1
|
Alvarenga PH, Alves E Silva TL, Suzuki M, Nardone G, Cecilio P, Vega-Rodriguez J, Ribeiro JMC, Andersen JF. Comprehensive Proteomics Analysis of the Hemolymph Composition of Sugar-Fed Aedes aegypti Female and Male Mosquitoes. J Proteome Res 2024; 23:1471-1487. [PMID: 38576391 DOI: 10.1021/acs.jproteome.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In arthropods, hemolymph carries immune cells and solubilizes and transports nutrients, hormones, and other molecules that are involved in diverse physiological processes including immunity, metabolism, and reproduction. However, despite such physiological importance, little is known about its composition. We applied mass spectrometry-based label-free quantification approaches to study the proteome of hemolymph perfused from sugar-fed female and male Aedes aegypti mosquitoes. A total of 1403 proteins were identified, out of which 447 of them were predicted to be extracellular. In both sexes, almost half of these extracellular proteins were predicted to be involved in defense/immune response, and their relative abundances (based on their intensity-based absolute quantification, iBAQ) were 37.9 and 33.2%, respectively. Interestingly, among them, 102 serine proteases/serine protease-homologues were identified, with almost half of them containing CLIP regulatory domains. Moreover, proteins belonging to families classically described as chemoreceptors, such as odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), were also highly abundant in the hemolymph of both sexes. Our data provide a comprehensive catalogue of A. aegypti hemolymph basal protein content, revealing numerous unexplored targets for future research on mosquito physiology and disease transmission. It also provides a reference for future studies on the effect of blood meal and infection on hemolymph composition.
Collapse
Affiliation(s)
- Patricia H Alvarenga
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Thiago Luiz Alves E Silva
- Molecular Parasitology and Entomology Unit, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Motoshi Suzuki
- Protein and Chemistry Section, Research Technologies Branch, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Glenn Nardone
- Protein and Chemistry Section, Research Technologies Branch, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Pedro Cecilio
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Joel Vega-Rodriguez
- Molecular Parasitology and Entomology Unit, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - Jose M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland 20852, United States
| |
Collapse
|
2
|
Zhang ML, Zhou KM, Wang XW. Identification and characterization of a Reeler domain containing protein in Procambarus clarkii provides new insights into antibacterial immunity in crustacean. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100094. [PMID: 37131543 PMCID: PMC10149183 DOI: 10.1016/j.fsirep.2023.100094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Crayfish, as an invertebrate, relies only on the innate immune system to resist external pathogens. In this study, a molecule containing a single Reeler domain was identified from red swamp crayfish Procambarus clarkii (named as PcReeler). Tissue distribution analysis showed that PcReeler was highly expressed in gills and its expression was induced by bacterial stimulation. Inhibiting the expression of PcReeler by RNA interference led to a significant increase in the bacterial abundance in the gills of crayfish, and a significant increase in the crayfish mortality. Silencing of PcReeler influenced the stability of the microbiota in the gills revealed by 16S rDNA high-throughput sequencing. Recombinant PcReeler showed the ability to bind microbial polysaccharide and bacteria and to inhibit the formation of bacterial biofilms. These results provided direct evidence for the involvement of PcReeler in the antibacterial immune mechanism of P. clarkii.
Collapse
Affiliation(s)
- Ming-Lu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Kai-Min Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Corresponding author at: School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Li T, Wang G, He W, Li G, Wang C, Zhao J, Chen P, Guo M, Chen P. A secreted phospholipase A 2 (BmsPLA 2 ) regulates melanization of immunity through BmDDC in the silkworm Bombyx mori. INSECT SCIENCE 2023; 30:1579-1594. [PMID: 36924440 DOI: 10.1111/1744-7917.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Insect immune-associated phospholipase A2 (PLA2 ) is an important target of pathogen invasion. Melanization, an effective defense response, has significant correlations with other immune responses to coordinate immune attack against invaders. However, the effect of PLA2 on melanization has not yet been reported in insects or other arthropods. In this work, we cloned a PLA2 gene (BmsPLA2 ), and its protein had characteristic features of secreted PLA2 (sPLA2 ). After injection of bacteria, BmsPLA2 expression and sPLA2 activity in hemolymph significantly increased. BmsPLA2 fluorescence was transferred from the cytoplasm to the cell membranes of circulating hemocytes. These results indicated that BmsPLA2 was related to hemolymph immunity in silkworms. Interestingly, reducing BmsPLA2 by RNA interference decreased melanosis (melanistic hemocytes) levels in vivo and in vitro, while BmsPLA2 overexpression had the opposite effect. The larval survival and melanization rate in the hemocoel both slowed depending on the PLA2 inhibitor dosage. These results demonstrated that BmsPLA2 plays a role in melanization during the immune process of silkworms. Surprisingly, the level of BmDDC matched the degree of melanization in various observations. BmDDC expression showed a significant increase, with the peak occurring later than that of BmsPLA2 after injection of bacteria, implying that BmsPLA2 was activated prior to BmDDC. Moreover, the alteration of BmsPLA2 by RNA interference or overexpression led to altered BmDDC levels. These results suggested that BmsPLA2 regulates the melanization response in silkworms through BmDDC. Our study proposes a new regulatory mechanism of the melanization response and new directions for understanding the complex immune networks of insects.
Collapse
Affiliation(s)
- Tian Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Drug Discovery Research Center, Southwest Medical University, Luzhou, China
| | - Gemin Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei He
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Guiqin Li
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Chunyang Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jiamei Zhao
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Pan Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Meiwei Guo
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Ping Chen
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Wang Y, Shi M, Yang J, Ma L, Chen X, Xu M, Peng R, Wang G, Pan Z, Sima Y, Xu S. Sericin Ser3 Ectopic Expressed in Posterior Silk Gland Affects Hemolymph Immune Melanization Response via Reducing Melanin Synthesis in Silkworm. INSECTS 2023; 14:245. [PMID: 36975930 PMCID: PMC10051610 DOI: 10.3390/insects14030245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The transgenesis of silkworms is an important way to innovate genetic resources and silk function. However, the silk-gland (SG) of transgenic silkworms, which is the most concerned target tissue of sericulture, often suffers from low vitality, stunting and other problems, and the reasons are still unknown. This study trans engineered recombinant Ser3, a middle silk gland (MSG) specific expression gene, in the posterior silk gland (PSG) of the silkworm, and studied hemolymph immune melanization response changes in mutant pure line SER (Ser3+/+). The results showed that although the mutant had normal vitality, the melanin content and phenoloxidase (PO) activity in hemolymph related to humoral immunity were significantly reduced, and caused significantly slower blood melanization and weaker sterilization ability. The mechanism investigation showed that the mRNA levels and enzymatic activities of phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH) and dopamine decarboxylase (DDC) in the melanin synthesis pathway in mutant hemolymph, as well as the transcription levels of the PPAE, SP21 and serpins genes in the serine protease cascade were significantly affected. Moreover, the total antioxidant capacity, superoxide anion inhibition capacity and catalase (CAT) level related to the redox metabolic capacity of hemolymph were significantly increased, while the activities of superoxide dismutase (SOD) and glutathione reductase (GR), as well as the levels of hydrogen peroxide (H2O2) and glutathione (GSH), were significantly decreased. In conclusion, the anabolism of melanin in the hemolymph of PSG transgenic silkworm SER was inhibited, while the basic response level of oxidative stress was increased, and the hemolymph immune melanization response was decreased. The results will significantly improve the safe assessment and development of genetically modified organisms.
Collapse
Affiliation(s)
- Yongfeng Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Meijuan Shi
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Jiameng Yang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Lu Ma
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Xuedong Chen
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Meng Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Ruji Peng
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Wang Q, Sun Z, Ma S, Liu X, Xia H, Chen K. Molecular mechanism and potential application of bacterial infection in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104381. [PMID: 35245606 DOI: 10.1016/j.dci.2022.104381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a representative species of Lepidoptera, Bombyx mori has been widely studied and applied. However, bacterial infection has always been an important pathogen threatening the growth of silkworms. Bombyx mori can resist various pathogenic bacteria through their own physical barrier and innate immune system. However, compared with other insects, such as Drosophila melanogaster, research on the antibacterial mechanism of silkworms is still in its infancy. This review systematically summarized the routes of bacterial infection in silkworms, the antibacterial mechanism of silkworms after ingestion or wounding infection, and the intestinal bacteria and infection of silkworms. Finally, we will discuss silkworms as a model animal for studying bacterial infectious diseases and screening antibacterial drugs.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shangshang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
7
|
Variation of TNF modulates cellular immunity of gregarious and solitary locusts against fungal pathogen Metarhizium anisopliae. Proc Natl Acad Sci U S A 2022; 119:2120835119. [PMID: 35110413 PMCID: PMC8833202 DOI: 10.1073/pnas.2120835119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 12/11/2022] Open
Abstract
Ecological immunology addresses the interactions between host immunity and the environment. Locusts display density-dependent phase transitions between solitary and gregarious locusts. In control practices and laboratory bioassays, gregarious locusts always exhibit stronger resistance to fungal pathogens than solitary locusts. However, few studies have investigated the mechanism of altered immune switch in locusts. Here, we combined mathematical simulation and experimental studies to show that gregarious locusts inhibit tumor necrosis factor (TNF) to alter immune defense by enhancing humoral defense and reducing cellular defense, and high levels of TNF reduce the survival of solitary locusts. Our study provides an important cue for understanding cellular immunity variations in response to different population densities and for improving the control efficacy of locust plagues. Changes in population density lead to phenotypic differentiation of solitary and gregarious locusts, which display different resistance to fungal pathogens; however, how to regulate their cellular immune strategies remains unknown. Here, our stochastic simulation of pathogen proliferation suggested that humoral defense always enhanced resistance to fungal pathogens, while phagocytosis sometimes reduced defense against pathogens. Further experimental data proved that gregarious locusts had significantly decreased phagocytosis of hemocytes compared to solitary locusts. Additionally, transcriptional analysis showed that gregarious locusts promoted immune effector expression (gnbp1 and dfp) and reduced phagocytic gene expression (eater) and the cytokine tumor necrosis factor (TNF). Interestingly, higher expression of the cytokine TNF in solitary locusts simultaneously promoted eater expression and inhibited gnbp1 and dfp expression. Moreover, inhibition of TNF increased the survival of solitary locusts, and injection of TNF decreased the survival of gregarious locusts after fungal infection. Therefore, our results indicate that the alerted expression of TNF regulated the immune strategy of locusts to adapt to environmental changes.
Collapse
|
8
|
Schultzhaus JN, Hervey WJ, Taitt CR, So CR, Leary DH, Wahl KJ, Spillmann CM. Comparative analysis of stalked and acorn barnacle adhesive proteomes. Open Biol 2021; 11:210142. [PMID: 34404232 PMCID: PMC8371367 DOI: 10.1098/rsob.210142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Barnacles interest the scientific community for multiple reasons: their unique evolutionary trajectory, vast diversity and economic impact—as a harvested food source and also as one of the most prolific macroscopic hard biofouling organisms. A common, yet novel, trait among barnacles is adhesion, which has enabled a sessile adult existence and global colonization of the oceans. Barnacle adhesive is primarily composed of proteins, but knowledge of how the adhesive proteome varies across the tree of life is unknown due to a lack of genomic information. Here, we supplement previous mass spectrometry analyses of barnacle adhesive with recently sequenced genomes to compare the adhesive proteomes of Pollicipes pollicipes (Pedunculata) and Amphibalanus amphitrite (Sessilia). Although both species contain the same broad protein categories, we detail differences that exist between these species. The barnacle-unique cement proteins show the greatest difference between species, although these differences are diminished when amino acid composition and glycosylation potential are considered. By performing an in-depth comparison of the adhesive proteomes of these distantly related barnacle species, we show their similarities and provide a roadmap for future studies examining sequence-specific differences to identify the proteins responsible for functional differences across the barnacle tree of life.
Collapse
Affiliation(s)
- Janna N Schultzhaus
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - William Judson Hervey
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Chris R Taitt
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Chris R So
- Chemistry Division, Naval Research Laboratory, Washington, DC, USA
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Kathryn J Wahl
- Chemistry Division, Naval Research Laboratory, Washington, DC, USA
| | - Christopher M Spillmann
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
9
|
Paulino P, Vitari G, Rezende A, Couto J, Antunes S, Domingos A, Peckle M, Massard C, Araújo F, Santos H. Characterization of the Rhipicephalus ( Boophilus) microplus Sialotranscriptome Profile in Response to Theileria equi Infection. Pathogens 2021; 10:pathogens10020167. [PMID: 33557100 PMCID: PMC7913801 DOI: 10.3390/pathogens10020167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
This study intends to characterize the sialotranscriptome profile of Rhipicephalus (Boophilus) microplus in response to Theileria equi and identify genes of interest with differential genomic expression, indicating relevant targets in the tick–protozoan interactions. The experimental design consisted of RNA sequencing from uninfected and T. equi-infected R. microplus salivary glands (SGs) to obtain transcriptomic profiles for characterization and comparison. A total of 288,952 transcripts were obtained from both tick profiles, 3456 transcripts (p < 0.05) differentially expressed in response to T. equi infection. The uninfected SGs’ registered 231,179 transcripts, of which 155,359 were annotated. The most transcribed sequences were female-specific histamine binding protein and lipocalins. Regarding the T. equi-infected SGs, from the 238,964 assembled transcripts, 163,564 were annotated. The most transcribed sequences were histone demethylase JARID1 and Y-box-binding protein. Five transcripts (cystatin, arginase, nuclear factor κB kinase inhibitor subunit β (IκB), IκB delta, lysosomal-trafficking regulator, and reeler protein) presented the gene ontology (GO) category “response to protozoan” and were exclusively displayed in the T. equi-infected profile. The transcriptome of T. equi was also analyzed, registering 4728 hits. The study’s genetic and molecular information would be of great value for future studies and biotechnological applications envisaging disease control.
Collapse
Affiliation(s)
- Patrícia Paulino
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
| | - Gabriela Vitari
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
| | - Antonio Rezende
- Department of Microbiology, Institute Aggeu Magalhães—Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE 50670-420, Brazil;
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal; (J.C.); (S.A.); (A.D.)
| | - Maristela Peckle
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ 23890000, Brazil; (M.P.); (C.M.)
| | - Carlos Massard
- Department of Animal Parasitology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropedica, RJ 23890000, Brazil; (M.P.); (C.M.)
| | - Flávio Araújo
- Rene Rachou Research Center (CPqRR), FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil;
| | - Huarrisson Santos
- Department of Epidemiology and Public Health, Federal Rural University of Rio de Janeiro (UFRRJ), BR 465, Km 7, Seropedica, RJ 23890000, Brazil; (P.P.); (G.V.)
- Correspondence:
| |
Collapse
|
10
|
Xu KK, Pan BY, Wang YY, Ren QQ, Li C. Roles of the PTP61F Gene in Regulating Energy Metabolism of Tribolium castaneum (Coleoptera: Tenebrionidae). Front Physiol 2020; 11:1071. [PMID: 32973565 PMCID: PMC7468486 DOI: 10.3389/fphys.2020.01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a negative regulator in the insulin signaling pathway. It belongs to a class of non-receptor phosphatases of protein tyrosine phosphatase and can catalyze the dephosphorylation of tyrosine to regulate cell differentiation, growth, and metabolism. However, few studies have focused on the role of PTP1B in regulating energy metabolism of insects. In this study, we investigated the expression profiles and the functions of a PTP1B gene (designated TcPTP61F) in the red flour beetle Tribolium castaneum. Quantitative real-time PCR analyzed showed that TcPTP61F was highly expressed in the pupal and adult stages. In adult tissues, TcPTP61F was prominently expressed in the tarsus and head. RNA interference-mediated silencing of TcPTP61F reduced the expression of eight genes in trehalose metabolic and glycolytic pathways. TcPTP61F depletion also caused a significant change in the distribution of trehalose, glucose, and glycogen. Additionally, knockdown of TcPTP61F inhibited the pyruvate kinase (PK) activity and significantly decreased the adenosine triphosphate (ATP) level. The results suggest that TcPTP61F is indispensible for trehalose and energy metabolism of T. castaneum.
Collapse
Affiliation(s)
- Kang-Kang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Bi-Ying Pan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuan-Yuan Wang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Qian-Qian Ren
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|
11
|
Huot L, Bigourdan A, Pagès S, Ogier JC, Girard PA, Nègre N, Duvic B. Partner-specific induction of Spodoptera frugiperda immune genes in response to the entomopathogenic nematobacterial complex Steinernema carpocapsae-Xenorhabdus nematophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 108:103676. [PMID: 32184079 DOI: 10.1016/j.dci.2020.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
The Steinernema carpocapsae-Xenorhabdus nematophila association is a nematobacterial complex used in biological control of insect crop pests. The infection success of this dual pathogen strongly depends on its interactions with the host's immune system. Here, we used the lepidopteran pest Spodoptera frugiperda to analyze the respective impact of each partner in the induction of its immune responses. First, we used previously obtained RNAseq data to construct the immunome of S. frugiperda and analyze its induction. We then selected representative genes to study by RT-qPCR their induction kinetics and specificity after independent injections of each partner. We showed that both X. nematophila and S. carpocapsae participate in the induction of stable immune responses to the complex. While X. nematophila mainly induces genes classically involved in antibacterial responses, S. carpocapsae induces lectins and genes involved in melanization and encapsulation. We discuss putative relationships between these differential inductions and the pathogen immunosuppressive strategies.
Collapse
Affiliation(s)
- Louise Huot
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | - Sylvie Pagès
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | | | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| | - Bernard Duvic
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
12
|
Giachetto PF, Cunha RC, Nhani A, Garcia MV, Ferro JA, Andreotti R. Gene Expression in the Salivary Gland of Rhipicephalus (Boophilus) microplus Fed on Tick-Susceptible and Tick-Resistant Hosts. Front Cell Infect Microbiol 2020; 9:477. [PMID: 32039052 PMCID: PMC6985549 DOI: 10.3389/fcimb.2019.00477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/24/2019] [Indexed: 01/10/2023] Open
Abstract
The success of cattle tick fixation largely depends on the secretion of substances that alter the immune response of the host. The majority of these substances are expressed by the parasite salivary gland and secreted in tick saliva. It is known that hosts can mount immune responses against ticks and bovine European breeds, and bovine industrial crossbreeds are more susceptible to infestations than are Bos indicus cattle. To identify candidates for the development of novel control strategies for the cattle tick Rhipicephalus (Boophilus) microplus, a salivary gland transcriptome analysis of engorged females fed on susceptible or resistant hosts was performed. Using RNA-Seq, transcriptomes were de novo assembled and produced a total of 235,451 contigs with 93.3% transcriptome completeness. Differential expression analysis identified 137 sequences as differentially expressed genes (DEGs) between ticks raised on tick-susceptible or tick-resistant cattle. DEGs predicted to be secreted proteins include innexins, which are transmembrane proteins that form gap junction channels; the transporters Na+/dicarboxylate, Na+/tricarboxylate, and phosphate transporter and a putative monocarboxylate transporter; a phosphoinositol 4-phosphate adaptor protein; a cysteine-rich protein containing a trypsin inhibitor-like (TIL) domain; a putative defense protein 3 containing a reeler domain; and an F-actin-uncapping protein LRRC16A with a CARMIL_C domain; these genes were upregulated in ticks fed on tick-susceptible cattle. DEGs predicted to be non-secreted proteins included a small heat shock protein and the negative elongation factor B-like, both acting in a coordinated manner to increase HSP transcript levels in the salivary glands of the ticks fed on tick-susceptible cattle; the 26S protease regulatory subunit 6B and another chaperone with similarity to calnexin, also upregulated in ticks fed on tick-susceptible cattle; an EF-hand calcium binding protein and a serine carboxypeptidase (SCP), both involved in the blood coagulation cascade and upregulated in ticks fed on tick-susceptible cattle; and two ribosomal proteins, the 60S acidic ribosomal protein P2 and the 60S ribosomal protein L19. These results help to characterize cattle tick salivary gland gene expression in tick-susceptible and tick-resistant hosts and suggest new putative targets for the control of tick infestations, as those genes involved in the mechanism of stress response during blood feeding.
Collapse
Affiliation(s)
| | - Rodrigo Casquero Cunha
- Bolsista do CNPq (157460/2018-5), Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | | | | | | | | |
Collapse
|
13
|
Zhou X, Peng LY, Wang ZC, Wang W, Zhu Z, Huang XH, Chen LB, Song QS, Bao YY. Identification of novel antimicrobial peptides from rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103215. [PMID: 31449847 DOI: 10.1016/j.ibmb.2019.103215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 05/08/2023]
Abstract
In this study, two novel antibacterial peptide genes, termed lugensin A and B were identified and characterized from a rice sap-sucking hemipteran insect pest, the brown planthopper, Nilaparvata lugens. Lugensin gene expression was significantly induced by Gram-negative and Gram-positive bacterial stains under the regulation of a signal receptor, the long peptidoglycan recognition protein (PGRP-LC) in the IMD pathway. Knockdown of PGRP-LC by RNAi eliminated bacterium induced Lugensin gene expression. Lugensins had the apparent antibacterial activities against Escherichia coli K12, Bacillus subtilis and the rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae (Aaa) strain RS-1. Lugensins inhibited bacterial proliferation by disrupting the integrity of the bacterial membranes. Scanning electron microscopy revealed abnormal membrane morphology of the recombinant Lugensin-treated bacteria. Lugensins induced complete cell disruption of E. coli K12 and B. subtilis strains while formed the holes on the cell surface of Aaa RS-1 strain. Immunofluorescence showed that Lugensins localized in the cell membrane of E. coli K12 while accumulated in the cytosol of B. subtilis. Differently, Lugensins remained in both the cell membrane and the cytosol of Aaa RS-1 strain, suggesting different action modes of Lugensins to different microbes. This is the first report of the novel antibacterial peptides found in the rice sap-sucking hemipteran insect species.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu-Yao Peng
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhe-Chao Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hui Huang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li-Bo Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi-Sheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, USA.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Hemocyte Changes During Immune Melanization in Bombyx Mori Infected with Escherichia coli. INSECTS 2019; 10:insects10090301. [PMID: 31527493 PMCID: PMC6780253 DOI: 10.3390/insects10090301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
Abstract
Hemolymph melanization is a conserved immune response in insects and other arthropods. However, the physiological process of the hemolymph system in the melanization response is hardly studied. Here, alterations of hemocytes in immune melanization were observed by Escherichia coli infection in Bombyx mori. Results first showed that there were cells aggregating into clusters. However, it vanished, and only part of clustered hemocytes were melanized during the period of intense immunity. The hemocyte numbers immediately decreased following an immune challenge, slowly increased to a peak, then reduced and finally returned to normalization. Granulocytes participated in cells aggregation at the early and later immune stage, while plasmatocytes were responsible for hemocytes agglomerate and melanization for the longest time, and more oenocytoids appeared at the peak stage of melanization. Moreover, hemocytes played a crucial role in resisting invasion of pathogens by agglomerate and melanization, and the circulatory system maintained higher hemocyte numbers and stronger antibacterial activity in fifth than fourth instar larvae after infection. In vitro immune melanization was most likely preferentially implemented in an independent process. These were the main characteristics reflecting the physiological process of hemolymph immune melanization, which provided an important foundation for further study of the complete mechanisms in the immunity of silkworm.
Collapse
|
15
|
Filosa JN, Berry CT, Ruthel G, Beverley SM, Warren WC, Tomlinson C, Myler PJ, Dudkin EA, Povelones ML, Povelones M. Dramatic changes in gene expression in different forms of Crithidia fasciculata reveal potential mechanisms for insect-specific adhesion in kinetoplastid parasites. PLoS Negl Trop Dis 2019; 13:e0007570. [PMID: 31356610 PMCID: PMC6687205 DOI: 10.1371/journal.pntd.0007570] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/08/2019] [Accepted: 06/22/2019] [Indexed: 01/08/2023] Open
Abstract
Kinetoplastids are a group of parasites that includes several medically-important species. These human-infective species are transmitted by insect vectors in which the parasites undergo specific developmental transformations. For each species, this includes a stage in which parasites adhere to insect tissue via a hemidesmosome-like structure. Although this structure has been described morphologically, it has never been molecularly characterized. We are using Crithidia fasciculata, an insect parasite that produces large numbers of adherent parasites inside its mosquito host, as a model kinetoplastid to investigate both the mechanism of adherence and the signals required for differentiation to an adherent form. An advantage of C. fasciculata is that adherent parasites can be generated both in vitro, allowing a direct comparison to cultured swimming forms, as well as in vivo within the mosquito. Using RNAseq, we identify genes associated with adherence in C. fasciculata. As almost all of these genes have orthologs in other kinetoplastid species, our findings may reveal shared mechanisms of adherence, allowing investigation of a crucial step in parasite development and disease transmission. In addition, dual-RNAseq allowed us to explore the interaction between the parasites and the mosquito. Although the infection is well-tolerated, anti-microbial peptides and other components of the mosquito innate immune system are upregulated. Our findings indicate that C. fasciculata is a powerful model system for probing kinetoplastid-insect interactions. Kinetoplastids are single-celled parasites that cause devastating human diseases worldwide. Although this group includes many species that infect a variety of hosts, they have a great deal of shared biology. One relatively unexplored aspect of the kinetoplastid life cycle is their ability to adhere to insect tissue. For pathogenic species, adherence is critical for transmission by insect vectors. We have used an insect parasite called Crithidia fasciculata as a model kinetoplastid to reveal shared mechanisms of insect adherence. We have compared gene expression profiles of motile, non-adherent C. fasciculata to those of C. fasciculata adhered to non-living substrates and those attached to the hindgut of mosquitoes. Through this analysis, we have identified a large number of candidate proteins that may mediate adhesion in these and related parasites. In addition, our findings suggest that the mosquito immune system is responding to the presence of parasites in the gut. These results establish a new, robust system to explore the interaction between kinetoplastids and their insect hosts.
Collapse
Affiliation(s)
- John N. Filosa
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Corbett T. Berry
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wesley C. Warren
- University of Missouri, Bond Life Sciences Center, Columbia, Missouri, United States of America
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter J. Myler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth A. Dudkin
- Department of Biology, Penn State Brandywine, Media, Pennsylvania, United States of America
| | - Megan L. Povelones
- Department of Biology, Penn State Brandywine, Media, Pennsylvania, United States of America
- * E-mail: (MLP); (MP)
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (MLP); (MP)
| |
Collapse
|
16
|
Ran R, Li T, Liu X, Ni H, Li W, Meng F. RNA interference-mediated silencing of genes involved in the immune responses of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). PeerJ 2018; 6:e4931. [PMID: 29910977 PMCID: PMC6003399 DOI: 10.7717/peerj.4931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
Collapse
Affiliation(s)
- Ruixue Ran
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hejia Ni
- Colleges of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Narasimhan S, Schuijt TJ, Abraham NM, Rajeevan N, Coumou J, Graham M, Robson A, Wu MJ, Daffre S, Hovius JW, Fikrig E. Modulation of the tick gut milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat Commun 2017; 8:184. [PMID: 28775250 PMCID: PMC5543126 DOI: 10.1038/s41467-017-00208-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/12/2017] [Indexed: 01/07/2023] Open
Abstract
The Lyme disease agent, Borrelia burgdorferi, colonizes the gut of the tick Ixodes scapularis, which transmits the pathogen to vertebrate hosts including humans. Here we show that B. burgdorferi colonization increases the expression of several tick gut genes including pixr, encoding a secreted gut protein with a Reeler domain. RNA interference-mediated silencing of pixr, or immunity against PIXR in mice, impairs the ability of B. burgdorferi to colonize the tick gut. PIXR inhibits bacterial biofilm formation in vitro and in vivo. Abrogation of PIXR function in vivo results in alterations in the gut microbiome, metabolome and immune responses. These alterations influence the spirochete entering the tick gut in multiple ways. PIXR abrogation also impairs larval molting, indicative of its role in tick biology. This study highlights the role of the tick gut in actively managing its microbiome, and how this impacts B. burgdorferi colonization of its arthropod vector. Borrelia burgdorferi, the causative agent of Lyme disease, is transmitted by the tick Ixodes scapularis. Here, the authors show that a tick secreted protein (PIXR) modulates the tick gut microbiota and facilitates B. burgdorferi colonization.
Collapse
Affiliation(s)
- Sukanya Narasimhan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA.
| | - Tim J Schuijt
- Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| | - Nabil M Abraham
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Nallakkandi Rajeevan
- Yale Centre for Medical Informatics, 300 George Street, New Haven, CT, 06511, USA.,Clinical Epidemiology Research Centre, VA Cooperative Studies Program, West Haven, CT, 06516, USA
| | - Jeroen Coumou
- Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| | - Morven Graham
- Yale Centre for Cellular and Molecular Imaging, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Andrew Robson
- Program in Vertebrate Developmental Biology, Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, 06420, USA
| | - Ming-Jie Wu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA
| | - Sirlei Daffre
- Departamento de Parasitologia, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Joppe W Hovius
- Department of Internal Medicine, Division of Infectious Diseases, Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, AZ, 1105, The Netherlands
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06420, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
18
|
Arp AP, Hunter WB, Pelz-Stelinski KS. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System. Front Physiol 2016; 7:570. [PMID: 27965582 PMCID: PMC5126049 DOI: 10.3389/fphys.2016.00570] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.
Collapse
Affiliation(s)
- Alex P Arp
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Lab, Agricultural Research Service, United State Department of Agriculture Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| |
Collapse
|
19
|
League GP, Hillyer JF. Functional integration of the circulatory, immune, and respiratory systems in mosquito larvae: pathogen killing in the hemocyte-rich tracheal tufts. BMC Biol 2016; 14:78. [PMID: 27643786 PMCID: PMC5027632 DOI: 10.1186/s12915-016-0305-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As both larvae and adults, mosquitoes encounter a barrage of immune insults, ranging from microbe-rich communities in larval habitats to ingested blood-borne pathogens in adult blood meals. Given that mosquito adults have evolved an efficient means of eliminating infections in their hemocoel (body cavity) via the coordinated action of their immune and circulatory systems, the goal of the present study was to determine whether such functional integration is also present in larvae. RESULTS By fluorescently labeling hemocytes (immune cells), pericardial cells, and the heart, we discovered that fourth instar larvae, unlike adults, contain segmental hemocytes but lack the periostial hemocytes that surround the ostia (heart valves) in abdominal segments 2-7. Instead, larvae contain an abundance of sessile hemocytes at the tracheal tufts, which are respiratory structures that are unique to larvae, are located in the posterior-most abdominal segment, and surround what in larvae are the sole incurrent openings for hemolymph entry into the heart. Injection of fluorescent immune elicitors and bacteria into the larval hemocoel then showed that tracheal tuft hemocytes mount rapid and robust immune responses against foreign insults. Indeed, green fluorescent protein-labeled Escherichia coli flowing with the hemolymph rapidly aggregate exclusively at the tracheal tufts, where they are killed within 24 h post-infection via both phagocytosis and melanization. CONCLUSION Together, these findings show that the functional integration of the circulatory, respiratory, and immune systems of mosquitoes varies drastically across life stages.
Collapse
Affiliation(s)
- Garrett P League
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN, 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN, 37235, USA.
| |
Collapse
|
20
|
Hillyer JF. Insect immunology and hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:102-18. [PMID: 26695127 PMCID: PMC4775421 DOI: 10.1016/j.dci.2015.12.006] [Citation(s) in RCA: 324] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA.
| |
Collapse
|
21
|
Sigle LT, Hillyer JF. Mosquito hemocytes preferentially aggregate and phagocytose pathogens in the periostial regions of the heart that experience the most hemolymph flow. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:90-101. [PMID: 26526332 DOI: 10.1016/j.dci.2015.10.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
When a mosquito acquires an infection in the hemocoel, dedicated immune cells called hemocytes aggregate around the valves of the heart. These sessile hemocytes are called periostial hemocytes. In the present study we scrutinized the immune response mounted by the periostial hemocytes of the malaria mosquito, Anopheles gambiae, against bacterial pathogens, and tested the relationship between periostial hemocyte aggregation, immune activity, and hemolymph flow. Initially, we quantified the process of periostial hemocyte aggregation and found that hemocytes migrate to the periostial regions in response to infection with Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Micrococcus luteus (all infections tested). Then, we investigated whether the periostial hemocytes are evenly distributed along the six periostial regions of the heart, and found that they preferentially aggregate in the periostial regions of the mid-abdominal segments (4, 5 and 6). This distribution perfectly correlates with the spatial distribution of phagocytic activity along the surface of the heart, and to a lesser extent, with the distribution of melanin deposits. Finally, experiments measuring circulatory physiology found that the majority of hemolymph enters the heart through the ostia located in the periostial regions of abdominal segments 4, 5, and 6. These data show that periostial hemocytes aggregate on the surface of the heart in response to diverse foreign stimuli, and that both hemocytes and immune activity preferentially occur in the regions that experience the swiftest hemolymph flow. Thus, these data show that two major organ systems - the immune and circulatory systems - interact to control infections.
Collapse
Affiliation(s)
- Leah T Sigle
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
22
|
Satyavathi VV, Narra D, Nagaraju J. Noduler an immune protein augments infection-induced cell proliferation through cross-talking with p38 MAPK. Immunobiology 2016; 221:387-97. [DOI: 10.1016/j.imbio.2015.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/02/2015] [Accepted: 09/10/2015] [Indexed: 12/01/2022]
|
23
|
Zhang X, He Y, Cao X, Gunaratna RT, Chen YR, Blissard G, Kanost MR, Jiang H. Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:38-50. [PMID: 25701384 PMCID: PMC4476941 DOI: 10.1016/j.ibmb.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 05/24/2023]
Abstract
Pattern recognition receptors (PRRs) detect microbial pathogens and trigger innate immune responses. Previous biochemical studies have elucidated the physiological functions of eleven PRRs in Manduca sexta but our understanding of the recognition process is still limited, lacking genomic perspectives. While 34 C-type lectin-domain proteins and 16 Toll-like receptors are reported in the companion papers, we present here 120 other putative PRRs identified through the genome annotation. These include 76 leucine-rich repeat (LRR) proteins, 14 peptidoglycan recognition proteins, 6 EGF/Nim-domain proteins, 5 β-1,3-glucanase-related proteins, 4 galectins, 4 fibrinogen-related proteins, 3 thioester proteins, 5 immunoglobulin-domain proteins, 2 hemocytins, and 1 Reeler. Sequence alignment and phylogenetic analysis reveal the evolution history of a diverse repertoire of proteins for pathogen recognition. While functions of insect LRR proteins are mostly unknown, their structure diversification is phenomenal: In addition to the Toll homologs, 22 LRR proteins with a signal peptide are expected to be secreted; 18 LRR proteins lacking signal peptides may be cytoplasmic; 36 LRRs with a signal peptide and a transmembrane segment may be non-Toll receptors on the surface of cells. Expression profiles of the 120 genes in 52 tissue samples reflect complex regulation in various developmental stages and physiological states, including some likely by Rel family transcription factors via κB motifs in the promoter regions. This collection of information is expected to facilitate future biochemical studies detailing their respective roles in this model insect.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yan He
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun-ru Chen
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Gary Blissard
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
24
|
Kotsyfakis M, Kopáček P, Franta Z, Pedra JHF, Ribeiro JMC. Deep Sequencing Analysis of the Ixodes ricinus Haemocytome. PLoS Negl Trop Dis 2015; 9:e0003754. [PMID: 25970599 PMCID: PMC4430169 DOI: 10.1371/journal.pntd.0003754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/13/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Ixodes ricinus is the main tick vector of the microbes that cause Lyme disease and tick-borne encephalitis in Europe. Pathogens transmitted by ticks have to overcome innate immunity barriers present in tick tissues, including midgut, salivary glands epithelia and the hemocoel. Molecularly, invertebrate immunity is initiated when pathogen recognition molecules trigger serum or cellular signalling cascades leading to the production of antimicrobials, pathogen opsonization and phagocytosis. We presently aimed at identifying hemocyte transcripts from semi-engorged female I. ricinus ticks by mass sequencing a hemocyte cDNA library and annotating immune-related transcripts based on their hemocyte abundance as well as their ubiquitous distribution. METHODOLOGY/PRINCIPAL FINDINGS De novo assembly of 926,596 pyrosequence reads plus 49,328,982 Illumina reads (148 nt length) from a hemocyte library, together with over 189 million Illumina reads from salivary gland and midgut libraries, generated 15,716 extracted coding sequences (CDS); these are displayed in an annotated hyperlinked spreadsheet format. Read mapping allowed the identification and annotation of tissue-enriched transcripts. A total of 327 transcripts were found significantly over expressed in the hemocyte libraries, including those coding for scavenger receptors, antimicrobial peptides, pathogen recognition proteins, proteases and protease inhibitors. Vitellogenin and lipid metabolism transcription enrichment suggests fat body components. We additionally annotated ubiquitously distributed transcripts associated with immune function, including immune-associated signal transduction proteins and transcription factors, including the STAT transcription factor. CONCLUSIONS/SIGNIFICANCE This is the first systems biology approach to describe the genes expressed in the haemocytes of this neglected disease vector. A total of 2,860 coding sequences were deposited to GenBank, increasing to 27,547 the number so far deposited by our previous transcriptome studies that serves as a discovery platform for studies with I. ricinus biochemistry and physiology.
Collapse
Affiliation(s)
- Michalis Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Budweis, Czech Republic
- * E-mail:
| | - Petr Kopáček
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Budweis, Czech Republic
| | - Zdeněk Franta
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Budweis, Czech Republic
| | - Joao H. F. Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| |
Collapse
|
25
|
Hillyer JF. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Integr Comp Biol 2015; 55:843-55. [DOI: 10.1093/icb/icv021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
26
|
Satyavathi VV, Minz A, Nagaraju J. Nodulation: An unexplored cellular defense mechanism in insects. Cell Signal 2014; 26:1753-63. [DOI: 10.1016/j.cellsig.2014.02.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/28/2014] [Indexed: 11/24/2022]
|
27
|
Qiao C, Li J, Wei XH, Wang JL, Wang YF, Liu XS. SRP gene is required for Helicoverpa armigera prophenoloxidase activation and nodulation response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:94-99. [PMID: 24333441 DOI: 10.1016/j.dci.2013.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
SRP gene was first identified from the fall webworm, Hyphantria cunea as one of genes up-regulated after bacteria injection. A rent study in Spodoptera litura showed that stress-induced elevation of SRP expression highly correlates with reduced feeding activities and growth retardation of larvae. In this study, we identified a SRP gene from the cotton bollworm, Helicoverpa armigera, namely Ha-SRP, and studied its precise roles in insect immunity. Expressions of Ha-SRP were upregulated in H. armigera larval hemocytes after injection of Escherichia coli. When the expression of Ha-SRP in H. armigera larval hemocytes was inhibited by dsHa-SRP injection, the transcription of prophenoloxidase genes in hemocytes was repressed, phenoloxidase activity in bacteria-challenged larval hemolymph was significantly decreased, and nodule formation in bacteria-injected larvae was reduced. More importantly, RNAi-treated insects infected with E. coli showed higher bacterial growth in hemolymph compared with infected controls. These results suggest that Ha-SRP gene plays importance roles in H. armigera innate immunity, possibly by mediating prophenoloxidase activation and nodulation response.
Collapse
Affiliation(s)
- Chuan Qiao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jie Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiu-Hong Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
28
|
Ma Z, Li C, Pan G, Li Z, Han B, Xu J, Lan X, Chen J, Yang D, Chen Q, Sang Q, Ji X, Li T, Long M, Zhou Z. Genome-wide transcriptional response of silkworm (Bombyx mori) to infection by the microsporidian Nosema bombycis. PLoS One 2013; 8:e84137. [PMID: 24386341 PMCID: PMC3875524 DOI: 10.1371/journal.pone.0084137] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/04/2013] [Indexed: 12/27/2022] Open
Abstract
Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for further work on host-parasite interaction between insects and microsporidia.
Collapse
Affiliation(s)
- Zhengang Ma
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Chunfeng Li
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Guoqing Pan
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhihong Li
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Bing Han
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiqian Lan
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jie Chen
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Donglin Yang
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Quanmei Chen
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Qi Sang
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Xiaocun Ji
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Tian Li
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Mengxian Long
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zeyang Zhou
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
29
|
Zhang C, Zhou SS, Li XR, Wang BM, Lin NM, Feng LY, Zhang DY, Zhang LH, Wang JB, Pan JP. Enhanced antitumor activity by the combination of dasatinib and combretastatin A-4 in vitro and in vivo. Oncol Rep 2013; 29:2275-82. [PMID: 23588374 DOI: 10.3892/or.2013.2405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/18/2013] [Indexed: 11/05/2022] Open
Abstract
The present study showed that the combination of dasatinib and combretastatin A-4 (CA-4) exhibited synergistic cytotoxicity in multiple types of cancer, including ovarian, hepatocellular, lung and prostate carcinoma. The enhanced apoptosis induced by dasatinib plus CA-4 was accompanied by a greater extent of mitochondrial depolarization, caspase-3 activation and PARP cleavage in HO-8910 cells. Furthermore, elevated expression of Mcl-1 led to a reduced apoptosis induced by dasatinib plus CA-4, highlighting that downregulated Mcl-1 was necessary for the potentiating effect of dasatinib to CA-4-triggered apoptosis. A clear increase in γ-H2AX expression was observed in the dasatinib+CA-4 group compared with the mono-treatment groups, indicating that dasatinib plus CA-4 may induce double-strand breaks (DSBs) in HO-8910 cells. Moreover, the increased anticancer efficacy of dasatinib combined with CA-4 was further validated in a human HO-8910 ovarian cancer xenograft model in nude mice. Our study is the first to show that the combination of dasatinib with CA-4 could be a novel and promising therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Chong Zhang
- School of Medicine, Zhejiang University City College, and Laboratory of Clinical Pharmacy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310015, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bao YY, Qu LY, Zhao D, Chen LB, Jin HY, Xu LM, Cheng JA, Zhang CX. The genome- and transcriptome-wide analysis of innate immunity in the brown planthopper, Nilaparvata lugens. BMC Genomics 2013; 14:160. [PMID: 23497397 PMCID: PMC3616906 DOI: 10.1186/1471-2164-14-160] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/28/2013] [Indexed: 12/04/2022] Open
Abstract
Background The brown planthopper (Nilaparvata lugens) is one of the most serious rice plant pests in Asia. N. lugens causes extensive rice damage by sucking rice phloem sap, which results in stunted plant growth and the transmission of plant viruses. Despite the importance of this insect pest, little is known about the immunological mechanisms occurring in this hemimetabolous insect species. Results In this study, we performed a genome- and transcriptome-wide analysis aiming at the immune-related genes. The transcriptome datasets include the N. lugens intestine, the developmental stage, wing formation, and sex-specific expression information that provided useful gene expression sequence data for the genome-wide analysis. As a result, we identified a large number of genes encoding N. lugens pattern recognition proteins, modulation proteins in the prophenoloxidase (proPO) activating cascade, immune effectors, and the signal transduction molecules involved in the immune pathways, including the Toll, Immune deficiency (Imd) and Janus kinase signal transducers and activators of transcription (JAK-STAT) pathways. The genome scale analysis revealed detailed information of the gene structure, distribution and transcription orientations in scaffolds. A comparison of the genome-available hemimetabolous and metabolous insect species indicate the differences in the immune-related gene constitution. We investigated the gene expression profiles with regards to how they responded to bacterial infections and tissue, as well as development and sex expression specificity. Conclusions The genome- and transcriptome-wide analysis of immune-related genes including pattern recognition and modulation molecules, immune effectors, and the signal transduction molecules involved in the immune pathways is an important step in determining the overall architecture and functional network of the immune components in N. lugens. Our findings provide the comprehensive gene sequence resource and expression profiles of the immune-related genes of N. lugens, which could facilitate the understanding of the innate immune mechanisms in the hemimetabolous insect species. These data give insight into clarifying the potential functional roles of the immune-related genes involved in the biological processes of development, reproduction, and virus transmission in N. lugens.
Collapse
Affiliation(s)
- Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Shelby KS, Popham HJR. RNA-Seq Study of Microbially Induced Hemocyte Transcripts from Larval Heliothis virescens (Lepidoptera: Noctuidae). INSECTS 2012; 3:743-62. [PMID: 26466627 PMCID: PMC4553588 DOI: 10.3390/insects3030743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/13/2012] [Accepted: 08/02/2012] [Indexed: 01/19/2023]
Abstract
Larvae of the tobacco budworm are major polyphagous pests throughout the Americas. Development of effective microbial biopesticides for this and related noctuid pests has been stymied by the natural resistance mediated innate immune response. Hemocytes play an early and central role in activating and coordinating immune responses to entomopathogens. To approach this problem we completed RNA-seq expression profiling of hemocytes collected from larvae following an in vivo challenge with bacterial and fungal cell wall components to elicit an immune response. A de novo exome assembly was constructed by combination of sequence tags from all treatments. Sequence tags from each treatment were aligned separately with the assembly to measure expression. The resulting table of differential expression had >22,000 assemblies each with a distinct combination of annotation and expression. Within these assemblies >1,400 were upregulated and >1,500 downregulated by immune activation with bacteria or fungi. Orthologs to innate immune components of other insects were identified including pattern recognition, signal transduction pathways, antimicrobial peptides and enzymes, melanization and coagulation. Additionally orthologs of components regulating hemocytic functions such as autophagy, apoptosis, phagocytosis and nodulation were identified. Associated cellular oxidative defenses and detoxification responses were identified providing a comprehensive snapshot of the early response to elicitation.
Collapse
Affiliation(s)
- Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| | - Holly J R Popham
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| |
Collapse
|
32
|
De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics 2012; 99:256-64. [PMID: 22361737 DOI: 10.1016/j.ygeno.2012.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/23/2011] [Accepted: 02/06/2012] [Indexed: 01/06/2023]
Abstract
The brown planthopper (Nilaparvata lugens, BPH) is the most serious rice plant pests in Asia. In this study, we performed transcriptome-wide analysis on BPH intestine. We obtained more than 26 million sequencing reads that were then assembled into 53,553 unigenes with a mean size of 388 bp. Based on similarity search with the nucleotide sequences available at NCBI, BPH intestine-specific transcriptome analysis identified 21,405 sequences. Assembled sequences were annotated with gene description, gene ontology and clusters of orthologous group terms. The digestion-, defense- and xenobiotic metabolism-related genes were abundantly detected in the transcripts from BPH intestine. Many novel genes including 33 digestion-related genes, 25 immune responsive genes and 27 detoxification-related genes are first reported here. We investigated the gene expression patterns at the transcript levels in different tissues by quantitative real-time PCR analysis, which revealed that some genes had intestine-specific expression, implicating their potential significance for BPH management.
Collapse
|