontal transmission and to enable the establishment of colonies with a low virus prevalence or possibly even those that are virus free.
Collapse
Affiliation(s)
- Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
32
|
Quantitative PCR analysis of the salivary gland hypertrophy virus (GpSGHV) in a laboratory colony of Glossina pallidipes. Virus Res 2008; 139:48-53. [PMID: 19014982 DOI: 10.1016/j.virusres.2008.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 10/08/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
Abstract
Many species of tsetse flies can be infected by a virus that causes salivary gland hypertrophy (SGH) and virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies having SGH have a reduced fecundity and fertility. To better understand the impact of this virus in a laboratory colony of G. pallidipes, where the majority of flies are infected but asymptomatic, and to follow the development of SGH in symptomatic flies in relation to virus copy number, a quantitative PCR (qPCR) method was developed. The qPCR analyses revealed that in asymptomatic flies virus copy number averaged 1.68E+5, 2.05E+5 and 1.07E+7log(10) in DNA from an excised leg, salivary glands and a whole fly, respectively. In symptomatic flies the virus copy number in the same organs averaged 1.34E+7, 1.42E+10 and 1.5E+9, respectively. Despite these statistically significant differences (p<<0.0001) in virus copy number between asymptomatic and symptomatic flies, there was no correlation between age and virus copy number for either sets in adult flies. A clear correlation between virus copy number in pupae and their mothers was observed. Reverse transcription quantitative PCR (RT-qPCR) of the viral messenger RNA encoding ODV-E66, an envelope protein, revealed a clear correlation between virus copy number and the level of gene expression with values of 2.77log(10) in asymptomatic males and 6.10log(10) in symptomatic males. Taken together these results confirm the close relationship between virus copy number and SGH syndrome. They demonstrate the vertical transmission of GpSGHV from mother to progeny, and suggest that the development of SGH may be correlated to the virus copy number acquired by the larva during its intra-uterine development.
Collapse
|
33
|
Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol 2008; 75:547-50. [PMID: 19028913 DOI: 10.1128/aem.01665-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least two types of Wolbachia bacteria were detected in wild and insectarium-raised Rhodnius pallescens, a natural vector of Trypanosoma cruzi and Trypanosoma rangeli. Wolbachia was detected in all the organs and tissues studied and in the feces, and this provided a methodological advantage for determining the presence of this endosymbiont in this host, obviating the need to kill the specimens. The occurrence of trypanosomatids in wild individuals was also studied.
Collapse
|
34
|
Aksoy S, Weiss B, Attardo G. Paratransgenesis applied for control of tsetse transmitted sleeping sickness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:35-48. [PMID: 18510012 DOI: 10.1007/978-0-387-78225-6_3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
African trypanosomiasis (sleeping sickness) is a major cause of morbidity and mortality in Subsaharan Africa for human and animal health. In the absence of effective vaccines and efficacious drugs, vector control is an alternative intervention tool to break the disease cycle. This chapter describes the vectorial and symbiotic biology of tsetse with emphasis on the current knowledge on tsetse symbiont genomics and functional biology, and tsetse's trypanosome transmission capability. The ability to culture one of tsetse's commensal symbiotic microbes, Sodalis in vitro has allowed for the development of a genetic transformation system for this organism. Tsetse can be repopulated with the modified Sodalis symbiont, which can express foreign gene products (an approach we refer to as paratransgenic expression system). Expanding knowledge on tsetse immunity effectors, on genomics of tsetse symbionts and on tsetse's parasite transmission biology stands to enhance the development and potential application of paratransgenesis as a new vector-control strategy. We describe the hallmarks of the paratransgenic transformation technology where the modified symbionts expressing trypanocidal compounds can be used to manipulate host functions and lead to the control of trypanosomiasis by blocking trypanosome transmission in the tsetse vector.
Collapse
Affiliation(s)
- Serap Aksoy
- Yale University School of Medicine, Department of Epidemiology and Public Health, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
35
|
Toft C, Fares MA. The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 2008; 25:2069-76. [PMID: 18635679 DOI: 10.1093/molbev/msn153] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome shrinkage is a common feature of most intracellular pathogens and symbionts. Reduction of genome sizes is among the best-characterized evolutionary ways of intracellular organisms to save and avoid maintaining expensive redundant biological processes. Endosymbiotic bacteria of insects are examples of biological economy taken to completion because their genomes are dramatically reduced. These bacteria are nonmotile, and their biochemical processes are intimately related to those of their host. Because of this relationship, many of the processes in these bacteria have been either lost or have suffered massive remodeling to adapt to the intracellular symbiotic lifestyle. An example of such changes is the flagellum structure that is essential for bacterial motility and infectivity. Our analysis indicates that genes responsible for flagellar assembly have been partially or totally lost in most intracellular symbionts of gamma-Proteobacteria. Comparative genomic analyses show that flagellar genes have been differentially lost in endosymbiotic bacteria of insects. Only proteins involved in protein export within the flagella assembly pathway (type III secretion system and the basal body) have been kept in most of the endosymbionts, whereas those involved in building the filament and hook of flagella have only in few instances been kept, indicating a change in the functional purpose of this pathway. In some endosymbionts, genes controlling protein-export switch and hook length have undergone functional divergence as shown through an analysis of their evolutionary dynamics. Based on our results, we suggest that genes of flagellum have diverged functionally as to specialize in the export of proteins from the bacterium to the host.
Collapse
Affiliation(s)
- Christina Toft
- Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | |
Collapse
|
36
|
|
37
|
Genome analysis of a Glossina pallidipes salivary gland hypertrophy virus reveals a novel, large, double-stranded circular DNA virus. J Virol 2008; 82:4595-611. [PMID: 18272583 DOI: 10.1128/jvi.02588-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several species of tsetse flies can be infected by the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). Infection causes salivary gland hypertrophy and also significantly reduces the fecundity of the infected flies. To better understand the molecular basis underlying the pathogenesis of this unusual virus, we sequenced and analyzed its genome. The GpSGHV genome is a double-stranded circular DNA molecule of 190,032 bp containing 160 nonoverlapping open reading frames (ORFs), which are distributed equally on both strands with a gene density of one per 1.2 kb. It has a high A+T content of 72%. About 3% of the GpSGHV genome is composed of 15 sequence repeats, distributed throughout the genome. Although sharing the same morphological features (enveloped rod-shaped nucleocapsid) as baculoviruses, nudiviruses, and nimaviruses, analysis of its genome revealed that GpSGHV differs significantly from these viruses at the level of its genes. Sequence comparisons indicated that only 23% of GpSGHV genes displayed moderate homologies to genes from other invertebrate viruses, principally baculoviruses and entomopoxviruses. Most strikingly, the GpSGHV genome encodes homologues to the four baculoviral per os infectivity factors (p74 [pif-0], pif-1, pif-2, and pif-3). The DNA polymerase encoded by GpSGHV is of type B and appears to be phylogenetically distant from all DNA polymerases encoded by large double-stranded DNA viruses. The majority of the remaining ORFs could not be assigned by sequence comparison. Furthermore, no homologues to DNA-dependent RNA polymerase subunits were detected. Taken together, these data indicate that GpSGHV is the prototype member of a novel group of insect viruses.
Collapse
|
38
|
Abstract
A noted cost of mating is the risk of acquiring sexually transmitted infections that are detrimental to the recipient. But many microbial associates of eukaryotes are mutualistic, raising the possibility that sexual contact provides the opportunity to acquire symbionts that are beneficial. In aphids, facultative bacterial symbionts, which benefit hosts by conferring resistance to natural enemies or to heat, are transmitted maternally with high fidelity and are maintained stably throughout hundreds of parthenogenetic generations in the laboratory. Data from field populations indicate that horizontal transfer of these facultative symbionts is frequent, and transfections are readily achieved by microinjection or ingestion in artificial diet. However, no natural mechanism for the horizontal transfer of these symbionts has been identified. Here we demonstrate that during sexual reproduction, male-borne symbionts can be acquired by females and subsequently transferred to sexually and parthenogenetically produced progeny, establishing stable, maternally transmitted associations. In our experiments, sexually transmitted symbionts resulted in (i) infection of previously uninfected matrilines, (ii) a double infection in a matriline already bearing a different symbiont, and (iii) replacement of the maternal symbiont. We also observed some cases in which maternal symbionts failed to become established in sexually produced progeny. Microscopy indicated that symbionts were abundant in the male reproductive system, which demonstrates a natural route of nonmaternal transfer of insect symbionts. Because such transfer can generate coinfections, thereby creating opportunities for symbiont competition and recombination, paternal inheritance has major consequences for expectations regarding symbiont evolution.
Collapse
Affiliation(s)
- Nancy A Moran
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
39
|
Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol 2006; 22:262-8. [PMID: 16635587 DOI: 10.1016/j.pt.2006.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 11/17/2022]
Abstract
Innate immunity has a key role in the control of microbial infections in both vertebrates and invertebrates. In insects, including vectors that transmit parasites that cause major human and animal diseases, antimicrobial peptides (AMPs) are important components of innate immunity. AMPs are induced upon parasitic infections and can participate in regulating parasite development in the digestive tract and in the hemolymph. This review presents our current knowledge of a field that is in its infancy: the role of innate immunity in different models of insects infected with flagellate parasites, and in particular the potential role of AMPs in regulating these parasitic infections.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Equipe d'Accueil 3432, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch Cedex, France.
| | | | | |
Collapse
|
40
|
Bordenstein SR, Marshall ML, Fry AJ, Kim U, Wernegreen JJ. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS Pathog 2006; 2:e43. [PMID: 16710453 PMCID: PMC1463016 DOI: 10.1371/journal.ppat.0020043] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 04/05/2006] [Indexed: 11/19/2022] Open
Abstract
By manipulating arthropod reproduction worldwide, the heritable endosymbiont Wolbachia has spread to pandemic levels. Little is known about the microbial basis of cytoplasmic incompatibility (CI) except that bacterial densities and percentages of infected sperm cysts associate with incompatibility strength. The recent discovery of a temperate bacteriophage (WO-B) of Wolbachia containing ankyrin-encoding genes and virulence factors has led to intensifying debate that bacteriophage WO-B induces CI. However, current hypotheses have not considered the separate roles that lytic and lysogenic phage might have on bacterial fitness and phenotype. Here we describe a set of quantitative approaches to characterize phage densities and its associations with bacterial densities and CI. We enumerated genome copy number of phage WO-B and Wolbachia and CI penetrance in supergroup A- and B-infected males of the parasitoid wasp Nasonia vitripennis. We report several findings: (1) variability in CI strength for A-infected males is positively associated with bacterial densities, as expected under the bacterial density model of CI, (2) phage and bacterial densities have a significant inverse association, as expected for an active lytic infection, and (3) CI strength and phage densities are inversely related in A-infected males; similarly, males expressing incomplete CI have significantly higher phage densities than males expressing complete CI. Ultrastructural analyses indicate that approximately 12% of the A Wolbachia have phage particles, and aggregations of these particles can putatively occur outside the Wolbachia cell. Physical interactions were observed between approximately 16% of the Wolbachia cells and spermatid tails. The results support a low to moderate frequency of lytic development in Wolbachia and an overall negative density relationship between bacteriophage and Wolbachia. The findings motivate a novel phage density model of CI in which lytic phage repress Wolbachia densities and therefore reproductive parasitism. We conclude that phage, Wolbachia, and arthropods form a tripartite symbiotic association in which all three are integral to understanding the biology of this widespread endosymbiosis. Clarifying the roles of lytic and lysogenic phage development in Wolbachia biology will effectively structure inquiries into this research topic. Symbiotic bacteria that are maternally inherited are widespread in terrestrial invertebrates. Such bacteria infect the cells of reproductive tissues and can have important evolutionary and developmental effects on the host. Often these inherited symbionts develop beneficial relationships with their hosts, but some species can also selfishly alter invertebrate reproduction to increase the numbers of infected females (the transmitting sex of the bacteria) in the population. Bacterial-mediated distortions such as male-killing, feminization, parthenogenesis induction, and cytoplasmic incompatibility are collectively known as “reproductive parasitism.” In this article, the investigators show that the associations between the most common reproductive parasite in the biosphere (Wolbachia) and a parasitic wasp host are affected by a mobile element—a temperate bacteriophage of Wolbachia. In contrast to recent reports that suggest bacteriophage WO-B may induce reproductive parasitism, the authors' quantitative and ultrastructural analyses indicate that lytic phage WO-B are lethal and therefore associate with a reduction in both Wolbachia densities and reproductive parasitism. Based on these data, the authors propose a phage density model in which lytic phage development specifically leads to a reduction, rather than induction, of reproductive parisitism. The study is among the first investigations to show that lytic bacteriophage inversely associate with the densities and phenotype of an obligate intracellular bacterium.
Collapse
Affiliation(s)
- Seth R Bordenstein
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
41
|
Romero A, Broce A, Zurek L. Role of bacteria in the oviposition behaviour and larval development of stable flies. MEDICAL AND VETERINARY ENTOMOLOGY 2006; 20:115-21. [PMID: 16608496 DOI: 10.1111/j.1365-2915.2006.00602.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Stable flies, Stomoxys calcitrans (L.), are the most important pests of cattle in the United States. However, adequate management strategies for stable flies, especially for pastured cattle, are lacking. Microbial/symbiont-based approaches offer novel venues for management of insect pests and/or vector-borne human and animal pathogens. Unfortunately, the fundamental knowledge of stable fly-microbial associations and their effect on stable fly biology is lacking. In this study, stable flies laid greater numbers of eggs on a substrate with an active microbial community (> 95% of total eggs oviposited) than on a sterilized substrate. In addition, stable fly larvae could not develop in a sterilized natural or artificial substrate/medium. Bacteria were isolated and identified from a natural stable fly oviposition/developmental habitat and their individual effect on stable fly oviposition response and larval development was evaluated in laboratory bioassays. Of nine bacterial strains evaluated in the oviposition bioassays, Citrobacter freundii stimulated oviposition to the greatest extent. C. freundii also sustained stable fly development, but to a lesser degree than Serratia fanticola. Serratia marcescens and Aeromonas spp. neither stimulated oviposition nor supported stable fly development. These results demonstrate a stable fly bacterial symbiosis; stable fly larval development depends on a live microbial community in the natural habitat, and stable fly females are capable of selecting an oviposition site based on the microbially derived stimuli that indicate the suitability of the substrate for larval development. This study shows a promising starting point for exploiting stable fly-bacterial associations for development of novel approaches for stable fly management.
Collapse
Affiliation(s)
- A Romero
- Department of Entomology, Kansas State University, Manhattan 66506, USA
| | | | | |
Collapse
|
42
|
Wernegreen JJ. For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 2005; 15:572-83. [PMID: 16230003 DOI: 10.1016/j.gde.2005.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
Bacteria that replicate within eukaryotic host cells include a variety of pathogenic and mutualistic species. Early genome data for these intracellular associates suggested they experience continual gene loss, little if any gene acquisition, and minimal recombination in small, isolated populations. This view of reductive evolution is itself evolving as new genome sequences clarify mechanisms and outcomes of diverse intracellular associations. Recently sequenced genomes have confirmed a trajectory of gene loss and exceptional genome stability in long-term, nutritional mutualists and certain pathogens. However, new genome data for the Rickettsiales and Chlamydiales indicate more repeated DNA, a greater abundance of mobile DNA elements, and more labile genome dynamics than previously suspected for ancient intracellular lineages. Surprising discoveries of conjugation machinery in the parasite Rickettsia felis and the amoebae symbiont Parachlamydia sp. suggest that DNA transfer might play key roles in some intracellular taxa.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|