1
|
Cuny MAC, Gloder G, Bourne ME, Kalisvaart SN, Verreth C, Crauwels S, Cusumano A, Lievens B, Poelman EH. Parasitoid Calyx Fluid and Venom Affect Bacterial Communities in Their Lepidopteran Host Labial Salivary Glands. MICROBIAL ECOLOGY 2025; 88:33. [PMID: 40266381 PMCID: PMC12018505 DOI: 10.1007/s00248-025-02535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/13/2025] [Indexed: 04/24/2025]
Abstract
The influence of gut and gonad bacterial communities on insect physiology, behaviour, and ecology is increasingly recognised. Parasitism by parasitoid wasps alters many physiological processes in their hosts, including gut bacterial communities. However, it remains unclear whether these changes are restricted to the gut or also occur in other tissues and fluids, and the mechanisms underlying such changes are unknown. We hypothesise that host microbiome changes result from the injection of calyx fluid (that contain symbiotic viruses known as polydnaviruses) and venom during parasitoid oviposition and that these effects vary by host tissue. To test this, we microinjected Pieris brassicae caterpillars with calyx fluid and venom from Cotesia glomerata, using saline solution and natural parasitism by C. glomerata as controls. We analysed changes in the bacterial community composition in the gut, regurgitate, haemolymph, and labial salivary glands of the host insects. Multivariate analysis revealed distinct bacterial communities across tissues and fluids, with high diversity in the salivary glands and haemolymph. Parasitism and injection of calyx fluid and venom significantly altered bacterial communities in the salivary glands. Differential abundance analysis showed that parasitism affected bacterial relative abundance in the haemolymph, and that Wolbachia was only found in the haemolymph of parasitized caterpillars. Altogether, our findings reveal that parasitism influences the host haemolymph microbiome, and both parasitism and injection of calyx fluid and venom drive changes in the bacterial community composition within the host salivary glands. Given that the composition of salivary glands can influence plant response to herbivory, we discuss these results in the broader context of plant-parasitoid interactions.
Collapse
Affiliation(s)
- Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- CIRAD, UMR CBGP, 34988, Montpellier, France.
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266 A, 8057, Zürich, Switzerland
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Christel Verreth
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Willem De Croylaan 46, B- 3001, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, B- 3001, Leuven, Belgium
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
2
|
Wang K, Wu G, Ma Q, Yang L, Wu C, Zhu J. Unraveling the venom constituents of the endoparasitoid Aphidius gifuensis with an emphasis on the discovery of a novel insecticidal peptide. PEST MANAGEMENT SCIENCE 2025; 81:1603-1614. [PMID: 39601069 DOI: 10.1002/ps.8562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Venom serves as a pivotal parasitic factor employed by parasitoid wasps to manipulate their hosts, creating a favorable environment for the successful growth of their progeny, and ultimately kill the host. The bioactive molecules within parasitoid venoms exhibit insecticidal activities with promising prospects for agricultural applications. However, knowledge regarding the venom components of parasitoids and the discovery of functional biomolecules from them remains limited. RESULTS In this study, 30 venom proteins were identified from the endoparasitoid Aphidius gifuensis through the application of a transcriptomic approach. These proteins were categorized into five groups: hydrolase, molecular chaperone, transferase, other functional protein, and hypothetical protein with unknown function. Particularly noteworthy is the abundant expression of the peptide Vn1 in the venom apparatus of A. gifuensis, indicating its pivotal role in venom activity. Consequently, Vn1 was chosen for further functional analysis, exhibiting insecticidal activity against Tenebrio molitor pupae. Further assessment for revealing its mode of action disclosed that Vn1 impacts genes related to immune response, environmental information processing, metabolism, and response to external stimuli in T. molitor, suggesting its involvement in the intricate parasitoid wasp-host interaction. CONCLUSION The findings of this study significantly contribute to our knowledge of the composition and functionality of A. gifuensis venom, establishing a foundation for further investigation into the biological roles of the identified venom constituents. The insecticidal Vn1 isolated from the venom of this parasitoid represents a valuable resource for the development of innovative biocontrol agents with potential applications in agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kui Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Guocui Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qian Ma
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
3
|
Gornard S, Venon P, Drabo S, Kaiser L, Mougel F. Improving parasitism success of a weakly virulent parasitoid strain. JOURNAL OF INSECT PHYSIOLOGY 2025; 160:104742. [PMID: 39681192 DOI: 10.1016/j.jinsphys.2024.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/22/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Endoparasitoids possess a whole set of virulence factors to counter the immune response of their host, among which can be found venom, endosymbiotic viruses and ovarian proteins. Depending on the species, some factors are expected to be less necessary than others. Notably, venom is reported as inessential in some parasitoids bearing viruses. We investigated the virulence factors of Cotesia typhae, a gregarious endoparasitoid of Sesamia nonagrioides, using highly and poorly virulent strains (CtV+ and CtV-). We tested if virulence of CtV- toward a reference strain could be improved by superparasitism (two females per host) or by injection of CtV+ virulence factors (venom and/or ovarian fluid). The parasitism success of CtV- could be increased by superparasitism with one female CtV+ confirming the importance of the virulence factors. Superparasitism with at least one CtV+ female decreased each female's reproductive success and increased the number of non-viable offspring revealing larval competition. Parasitism order impacted the offspring proportion of each strain in the progeny, suggesting adaptation of egg-laying behavior in response to an already parasitized host. Injection of CtV+ venom or ovarian fluid alone maintained CtV- success unchanged, but their combination increased it to the one of CtV+. Altogether, this study hints towards larval competition, potentially specific to CtV+ strain, and suggests that C. typhae females can adapt their oviposition behavior based on the parasitic status of their host. It also demonstrates that, like several other Cotesia species, C. typhae resorts to a combination of venom and ovarian fluid to overcome the host's immune responses.
Collapse
Affiliation(s)
- Samuel Gornard
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Pascaline Venon
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Salimata Drabo
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Laure Kaiser
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France
| | - Florence Mougel
- EGCE, Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette 91190, France.
| |
Collapse
|
4
|
Scheifler M, Wilhelm L, Visser B. Lipid Metabolism in Parasitoids and Parasitized Hosts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38977639 DOI: 10.1007/5584_2024_812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parasitoids have an exceptional lifestyle where juvenile development is spent on or in a single host insect, but the adults are free-living. Unlike parasites, parasitoids kill the host. How parasitoids use such a limiting resource, particularly lipids, can affect chances to survive and reproduce. In part 1, we describe the parasitoid lifestyle, including typical developmental strategies. Lipid metabolism in parasitoids has been of interest to researchers since the 1960s and continues to fascinate ecologists, evolutionists, physiologists, and entomologists alike. One reason of this interest is that the majority of parasitoids do not accumulate triacylglycerols as adults. Early research revealed that some parasitoid larvae mimic the fatty acid composition of the host, which may result from a lack of de novo triacylglycerol synthesis. More recent work has focused on the evolution of lack of adult triacylglycerol accumulation and consequences for life history traits. In part 2 of this chapter, we discuss research efforts on lipid metabolism in parasitoids from the 1960s onwards. Parasitoids are also master manipulators of host physiology, including lipid metabolism, having evolved a range of mechanisms to affect the release, synthesis, transport, and take-up of lipids from the host. We lay out the effects of parasitism on host physiology in part 3 of this chapter.
Collapse
Affiliation(s)
- Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Léonore Wilhelm
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
5
|
Inwood SN, Harrop TWR, Shields MW, Goldson SL, Dearden PK. Immune system modulation & virus transmission during parasitism identified by multi-species transcriptomics of a declining insect biocontrol system. BMC Genomics 2024; 25:311. [PMID: 38532315 DOI: 10.1186/s12864-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Morgan W Shields
- BioProtection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Zeng S, Lin Z, Yu X, Zhang J, Zou Z. Expressing Parasitoid Venom Protein VRF1 in an Entomopathogen Beauveria bassiana Enhances Virulence toward Cotton Bollworm Helicoverpa armigera. Appl Environ Microbiol 2023; 89:e0070523. [PMID: 37272799 PMCID: PMC10304766 DOI: 10.1128/aem.00705-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Despite entomopathogenic fungi being used in various insect pest control, it is recognized that they could replace more chemical insecticides if they were more efficient. We have found that cotton bollworm Helicoverpa armigera responded to the infection of entomopathogenic fungus Beauveria bassiana by activating the Toll pathway. Koinobiont wasps also regulate host immunity and development to ensure the survival of their progeny. Previously, venom protein VRF1 was identified in Microplitis mediator. It enters H. armigera hemocytes, suppresses the expression of antimicrobial peptides (AMPs) by inhibiting the Toll pathway, and prevents parasite offspring from being encapsulated. With this in mind, we thought that it might be feasible to increase the virulence of B. bassiana by embedding VRF1 into its genome. Compared with that of wild-type (WT) B. bassiana, the median lethal dose (LD50) of the transformant expressing VRF1 (named BbVRF1) decreased approximately 2.36-fold, and the median time to lethality (LT50) was shortened to 84% when infecting H. armigera (a natural host of M. mediator). The AMP expression level of hemocytes in H. armigera infected with BbVRF1 strain was significantly downregulated compared to that in the control group infected with the WT. In addition, the LD50 of BbVRF1 against the fall armyworm Spodoptera frugiperda (an unnatural host of M. mediator) was decreased 3.45-fold and the LT50 was shortened to 73%, showing a greater virulence. Our research indicated that BbVRF1, an engineered strain of B. bassiana, has greater efficacy against pest insects both within and outside its host range (M. mediator), expanding the utilization of parasitoid wasp virulence effectors. IMPORTANCE Mycoinsecticides are essential for the development of integrated pest management as substitutes to chemical insecticides, but their usage is limited by their inferior virulence. Thus, genetically engineered bioinsecticides, including recombinant entomopathogenic fungi, have been regarded as a breakthrough to rapidly control pests. Deep knowledge of parasitoid wasps allows us to take advantage of this natural enemy of pest insects beyond raising them for field release. Our transformant BbVRF1 (Beauveria bassiana integrated with a venom protein VRF1 from Microplitis mediator) showed a higher virulence in H. armigera and S. frugiperda, demonstrating its potential for managing natural or unnatural hosts of M. mediator. This result provides a new strategy regarding which venom protein of parasitoid wasps can become part of the arsenal with which to equip entomopathogenic fungi. Utilizing parasitoid wasps with this approach could easily overcome the difficulties of artificial culture and enhance the virulence of other biocontrol agents.
Collapse
Affiliation(s)
- Shuocheng Zeng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianhao Yu
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, Jilin, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Yu K, Chen J, Bai X, Xiong S, Ye X, Yang Y, Yao H, Wang F, Fang Q, Song Q, Ye G. Multi-Omic Identification of Venom Proteins Collected from Artificial Hosts of a Parasitoid Wasp. Toxins (Basel) 2023; 15:377. [PMID: 37368678 DOI: 10.3390/toxins15060377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Habrobracon hebetor is a parasitoid wasp capable of infesting many lepidopteran larvae. It uses venom proteins to immobilize host larvae and prevent host larval development, thus playing an important role in the biocontrol of lepidopteran pests. To identify and characterize its venom proteins, we developed a novel venom collection method using an artificial host (ACV), i.e., encapsulated amino acid solution in paraffin membrane, allowing parasitoid wasps to inject venom. We performed protein full mass spectrometry analysis of putative venom proteins collected from ACV and venom reservoirs (VRs) (control). To verify the accuracy of proteomic data, we also collected venom glands (VGs), Dufour's glands (DGs) and ovaries (OVs), and performed transcriptome analysis. In this paper, we identified 204 proteins in ACV via proteomic analysis; compared ACV putative venom proteins with those identified in VG, VR, and DG via proteome and transcriptome approaches; and verified a set of them using quantitative real-time polymerase chain reaction. Finally, 201 ACV proteins were identified as potential venom proteins. In addition, we screened 152 and 148 putative venom proteins identified in the VG transcriptome and the VR proteome against those in ACV, and found only 26 and 25 putative venom proteins, respectively, were overlapped with those in ACV. Altogether, our data suggest proteome analysis of ACV in combination with proteome-transcriptome analysis of other organs/tissues will provide the most comprehensive identification of true venom proteins in parasitoid wasps.
Collapse
Affiliation(s)
- Kaili Yu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin Chen
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xue Bai
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qisheng Song
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Zhao QY, Chen X, Wang RZ, Chen YM, Zang LS. Comparative Analysis of the Venom Proteins from Two Eupelmid Egg Parasitoids Anastatus japonicus and Mesocomys trabalae. BIOLOGY 2023; 12:biology12050700. [PMID: 37237513 DOI: 10.3390/biology12050700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Parasitic wasps are abundant and diverse Hymenoptera insects that lay their eggs inside or on the external surface of the host and inject venom into the host to create a more favorable environment for the larvae to survive and regulate the host's immunity, metabolism, and development. But research on the composition of egg parasitoid venom is very limited. In this study, we used a combination of transcriptomic and proteomic approaches to identify the protein fractions of the venom in both eupelmid egg parasitoids, Anastatus japonicus and Mesocomys trabalae. We identified 3422 up-regulated venom gland genes (UVGs) in M. trabalae and 3709 in A. japonicus and analyzed their functions comparatively. By proteome sequencing, we identified 956 potential venom proteins in the venom pouch of M. trabalae, of which 186 were contained in UVGs simultaneously. A total of 766 proteins were detected in the venom of A. japonicus, of which 128 venom proteins were highly expressed in the venom glands. At the same time, the functional analysis of these identified venom proteins was carried out separately. We found the venom proteins in M. trabalae are well known but not in A. japonicus, which may be related to the host range. In conclusion, identifying venom proteins in both egg parasitoid species provides a database for studying the function of egg parasitoid venom and its parasitic mechanism.
Collapse
Affiliation(s)
- Qian-Yu Zhao
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xu Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Run-Zhi Wang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yong-Ming Chen
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lian-Sheng Zang
- National Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Wu C, Yang C, Wang Y, Wang J, Zhu J. Molecular Characterization and Functional Analysis of the Dipeptidyl Peptidase IV from Venom of the Ectoparasitoid Scleroderma guani. Toxins (Basel) 2023; 15:311. [PMID: 37235347 PMCID: PMC10222045 DOI: 10.3390/toxins15050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV) is a proline-specific serine peptidase that remains poorly investigated in terms of venom composition. Here, we describe the molecular characteristics and possible functions of DPPIV as a major venom component of the ant-like bethylid ectoparasitoid, Scleroderma guani, named SgVnDPPIV. The SgVnDPPIV gene was cloned, which encodes a protein with the conserved catalytic triads and substrate binding sites of mammalian DPPIV. This venom gene is highly expressed in the venom apparatus. Recombinant SgVnDPPIV, produced in Sf9 cells using the baculovirus expression system, has high enzymatic activity, which can be efficiently inhibited by vildagliptin and sitagliptin. Functional analysis revealed that SgVnDPPIV affects genes related to detoxification, lipid synthesis and metabolism, response to stimuli, and ion exchange in pupae of Tenebrio molitor, an envenomated host of S. guani. The present work contributes towards understanding the role of venom DPPIV involved in the interaction between parasitoid wasp and its host.
Collapse
Affiliation(s)
- Chaoyan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Cheng Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Yuqin Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Jiaying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
10
|
Inwood SN, Harrop TWR, Dearden PK. The venom composition and parthenogenesis mechanism of the parasitoid wasp Microctonus hyperodae, a declining biocontrol agent. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 153:103897. [PMID: 36584929 DOI: 10.1016/j.ibmb.2022.103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
A biocontrol system in New Zealand using the endoparasitoid Microctonus hyperodae is failing, despite once being one of the most successful examples of classical biocontrol worldwide. Though it is of significant economic importance as a control agent, little is known about the genetics of M. hyperodae. In this study, RNA-seq was used to characterise two key traits of M. hyperodae in this system, the venom, critical for the initial success of biocontrol, and the asexual reproduction mode, which influenced biocontrol decline. Expanded characterisation of M. hyperodae venom revealed candidates involved in manipulating the host environment to source nutrition for the parasitoid egg, preventing a host immune response against the egg, as well as two components that may stimulate the host's innate immune system. Notably lacking from the venom-specific expression list was calreticulin, as it also had high expression in the ovaries. In-situ hybridisation revealed this ovarian expression was localised to the follicle cells, which may result in the deposition of calreticulin into the egg exochorion. Investigating the asexual reproduction of M. hyperodae revealed core meiosis-specific genes had conserved expression patterns with the highest expression in the ovaries, suggesting M. hyperodae parthenogenesis involves meiosis and that the potential for sexual reproduction may have been retained. Upregulation of genes involved in endoreduplication provides a potential mechanism for the restoration of diploidy in eggs after meiosis.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand; Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, Aotearoa, New Zealand.
| |
Collapse
|
11
|
Zhou L, Wang R, Lin Z, Shi S, Chen C, Jiang H, Zou Z, Lu Z. Two venom serpins from the parasitoid wasp Microplitis mediator inhibit the host prophenoloxidase activation and antimicrobial peptide synthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103895. [PMID: 36538995 PMCID: PMC11587170 DOI: 10.1016/j.ibmb.2022.103895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Endoparasitoid wasps inject venom proteins into the hemocoel of host insects to ensure survival, growth, and development of their progenies by blocking host immunity. We previously identified ten serine protease inhibitors of the serpin superfamily in venom of the endoparasitoid wasp, Microplitis mediator, but it is unclear how these inhibitors may interact with host immune serine proteases. In this study, we investigated the functions of two serpins, MmvSPN-1 and MmvSPN-2, in the regulation of humoral immune responses in two hosts, the oriental armyworm Pseudaletia separate and the cotton bollworm Helicoverpa armigera, by dsRNA knockdown and biochemical assays using recombinant proteins. Knockdown of the two serpins resulted in increases in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) production in the hosts. After injection into the host hemocoel, the recombinant serpins inhibited PPO activation and AMP transcription. Mass spectrometry analysis of the pull-downs and in vitro reconstitution experiments revealed that HacSP29, a clip-domain serine protease in H. armigera, is the target of these two serpins. Therefore, these two inhibitors in the wasp venom may protect eggs from attacks by melanization and AMPs in the host insects.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruijuan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Suke Shi
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Caihua Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Cerqueira de Araujo A, Leobold M, Bézier A, Musset K, Uzbekov R, Volkoff AN, Drezen JM, Huguet E, Josse T. Conserved Viral Transcription Plays a Key Role in Virus-Like Particle Production of the Parasitoid Wasp Venturia canescens. J Virol 2022; 96:e0052422. [PMID: 35678601 PMCID: PMC9278141 DOI: 10.1128/jvi.00524-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022] Open
Abstract
Nudiviruses are large double-stranded DNA viruses related to baculoviruses known to be endogenized in the genomes of certain parasitic wasp species. These wasp-virus associations allow the production of viral particles or virus-like particles that ensure wasp parasitism success within lepidopteran hosts. Venturia canescens is an ichneumonid wasp belonging to the Campopleginae subfamily that has endogenized nudivirus genes belonging to the Alphanudivirus genus to produce "virus-like particles" (Venturia canescens virus-like particles [VcVLPs]), which package proteic virulence factors. The main aim of this study was to determine whether alphanudivirus gene functions have been conserved following endogenization. The expression dynamics of alphanudivirus genes was monitored by a high throughput transcriptional approach, and the functional role of lef-4 and lef-8 genes predicted to encode viral RNA polymerase components was investigated by RNA interference. As described for baculovirus infections and for endogenized nudivirus genes in braconid wasp species producing bracoviruses, a transcriptional cascade involving early and late expressed alphanudivirus genes could be observed. The expression of lef-4 and lef-8 was also shown to be required for the expression of alphanudivirus late genes allowing correct particle formation. Together with previous literature, the results show that endogenization of nudiviruses in parasitoid wasps has repeatedly led to the conservation of the viral RNA polymerase function, allowing the production of viruses or viral-like particles that differ in composition but enable wasp parasitic success. IMPORTANCE This study shows that endogenization of a nudivirus genome in a Campopleginae parasitoid wasp has led to the conservation, as for endogenized nudiviruses in braconid parasitoid wasps, of the viral RNA polymerase function, required for the transcription of genes encoding viral particles involved in wasp parasitism success. We also showed for the first time that RNA interference (RNAi) can be successfully used to downregulate gene expression in this species, a model in behavioral ecology. This opens the opportunity to investigate the function of genes involved in other traits important for parasitism success, such as reproductive strategies and host choice. Fundamental data acquired on gene function in Venturia canescens are likely to be transferable to other parasitoid wasp species used in biological control programs. This study also renders possible the investigation of other nudivirus gene functions, for which little data are available.
Collapse
Affiliation(s)
| | - Matthieu Leobold
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Karine Musset
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Rustem Uzbekov
- Université de Tours, Département des Microscopies, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Anne-Nathalie Volkoff
- Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), UMR 1333, Université de Montpellier - INRAE, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS - Université de Tours, Tours, France
| |
Collapse
|
13
|
Poelman EH, Cusumano A. Impact of parasitoid-associated polydnaviruses on plant-mediated herbivore interactions. CURRENT OPINION IN INSECT SCIENCE 2022; 49:56-62. [PMID: 34839032 DOI: 10.1016/j.cois.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Insect herbivores interact via plant-mediated interactions in which one herbivore species induces changes in plant quality that affects the performance of a second phytophagous insect that shares the food plant. These interactions are often asymmetric due to specificity in induced plant responses to herbivore attack, amount of plant damage, elicitors in herbivore saliva and plant organ damaged by herbivores. Parasitoids and their symbiotic polydnaviruses alter herbivore physiology and behaviour and may influence how plants respond to parasitized herbivores. We argue that these phenomena affect plant-mediated interactions between herbivores. We identify that the extended phenotype of parasitoid polydnaviruses is an important knowledge gap in interaction networks of insect communities.
Collapse
Affiliation(s)
- Erik H Poelman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Antonino Cusumano
- University of Palermo, Department of Agricultural, Food And Forest Sciences (SAAF), Viale delle Scienze, 90128, Palermo, Italy.
| |
Collapse
|
14
|
Yang Y, Ye X, Dang C, Cao Y, Hong R, Sun YH, Xiao S, Mei Y, Xu L, Fang Q, Xiao H, Li F, Ye G. Genome of the pincer wasp Gonatopus flavifemur reveals unique venom evolution and a dual adaptation to parasitism and predation. BMC Biol 2021; 19:145. [PMID: 34315471 PMCID: PMC8314478 DOI: 10.1186/s12915-021-01081-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories. The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual adaptation to parasitism and predation. Results We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at 636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons, is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively selected genes and rapidly evolving proteins involved in energy production and motor activity, which may contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation. We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G. flavifemur, which may contribute to partner searching and mating. Conclusions Our results provide new insights into the genome evolution, predatory adaptation, venom evolution, and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of hymenopterans that may benefit pest control. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01081-6.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Cong Dang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yunshen Cao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Rui Hong
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yu H Sun
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Shan Xiao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Le Xu
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Huamei Xiao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.,Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun, China
| | - Fei Li
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Cusumano A, Urbach S, Legeai F, Ravallec M, Dicke M, Poelman EH, Volkoff AN. Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars. Mol Ecol 2021; 30:4567-4583. [PMID: 34245612 PMCID: PMC8518489 DOI: 10.1111/mec.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/02/2021] [Indexed: 12/29/2022]
Abstract
There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant‐insect interactions are restricted to a few cases belonging to parasitoid‐associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant‐based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid‐associated symbiont belonging to the group of ichnoviruses which affects the strength of plant‐insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral‐encoded proteins) and quantitatively (abundance of several caterpillar‐resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant‐mediated ichnovirus‐induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore‐associated symbionts on plant‐insect‐parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective.
Collapse
Affiliation(s)
- Antonino Cusumano
- DGIMI Université de Montpellier, INRAE, Montpellier, France.,Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.,Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | - Serge Urbach
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France.,BCM, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, Le Rheu, France.,Université Rennes 1, INRIA, CNRS, IRISA, Rennes, France
| | - Marc Ravallec
- DGIMI Université de Montpellier, INRAE, Montpellier, France
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
16
|
Cusumano A, Volkoff AN. Influence of parasitoid-associated viral symbionts on plant-insect interactions and biological control. CURRENT OPINION IN INSECT SCIENCE 2021; 44:64-71. [PMID: 33866043 DOI: 10.1016/j.cois.2021.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Insect parasitoids have evolved symbiotic interactions with several viruses and thousands of parasitoid species have established mutualistic associations with polydnaviruses (PDVs). While PDVs have often been described as virulence factors allowing development of immature parasitoids inside their herbivore hosts, there is increasing awareness that PDVs can affect plant-insect interactions. We review recent literature showing that PDVs alter not only host physiology, but also feeding patterns and composition of herbivore's oral secretions. In turn PDV-induced changes in herbivore phenotype affect plant responses to herbivory with consequences ranging from differential expression of plant defense-related genes to wider ecological effects across multiple trophic levels. In this opinion paper we also highlight important missing gaps to fully understand the role of PDVs and other parasitoid-associated viral symbionts in a plant-insect interaction perspective. Because PDVs negatively impact performance and survival of herbivore pests, we conclude arguing that PDV genomes offer potential opportunities for biological control.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy.
| | | |
Collapse
|
17
|
Quicke DLJ, Butcher BA. Review of Venoms of Non-Polydnavirus Carrying Ichneumonoid Wasps. BIOLOGY 2021; 10:50. [PMID: 33445639 PMCID: PMC7828074 DOI: 10.3390/biology10010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
Parasitoids are predominantly insects that develop as larvae on or inside their host, also usually another insect, ultimately killing it after various periods of parasitism when both parasitoid larva and host are alive. The very large wasp superfamily Ichneumonoidea is composed of parasitoids of other insects and comprises a minimum of 100,000 species. The superfamily is dominated by two similarly sized families, Braconidae and Ichneumonidae, which are collectively divided into approximately 80 subfamilies. Of these, six have been shown to release DNA-containing virus-like particles, encoded within the wasp genome, classified in the virus family Polydnaviridae. Polydnaviruses infect and have profound effects on host physiology in conjunction with various venom and ovarial secretions, and have attracted an immense amount of research interest. Physiological interactions between the remaining ichneumonoids and their hosts result from adult venom gland secretions and in some cases, ovarian or larval secretions. Here we review the literature on the relatively few studies on the effects and chemistry of these ichneumonoid venoms and make suggestions for interesting future research areas. In particular, we highlight relatively or potentially easily culturable systems with features largely lacking in currently studied systems and whose study may lead to new insights into the roles of venom chemistry in host-parasitoid relationships as well as their evolution.
Collapse
Affiliation(s)
- Donald L. J. Quicke
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| | - Buntika A. Butcher
- Integrative Ecology Laboratory, Department of Biology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand;
- Center of Excellence in Entomology, Bee Biology, Diversity of Insects and Mites, Chulalongkorn University, Phayathai Road, Pathumwan 10330, Thailand
| |
Collapse
|
18
|
Legeai F, Santos BF, Robin S, Bretaudeau A, Dikow RB, Lemaitre C, Jouan V, Ravallec M, Drezen JM, Tagu D, Baudat F, Gyapay G, Zhou X, Liu S, Webb BA, Brady SG, Volkoff AN. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biol 2020; 18:89. [PMID: 32703219 PMCID: PMC7379367 DOI: 10.1186/s12915-020-00822-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/29/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis. RESULTS Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed. CONCLUSIONS The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.
Collapse
Affiliation(s)
- Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Bernardo F Santos
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Rebecca B Dikow
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
| | - Claire Lemaitre
- Université Rennes 1, INRIA, CNRS, IRISA, F-35000, Rennes, France
| | - Véronique Jouan
- DGIMI, INRAE, University of Montpellier, 34095, Montpellier, France
| | - Marc Ravallec
- DGIMI, INRAE, University of Montpellier, 34095, Montpellier, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS - Université de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes 1, 35650, Le Rheu, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, CNRS, University of Montpellier, 34396, Montpellier, France
| | - Gabor Gyapay
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, People's Republic of China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong Province, 518083, People's Republic of China
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Seán G Brady
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenue NW, Washington, DC, 20560-0165, USA
| | | |
Collapse
|
19
|
Gao X, Xue H, Luo J, Ji J, Zhang L, Niu L, Zhu X, Wang L, Zhang S, Cui J. Molecular Evidence that Lysiphlebia japonica Regulates the Development and Physiological Metabolism of Aphis gossypii. Int J Mol Sci 2020; 21:ijms21134610. [PMID: 32610524 PMCID: PMC7370083 DOI: 10.3390/ijms21134610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lysiphlebia japonica Ashmead (Hymenoptera, Braconidae) is an endophagous parasitoid and Aphis gossypii Glover (Hemiptera, Aphididae) is a major pest in cotton. The relationship between insect host-parasitoids and their hosts involves complex physiological, biochemical and genetic interactions. This study examines changes in the development and physiological metabolism of A. gossypii regulated by L. japonica. Our results demonstrated that both the body length and width increased compared to non-parasitized aphids. We detected significantly increases in the developmental period as well as severe reproductive castration following parasitization by L. japonica. We then used proteomics to characterize these biological changes, and when combined with transcriptomes, this analysis demonstrated that the differential expression of mRNA (up or downregulation) captured a maximum of 48.7% of the variations of protein expression. We assigned these proteins to functional categories that included immunity, energy metabolism and transport, lipid metabolism, and reproduction. We then verified the contents of glycogen and 6-phosphate glucose, which demonstrated that these important energy sources were significantly altered following parasitization. These results uncover the effects on A. gossypii following parasitization by L. japonica, additional insight into the mechanisms behind insect-insect parasitism, and a better understanding of host-parasite interactions.
Collapse
Affiliation(s)
- Xueke Gao
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Hui Xue
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Junyu Luo
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Jichao Ji
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Lijuan Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Lin Niu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Xiangzhen Zhu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Li Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
| | - Shuai Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
- Correspondence: (S.Z.); (J.C.)
| | - Jinjie Cui
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (X.G.); (J.L.); (J.J.); (L.Z.); (L.N.); (X.Z.); (L.W.)
- Zhengzhou Reseach Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 4550001, China
- Correspondence: (S.Z.); (J.C.)
| |
Collapse
|
20
|
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, Gadau J. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum. BMC Genomics 2020; 21:376. [PMID: 32471448 PMCID: PMC7257214 DOI: 10.1186/s12864-020-6764-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts. RESULTS We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes. CONCLUSIONS These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
Collapse
Affiliation(s)
- Alice B Dennis
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland.
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland.
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.
| | - Gabriel I Ballesteros
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Stéphanie Robin
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Jens Bast
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
- Institute of Zoology, Universität zu Köln, 50674, Köln, Germany
| | - Jan Berghöfer
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Maya Belghazi
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, PINT, PFNT, Marseille, France
| | - Anthony Bretaudeau
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Elizabeth Cash
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Zoé Dumas
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | - Mohammed Errbii
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Joshua D Gibson
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Corinne Hertaeg
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Department of Environmental Systems Sciences, D-USYS, ETH Zürich, Zürich, Switzerland
| | - Stefanie Hartmann
- Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Mark Lammers
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | - Blas I Lavandero
- Laboratorio de Control Biológico, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ina Lindenbaum
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany
| | | | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, iEES-Paris, F-78000, Versailles, France
| | - Nina Pak
- Department of Environmental Science, Policy, & Management, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Chris R Smith
- Department of Biology, Earlham College, Richmond, IN, 47374, USA
| | - Denis Tagu
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
| | - Sophie Tares
- Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis, France
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Tanja Schwander
- Department of Ecology and Evolution, Université de Lausanne, 1015, Lausanne, Switzerland
| | | | - Christian C Figueroa
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centre for Molecular and Functional Ecology in Agroecosystems, Universidad de Talca, Talca, Chile
| | - Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600, Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Fabrice Legeai
- IGEPP, Agrocampus Ouest, INRAE, Université de Rennes, 35650, Le Rheu, France
- Université de Rennes 1, INRIA, CNRS, IRISA, 35000, Rennes, France
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, Universität Münster, Münster, Germany.
| |
Collapse
|
21
|
Yang L, Yang Y, Liu MM, Yan ZC, Qiu LM, Fang Q, Wang F, Werren JH, Ye GY. Identification and Comparative Analysis of Venom Proteins in a Pupal Ectoparasitoid, Pachycrepoideus vindemmiae. Front Physiol 2020; 11:9. [PMID: 32038312 PMCID: PMC6993573 DOI: 10.3389/fphys.2020.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Parasitoid wasps inject venom containing complex bioactive compounds to regulate the immune response and development of host arthropods and sometime paralyze host arthropods. Although extensive studies have been conducted on the identification of venom proteins in larval parasitoids, relatively few studies have examined the pupal parasitoids. In our current study, a combination of transcriptomic and proteomic methods was used to identify 64 putative venom proteins from Pachycrepoideus vindemmiae, an ectoparasitoid of Drosophila. Expression analysis revealed that 20 tested venom proteins have 419-fold higher mean expression in the venom apparatus than in other wasp tissues, indicating their specialization to venom. Comparisons of venom proteins from P. vindemmiae and other five species spanning three parasitoid families detected a core set of "ancient" orthologs in Pteromalidae. Thirty-five venom proteins of P. vindemmiae were assigned to the orthologous groups by reciprocal best matches with venoms of other pteromalids, while the remaining 29 were not. Of the 35 categories, twenty-seven have orthologous relationships with Nasonia vitripennis venom proteins and 25 with venoms of Pteromalus puparum. More distant relationships detected that five and two venom proteins of P. vindemmiae are orthologous with venoms of two Figitidae parasitoids and a Braconidae representative, respectively. Moreover, twenty-two venoms unique to P. vindemmiae were also detected, indicating considerable interspecific variation of venom proteins in parasitoids. Phylogenetic reconstruction based on a set of single-copy genes clustered P. vindemmiae with P. puparum, N. vitripennis, and other members of the family Pteromalidae. These findings provide strong evidence that P. vindemmiae venom proteins are well positioned for future functional and evolutionary studies.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Yang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Ming Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Chao Yan
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Ming Qiu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Becchimanzi A, Avolio M, Bostan H, Colantuono C, Cozzolino F, Mancini D, Chiusano ML, Pucci P, Caccia S, Pennacchio F. Venomics of the ectoparasitoid wasp Bracon nigricans. BMC Genomics 2020; 21:34. [PMID: 31924169 PMCID: PMC6954513 DOI: 10.1186/s12864-019-6396-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Venom is one of the most important sources of regulation factors used by parasitic Hymenoptera to redirect host physiology in favour of the developing offspring. This has stimulated a number of studies, both at functional and "omics" level, which, however, are still quite limited for ectophagous parasitoids that permanently paralyze and suppress their victims (i.e., idiobiont parasitoids). RESULTS Here we present a combined transcriptomic and proteomic study of the venom of the generalist idiobiont wasp Bracon nigricans, an ectophagous larval parasitoid of different lepidopteran species, for which we recently described the host regulation strategy and the functional role of the venom in the induction of physiological changes in parasitized hosts. The experimental approach used led to the identification of the main components of B. nigricans venom involved in host regulation. Enzymes degrading lipids, proteins and carbohydrates are likely involved in the mobilization of storage nutrients from the fat body and may concurrently be responsible for the release of neurotoxic fatty acids inducing paralysis, and for the modulation of host immune responses. CONCLUSION The present work contributes to fill the gap of knowledge on venom composition in ectoparasitoid wasps, and, along with our previous physiological study on this species, provides the foundation on which to develop a functional model of host regulation, based both on physiological and molecular data. This paves the way towards a better understanding of parasitism evolution in the basal lineages of Hymenoptera and to the possible exploitation of venom as source of bioinsecticidal molecules.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Maddalena Avolio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
- Present address: Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
- Present address: Infrastrutture di Ricerca per le Risorse Biologiche Marine, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences and CEINGE Biotecnologie Avanzate, University of Napoli Federico II, Napoli, Italy
| | - Donato Mancini
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Pietro Pucci
- Department of Chemical Sciences and CEINGE Biotecnologie Avanzate, University of Napoli Federico II, Napoli, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| | - Francesco Pennacchio
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, NA Italy
| |
Collapse
|
23
|
Abstract
Parasitoids depend on other insects for the development of their offspring. Their eggs are laid in or on a host insect that is consumed during juvenile development. Parasitoids harbor a diversity of microbial symbionts including viruses, bacteria, and fungi. In contrast to symbionts of herbivorous and hematophagous insects, parasitoid symbionts do not provide nutrients. Instead, they are involved in parasitoid reproduction, suppression of host immune responses, and manipulation of the behavior of herbivorous hosts. Moreover, recent research has shown that parasitoid symbionts such as polydnaviruses may also influence plant-mediated interactions among members of plant-associated communities at different trophic levels, such as herbivores, parasitoids, and hyperparasitoids. This implies that these symbionts have a much more extended phenotype than previously thought. This review focuses on the effects of parasitoid symbionts on direct and indirect species interactions and the consequences for community ecology.
Collapse
Affiliation(s)
- Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands; , ,
| | - Antonino Cusumano
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands; , ,
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands; , ,
| |
Collapse
|
24
|
Merlin BL, Cônsoli FL. Regulation of the Larval Transcriptome of Diatraea saccharalis (Lepidoptera: Crambidae) by Maternal and Other Factors of the Parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Front Physiol 2019; 10:1106. [PMID: 31555143 PMCID: PMC6742964 DOI: 10.3389/fphys.2019.01106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Koinobiont endoparasitoid wasps regulate the host's physiology to their own benefit during their growth and development, using maternal, immature and/or derived-tissue weaponry. The tools used to subdue the wasps' hosts interfere directly with host transcription activity. The broad range of host tissues and pathways affected impedes our overall understanding of the host-regulation process during parasitoid development. Next-generation sequencing and de novo transcriptomes are helpful approaches to broad questions, including in non-model organisms. In the present study, we used Illumina sequencing to assemble a de novo reference transcriptome of the sugarcane borer Diatraea saccharalis, to investigate the regulation of host gene expression by the larval endoparasitoid Cotesia flavipes. We obtained 174,809,358 reads and assembled 144,116 transcripts, of which 44,325 were putatively identified as lepidopteran genes and represented a substantial number of pathways that are well described in other lepidopteran species. Comparative transcriptome analyses of unparasitized versus parasitized larvae identified 1,432 transcripts of D. saccharalis that were up-regulated under parasitization by C. flavipes, while 1,027 transcripts were down-regulated. Comparison of the transcriptomes of unparasitized and pseudoparasitized D. saccharalis larvae led to the identification of 1,253 up-regulated transcripts and 972 down-regulated transcripts in the pseudoparasitized larvae. Analysis of the differentially expressed transcripts showed that C. flavipes regulated several pathways, including the Ca+2 transduction signaling pathway, glycolysis/gluconeogenesis, chitin metabolism, and hormone biosynthesis and degradation, as well as the immune system, allowing us to identify key target genes involved in the metabolism and development of D. saccharalis.
Collapse
|
25
|
Cambier S, Ginis O, Moreau SJM, Gayral P, Hearn J, Stone GN, Giron D, Huguet E, Drezen JM. Gall Wasp Transcriptomes Unravel Potential Effectors Involved in Molecular Dialogues With Oak and Rose. Front Physiol 2019; 10:926. [PMID: 31396099 PMCID: PMC6667641 DOI: 10.3389/fphys.2019.00926] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/09/2019] [Indexed: 01/29/2023] Open
Abstract
To gain insight into wasp factors that might be involved in the initial induction of galls on woody plants, we performed high throughput (454) transcriptome analysis of ovaries and venom glands of two cynipid gall wasps, Biorhiza pallida and Diplolepis rosae, inducing galls on oak and rose, respectively. De novo assembled and annotated contigs were compared to sequences from phylogenetically related parasitoid wasps. The relative expression levels of contigs were estimated to identify the most expressed gene sequences in each tissue. We identify for the first time a set of maternally expressed gall wasp proteins potentially involved in the interaction with the plant. Some genes highly expressed in venom glands and ovaries may act to suppress early plant defense signaling. We also identify gall wasp cellulases that could be involved in observed local lysis of plant tissue following oviposition, and which may have been acquired from bacteria by horizontal gene transfer. We find no evidence of virus-related gene expression, in contrast to many non-cynipid parasitoid wasps. By exploring gall wasp effectors, this study is a first step toward understanding the molecular mechanisms underlying cynipid gall induction in woody plants, and the recent sequencing of oak and rose genomes will enable study of plant responses to these factors.
Collapse
Affiliation(s)
- Sébastien Cambier
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Olivia Ginis
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Sébastien J. M. Moreau
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Philippe Gayral
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Jack Hearn
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Graham N. Stone
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, United Kingdom
| | - David Giron
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, Tours, France
| |
Collapse
|
26
|
Teng Z, Wu H, Ye X, Xiong S, Xu G, Wang F, Fang Q, Ye G. An Ovarian Protein Involved in Passive Avoidance of an Endoparasitoid To Evade Its Host Immune Response. J Proteome Res 2019; 18:2695-2705. [PMID: 31244211 DOI: 10.1021/acs.jproteome.8b00824] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Through a combination of transcriptomic and proteomic analyses, we identified 817 secreted ovarian proteins from an endoparasitoid wasp, Cotesia chilonis, of which five proteins are probably involved in passive evasion. The results of an encapsulation assay revealed that one of these passive evasion-associated proteins (Crp32B), a homologue of a 32-kDa protein (Crp32) from C. rubecula, could protect resin beads from being encapsulated by host hemocytes in a dose-dependent manner. Crp32B is transcribed in ovarian cells, nurse cells, follicular cells, and oocytes, and the protein is located throughout the ovary and on the egg surface. Moreover, Crp32B has antigenic similarity to several host components. These results indicate that C. chilonis may use molecular mimicry as a mechanism to avoid host cellular immune response.
Collapse
Affiliation(s)
- Ziwen Teng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Huizi Wu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Gang Xu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
27
|
Lin Z, Wang RJ, Cheng Y, Du J, Volovych O, Han LB, Li JC, Hu Y, Lu ZY, Lu Z, Zou Z. Insights into the venom protein components of Microplitis mediator, an endoparasitoid wasp. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 105:33-42. [PMID: 30602123 DOI: 10.1016/j.ibmb.2018.12.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 05/26/2023]
Abstract
Endoparasitoid wasps deliver a variety of maternal factors, such as venom proteins, viruses, and virus-like particles, from their venom and calyx fluid into hosts and thereby regulate the hosts' immune response, metabolism and development. The endoparasitoid, Microplitis mediator, is used as an important biological agent for controlling the devastating pest Helicoverpa armigera. In this study, using an integrated transcriptomic and proteomic analysis approach, we identified 75 putative venom proteins in M. mediator. The identified venom components were consistent with other known parasitoid wasps' venom proteins, including metalloproteases, serine protease inhibitors, and glycoside hydrolase family 18 enzymes. The metalloprotease and serpin family showed extensive gene duplications in venom apparatus. Isobaric tags for relative and absolute quantitation (iTRAQ) based quantitative proteomics revealed 521 proteins that were differentially expressed at 6 h and 24 h post-parasitism, including 10 wasp venom proteins that were released into the host hemolymph. Further analysis indicated that 511 differentially expressed proteins (DEP) from the host are primarily involved in the immune response, material metabolism, and extracellular matrix receptor interaction. Taken together, our results on parasitoid wasp venoms have the potential to enhance the application of endoparasitoid wasps for controlling insect pest.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Li-Bin Han
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Cheng Li
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Yang Hu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Yun Lu
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
28
|
Lin Z, Cheng Y, Wang RJ, Du J, Volovych O, Li JC, Hu Y, Lu ZY, Lu Z, Zou Z. A Metalloprotease Homolog Venom Protein From a Parasitoid Wasp Suppresses the Toll Pathway in Host Hemocytes. Front Immunol 2018; 9:2301. [PMID: 30405599 PMCID: PMC6206080 DOI: 10.3389/fimmu.2018.02301] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022] Open
Abstract
Parasitoid wasps depend on a variety of maternal virulence factors to ensure successful parasitism. Encapsulation response carried out by host hemocytes is one of the major host immune responses toward limiting endoparasitoid wasp offspring production. We found that VRF1, a metalloprotease homolog venom protein identified from the endoparasitoid wasp, Microplitis mediator, could modulate egg encapsulation in its host, the cotton bollworm, Helicoverpa armigera. Here, we show that the VRF1 proenzyme is cleaved after parasitism, and that the C-terminal fragment containing the catalytic domain enters host hemocytes 6 h post-parasitism. Furthermore, using yeast two-hybrid and pull-down assays, VRF1 is shown to interact with the H. armigera NF-κB factor, Dorsal. We also show that overexpressed of VRF1 in an H. armigera cell line cleaved Dorsal in vivo. Taken together, our results have revealed a novel mechanism by which a component of endoparasitoid wasp venom interferes with the Toll signaling pathway in the host hemocytes.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Cheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Cheng Li
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Yang Hu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Yun Lu
- Institute of Plant Protection of Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Tang BZ, Meng E, Zhang HJ, Zhang XM, Asgari S, Lin YP, Lin YY, Peng ZQ, Qiao T, Zhang XF, Hou YM. Combination of label-free quantitative proteomics and transcriptomics reveals intraspecific venom variation between the two strains of Tetrastichus brontispae, a parasitoid of two invasive beetles. J Proteomics 2018; 192:37-53. [PMID: 30098407 DOI: 10.1016/j.jprot.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 12/19/2022]
Abstract
The venom apparatus is a conserved organ in parasitoids that shows adaptations correlated with life-style diversification. Combining transcriptomics and label-free quantitative proteomics, here we explored the venom apparatus components of the endoparasitoid Tetrastichus brontispae (Eulophidae), and provide a comparison of the venom apparatus proteomes between its two closely related strains, T. brontispae-Octodonta nipae (Tb-On) and T. brontispae-Brontispa longissima (Tb-Bl). Tb-Bl targets the B. longissima pupa as its habitual host. However, Tb-On is an experimental derivative of Tb-Bl, which has been exposed to the O. nipae pupa as host consecutively for over 40 generation. Results showed that approximately 1505 venom proteins were identified in the T. brontispae venom apparatus. The extracts contained novel venom proteins, such as 4-coumarate-CoA ligase 4. A comparative venom proteome analysis revealed that significant quantitative and qualitative differences in venom composition exist between the two strains; although the most abundant venom proteins were shared between them. The differentially produced proteins were mainly enriched in fatty acid biosynthesis and melanotic encapsulation response. Six of these enriched proteins presented increased levels in Tb-On, and this result was validated by parallel reaction monitoring (PRM) analysis. Overall, our data reveal that venom composition can evolve quickly and respond to host selection.
Collapse
Affiliation(s)
- Bao-Zhen Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - E Meng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hua-Jian Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiao-Mei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sassan Asgari
- School of Biological Sciences, the University of Queensland, Brisbane, QLD 4067, Australia
| | - Ya-Ping Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yun-Ying Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zheng-Qiang Peng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ting Qiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xia-Fang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, Department of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
30
|
Meng E, Qiao T, Tang B, Hou Y, Yu W, Chen Z. Effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on the immune response of Octodonta nipae (Coleoptera: Chrysomelidae). JOURNAL OF INSECT PHYSIOLOGY 2018; 109:125-137. [PMID: 30025717 DOI: 10.1016/j.jinsphys.2018.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Although the importance of parasitoids as biocontrol agents has long been recognized, systematic studies of the physiological mechanisms are scarce, especially in those parasitoids that are able to successfully invade their hosts by activating host immune responses. This study explored this phenomenon by investigating the effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on host immunity. The results showed that the injection of venom alone induced higher phenoloxidase activity, while a mixture of ovarian plus venom fluids provoked higher granulocyte and plasmatocyte spreading ratios, highlighting the role that egg surface characteristics may play in successful parasitism. After thorough investigation, the presence of a hemomucin homologue was documented on the egg surface (which was named Tetrastichus brontispae adipocyte plasma membrane associated protein-like, TbAPMAP-like), while the absence of polydnaviruses, fibrous layers and virus-like filaments was confirmed. The higher encapsulation index of eggs incubated with TbAPMAP-like polyclonal antibody demonstrated the protection of the protein against encapsulation. These results contribute to our understanding of the mechanisms used by endoparasitoids to evade encapsulation during the early parasitism stage while enriching our knowledge of local active regulatory mechanisms. It is likely that this is the first study to determine the egg protective properties of TbAPMAP-like in host-parasite systems.
Collapse
Affiliation(s)
- E Meng
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ting Qiao
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baozhen Tang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Weizhen Yu
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiming Chen
- Fuzhou Entry-Exit Inspection & Quarantine Bureau of P.R.C, Fuzhou, 350002, China
| |
Collapse
|
31
|
Zhu F, Cusumano A, Bloem J, Weldegergis BT, Villela A, Fatouros NE, van Loon JJA, Dicke M, Harvey JA, Vogel H, Poelman EH. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proc Natl Acad Sci U S A 2018; 115:5205-5210. [PMID: 29712841 PMCID: PMC5960289 DOI: 10.1073/pnas.1717904115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symbiotic relationships may provide organisms with key innovations that aid in the establishment of new niches. For example, during oviposition, some species of parasitoid wasps, whose larvae develop inside the bodies of other insects, inject polydnaviruses into their hosts. These symbiotic viruses disrupt host immune responses, allowing the parasitoid's progeny to survive. Here we show that symbiotic polydnaviruses also have a downside to the parasitoid's progeny by initiating a multitrophic chain of interactions that reveals the parasitoid larvae to their enemies. These enemies are hyperparasitoids that use the parasitoid progeny as host for their own offspring. We found that the virus and venom injected by the parasitoid during oviposition, but not the parasitoid progeny itself, affected hyperparasitoid attraction toward plant volatiles induced by feeding of parasitized caterpillars. We identified activity of virus-related genes in the caterpillar salivary gland. Moreover, the virus affected the activity of elicitors of salivary origin that induce plant responses to caterpillar feeding. The changes in caterpillar saliva were critical in inducing plant volatiles that are used by hyperparasitoids to locate parasitized caterpillars. Our results show that symbiotic organisms may be key drivers of multitrophic ecological interactions. We anticipate that this phenomenon is widespread in nature, because of the abundance of symbiotic microorganisms across trophic levels in ecological communities. Their role should be more prominently integrated in community ecology to understand organization of natural and managed ecosystems, as well as adaptations of individual organisms that are part of these communities.
Collapse
Affiliation(s)
- Feng Zhu
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
| | - Antonino Cusumano
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Janneke Bloem
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Alexandre Villela
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Nina E Fatouros
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
- Biosystematics Group, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6708 PB Wageningen, The Netherlands
- Animal Ecology Section, Department of Ecological Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
32
|
Cusumano A, Duvic B, Jouan V, Ravallec M, Legeai F, Peri E, Colazza S, Volkoff AN. First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:68-80. [PMID: 29477467 DOI: 10.1016/j.jinsphys.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/23/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functional role and conducted a transcriptomic analysis of the venom gland. We found that injection of O. telenomicida venom induces: 1) a melanized-like process in N. viridula host eggs (host-parasitoid interaction), 2) impairment of the larval development of the competitor Trissolcus basalis (Wollaston) (parasitoid-parasitoid interaction). The O. telenomicida venom gland transcriptome reveals a majority of digestive enzymes (peptidases and glycosylases) and oxidoreductases (laccases) among the most expressed genes. The former enzymes are likely to be involved in degradation of the host resources for the specific benefit of the O. telenomicida offspring. In turn, alteration of host resources caused by these enzymes may negatively affect the larval development of the competitor T. basalis. We hypothesize that the melanization process induced by venom injection could be related to the presence of laccases, which are multicopper oxidases that belong to the phenoloxidases group. This work contributed to a better understanding of the venom in insect parasitoids and allowed to identify candidate genes whose functional role can be investigated in future studies.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy; Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Bernard Duvic
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marc Ravallec
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Fabrice Legeai
- BioInformatics Platform for Agroecosystems Arthropods (BIPAA), Campus Beaulieu, 35042 Rennes Cedex, France
| | - Ezio Peri
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Stefano Colazza
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze edificio 5, 90128 Palermo, Italy
| | - Anne-Nathalie Volkoff
- UMR DGIMI INRA 1333 - Université de Montpellier, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| |
Collapse
|
33
|
Cusumano A, Zhu F, Volkoff AN, Verbaarschot P, Bloem J, Vogel H, Dicke M, Poelman EH. Parasitic wasp-associated symbiont affects plant-mediated species interactions between herbivores. Ecol Lett 2018; 21:957-967. [DOI: 10.1111/ele.12952] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/11/2017] [Accepted: 02/23/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Antonino Cusumano
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Feng Zhu
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
- Department of Terrestrial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 1 6708 PB Wageningen The Netherlands
| | - Anne-Nathalie Volkoff
- DGIMI UMR 1333; INRA; Université de Montpellier 2; Place Eugène Bataillon CC101, 34095 Montpellier Cedex France
| | - Patrick Verbaarschot
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Janneke Bloem
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Heiko Vogel
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Str. 8 D-07745 Jena Germany
| | - Marcel Dicke
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology; Wageningen University; P.O. Box 16 6700 AA Wageningen The Netherlands
| |
Collapse
|
34
|
Liu NY, Xu ZW, Yan W, Ren XM, Zhang ZQ, Zhu JY. Venomics reveals novel ion transport peptide-likes (ITPLs) from the parasitoid wasp Tetrastichus brontispae. Toxicon 2017; 141:88-93. [PMID: 29197474 DOI: 10.1016/j.toxicon.2017.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/02/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Despite substantial advances in uncovering constituents of parasitoid venoms due to their potential applications as insecticides and pharmaceuticals, most of these studies are primarily restricted to braconid and ichneumonid wasps. Little information is available regarding virulent factors from venom of Eulophidae. In order to provide insight into the venom components of this family and parasitoid venom evolution, a venom protein repertoire (venomics) of the endoparasitoid wasp, Tetrastichus brontispae was deciphered using a proteomic approach. A large number of diverse venom proteins/peptides were identified, including novel proteins and those proteins commonly found in the venoms of other parasitoids such as serine protease, esterase, dipeptidyl peptidase IV, acid phosphatase, major royal jelly protein, superoxide dismutase, and venom allergen 3/5. Three ion transport peptide-likes (ITPLs) were abundantly detected in T. brontispae venom. Of these, two of them are reported as a novel form for the first time, with the characteristics of lengthened amino acid sequences and additional cysteine residues. These venom ITPLs are obviously apart from other general members within the crustacean hyperglycemic hormone/ion transport peptide (CHH/ITP) family. It implies that they would evolve unique functions essential for parasitism success.
Collapse
Affiliation(s)
- Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhi-Wen Xu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Wei Yan
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Science, Wenchang 571339, China.
| | - Xue-Min Ren
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Zhi-Quan Zhang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
35
|
Dennis AB, Patel V, Oliver KM, Vorburger C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 2017; 71:2599-2617. [DOI: 10.1111/evo.13333] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Alice B. Dennis
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
- EAWAG; Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
- Current address: Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| | - Vilas Patel
- Department of Entomology; University of Georgia; Athens Georgia 30602
| | - Kerry M. Oliver
- Department of Entomology; University of Georgia; Athens Georgia 30602
| | - Christoph Vorburger
- Institute of Integrative Biology; ETH Zürich; Zürich Switzerland
- EAWAG; Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
| |
Collapse
|
36
|
Liu NY, Wang JQ, Zhang ZB, Huang JM, Zhu JY. Unraveling the venom components of an encyrtid endoparasitoid wasp Diversinervus elegans. Toxicon 2017; 136:15-26. [DOI: 10.1016/j.toxicon.2017.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/24/2022]
|
37
|
Zhao W, Shi M, Ye XQ, Li F, Wang XW, Chen XX. Comparative transcriptome analysis of venom glands from Cotesia vestalis and Diadromus collaris, two endoparasitoids of the host Plutella xylostella. Sci Rep 2017; 7:1298. [PMID: 28465546 PMCID: PMC5431001 DOI: 10.1038/s41598-017-01383-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/29/2017] [Indexed: 11/09/2022] Open
Abstract
Venoms secreted by the venom gland (VG) of parasitoid wasp help ensure successful parasitism by host immune suppression and developmental regulation. Cotesia vestalis, a larval endoparasitoid, and Diadromus collaris, a pupal endoparasitoid, parasitize the diamondback moth (DBM), Plutella xylostella. To explore and compare the venom components of two endoparasitoids, we sequenced transcriptomes of the VGs and wasp bodies without VGs (BWVGs) of the two endoparasitoids. Statistically enriched GO terms and KEGG pathways of the two VGs compared to respective whole-body background were similar and reflected active protein biosynthesis activities in the two VGs. 1,595 VG specific genes of the D. collaris VG and 1,461 VG specific genes of the C. vestalis VG were identified by comparative transcript profiling. A total of 444 and 513 genes encoding potential secretory proteins were identified and defined as putative venom genes in D. collaris VG and C. vestalis VG, respectively. The putative venom genes of the two wasps showed no significant similarity or convergence. More venom genes were predicted in D. collaris VG than C. vestalis VG, especially hydrolase-coding genes. Differences in the types and quantities of putative venom genes shed light on different venom functions.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Min Shi
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xi-Qian Ye
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fei Li
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xiao-Wei Wang
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
- State Key Lab of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
38
|
Protein Discovery: Combined Transcriptomic and Proteomic Analyses of Venom from the Endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae). Toxins (Basel) 2017; 9:toxins9040135. [PMID: 28417942 PMCID: PMC5408209 DOI: 10.3390/toxins9040135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Many species of endoparasitoid wasps provide biological control services in agroecosystems. Although there is a great deal of information on the ecology and physiology of host/parasitoid interactions, relatively little is known about the protein composition of venom and how specific venom proteins influence physiological systems within host insects. This is a crucial gap in our knowledge because venom proteins act in modulating host physiology in ways that favor parasitoid development. Here, we identified 37 possible venom proteins from the polydnavirus-carrying endoparasitoid Cotesia chilonis by combining transcriptomic and proteomic analyses. The most abundant proteins were hydrolases, such as proteases, peptidases, esterases, glycosyl hydrolase, and endonucleases. Some components are classical parasitoid venom proteins with known functions, including extracellular superoxide dismutase 3, serine protease inhibitor and calreticulin. The venom contains novel proteins, not recorded from any other parasitoid species, including tolloid-like proteins, chitooligosaccharidolytic β-N-acetylglucosaminidase, FK506-binding protein 14, corticotropin-releasing factor-binding protein and vascular endothelial growth factor receptor 2. These new data generate hypotheses and provide a platform for functional analysis of venom components.
Collapse
|
39
|
Paulson AR, Le CH, Dickson JC, Ehlting J, von Aderkas P, Perlman SJ. Transcriptome analysis provides insight into venom evolution in a seed-parasitic wasp, Megastigmus spermotrophus. INSECT MOLECULAR BIOLOGY 2016; 25:604-16. [PMID: 27286234 DOI: 10.1111/imb.12247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
One of the most striking host range transitions is the evolution of plant parasitism from animal parasitism. Parasitoid wasps that have secondarily evolved to attack plants (ie gall wasps and seed-feeders) demonstrate intimate associations with their hosts, yet the mechanism of plant-host manipulation is currently not known. There is, however, emerging evidence suggesting that ovipositional secretions play a role in plant manipulation. To investigate whether parasites have modified pre-existing adaptations to facilitate dramatic host shifts we aimed to characterize the expression of venom proteins in a plant parasite using a collection of parasitoid venom sequences as a guide. The transcriptome of a seed-feeding wasp, Megastigmus spermotrophus, was assembled de novo and three putative venoms were found to be highly expressed in adult females. One of these putative venoms, aspartylglucosaminidase, has been previously identified as a major venom component in two distantly related parasitoid wasps (Asobara tabida and Leptopilina heterotoma) and may have originated via gene duplication within the Hymenoptera. Our study shows that M. spermotrophus, a specialized plant parasite, expresses putative venom transcripts that share homology to venoms identified in Nasonia vitripennis (both superfamily Chalcidoidea), which suggests that M. spermotrophus may have co-opted pre-existing machinery to develop as a plant parasite.
Collapse
Affiliation(s)
- A R Paulson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada.
| | - C H Le
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - J C Dickson
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - J Ehlting
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - P von Aderkas
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - S J Perlman
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Serpins in arthropod biology. Semin Cell Dev Biol 2016; 62:105-119. [PMID: 27603121 DOI: 10.1016/j.semcdb.2016.09.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022]
Abstract
Serpins are the largest known family of serine proteinase inhibitors and perform a variety of physiological functions in arthropods. Herein, we review the field of serpins in arthropod biology, providing an overview of current knowledge and topics of interest. Serpins regulate insect innate immunity via inhibition of serine proteinase cascades that initiate immune responses such as melanization and antimicrobial peptide production. In addition, several serpins with anti-pathogen activity are expressed as acute-phase serpins in insects upon infection. Parasitoid wasps can downregulate host serpin expression to modulate the host immune system. In addition, examples of serpin activity in development and reproduction in Drosophila have also been discovered. Serpins also function in host-pathogen interactions beyond immunity as constituents of venom in parasitoid wasps and saliva of blood-feeding ticks and mosquitoes. These serpins have distinct effects on immunosuppression and anticoagulation and are of interest for vaccine development. Lastly, the known structures of arthropod serpins are discussed, which represent the serpin inhibitory mechanism and provide a detailed overview of the process.
Collapse
|
41
|
Laurino S, Grossi G, Pucci P, Flagiello A, Bufo SA, Bianco G, Salvia R, Vinson SB, Vogel H, Falabella P. Identification of major Toxoneuron nigriceps venom proteins using an integrated transcriptomic/proteomic approach. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:49-61. [PMID: 27388778 DOI: 10.1016/j.ibmb.2016.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 06/06/2023]
Abstract
Endoparasitoids in the order Hymenoptera are natural enemies of several herbivorous insect pest species. During oviposition they inject a mixture of factors, which include venom, into the host, ensuring the successful parasitism and the development of their progeny. Although these parasitoid factors are known to be responsible for host manipulation, such as immune system suppression, little is known about both identity and function of the majority of their venom components. To identify the major proteins of Toxoneuron nigriceps (Hymenoptera: Braconidae) venom, we used an integrated transcriptomic and proteomic approach. The tandem-mass spectrometric (LC-MS/MS) data combined with T. nigriceps venom gland transcriptome used as a reference database resulted in the identification of a total of thirty one different proteins. While some of the identified proteins have been described in venom from several parasitoids, others were identified for the first time. Among the identified proteins, hydrolases constituted the most abundant family followed by transferases, oxidoreductases, ligases, lyases and isomerases. The hydrolases identified in the T. nigriceps venom glands included proteases, peptidases and glycosidases, reported as common components of venom from several parasitoid species. Taken together, the identified proteins included factors that could potentially inhibit the host immune system, manipulate host physiological processes and host development, as well as provide nutrients to the parasitoid progeny, degrading host tissues by specific hydrolytic enzymes. The venom decoding provides us with information about the identity of candidate venom factors which could contribute to the success of parasitism, together with other maternal and embryonic factors.
Collapse
Affiliation(s)
- Simona Laurino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Gerarda Grossi
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Pietro Pucci
- Dipartimento di Scienze Chimiche e Ceinge Biotecnologie Avanzate, Università di Napoli Federico II, Via Cintia 6, 80126, Napoli, Italy
| | - Angela Flagiello
- Ceinge Biotecnologie Avanzate, Via Gaetano Salvatore 482, 80131, Napoli, Italy
| | - Sabino Aurelio Bufo
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - S Bradleigh Vinson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Patrizia Falabella
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
42
|
Zhu JY. Deciphering the main venom components of the ectoparasitic ant-like bethylid wasp, Scleroderma guani. Toxicon 2016; 113:32-40. [PMID: 26853496 DOI: 10.1016/j.toxicon.2016.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/07/2016] [Accepted: 02/03/2016] [Indexed: 12/25/2022]
Abstract
Similar to venom found in most venomous animals, parasitoid venoms contain a complex cocktail of proteins with potential agrichemical and pharmaceutical use. Even though parasitoids are one of the largest group of venomous animals, little is known about their venom composition. Recent few studies revealed high variated venom composition existing not only in different species but also between closely related strains, impling that increasing information on the venom proteins from more greater diversity of species of different taxa is key to comprehensively uncover the complete picture of parasitoid venom. Here, we explored the major protein components of the venom of ectoparasitic ant-like bethylid wasp, Scleroderma guani by an integrative transcriptomic-proteomic approach. Illumina deep sequencing of venom apparatus cDNA produced 49,873 transcripts. By mapping the peptide spectral data derived from venom reservoir against these transcripts, mass spectrometry analysis revealed ten main venom proteins, including serine proteinase, metalloprotease, dipeptidyl peptidase IV, esterase, antithrombin-III, acid phosphatase, neural/ectodermal development factor IMP-L2 like protein, venom allergen 3, and unknown protein. Interestingly, one serine proteinase was firstly identified with rarely high molecular weight about 200 kDa in parasitoid venom. The occurrence of abundant acid phosphatase, antithrombin-III and venom allergen 3 demonstrated that S. guani venom composition is similar to that of social wasp venoms. All identified venom genes showed abundantly biased expression in venom apparatus, indicating their virulent functions involved in parasitization. This study shed light on the more better understanding of parasitoid venom evolution across species and will facilitate the further elucidation of function and toxicity of these venom proteins.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
43
|
Teng ZW, Xu G, Gan SY, Chen X, Fang Q, Ye GY. Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:46-56. [PMID: 26685058 DOI: 10.1016/j.jinsphys.2015.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The larval endoparasitoid Cotesia chilonis injects venom and bracoviruses into its host Chilo suppressalis during oviposition. Here we study the effects of the polydnavirus (PDV)-carrying endoparasitoid C. chilonis (Hymenoptera: Braconidae) parasitism, venom and calyx fluid on host cellular and humoral immunity, specifically hemocyte composition, cellular spreading, encapsulation and melanization. Total hemocyte counts (THCs) were higher in parasitized larvae than in unparasitized larvae in the late stages following parasitization. While both plasmatocyte and granulocyte fractions and hemocyte mortality did not differ between parasitized and unparasitized hosts, in vitro spreading behavior of hemocytes was inhibited significantly by parasitism throughout the course of parasitoid development. C. chilonis parasitism suppressed the encapsulation response and melanization in the early stages. Venom alone did not alter cellular immune responses, including effects on THCs, mortality, hemocyte composition, cell spreading and encapsulation, but venom did inhibit humoral immunity by reducing melanization within 6h after injection. In contrast to venom, calyx fluid had a significant effect on cell spreading, encapsulation and melanization from 6h after injection. Dose-response injection studies indicated the effects of venom and calyx fluid synergized, showing a stronger and more persistent reduction in immune system responses than the effect of either injected alone.
Collapse
Affiliation(s)
- Zi-Wen Teng
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gang Xu
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Yu Gan
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xuan Chen
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gong-Yin Ye
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; Key Laboratory of Agricultural Entomology of Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
44
|
Insights into the venom composition and evolution of an endoparasitoid wasp by combining proteomic and transcriptomic analyses. Sci Rep 2016; 6:19604. [PMID: 26803989 PMCID: PMC4726277 DOI: 10.1038/srep19604] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Parasitoid wasps are abundant and diverse hymenopteran insects that lay their eggs into the internal body (endoparasitoid) or on the external surface (ectoparasitoid) of their hosts. To make a more conducive environment for the wasps’ young, both ecto- and endoparasitoids inject venoms into the host to modulate host immunity, metabolism and development. Endoparasitoids have evolved from ectoparasitoids independently in different hymenopteran lineages. Pteromalus puparum, a pupal endoparasitoid of various butterflies, represents a relatively recent evolution of endoparasitism within pteromalids. Using a combination of transcriptomic and proteomic approaches, we have identified 70 putative venom proteins in P. puparum. Most of them show higher similarity to venom proteins from the related ectoparasitoid Nasonia vitripennis than from other more distantly related endoparasitoids. In addition, 13 venom proteins are similar to venoms of distantly related endoparasitoids but have no detectable venom matches in Nasonia. These venom proteins may have a role in adaptation to endoparasitism. Overall, these results lay the groundwork for more detailed studies of venom function and adaptation to the endoparasitic lifestyle.
Collapse
|
45
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
46
|
Pichon A, Bézier A, Urbach S, Aury JM, Jouan V, Ravallec M, Guy J, Cousserans F, Thézé J, Gauthier J, Demettre E, Schmieder S, Wurmser F, Sibut V, Poirié M, Colinet D, da Silva C, Couloux A, Barbe V, Drezen JM, Volkoff AN. Recurrent DNA virus domestication leading to different parasite virulence strategies. SCIENCE ADVANCES 2015; 1:e1501150. [PMID: 26702449 PMCID: PMC4681339 DOI: 10.1126/sciadv.1501150] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/15/2015] [Indexed: 05/31/2023]
Abstract
Relics of ancient infections are abundant in eukaryote genomes, but little is known about how they evolve when they confer a functional benefit on their host. We show here, for the first time, that the virus-like particles shown to protect Venturia canescens eggs against host immunity are derived from a nudivirus genome incorporated by the parasitic wasp into its own genetic material. Nudivirus hijacking was also at the origin of protective particles from braconid wasps. However, we show here that the viral genes produce "liposomes" that wrap and deliver V. canescens virulence proteins, whereas the particles are used as gene transfer agents in braconid wasps. Our findings indicate that virus domestication has occurred repeatedly during parasitic wasp evolution but with different evolutionary trajectories after endogenization, resulting in different virulence molecule delivery strategies.
Collapse
Affiliation(s)
- Apolline Pichon
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Serge Urbach
- Functional Proteomics Platform, BioCampus Montpellier, UMS CNRS 3426, INSERM US009, Institut de Génomique Fonctionnelle, UMR CNRS 5203, INSERM U661, Université de Montpellier, Montpellier 34094, France
| | - Jean-Marc Aury
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Véronique Jouan
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Marc Ravallec
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Julie Guy
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - François Cousserans
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| | - Julien Thézé
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Jérémy Gauthier
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Edith Demettre
- Functional Proteomics Platform, BioCampus Montpellier, UMS CNRS 3426, INSERM US009, Institut de Génomique Fonctionnelle, UMR CNRS 5203, INSERM U661, Université de Montpellier, Montpellier 34094, France
| | - Sandra Schmieder
- Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, 400 route des Chappes, Sophia Antipolis 06903, France
| | - François Wurmser
- PPF Analyse des systèmes biologiques, Université François Rabelais de Tours, 3 Boulevard Tonnellé, Tours 37000, France
| | - Vonick Sibut
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Marylène Poirié
- Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, 400 route des Chappes, Sophia Antipolis 06903, France
| | - Dominique Colinet
- Institut Sophia Agrobiotech (ISA), UMR INRA 1355, CNRS 7254, Université Nice Sophia Antipolis, 400 route des Chappes, Sophia Antipolis 06903, France
| | - Corinne da Silva
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Arnaud Couloux
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Valérie Barbe
- Commissariat à l’Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, 2 rue Gaston Crémieux, BP5706, Evry 91057, France
| | - Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), UMR 7261, CNRS-Université François Rabelais de Tours, Parc de Grandmont, Tours 37200, France
| | - Anne-Nathalie Volkoff
- Microorganism and Insect Diversity, Genomes, and Interactions (DGIMI) Laboratory, UMR 1333 INRA, Université de Montpellier, Place Eugène Bataillon, CC101, Montpellier Cedex 34095, France
| |
Collapse
|
47
|
Han LB, Yin LH, Huang LQ, Wang CZ. Differential immunosuppression by Campoletis chlorideae eggs and ichnovirus in larvae of Helicoverpa armigera and Spodoptera exigua. J Invertebr Pathol 2015; 130:88-96. [DOI: 10.1016/j.jip.2015.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 11/30/2022]
|
48
|
Moreau SJM, Asgari S. Venom Proteins from Parasitoid Wasps and Their Biological Functions. Toxins (Basel) 2015; 7:2385-412. [PMID: 26131769 PMCID: PMC4516919 DOI: 10.3390/toxins7072385] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Parasitoid wasps are valuable biological control agents that suppress their host populations. Factors introduced by the female wasp at parasitization play significant roles in facilitating successful development of the parasitoid larva either inside (endoparasitoid) or outside (ectoparasitoid) the host. Wasp venoms consist of a complex cocktail of proteinacious and non-proteinacious components that may offer agrichemicals as well as pharmaceutical components to improve pest management or health related disorders. Undesirably, the constituents of only a small number of wasp venoms are known. In this article, we review the latest research on venom from parasitoid wasps with an emphasis on their biological function, applications and new approaches used in venom studies.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7261, Université François-Rabelais, Unité de Formation et de Recherche Sciences et Techniques, Parc Grandmont, 37200 Tours, France.
| | - Sassan Asgari
- School of Biological Sciences, the University of Queensland, Brisbane, QLD 4067, Australia.
| |
Collapse
|
49
|
Labella C, Kanawati B, Vogel H, Schmitt-Kopplin P, Laurino S, Bianco G, Falabella P. Identification of two arginine kinase forms of endoparasitoid Leptomastix dactylopii venom by bottom up-sequence tag approach. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:756-765. [PMID: 26259659 DOI: 10.1002/jms.3585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Leptomastix dactylopii (Howard) is an endoparasitoid wasp, natural enemy of mealybug Planococcus citri (Risso). Despite the acquired knowledge regarding this host-parasitoid interaction, only little information is available on the factors of parasitoid origin able to modulate the mealybug physiology. The major alteration observed in P. citri is a strong reduction in fecundity, which is evident soon after parasitization by L. dactylopii or venom injection in unparasitized hosts indicating that this proteinaceus secretion injected at the oviposition plays a key-role in host regulation. Protein identification of L. dactilopii venom has been limited by the lack of literature sources and public protein databases. Here, we identified two venom proteins by an integrated trascriptomic and proteomic approach. A custom-made transcriptomic database from the L. dactylopii venom glands was created by applying the high-throughput RNA sequencing approach. Two-dimensional gel electrophoresis (2DE) trypsinized protein spots were analyzed by high-resolution mass spectrometry (FTICRMS-12 T). The most abundant peptide ions were fragmented by collision induced dissociation and the obtained sequence tags were subjected to custom-made protein database searching. Two putative arginine kinases (full-length and truncated form) were identified. This is the first case in which both, truncated and full length arginine kinases, are identified in an endoparasitoid non-paralyzing venom.
Collapse
Affiliation(s)
- Cristiana Labella
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Basem Kanawati
- Department of Environmental Sciences, Research Unit Analytical BioGeoChemistry (BGC), Ingolstaedter Landstrasse, 85764, Neuherberg, Germany
| | - Heiko Vogel
- Department of Entomology, Host Plant Adaptation, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Philippe Schmitt-Kopplin
- Department of Environmental Sciences, Research Unit Analytical BioGeoChemistry (BGC), Ingolstaedter Landstrasse, 85764, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising-Weihenstephan, Germany
| | - Simona Laurino
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Giuliana Bianco
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Patrizia Falabella
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| |
Collapse
|
50
|
Dorémus T, Darboux I, Cusson M, Ravallec M, Jouan V, Frayssinet M, Stoltz DB, Webb BA, Volkoff AN. Specificities of ichnoviruses associated with campoplegine wasps: genome, genes and role in host-parasitoid interaction. CURRENT OPINION IN INSECT SCIENCE 2014; 6:44-51. [PMID: 32846675 DOI: 10.1016/j.cois.2014.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 06/11/2023]
Abstract
Ichnoviruses (IVs), unique symbiotic viruses carried by ichneumonid campoplegine wasps, derive from integration of a paleo-ichnovirus into an ancestral wasp genome. The modern 'genome' is composed of both regions that are amplified, circularized and encapsidated into viral particles and non-encapsidated viral genomic regions involved in particle morphogenesis. Packaged genomes include multiple circular dsDNAs encoding many genes mostly organized in gene families. Virus particles are assembled in specialized ovarian cells from which they exit into the oviduct lumen; mature virions are injected during oviposition into the insect host. Expression of viral proteins in infected cells correlates with physiological alterations of the host enabling success of parasitism.
Collapse
Affiliation(s)
- Tristan Dorémus
- "Diversity, Genomes & Interactions Microorganisms Insects" Laboratory, INRA (UMR 1333), Université de Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Isabelle Darboux
- "Diversity, Genomes & Interactions Microorganisms Insects" Laboratory, INRA (UMR 1333), Université de Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Michel Cusson
- Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1055 du P.E.P.S., P.O. Box 10380, Stn. Ste. Foy, Quebec G1V 4C7, Canada
| | - Marc Ravallec
- "Diversity, Genomes & Interactions Microorganisms Insects" Laboratory, INRA (UMR 1333), Université de Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Véronique Jouan
- "Diversity, Genomes & Interactions Microorganisms Insects" Laboratory, INRA (UMR 1333), Université de Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Marie Frayssinet
- "Diversity, Genomes & Interactions Microorganisms Insects" Laboratory, INRA (UMR 1333), Université de Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | - Don B Stoltz
- Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Bruce A Webb
- Department of Entomology, S-225 Agricultural Science Center N, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Anne-Nathalie Volkoff
- "Diversity, Genomes & Interactions Microorganisms Insects" Laboratory, INRA (UMR 1333), Université de Montpellier 2, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France.
| |
Collapse
|