1
|
Labruna MB, Faccini-Martínez ÁA, Muñoz-Leal S, Szabó MPJ, Angerami RN. Lyme borreliosis in Brazil: a critical review on the Baggio-Yoshinari syndrome (Brazilian Lyme-like disease). Clin Microbiol Rev 2024; 37:e0009724. [PMID: 39494872 PMCID: PMC11629638 DOI: 10.1128/cmr.00097-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
SUMMARYLyme borreliosis or Lyme disease is the most frequently reported tick-borne disease in the Northern Hemisphere. In countries of the Southern Hemisphere, such as Brazil, since the early 1990s, some researchers have argued for the existence of an autochthonous Lyme-like borreliosis, known locally as the Baggio-Yoshinari syndrome (BYS), an alleged "Brazilian borreliosis" supposedly caused by a different strain of Borrelia burgdorferi and transmitted by hard ticks. Currently, the existence of BYS in Brazil is still accepted by a large part of the human health care workers, scientists, medical societies, and patients. In fact, this alleged "Brazilian borreliosis" has been the tick-borne zoonotic disease with the greatest number of reported cases and published studies in Brazil during this century, second only to Brazilian spotted fever. In this manuscript, we reviewed all manuscripts directly related to BYS that have been published in Brazil during the last 35 years. This analysis included 199 individual human cases that have been reported in Brazil since 1989, plus multiple studies on ticks, domestic, and wild animals. Our revision aimed to provide a critical opinion on whether the current published works allow healthcare workers, public health agencies, and patients to accept the existence of Lyme disease, BYS, or other Lyme borreliosis-related disease in Brazil. For this purpose, we evaluated the strengths and weaknesses of each published study, considering the diagnostic methods used, such as serological, microbiological, and molecular analyses. Based on these evaluations, we conclude that there is not enough evidence to support the occurrence of Lyme borreliosis in Brazil or that BYS (Brazilian Lyme-like disease) is caused by a bacterium of the genus Borrelia. This assumption is based on the inaccuracy, unreliability, and misinterpretation of the different diagnostic methods that have been used in Brazil. Recognizing the lack of technical evidence for the occurrence of Lyme borreliosis in Brazil has highly relevant implications. For example, it becomes imperative to raise awareness among the country's medical profession, as they have adopted unnecessary and extreme therapies recommended for patients with a supposed borrelial infection, including BYS, in Brazil. Finally, the technical analyses carried out in this study could be applied to other countries in the Southern Hemisphere (e.g., Argentina, South Africa, Australia), where cases classified and alleged as Lyme disease have been reported.
Collapse
Affiliation(s)
- Marcelo B. Labruna
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo City, São Paulo, Brazil
| | - Álvaro A. Faccini-Martínez
- Servicio de Infectología, Hospital Militar Central, Bogotá, Colombia
- Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Matias P. J. Szabó
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Rodrigo N. Angerami
- Section of Hospital Epidemiology, Hospital of Clinics, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Picado R, Baptista CJ, Meneses A, Legatti S, Fonseca J, Belas A. Lyme disease in companion animals: an updated state-of-art and current situation in Portugal. Vet Res Commun 2024; 48:3551-3561. [PMID: 39259416 PMCID: PMC11538231 DOI: 10.1007/s11259-024-10532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Lyme disease (LD) is a globally distributed zoonotic multisystemic condition caused by gram-negative spirochete bacteria of the Borrelia burgdorferi complex, transmitted through tick bites. Research on LD in domestic animals in Portugal is limited, potentially leading to underestimating its prevalence. This disease affects many species, including humans, making it a critical public health issue. In domestic animals, LD often presents subclinically or with non-specific clinical signs, complicating its diagnosis. Nevertheless, veterinarians should always consider LD in cases with a history of tick exposure and compatible clinical signs. Diagnostic confirmation can be achieved through serological and other complementary tests. Treatment involves eradicating the bacterial infection and managing clinical signs using a combination of antibiotics, analgesics, anti-inflammatories, and other medications. Effective prevention primarily relies on tick control measures. This review aims to provide an up-to-date state-of-the-art LD, particularly in Portugal.
Collapse
Affiliation(s)
- Rita Picado
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Catarina Jota Baptista
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
- Centre for the Research and Technology of Agro-Enviromental and Biological Sciences (CITAB- Inov4Agro), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - André Meneses
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
- Animal and Veterinary Research Center (CECAV), Lusófona University- Lisbon University Centre, Lisbon, Portugal
- I-MVET- Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Lisbon, Portugal
| | - Sabrina Legatti
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
| | - Joana Fonseca
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Évora, Portugal
- School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal
| | - Adriana Belas
- Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Campo Grande 376, Lisbon, 1749-024, Portugal.
- Animal and Veterinary Research Center (CECAV), Lusófona University- Lisbon University Centre, Lisbon, Portugal.
- I-MVET- Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University- Lisbon University Centre, Lisbon, Portugal.
- School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusofonia (IPLUSO), Lisbon, Portugal.
| |
Collapse
|
3
|
Clark KL, Hartman S. PCR Detection of Bartonella spp. and Borreliella spp. DNA in Dry Blood Spot Samples from Human Patients. Pathogens 2024; 13:727. [PMID: 39338918 PMCID: PMC11435347 DOI: 10.3390/pathogens13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Lyme disease is the most commonly reported vector-borne disease in the United States. Bartonella constitute an additional zoonotic pathogen whose public health impact and diversity continue to emerge. Rapid, sensitive, and specific detection of these and other vector-borne pathogens remains challenging, especially for patients with persistent infections. This report describes an approach for DNA extraction and PCR testing for the detection of Bartonella spp. and Borreliella spp. from dry blood spot (DBS) specimens from human patients. The present study included extraction of DNA and PCR testing of DBS samples from 105 patients with poorly defined, chronic symptoms labeled as Lyme-Like Syndromic Illness (LLSI). Bartonella spp. DNA was detected in 20/105 (19%) and Borreliella spp. DNA was detected in 41/105 (39%) patients with LLSI. Neither group of organisms was detected in DBS samples from 42 healthy control subjects. Bartonella spp. 16S-23S rRNA internal transcribed spacer sequences were highly similar to ones previously identified in yellow flies, lone star ticks, a human patient from Florida, mosquitoes in Europe, or B. apihabitans and choladocola strains from honeybees. These human strains may represent new genetic strains or groups of human pathogenic species of Bartonella. The 41 Borreliella spp. flaB gene sequences obtained from human patients suggested the presence of four different species, including B. burgdorferi, B. americana, B. andersonii, and B. bissettiae/carolinensis-like strains. These results suggest that specific aspects of the DBS DNA extraction and PCR approach enabled the detection of Bartonella spp. and Borreliella spp. DNA from very small amounts of human whole blood from some patients, including specimens stored on filter paper for 17 years.
Collapse
Affiliation(s)
- Kerry L. Clark
- Department of Public Health, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | |
Collapse
|
4
|
Dulipati V, Kotimaa J, Rezola M, Kontiainen M, Jarva H, Nyman D, Meri S. Antibody responses to immunoevasion proteins BBK32 and OspE constitute part of the serological footprint in neuroborreliosis but are insufficient to prevent the disease. Scand J Immunol 2024; 99:e13353. [PMID: 39007994 DOI: 10.1111/sji.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 07/16/2024]
Abstract
Lyme borreliosis, caused by Borrelia burgdorferi sensu lato, is the most common tickborne disease. Its neuronal form, neuroborreliosis, comprises 3 to 38% of borreliosis cases in Europe. Borrelia outer surface proteins and virulence factors, OspE and BBK32, have been previously reported to help cause infection by promoting attachment to human host epithelial cells and evading complement attack. We assessed the serological responses to BBK32 and OspE in 19 individuals diagnosed with neuroborreliosis to see whether antibodies that could both target the bacteria and neutralize the virulence mechanisms on the microbial surface emerge. Results evaluate levels of total protein, IgG and the chemokine CXCL13, a determinant for B-cell recruitment during neuroinflammation, in patients' cerebrospinal fluid samples. Antibody levels against BBK32 and OspE correlated with those against VlsE, a well-characterized diagnostic serological marker of the disease. A dual serological profile of the patients was observed. K-means clustering split the cohort into two discrete groups presenting distinct serological and CNS responses. One group contained young patients with low levels of anti-BBK32 and OspE antibodies. The other group showed stronger responses, possibly following prolonged infections or reinfections. Additionally, we assessed anti-ganglioside antibodies that could cause autoimmunity or complement dysregulation but observed that they did not correlate with neuroborreliosis in our patient cohort. The dual nature of antibody responses against the virulence factors BBK32 and OspE in neuroborreliosis patients may suggest the necessity of repeated exposures for efficient immune responses. Better protection could be achieved if the virulence factors were formulated into vaccines.
Collapse
Affiliation(s)
- Vinaya Dulipati
- Translational Immunology Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juha Kotimaa
- Translational Immunology Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- VTT Technical Research Center of Finland, Espoo, Finland
| | - Mikel Rezola
- Translational Immunology Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Mikko Kontiainen
- Translational Immunology Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hanna Jarva
- Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Dag Nyman
- Åland Group for Borreliosis Research, Mariehamn, Finland
| | - Seppo Meri
- Translational Immunology Research Program, Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Yaş OB, Coleman AS, Lipman RM, Sharma K, Raghunandanan S, Alanazi F, Rana VS, Kitsou C, Yang X, Pal U. A systemic approach to identify non-abundant immunogenic proteins in Lyme disease pathogens. mSystems 2024; 9:e0108723. [PMID: 38078774 PMCID: PMC10805064 DOI: 10.1128/msystems.01087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
Borrelia burgdorferi, the pathogen of Lyme disease, differentially produces many outer surface proteins (Osp), some of which represent the most abundant membrane proteins, such as OspA, OspB, and OspC. In cultured bacteria, these proteins can account for a substantial fraction of the total cellular or membrane proteins, posing challenges to the identification and analysis of non-abundant proteins, which could serve as novel pathogen detection markers or as vaccine candidates. Herein, we introduced serial mutations to remove these abundant Osps and generated a B. burgdorferi mutant deficient in OspA, OspB, and OspC in an infectious 297-isolate background, designated as OspABC- mutant. Compared to parental isolate, the mutant did not reflect growth defects in the cultured medium but showed differential mRNA expression of representative tested genes, in addition to gross changes in cellular and membrane protein profiles. The analysis of differentially detectable protein contents of the OspABC- mutant, as compared to the wild type, by two-dimensional gel electrophoresis followed by liquid chromatography-mass spectrometry, identified several spirochete proteins that are dominated by proteins of unknown functions, as well as membrane transporters, chaperons, and metabolic enzymes. We produced recombinant forms of two of these represented proteins, BBA34 and BB0238, and showed that these proteins are detectable during spirochete infection in the tick-borne murine model of Lyme borreliosis and thus serve as potential antigenic markers of the infection.IMPORTANCEThe present manuscript employed a systemic approach to identify non-abundant proteins in cultured Borrelia burgdorferi that are otherwise masked or hidden due to the overwhelming presence of abundant Osps like OspA, OspB, and OspC. As these Osps are either absent or transiently expressed in mammals, we performed a proof-of-concept study in which their removal allowed the analysis of otherwise less abundant antigens in OspABC-deficient mutants and identified several immunogenic proteins, including BBA34 and BB0238. These antigens could serve as novel vaccine candidates and/or genetic markers of Lyme borreliosis, promoting new research in the clinical diagnosis and prevention of Lyme disease.
Collapse
Affiliation(s)
- Ozlem Buyuktanir Yaş
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Adam S. Coleman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Rachel M. Lipman
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Vipin S. Rana
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
- Virginia-Maryland College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
6
|
Ericson ME, Mozayeni BR, Radovsky L, Bemis LT. Bartonella- and Borrelia-Related Disease Presenting as a Neurological Condition Revealing the Need for Better Diagnostics. Microorganisms 2024; 12:209. [PMID: 38276194 PMCID: PMC10819350 DOI: 10.3390/microorganisms12010209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The diagnostic tests available to identify vector-borne pathogens have major limitations. Clinicians must consider an assortment of often diverse symptoms to decide what pathogen or pathogens to suspect and test for. Even then, there are limitations to the currently available indirect detection methods, such as serology, or direct detection methods such as molecular tests with or without culture enrichment. Bartonella spp., which are considered stealth pathogens, are particularly difficult to detect and diagnose. We present a case report of a patient who experienced a spider bite followed by myalgia, lymphadenopathy, and trouble sleeping. She did not test positive for Bartonella spp. through clinically available testing. Her symptoms progressed and she was told she needed a double hip replacement. Prior to the surgery, her blood was submitted for novel molecular testing, where Bartonella spp. was confirmed, and a spirochete was also detected. Additional testing using novel methods over a period of five years found Bartonella henselae and Borrelia burgdorferi in her blood. This patient's case is an example of why new diagnostic methods for vector-borne pathogens are urgently needed and why new knowledge of the variable manifestations of Bartonellosis need to be provided to the medical community to inform and heighten their index of suspicion.
Collapse
Affiliation(s)
| | | | | | - Lynne T. Bemis
- Department of Biomedical Sciences, Medical School Duluth Campus, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|
7
|
Alpsoy L, Sedeky AS, Rehbein U, Thedieck K, Brandstetter T, Rühe J. Particle ID: A Multiplexed Hydrogel Bead Platform for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55346-55357. [PMID: 37982803 PMCID: PMC10712431 DOI: 10.1021/acsami.3c12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023]
Abstract
We present a new platform based on hydrogel beads for multiplex analysis that can be fabricated, barcoded, and functionalized in a single step using a simple microfluidic assembly and a photo-cross-linking process. The beads are generated in a two-phase flow fluidic system and photo-cross-linking of the polymer in the aqueous phase by C,H insertion cross-linking (CHic). The size and shape of the hydrogel particles can be controlled over a wide range by fluidic parameters. During the fabrication of the beads, they are barcoded by using physical and optical barcoding strategies. Magnetic beads and fluorescent particles, which allow identification of the production batch number, are added simultaneously as desired, resulting in complex, multifunctional beads in a one-step reaction. As an example of biofunctionalization, Borrelia antigens were immobilized on the beads. Serum samples that originated from infected and non-infected patients could be clearly distinguished, and the sensitivity was as good as or even better than ELISA, the state of the art in clinical diagnostics. The ease of the one-step production process and the wide range of barcoding parameters offer strong advantages for multiplexed analytics in the life sciences and medical diagnostics.
Collapse
Affiliation(s)
- Lokman Alpsoy
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
- livMatS@FIT (Freiburg Center for Interactive Materials and Bioinspired Technologies), University of Freiburg, Freiburg 79110, Germany
| | - Abanoub Selim Sedeky
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Ulrike Rehbein
- Institute of Biochemistry, Center of Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
| | - Kathrin Thedieck
- Institute of Biochemistry, Center of Chemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
- Freiburg Materials Research Center FMF, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
- Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands
| | - Thomas Brandstetter
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
| | - Jürgen Rühe
- Department of Microsystems Engineering (IMTEK), Chemistry & Physics of Interfaces, University of Freiburg, Freiburg im Breisgau 79110, Germany
- livMatS@FIT (Freiburg Center for Interactive Materials and Bioinspired Technologies), University of Freiburg, Freiburg 79110, Germany
| |
Collapse
|
8
|
Sanchez-Vicente S, Tokarz R. Tick-Borne Co-Infections: Challenges in Molecular and Serologic Diagnoses. Pathogens 2023; 12:1371. [PMID: 38003835 PMCID: PMC10674443 DOI: 10.3390/pathogens12111371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Co-infections are a poorly understood aspect of tick-borne diseases. In the United States alone, nineteen different tick-borne pathogens have been identified. The majority of these agents are transmitted by only two tick species, Ixodes scapularis and Amblyomma americanum. Surveillance studies have demonstrated the presence of multiple pathogens in individual ticks suggesting a risk of polymicrobial transmission to humans. However, relatively few studies have explored this relationship and its impact on human disease. One of the key factors for this deficiency are the intrinsic limitations associated with molecular and serologic assays employed for the diagnosis of tick-borne diseases. Limitations in the sensitivity, specificity and most importantly, the capacity for inclusion of multiple agents within a single assay represent the primary challenges for the accurate detection of polymicrobial tick-borne infections. This review will focus on outlining these limitations and discuss potential solutions for the enhanced diagnosis of tick-borne co-infections.
Collapse
Affiliation(s)
- Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Lyme borreliosis diagnosis: state of the art of improvements and innovations. BMC Microbiol 2023; 23:204. [PMID: 37528399 PMCID: PMC10392007 DOI: 10.1186/s12866-023-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
With almost 700 000 estimated cases each year in the United States and Europe, Lyme borreliosis (LB), also called Lyme disease, is the most common tick-borne illness in the world. Transmitted by ticks of the genus Ixodes and caused by bacteria Borrelia burgdorferi sensu lato, LB occurs with various symptoms, such as erythema migrans, which is characteristic, whereas others involve blurred clinical features such as fatigue, headaches, arthralgia, and myalgia. The diagnosis of Lyme borreliosis, based on a standard two-tiered serology, is the subject of many debates and controversies, since it relies on an indirect approach which suffers from a low sensitivity depending on the stage of the disease. Above all, early detection of the disease raises some issues. Inappropriate diagnosis of Lyme borreliosis leads to therapeutic wandering, inducing potential chronic infection with a strong antibody response that fails to clear the infection. Early and proper detection of Lyme disease is essential to propose an adequate treatment to patients and avoid the persistence of the pathogen. This review presents the available tests, with an emphasis on the improvements of the current diagnosis, the innovative methods and ideas which, ultimately, will allow more precise detection of LB.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marc Shawky
- Connaissance Organisation Et Systèmes TECHniques (COSTECH), EA 2223, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Ahed Zedan
- Polyclinique Saint Côme, 7 Rue Jean Jacques Bernard, 60204, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|
10
|
Myszkowska-Torz A, Frydrychowicz M, Tomaszewski M, Figlerowicz M, Mania A, Mazur-Melewska K. Neuroborreliosis and Post-Treatment Lyme Disease Syndrome: Focus on Children. Life (Basel) 2023; 13:900. [PMID: 37109429 PMCID: PMC10145507 DOI: 10.3390/life13040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Neuroborreliosis is a form of Lyme Borreliosis (LB) that affects various structures of the central and peripheral nervous system. Although most cases of LB can be cured with a course of antibiotics, some children can present prolonged symptoms, which may constitute post-treatment Lyme disease syndrome (PTLDS). The aim of our analysis was the long-term observation of children with NB and the determination of their risk of PTLDS. The clinical observation was supplemented by a laboratory study based on the assessment of the dynamics of anti-VlsE (variable major protein-like sequence, expressed) IgG antibodies in children with NB after antibiotic therapy. The prospective survey based on 40 children presented 1-2 forms of NB. The control group consisted of 36 patients with analogical symptoms for whom LB was excluded. Our long-term observation showed a low risk of developing long-term complications in children who received antibiotic therapy in accordance with the recommendations. The concentration of anti-VlsE IgG demonstrates a statistical significance for differences between the control and the study groups for each measurement period. Higher values of anti-VlsE IgG were observed in the study group, and the concentration decreased from the first measurement period to the next. The article emphasizes the importance of the long-term follow-up of children with neuroborreliosis.
Collapse
Affiliation(s)
- Agnieszka Myszkowska-Torz
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences in Poznań, 61-701 Poznań, Poland
| | - Magdalena Frydrychowicz
- Department of Immunology, Karol Marcinkowski University of Medical Sciences in Poznan, 61-701 Poznań, Poland
| | - Mateusz Tomaszewski
- Department of Orthodontics and Temporomandibular Disorders, Karol Marcinkowski University of Medical Sciences in Poznań, 61-701 Poznań, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences in Poznań, 61-701 Poznań, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences in Poznań, 61-701 Poznań, Poland
| | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Karol Marcinkowski University of Medical Sciences in Poznań, 61-701 Poznań, Poland
| |
Collapse
|
11
|
Delaney SL, Murray LA, Fallon BA. Neuropsychiatric Symptoms and Tick-Borne Diseases. Curr Top Behav Neurosci 2023; 61:279-302. [PMID: 36512289 DOI: 10.1007/7854_2022_406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In North America, Lyme disease (LD) is primarily caused by the spirochetal bacterium Borrelia burgdorferi, transmitted to humans by Ixodes species tick bites, at an estimated rate of 476,000 patients diagnosed per year. Acute LD often manifests with flu-like symptoms and an expanding rash known as erythema migrans (EM) and less often with neurologic, neuropsychiatric, arthritic, or cardiac features. Most acute cases of Lyme disease are effectively treated with antibiotics, but 10-20% of individuals may experience recurrent or persistent symptoms. This chapter focuses on the neuropsychiatric aspects of Lyme disease, as these are less widely recognized by physicians and often overlooked. Broader education about the potential complexity, severity, and diverse manifestations of tick-borne diseases is needed.
Collapse
Affiliation(s)
- Shannon L Delaney
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA.
| | - Lilly A Murray
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| | - Brian A Fallon
- Lyme and Tick-Borne Diseases Research Center at Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Li L, Di L, Akther S, Zeglis BM, Qiu W. Evolution of the vls Antigenic Variability Locus of the Lyme Disease Pathogen and Development of Recombinant Monoclonal Antibodies Targeting Conserved VlsE Epitopes. Microbiol Spectr 2022; 10:e0174322. [PMID: 36150043 PMCID: PMC9604149 DOI: 10.1128/spectrum.01743-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023] Open
Abstract
VlsE (variable major protein-like sequence, expressed) is an outer surface protein of the Lyme disease pathogen (Borreliella species) responsible for its within-host antigenic variation and a key diagnostic biomarker of Lyme disease. However, the high sequence variability of VlsE poses a challenge to the development of consistent VlsE-based diagnostics and therapeutics. In addition, the standard diagnostic protocols detect immunoglobins elicited by the Lyme pathogen, not the presence of the pathogen or its derived antigens. Here, we described the development of recombinant monoclonal antibodies (rMAbs) that bound specifically to conserved epitopes on VlsE. We first quantified amino-acid sequence variability encoded by the vls genes from 13 B. burgdorferi genomes by evolutionary analyses. We showed broad inconsistencies of the sequence phylogeny with the genome phylogeny, indicating rapid gene duplications, losses, and recombination at the vls locus. To identify conserved epitopes, we synthesized peptides representing five long conserved invariant regions (IRs) on VlsE. We tested the antigenicity of these five IR peptides using sera from three mammalian host species including human patients, the natural reservoir white-footed mouse (Peromyscus leucopus), and VlsE-immunized New Zealand rabbits (Oryctolagus cuniculus). The IR4 and IR6 peptides emerged as the most antigenic and reacted strongly with both the human and rabbit sera, while all IR peptides reacted poorly with sera from natural hosts. Four rMAbs binding specifically to the IR4 and IR6 peptides were identified, cloned, and purified. Given their specific recognition of the conserved epitopes on VlsE, these IR-specific rMAbs are potential novel diagnostic and research agents for direct detection of Lyme disease pathogens regardless of strain heterogeneity. IMPORTANCE Current diagnostic protocols of Lyme disease indirectly detect the presence of antibodies produced by the patient upon infection by the bacterial pathogen, not the pathogen itself. These diagnostic tests tend to underestimate early-stage bacterial infections before the patients develop robust immune responses. Further, the indirect tests do not distinguish between active or past infections by the Lyme disease bacteria in a patient sample. Here, we described novel monoclonal antibodies that have the potential to become the basis of direct and definitive diagnostic detection of the Lyme disease pathogen, regardless of its genetic heterogeneity.
Collapse
Affiliation(s)
- Li Li
- Graduate Center, City University of New York, New York, New York, USA
| | - Lia Di
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Saymon Akther
- Graduate Center, City University of New York, New York, New York, USA
| | - Brian M. Zeglis
- Graduate Center, City University of New York, New York, New York, USA
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weigang Qiu
- Graduate Center, City University of New York, New York, New York, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
13
|
Nour SI, Shabtaie SA, DeSimone CV. 46-Year-Old Man With Presyncope and Rash. Mayo Clin Proc 2022; 97:1942-1946. [PMID: 36202500 DOI: 10.1016/j.mayocp.2022.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Shirin I Nour
- Resident in Internal Medicine, Fellow in Cardiovascular Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN
| | - Samuel A Shabtaie
- Resident in Internal Medicine, Fellow in Cardiovascular Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN
| | - Christopher V DeSimone
- Advisor to resident and fellow and Consultant in Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
14
|
Garcia-Vozmediano A, De Meneghi D, Sprong H, Portillo A, Oteo JA, Tomassone L. A One Health Evaluation of the Surveillance Systems on Tick-Borne Diseases in the Netherlands, Spain and Italy. Vet Sci 2022; 9:vetsci9090504. [PMID: 36136720 PMCID: PMC9501221 DOI: 10.3390/vetsci9090504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Ixodid ticks and tick-borne diseases are expanding their geographical range, but surveillance activities vary among countries. We analysed the surveillance systems in place in the Netherlands, Spain and Italy, to identify ideal elements to monitor tick-borne diseases, by using a One Health evaluation protocol. We identified differences among the three surveillance systems, with the Dutch initiative showing a high level of transdisciplinary collaboration, good identification of the actors and engagement of the public in research and education. Measurable outcomes have been generated, such as the reduction in tick bites and the discovery of new pathogens and tick species. In Italy and Spain, surveillance systems are based on compulsory notification to health authorities; legislation seems relevant but law enforcement alongside the availability of economic resources is rather fragmented and limited to the most severe diseases. The non-scientific community is marginally considered and collaborations are limited to local initiatives. Research activities in both countries have mostly contributed to gaining knowledge on the distribution of tick species and the discovery of new pathogens. Although all TBD surveillance plans comply with the EU regulations, the initiatives characterised by trans-disciplinary collaboration may be more effective for the surveillance and prevention of tick-transmitted diseases. Abstract To identify ideal elements for the monitoring and prevention of tick-borne diseases (TBD), we analysed the surveillance systems in place in the Netherlands, Spain and Italy. We applied a semi-quantitative evaluation to identify outcomes and assess the degree of One Health implementation. Differences emerged in the surveillance initiatives, as well as the One Health scores. The Dutch surveillance is dominated by a high level of transdisciplinary and trans-sectoral collaboration, enabling communication and data sharing among actors. Different project-based monitoring, research and educational activities are centrally coordinated and the non-scientific community is actively involved. All this yielded measurable health outcomes. In Italy and Spain, TBD surveillance and reporting systems are based on compulsory notification. Law enforcement, alongside dedicated time and availability of economic resources, is fragmented and limited to the most severe health issues. Veterinary and human medicine are the most involved disciplines, with the first prevailing in some contexts. Stakeholders are marginally considered and collaborations limited to local initiatives. Research activities have mostly contributed to gaining knowledge on the distribution of tick vectors and discovery of new pathogens. Although all TBD surveillance plans comply with EU regulations, initiatives characterised by transdisciplinary collaboration may be more effective for the surveillance and prevention of TBD.
Collapse
Affiliation(s)
- Aitor Garcia-Vozmediano
- Department of Veterinary Sciences, University of Turin, L. go Braccini, 2, 10095 Grugliasco, TO, Italy
- Correspondence:
| | - Daniele De Meneghi
- Department of Veterinary Sciences, University of Turin, L. go Braccini, 2, 10095 Grugliasco, TO, Italy
- Network for EcoHealth and One Health (NEOH), European Chapter of Ecohealth International, Kreuzstrasse 2, P.O. Box, 4123 Allschwil, Switzerland
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3720 MA Bilthoven, The Netherlands
| | - Aránzazu Portillo
- Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), Department of Infectious Diseases, San Pedro University Hospital-Center for Biomedical Research of La Rioja (CIBIR), Calle Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - José A. Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), Department of Infectious Diseases, San Pedro University Hospital-Center for Biomedical Research of La Rioja (CIBIR), Calle Piqueras 98, 26006 Logroño, La Rioja, Spain
| | - Laura Tomassone
- Department of Veterinary Sciences, University of Turin, L. go Braccini, 2, 10095 Grugliasco, TO, Italy
- Network for EcoHealth and One Health (NEOH), European Chapter of Ecohealth International, Kreuzstrasse 2, P.O. Box, 4123 Allschwil, Switzerland
| |
Collapse
|
15
|
Socarras KM, Haslund-Gourley BS, Cramer NA, Comunale MA, Marconi RT, Ehrlich GD. Large-Scale Sequencing of Borreliaceae for the Construction of Pan-Genomic-Based Diagnostics. Genes (Basel) 2022; 13:1604. [PMID: 36140772 PMCID: PMC9498496 DOI: 10.3390/genes13091604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
The acceleration of climate change has been associated with an alarming increase in the prevalence and geographic range of tick-borne diseases (TBD), many of which have severe and long-lasting effects-particularly when treatment is delayed principally due to inadequate diagnostics and lack of physician suspicion. Moreover, there is a paucity of treatment options for many TBDs that are complicated by diagnostic limitations for correctly identifying the offending pathogens. This review will focus on the biology, disease pathology, and detection methodologies used for the Borreliaceae family which includes the Lyme disease agent Borreliella burgdorferi. Previous work revealed that Borreliaceae genomes differ from most bacteria in that they are composed of large numbers of replicons, both linear and circular, with the main chromosome being the linear with telomeric-like termini. While these findings are novel, additional gene-specific analyses of each class of these multiple replicons are needed to better understand their respective roles in metabolism and pathogenesis of these enigmatic spirochetes. Historically, such studies were challenging due to a dearth of both analytic tools and a sufficient number of high-fidelity genomes among the various taxa within this family as a whole to provide for discriminative and functional genomic studies. Recent advances in long-read whole-genome sequencing, comparative genomics, and machine-learning have provided the tools to better understand the fundamental biology and phylogeny of these genomically-complex pathogens while also providing the data for the development of improved diagnostics and therapeutics.
Collapse
Affiliation(s)
- Kayla M. Socarras
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Benjamin S. Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Garth D. Ehrlich
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, 1112 East Clay Street, Room 101 Health Sciences Research Building, Richmond, VA 23298, USA
- Center for Surgical Infections and Biofilms, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
16
|
Haslund-Gourley BS, Grauzam S, Mehta AS, Wigdahl B, Comunale MA. Acute lyme disease IgG N-linked glycans contrast the canonical inflammatory signature. Front Immunol 2022; 13:949118. [PMID: 35990620 PMCID: PMC9389449 DOI: 10.3389/fimmu.2022.949118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022] Open
Abstract
Lyme disease (LD) infection is caused by Borrelia burgdorferi sensu lato (Bb). Due to the limited presence of this pathogen in the bloodstream in humans, diagnosis of LD relies on seroconversion. Immunoglobulins produced in response to infection are differentially glycosylated to promote or inhibit downstream inflammatory responses by the immune system. Immunoglobulin G (IgG) N-glycan responses to LD have not been characterized. In this study, we analyzed IgG N-glycans from cohorts of healthy controls, acute LD patient serum, and serum collected after acute LD patients completed a 2- to 3-week course of antibiotics and convalesced for 70-90 days. Results indicate that during the acute phase of Bb infection, IgG shifts its glycosylation profile to include structures that are not associated with the classic proinflammatory IgG N-glycan signature. This unexpected result is in direct contrast to what is reported for other inflammatory diseases. Furthermore, IgG N-glycans detected during acute LD infection discriminated between control, acute, and treated cohorts with a sensitivity of 75-100% and specificity of 94.7-100%.
Collapse
Affiliation(s)
- Benjamin Samuel Haslund-Gourley
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Stéphane Grauzam
- GlycoPath, LLC Charleston, SC, United States
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Anand S. Mehta
- GlycoPath, LLC Charleston, SC, United States
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mary Ann Comunale
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- *Correspondence: Mary Ann Comunale,
| |
Collapse
|
17
|
Alcon-Chino MET, De-Simone SG. Recent Advances in the Immunologic Method Applied to Tick-Borne Diseases in Brazil. Pathogens 2022; 11:pathogens11080870. [PMID: 36014992 PMCID: PMC9414916 DOI: 10.3390/pathogens11080870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Zoonotic-origin infectious diseases are one of the major concerns of human and veterinary health systems. Ticks, as vectors of several zoonotic diseases, are ranked second only to mosquitoes as vectors. Many ticks’ transmitted infections are still endemic in the Americas, Europe, and Africa and represent approximately 17% of their infectious diseases population. Although our scientific capacity to identify and diagnose diseases is increasing, it remains a challenge in the case of tick-borne conditions. For example, in 2017, 160 cases of the Brazilian Spotted Fever (BSF, a tick-borne illness) were confirmed, alarming the notifiable diseases information system. Conversely, Brazilian borreliosis and ehrlichiosis do not require notification. Still, an increasing number of cases in humans and dogs have been reported in southeast and northeastern Brazil. Immunological methods applied to human and dog tick-borne diseases (TBD) show low sensitivity and specificity, cross-reactions, and false IgM positivity. Thus, the diagnosis and management of TBD are hampered by the personal tools and indirect markers used. Therefore, specific and rapid methods urgently need to be developed to diagnose the various types of tick-borne bacterial diseases. This review presents a brief historical perspective on the evolution of serological assays and recent advances in diagnostic tests for TBD (ehrlichiosis, BSF, and borreliosis) in humans and dogs, mainly applied in Brazil. Additionally, this review covers the emerging technologies available in diagnosing TBD, including biosensors, and discusses their potential for future use as gold standards in diagnosing these diseases.
Collapse
Affiliation(s)
- Mônica E. T. Alcon-Chino
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| | - Salvatore G. De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Post-Graduation Program in Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
- Laboratory of Epidemiology and Molecular Systematics, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: ; Tel.: +55-21-38658183
| |
Collapse
|
18
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
19
|
Streamlining the Diagnosis of Atypical Facial Palsies: A 5-year Review of 805 Patients. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4087. [PMID: 35169520 PMCID: PMC8830815 DOI: 10.1097/gox.0000000000004087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
|
20
|
Brem CE, Goldberg LJ. Early Erythema Migrans: Do Not Count on Plasma Cells. Am J Dermatopathol 2022; 44:e23-e25. [PMID: 35076434 DOI: 10.1097/dad.0000000000002058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Three hundred thousand new cases of Lyme disease are diagnosed annually in the United States. The earliest manifestation of the disease, erythema migrans, occurs earlier than serologic conversion, and skin biopsies can be very helpful in suggesting the diagnosis. Histopathologic findings vary depending on where in the lesion the specimen is taken, but typically consist of a superficial and deep perivascular and interstitial lymphocytic infiltrate with eosinophils centrally and with histiocytes and plasma cells at the periphery. Rare cases with interstitial histiocytes and rare-to-sparse plasma cells exist. We present a 67-year-old man whose skin biopsy, taken on day 2 of his eruption, demonstrated a subtle perivascular and interstitial infiltrate of histiocytes without plasma cells. Dermatopathologists need to be aware of this pattern and consider the diagnosis of erythema migrans, despite negative initial serologic testing.
Collapse
Affiliation(s)
- Candice E Brem
- Section of Dermatopathology, Department of Dermatology, Boston University School of Medicine, Boston, MA
| | | |
Collapse
|
21
|
Devchand R, Koehler L, Hook S, Marx GE, Hooks H, Schwartz A, Hinckley A. Understanding consumer and clinician perceptions of a potential Lyme disease vaccine. HEALTH EDUCATION RESEARCH 2022; 36:494-504. [PMID: 34529775 PMCID: PMC10911045 DOI: 10.1093/her/cyab032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Each year, over 450 000 Lyme disease diagnoses are estimated to occur in the United States, and current preventive measures have been insufficient to stem the rising incidence. An effective human Lyme disease vaccine could be a powerful intervention for population-level impact. In advance of new Lyme disease vaccines coming to market, this study explored barriers to acceptability and motivations for the uptake of a new Lyme disease vaccine. Researchers conducted 9 online focus groups among consumers who may potentially benefit from the vaccine and 30 in-depth interviews among clinician groups who may provide the vaccine. All participants were recruited from three US regions of high Lyme disease incidence. Researchers found that participants shared common motivators to either recommend (clinicians) or accept (consumers) a Lyme disease vaccine, largely driven by perceived benefits of the vaccine, the lack of current effective preventive measures and a greater peace of mind. The concern about the challenges associated with diagnosing and treating Lyme disease is a primary motivator for clinicians to recommend the vaccine, while the concern about getting Lyme disease is a primary motivator for consumers to desire the vaccine.
Collapse
Affiliation(s)
| | - Laura Koehler
- Hager Sharp, 1030 15th Street NW, Washington, DC 20005, USA
| | - Sarah Hook
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD), 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Grace E. Marx
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD), 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Holley Hooks
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD), 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Amy Schwartz
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD), 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Alison Hinckley
- Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD), 3156 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|
22
|
Jernigan DA, Hart MC, Dodd KK, Jameson S, Farney T. Induced Native Phage Therapy for the Treatment of Lyme Disease and Relapsing Fever: A Retrospective Review of First 14 Months in One Clinic. Cureus 2021; 13:e20014. [PMID: 34873551 PMCID: PMC8636187 DOI: 10.7759/cureus.20014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 11/26/2022] Open
Abstract
The overall failure rate of standard therapeutic options for late/chronic/persistent borreliosis emphasizes the need for novel therapeutic strategies. In this report, we are presenting a novel therapeutic option based on a new technology, Induced Native Phage Therapy (INPT; PhagenCorp, LLC, Sarasota, FL), and its ability to facilitate the elimination of infection more rapidly, efficiently, and with less harm to the patient than conventional treatments. Borrelia species in the environment are themselves always infected by their own type of Borrelia bacteriophages. Both the Borrelia spirochete and the Borrelia bacteriophages are transmitted into humans via the bite of a vector, such as ticks. The Borrelia bacteriophages (phages) are called native phages in that they coexist naturally within the human body, and only infect the specific bacteria host population. Native phages persist in humans only as long as there are host bacteria of the correct type to continue replicating more phages. The purposeful manipulation of native phages to kill their host bacteria is the basis of INPT. INPT is a patent-pending technology that uses a proprietary adjunctive assay called Biospectral Emission Sequencing to identify and isolate the specific complex electromagnetic signatures necessary to induce the native phages to epigenetically revert from their normal quiescent, lysogenic activity to virulent, lytic activity, thereby killing their host bacteria. The strategic subtle, low-frequency/low-energy signatures are imprinted into a proprietary oral formula, Inducen-LD, which serves as a carrier to introduce the signals therapeutically into the body. As a proof-of-concept method validation, a total of 26 patients with post-treatment (antibiotic) Lyme disease syndrome, who initially were found upon Phelix Borrelia-phage testing (R.E.D. Laboratories, Belgium) to have one or more Borrelia species, were submitted to INPT treatment. A total of 20 patients (77%) were found to be negative after two weeks of the total program of care. Six patients who remained positive after the initial therapy received an extended INPT treatment and were retested. Four were subsequently found to be negative for one or more of their previously diagnosed Borrelia strains. Thus a total of 24 out of 26 (92%) patients were successfully treated with INPT. Mild to substantial clinical improvements were reported by all participants without noticeable adverse reactions to the INPT treatments. We have demonstrated a possible mechanism in which native bacteriophages can be induced to epigenetically switch from lysogenic to lytic actions, thereby eliminating the targeted bacteria efficiently, with little to no harm to tissues or the microbiome.
Collapse
Affiliation(s)
- David A Jernigan
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Martin C Hart
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Keeley K Dodd
- Research and Development, PhagenCorp, LLC, Sarasota, USA
| | - Samuel Jameson
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| | - Todd Farney
- Biological Medicine, Biologix Center for Optimum Health, Franklin, USA
| |
Collapse
|
23
|
Jung E, Romero R, Yoon BH, Theis KR, Gudicha DW, Tarca AL, Diaz-Primera R, Winters AD, Gomez-Lopez N, Yeo L, Hsu CD. Bacteria in the amniotic fluid without inflammation: early colonization vs. contamination. J Perinat Med 2021; 49:1103-1121. [PMID: 34229367 PMCID: PMC8570988 DOI: 10.1515/jpm-2021-0191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Intra-amniotic infection, defined by the presence of microorganisms in the amniotic cavity, is often accompanied by intra-amniotic inflammation. Occasionally, laboratories report the growth of bacteria or the presence of microbial nucleic acids in amniotic fluid in the absence of intra-amniotic inflammation. This study was conducted to determine the clinical significance of the presence of bacteria in amniotic fluid samples in the absence of intra-amniotic inflammation. METHODS A retrospective cross-sectional study included 360 patients with preterm labor and intact membranes who underwent transabdominal amniocentesis for evaluation of the microbial state of the amniotic cavity as well as intra-amniotic inflammation. Cultivation techniques were used to isolate microorganisms, and broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) was utilized to detect the nucleic acids of bacteria, viruses, and fungi. RESULTS Patients whose amniotic fluid samples evinced microorganisms but did not indicate inflammation had a similar perinatal outcome to those without microorganisms or inflammation [amniocentesis-to-delivery interval (p=0.31), spontaneous preterm birth before 34 weeks (p=0.83), acute placental inflammatory lesions (p=1), and composite neonatal morbidity (p=0.8)]. CONCLUSIONS The isolation of microorganisms from a sample of amniotic fluid in the absence of intra-amniotic inflammation is indicative of a benign condition, which most likely represents contamination of the specimen during the collection procedure or laboratory processing rather than early colonization or infection.
Collapse
Affiliation(s)
- Eunjung Jung
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, Michigan, USA,Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA,Detroit Medical Center, Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, USA
| | - Bo Hyun Yoon
- BioMedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kevin R. Theis
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W. Gudicha
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Computer Science, College of Engineering, Wayne State University, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D. Winters
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Lami Yeo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
24
|
Kopsco HL, Duhaime RJ, Mather TN. Crowdsourced Tick Image-Informed Updates to U.S. County Records of Three Medically Important Tick Species. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2412-2424. [PMID: 33973636 DOI: 10.1093/jme/tjab082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Burgeoning cases of tick-borne disease present a significant public health problem in the United States. Passive tick surveillance gained traction as an effective way to collect epidemiologic data, and in particular, photograph-based tick surveillance can complement in-hand tick specimen identification to amass distribution data and related encounter demographics. We compared the Federal Information Processing Standards (FIPS) code of tick photos submitted to a free public identification service (TickSpotters) from 2014 to 2019 to published nationwide county reports for three tick species of medical concern: Ixodes scapularis Say (Ixodida: Ixodidae), Ixodes pacificus Cooley and Kohls (Ixodida: Ixodidae), and Amblyomma americanum Linneaus (Ixodida: Ixodidae). We tallied the number of TickSpotters submissions for each tick species according to "Reported" or "Established" criteria per county, and found that TickSpotters submissions represented more than half of the reported counties of documented occurrence, and potentially identified hundreds of new counties with the occurrence of these species. We detected the largest number of new county reports of I. scapularis presence in Michigan, North Carolina, and Texas. Tick image submissions revealed potentially nine new counties of occurrence for I. pacificus, and we documented the largest increase in new county reports of A. americanum in Kentucky, Illinois, Indiana, and Ohio. These findings demonstrate the utility of crowdsourced photograph-based tick surveillance as a complement to other tick surveillance strategies in documenting tick distributions on a nationwide scale, its potential for identifying new foci, and its ability to highlight at-risk localities that might benefit from tick-bite prevention education.
Collapse
Affiliation(s)
- Heather L Kopsco
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI, USA
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI, USA
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Roland J Duhaime
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI, USA
- Environmental Data Center, University of Rhode Island, Kingston, RI, USA
| | - Thomas N Mather
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI, USA
- TickEncounter Resource Center, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
25
|
Auwaerter PG, Kobayashi T, Wormser GP. Guidelines for Lyme Disease Are Updated. Am J Med 2021; 134:1314-1316. [PMID: 34352248 DOI: 10.1016/j.amjmed.2021.06.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Paul G Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Disease, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Takaaki Kobayashi
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY
| |
Collapse
|
26
|
Stappers S, Ceuleers B, Van Brusselen D, Willems P, de Tavernier B, Verlinden A. A case of multisystem inflammatory syndrome (MIS-A) in an adult woman 18 days after COVID-19 vaccination. Acta Clin Belg 2021; 77:772-777. [PMID: 34511054 DOI: 10.1080/17843286.2021.1977899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We discuss a case of a young woman, presenting a constellation of clinical and biochemical features meeting the current case definition of multisystem inflammatory syndrome in adults (MIS-A), 18 days after receiving her first dose of the Oxford/AstraZeneca vaccine. Therapy by means of intravenous immunoglobulins was initiated, leading to clinical and biochemical recovery. Although a relationship between MIS-A and the preceding vaccination cannot be confirmed, it can also not be excluded, given the temporal association and the fact that there were no indicators of a preceding SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sofie Stappers
- Department of Internal Medicine, Gza Hospitals, Antwerp, Belgium
| | - Britt Ceuleers
- Department of Internal Medicine, Gza Hospitals, Antwerp, Belgium
| | - Daan Van Brusselen
- Department of Paediatrics, Gza Hospitals, Antwerp, Belgium
- Multidisciplinary Unit of Infectious Diseases, Gza Hospitals, Antwerp, Belgium
| | - Philippe Willems
- Multidisciplinary Unit of Infectious Diseases, Gza Hospitals, Antwerp, Belgium
- Department of Microbiology, Gza Hospitals, Antwerp, Belgium
| | | | - Anke Verlinden
- Department of Haematology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
27
|
Sosa JP, Ferreira Caceres MM, Agadi K, Pandav K, Mehendale M, Mehta JM, Go CC, Matos WF, Guntipalli P, Belizaire MPE. Diseases Transmitted by the Black-Legged Ticks in the United States: A Comprehensive Review of the Literature. Cureus 2021; 13:e17526. [PMID: 34471586 PMCID: PMC8403000 DOI: 10.7759/cureus.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/05/2022] Open
Abstract
The black-legged tick is endemic to the midwestern, northeastern, western, south-eastern, and southern regions of the United States. There has been an increased burden of black-legged ticks in humans in recent years. COVID-19 pandemic has further heightened this burden. We thereby reviewed the literature to discuss the seasonality, infections, and clinical spectrum of diseases transmitted by the black-legged ticks. We also discuss the reported delay in the diagnosis of these diseases during the pandemic situation, the alpha-gal syndrome, the importance of prompt diagnosis, and early medical intervention with an aim to increase awareness of the black-legged tick-borne diseases.
Collapse
Affiliation(s)
- Juan P Sosa
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | | | - Kuchalambal Agadi
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Krunal Pandav
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Meghana Mehendale
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Jayati M Mehta
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | | | | | - Prathima Guntipalli
- Division of Research & Academic Affairs, Larkin Community Hospital, South Miami, USA
| | | |
Collapse
|
28
|
Development of a capture sequencing assay for enhanced detection and genotyping of tick-borne pathogens. Sci Rep 2021; 11:12384. [PMID: 34117323 PMCID: PMC8196166 DOI: 10.1038/s41598-021-91956-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Inadequate sensitivity has been the primary limitation for implementing high-throughput sequencing for studies of tick-borne agents. Here we describe the development of TBDCapSeq, a sequencing assay that uses hybridization capture probes that cover the complete genomes of the eleven most common tick-borne agents found in the United States. The probes are used for solution-based capture and enrichment of pathogen nucleic acid followed by high-throughput sequencing. We evaluated the performance of TBDCapSeq to surveil samples that included human whole blood, mouse tissues, and field-collected ticks. For Borrelia burgdorferi and Babesia microti, the sensitivity of TBDCapSeq was comparable and occasionally exceeded the performance of agent-specific quantitative PCR and resulted in 25 to > 10,000-fold increase in pathogen reads when compared to standard unbiased sequencing. TBDCapSeq also enabled genome analyses directly within vertebrate and tick hosts. The implementation of TBDCapSeq could have major impact in studies of tick-borne pathogens by improving detection and facilitating genomic research that was previously unachievable with standard sequencing approaches.
Collapse
|
29
|
Hove PR, Magunda F, de Mello Marques MA, Islam MN, Harton MR, Jackson M, Belisle JT. Identification and functional analysis of a galactosyltransferase capable of cholesterol glycolipid formation in the Lyme disease spirochete Borrelia burgdorferi. PLoS One 2021; 16:e0252214. [PMID: 34061884 PMCID: PMC8168883 DOI: 10.1371/journal.pone.0252214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/11/2021] [Indexed: 01/22/2023] Open
Abstract
Borrelia burgdorferi (Bb), the etiological agent of Lyme disease, produces a series of simple glycolipids where diacylglycerol and cholesterol serve as the precursor. The cholesterol-based glycolipids, cholesteryl 6-O-acyl-β-D-galactopyranoside (ACGal) and cholesteryl-β-D-galactopyranoside (CGal) are immunogenic and proposed to contribute to the pathogenesis of Lyme disease. Detailed studies of CGal and ACGal in Bb have been hampered by a lack of knowledge of their underlying biosynthetic processes. The genome of Bb encodes four putative glycosyltransferases, and only one of these, BB0572, was predicted to be an inverting family 2 glycosyltransferase (GT2 enzyme) capable of using UDP-galactose as a substrate and forming a β-glycosidic bond. Comparison of the 42 kDa BB0572 amino acid sequence from Bb with other Borrelia spp demonstrates that this protein is highly conserved. To establish BB0572 as the galactosyltransferase capable of cholesterol glycolipid formation in Bb, the protein was produced as a recombinant product in Escherichia coli and tested in a cell-free assay with 14C-cholesterol and UDP-galactose as the substrates. This experiment resulted in a radiolabeled lipid that migrated with the cholesterol glycolipid standard of CGal when evaluated by thin layer chromatography. Additionally, mutation in the predicted active site of BB0572 resulted in a recombinant protein that was unable to catalyze the formation of the cholesterol glycolipid. These data characterize BB0572 as a putative cholesterol galactosyltransferase. This provides the first step in understanding how Bb cholesterol glycolipids are formed and will allow investigations into their involvement in pathogen transmission and disease development.
Collapse
Affiliation(s)
- Petronella R. Hove
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Forgivemore Magunda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Maria Angela de Mello Marques
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - M. Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Marisa R. Harton
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, United States of America
| |
Collapse
|
30
|
Pradelli L, Pinciroli M, Houshmand H, Grassi B, Bonelli F, Calleri M, Ruscio M. Comparative Cost and Effectiveness of a New Algorithm for Early Lyme Disease Diagnosis: Evaluation in US, Germany, and Italy. CLINICOECONOMICS AND OUTCOMES RESEARCH 2021; 13:437-451. [PMID: 34079307 PMCID: PMC8165099 DOI: 10.2147/ceor.s306391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This Lyme disease early detection economic model, for patients with suspected Lyme disease without erythema migrans (EM), compares outcomes of standard two-tier testing (sTTT), modified two-tier testing (mTTT) and the DiaSorin Lyme Detection Algorithm (LDA), a combination of both serology tests and Interferon-ɤ Release Assay. Patients and Methods A patient-level simulation model was built to incorporate effectiveness estimation from a structured focused literature review, and health-care cost inputs for the United States, Germany, and Italy. Simulated clinical outcomes were 1) percent of patients with timely and correct diagnosis, 2) patients appropriately treated and exposed to antibiotics therapy, and 3) patients with late Lyme disease manifestations. Expected health outcomes were expressed in terms of differences in quality-adjusted life years (QALYs) due to disseminated Lyme disease and persisting symptoms, and economic outcomes were analyzed from a third-party payer perspective. Results The DiaSorin LDA resulted in a better sensitivity compared to sTTT and mTTT, 84% vs 49% and 45%, respectively, in the base case (13% of infected patients in the tested population). Due to the improved diagnostic performance, the LDA-based strategy is expected to be more effective, providing mean incremental 0.024 QALYs per tested patient, or 0.19 per infected patient. Furthermore, from a third-party payer perspective, the adoption of the LDA-based strategy would reduce the expected health-care cost for suspected and confirmed Lyme disease by roughly 40%, ie about $410, €130, and €170 per tested patient in the United States, Germany, and Italy, respectively, compared to sTTT. The results are most sensitive to the infection rate in the tested population, with LDA maintaining a cost advantage for Lyme disease active infection rates ≥0.8-2.5%. Conclusion LDA early diagnostic testing and subsequent treatment of subjects with early Lyme disease without EM are expected to outperform traditional management strategies both clinically and economically in the US, Germany, and Italy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maurizio Ruscio
- Division of Laboratory Medicine, University Hospital Giuliano Isontina (ASU GI), Trieste, Italy
| |
Collapse
|
31
|
Kopsco HL, Duhaime RJ, Mather TN. Assessing Public Tick Identification Ability and Tick Bite Riskiness Using Passive Photograph-Based Crowdsourced Tick Surveillance. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:837-846. [PMID: 33146378 DOI: 10.1093/jme/tjaa196] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Tick identification is critical for assessing disease risk from a tick bite and for determining requisite treatment. Data from the University of Rhode Island's TickEncounter Resource Center's photo-based surveillance system, TickSpotters, indicate that users incorrectly identified their submitted specimen 83% of the time. Of the top four most commonly submitted tick species, western blacklegged ticks (Ixodes pacificus Cooley & Kohls [Ixodida: Ixodidae]) had the largest proportion of unidentified or misidentified submissions (87.7% incorrectly identified to species), followed by lone star ticks (Amblyomma americanum Linneaus [Ixodida: Ixodidae]; 86.8% incorrect), American dog ticks (Dermacentor variabilis Say [Ixodida: Ixodidae]; 80.7% incorrect), and blacklegged ticks (Ixodes scapularis Say [Ixodida: Ixodidae]; 77.1% incorrect). More than one quarter of participants (26.3%) submitted photographs of ticks that had been feeding for at least 2.5 d, suggesting heightened risk. Logistic regression generalized linear models suggested that participants were significantly more likely to misidentify nymph-stage ticks than adult ticks (odds ratio [OR] = 0.40, 95% confidence interval [CI]: 0.23, 0.68, P < 0.001). Ticks reported on pets were more likely to be identified correctly than those found on humans (OR = 1.07, 95% CI: 1.01-2.04, P < 0.001), and ticks feeding for 2.5 d or longer were more likely to be misidentified than those having fed for one day or less (OR = 0.43, 95% CI: 0.29-0.65, P < 0.001). State and region of residence and season of submission did not contribute significantly to the optimal model. These findings provide targets for future educational efforts and underscore the value of photograph-based tick surveillance to elucidate these knowledge gaps.
Collapse
Affiliation(s)
- Heather L Kopsco
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI
- URI TickEncounter Resource Center, University of Rhode Island, Kingston, RI
| | - Roland J Duhaime
- URI TickEncounter Resource Center, University of Rhode Island, Kingston, RI
- Environmental Data Center, University of Rhode Island, Kingston, RI
| | - Thomas N Mather
- Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI
- URI TickEncounter Resource Center, University of Rhode Island, Kingston, RI
| |
Collapse
|
32
|
Abstract
Lyme borreliosis is caused by a growing list of related, yet distinct, spirochetes with complex biology and sophisticated immune evasion mechanisms. It may result in a range of clinical manifestations involving different organ systems, and can lead to persistent sequelae in a subset of cases. The pathogenesis of Lyme borreliosis is incompletely understood, and laboratory diagnosis, the focus of this review, requires considerable understanding to interpret the results correctly. Direct detection of the infectious agent is usually not possible or practical, necessitating a continued reliance on serologic testing. Still, some important advances have been made in the area of diagnostics, and there are many promising ideas for future assay development. This review summarizes the state of the art in laboratory diagnostics for Lyme borreliosis, provides guidance in test selection and interpretation, and highlights future directions.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Lyme disease is an important, vector-borne infection found throughout the temperate Northern hemisphere. The disease causes rash, acute systemic illness, and in some untreated patients, inflammatory arthritis. This review examines the emergence, clinical features and management of early Lyme disease and Lyme arthritis. RECENT FINDINGS There has been continuing progress in characterizing the clinical manifestations, diagnostic testing and treatment of Lyme disease. Almost all patients with early Lyme disease can be cured with antibiotic treatment. In most cases, Lyme arthritis also responds to antibiotics, but some patients require additional treatment approaches. SUMMARY The diagnosis of Lyme disease is based on clinical manifestations and adjunctive laboratory testing. For the rheumatologist, Lyme arthritis should be recognized by a pattern of attacks of asymmetric, oligo-arthritis, recognizable by clinical manifestations in the same way that other rheumatic diseases, such as gout or rheumatoid arthritis, are diagnosed.
Collapse
|
34
|
Reifert J, Kamath K, Bozekowski J, Lis E, Horn EJ, Granger D, Theel ES, Shon J, Sawyer JR, Daugherty PS. Serum Epitope Repertoire Analysis Enables Early Detection of Lyme Disease with Improved Sensitivity in an Expandable Multiplex Format. J Clin Microbiol 2021; 59:e01836-20. [PMID: 33148704 PMCID: PMC8111119 DOI: 10.1128/jcm.01836-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
Widely employed diagnostic antibody serology for Lyme disease, known as standard two-tier testing (STTT), exhibits insufficient sensitivity in early Lyme disease, yielding many thousands of false-negative test results each year. Given this problem, we applied serum antibody repertoire analysis (SERA), or next-generation sequencing (NGS)-based serology, to discover IgG and IgM antibody epitope motifs capable of detecting Lyme disease-specific antibodies with high sensitivity and specificity. Iterative motif discovery and bioinformatic analysis of epitope repertoires from subjects with Lyme disease (n = 264) and controls (n = 391) yielded a set of 28 epitope motifs representing 20 distinct IgG antibody epitopes and a set of 38 epitope motifs representing 21 distinct IgM epitopes, which performed equivalently in a large validation cohort of STTT-positive samples. In a second validation set from subjects with clinically defined early Lyme disease (n = 119) and controls (n = 257), the SERA Lyme IgG and IgM assay exhibited significantly improved sensitivity relative to STTT (77% versus 62%; Z-test; P = 0.013) and improved specificity (99% versus 97%). Early Lyme disease subjects exhibited significantly fewer reactive epitopes (Mann-Whitney U test; P < 0.0001) relative to subjects with Lyme arthritis. Thus, SERA Lyme IgG and M panels provided increased accuracy in early Lyme disease in a readily expandable multiplex assay format.
Collapse
Affiliation(s)
| | | | | | - Ewa Lis
- Serimmune Inc., Goleta, California, USA
| | | | - Dane Granger
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester Minnesota, USA
| | - Elitza S Theel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester Minnesota, USA
| | - John Shon
- Serimmune Inc., Goleta, California, USA
| | | | | |
Collapse
|
35
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
36
|
Sellati TJ, Barberio DM. Mechanisms of Dysregulated Antibody Response in Lyme Disease. Front Cell Infect Microbiol 2020; 10:567252. [PMID: 33117728 PMCID: PMC7575734 DOI: 10.3389/fcimb.2020.567252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
|
37
|
Veinović G, Ćakić S, Mihaljica D, Sukara R, Tomanović S. Comparison of growth and morphology of Borrelia burgdorferi sensu lato in BSK-H and BSK-II media stored for prolonged periods. APMIS 2020; 128:552-557. [PMID: 32794590 DOI: 10.1111/apm.13069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 11/26/2022]
Abstract
Barbour-Stoenner-Kelly II (BSK-II) and BSK-H media were used for cultivation and isolation of fastidious Borrelia species - the causative agents of Lyme borreliosis. Culture media have a limited shelf life and require adequate storage. Our goal was to assess how the growth of Borrelia would be affected by prolonged storage of media and inadequate storage conditions (BSK-H stored at +4 °C for 2.5 years and BSK-II stored at -20 °C for 11 years). Growth of different Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae and Borrelia valaisiana strains was assessed during 2 weeks of incubation at 33 °C. Monitored parameters included cell count per mL, morphology and motility. The results of this study have shown weaker growth of borrelia strains in BSK-H at +4 °C (median final cell number of 1.5 × 106 /mL) than in BSK-II at -20 °C (median final cell number of 7.75 × 106 /mL) and in fresh BSK-H media (median final cell number of 8.95 × 106 /mL). Duration of storage of media had no impact on Borrelia morphology and motility. Our results indicate that temperature of -20 °C is optimal for long-term storage of medium, BSK-II stored for 11 years provided effective support to growth of Borrelia and may be employed for cultivation.
Collapse
Affiliation(s)
- Gorana Veinović
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Ćakić
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Darko Mihaljica
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ratko Sukara
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Snežana Tomanović
- Group for Medical Entomology, Centre of Excellence for Food and Vector Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
38
|
Kolb B, Riesterer L, Widenhorn AM, Bier L. Monitoring of Hydrogen Emission from Bacteria in Food, Animals and in the Blood of Humans Suffering from Lyme Disease by A Specific Hydrogen Sensor. Antibiotics (Basel) 2020; 9:antibiotics9070427. [PMID: 32708106 PMCID: PMC7400184 DOI: 10.3390/antibiotics9070427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
A novel straightforward analytical technique was developed to monitor the emission of hydrogen from anaerobic bacteria cultured in sealed headspace vials using a specific hydrogen sensor. The results were compared with headspace gas chromatography carried out in parallel. This technique was also applied to investigate the efficacy of chemical antibiotics and of natural compounds with antimicrobial properties. Antibiotics added to the sample cultures are apparently effective if the emission of hydrogen is suppressed, or if not, are either ineffective or the related bacteria are even resistant. The sensor approach was applied to prove bacterial contamination in food, animals, medical specimens and in ticks infected by Borrelia bacteria and their transfer to humans, thus causing Lyme disease. It is a unique advantage that the progress of an antibiotic therapy can be examined until the emission of hydrogen is finished. The described technique cannot identify the related bacteria but enables bacterial contamination by hydrogen emitting anaerobes to be recognized. The samples are incubated with the proper culture broth in closed septum vials which remain closed during the whole process. The personnel in the lab never come into contact with pathogens and thus safety regulations are guaranteed.
Collapse
|
39
|
Strizova Z, Smrz D, Bartunkova J. Seroprevalence of Borrelia IgM and IgG Antibodies in Healthy Individuals: A Caution Against Serology Misinterpretations and Unnecessary Antibiotic Treatments. Vector Borne Zoonotic Dis 2020; 20:800-802. [PMID: 32397861 DOI: 10.1089/vbz.2020.2632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Lyme disease, the interpretation of diagnostic assays is often misunderstood. Cross-reactions of Borrelia proteins with antigens from other bacterial species are well known. Therefore, to diagnose Lyme disease, the finding of positive IgM antibodies must be accompanied by objectively verified clinical signs and a history of a possible tick exposure. Positive Borrelia IgM antibodies in healthy individuals with nonspecific clinical symptoms are likely a false-positive result for Lyme disease and neither long-term antibiotic treatment nor cycling of different antibiotic regimens is beneficial. To date, there is clear evidence that positive serology does not indicate infection with Borrelia species. Borrelia serology has been reported to be positive for months or years in ∼20% of healthy patients who had experienced Lyme disease in the past. Thus, serology as a single diagnostic tool has a very limited value and should be used only to support clinically suspected cases.
Collapse
Affiliation(s)
- Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Daniel Smrz
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| | - Jirina Bartunkova
- Department of Immunology, Second Faculty of Medicine, Charles University in Prague and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
40
|
Kamp HD, Swanson KA, Wei RR, Dhal PK, Dharanipragada R, Kern A, Sharma B, Sima R, Hajdusek O, Hu LT, Wei CJ, Nabel GJ. Design of a broadly reactive Lyme disease vaccine. NPJ Vaccines 2020; 5:33. [PMID: 32377398 PMCID: PMC7195412 DOI: 10.1038/s41541-020-0183-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/31/2020] [Indexed: 02/02/2023] Open
Abstract
A growing global health concern, Lyme disease has become the most common tick-borne disease in the United States and Europe. Caused by the bacterial spirochete Borrelia burgdorferi sensu lato (sl), this disease can be debilitating if not treated promptly. Because diagnosis is challenging, prevention remains a priority; however, a previously licensed vaccine is no longer available to the public. Here, we designed a six component vaccine that elicits antibody (Ab) responses against all Borrelia strains that commonly cause Lyme disease in humans. The outer surface protein A (OspA) of Borrelia was fused to a bacterial ferritin to generate self-assembling nanoparticles. OspA-ferritin nanoparticles elicited durable high titer Ab responses to the seven major serotypes in mice and non-human primates at titers higher than a previously licensed vaccine. This response was durable in rhesus macaques for more than 6 months. Vaccination with adjuvanted OspA-ferritin nanoparticles stimulated protective immunity from both B. burgdorferi and B. afzelii infection in a tick-fed murine challenge model. This multivalent Lyme vaccine offers the potential to limit the spread of Lyme disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Aurelie Kern
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111 USA
| | - Bijaya Sharma
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111 USA
| | - Radek Sima
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Linden T. Hu
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Ave, Boston, MA 02111 USA
| | - Chih-Jen Wei
- Sanofi, 640 Memorial Dr, Cambridge, MA 01239 USA
| | | |
Collapse
|
41
|
A Fully Automated Multiplex Assay for Diagnosis of Lyme Disease with High Specificity and Improved Early Sensitivity. J Clin Microbiol 2020; 58:JCM.01785-19. [PMID: 32132190 DOI: 10.1128/jcm.01785-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lyme borreliosis is a tick-borne disease caused by the Borrelia burgdorferi sensu lato complex. Bio-Rad Laboratories has developed a fully automated multiplex bead-based assay for the detection of IgM and IgG antibodies to B. burgdorferi The BioPlex 2200 Lyme Total assay exhibits an improved rate of seropositivity in patients with early Lyme infection. Asymptomatic subjects from endemic and nonendemic origins demonstrated a seroreactivity rate of approximately 4% that was similar to other commercial assays evaluated in this study. Coupled to this result was the observation that the Lyme Total assay retained a high first-tier specificity of 96% while demonstrating a relatively high sensitivity of 91% among a well-characterized CDC Premarketing Lyme serum panel. The Lyme Total assay also performs well under a modified two-tier algorithm (sensitivity, 84.4 to 88.9%; specificity, 98.4 to 99.5%). Furthermore, the new assay is able to readily detect early Lyme infection in patient samples from outside North America.
Collapse
|
42
|
Wolf MJ, Watkins HR, Schwan WR. Ixodes scapularis: Vector to an Increasing Diversity of Human Pathogens in the Upper Midwest. WMJ : OFFICIAL PUBLICATION OF THE STATE MEDICAL SOCIETY OF WISCONSIN 2020; 119:16-21. [PMID: 32348066 PMCID: PMC7209771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The black-legged tick, Ixodes scapularis (I scapularis), is now recognized as the deadliest tick vector in the United States. The Upper Midwest, particularly Wisconsin and Minnesota, are endemic to a diversity of tick-transmitted infectious diseases. Although Borrelia burgdorferi, the agent of Lyme disease, still accounts for the majority of diagnosed infections, I scapularis is known to transmit other bacterial, viral, and parasitic agents. OBJECTIVE To provide an overview of the array of pathogenic microorganisms carried by I scapularis ticks in the Upper Midwest. METHODS A literature review was conducted to collect and analyze current information about I scapularis lifestyle, transmission, microorganisms carried by the arthropod vector, and the diseases that occur as a result of infections with these microorganisms in the Upper Midwest. RESULTS Diagnosis of co-infection from tick-borne zoonosis in humans has increased over the last 2 decades. Since I scapularis can transmit multiple pathogens, it is clinically important because different diagnostic testing and treatment strategies may need to be implemented for a patient with I scapularis-borne infection(s). CONCLUSIONS This review has concentrated on I scapularis-transmitted diseases affecting the Upper Midwest and has explored the ecology of the I scapularis vector and its role in pathogen transmission.
Collapse
Affiliation(s)
- Matthew J Wolf
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Hannah R Watkins
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - William R Schwan
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin,
| |
Collapse
|
43
|
Nikolić A, Boljević D, Bojić M, Veljković S, Vuković D, Paglietti B, Micić J, Rubino S. Lyme Endocarditis as an Emerging Infectious Disease: A Review of the Literature. Front Microbiol 2020; 11:278. [PMID: 32161576 PMCID: PMC7054245 DOI: 10.3389/fmicb.2020.00278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
Lyme endocarditis is extremely rare manifestation of Lyme disease. The clinical manifestations of Lyme endocarditis are non-specific and can be very challenging diagnosis to make when it is the only manifestation of the disease. Until now, only a few cases where reported. Physicians should keep in mind the possibility of borrelial etiology of endocarditis in endemic areas. Appropriate valve tissue sample should be sent for histopathology, culture, and PCR especially in case of endocarditis of unknown origin PCR on heart valve samples is recommended. With more frequent PCR, Borrelia spp. may be increasingly found as a cause of infective endocarditis. Prompt diagnosis and treatment of Lyme carditis may prevent surgical treatment and pacemaker implantations. Due to climate change and global warming Lyme disease is a growing problem. Rising number of Lyme disease cases we can expect and rising number of Lyme endocarditis.
Collapse
Affiliation(s)
- Aleksandra Nikolić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,"Dedinje" Cardiovascular Institute, Belgrade, Serbia
| | | | - Milovan Bojić
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,"Dedinje" Cardiovascular Institute, Belgrade, Serbia
| | | | - Dragana Vuković
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Jelena Micić
- Clinic for Gynecology and Obstetrics, Clinical Center of Serbia, Belgrade, Serbia
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
44
|
Lyme disease and hemi-diaphragmatic paralysis: A case report and review of literature. IDCases 2020; 20:e00730. [PMID: 32181139 PMCID: PMC7066219 DOI: 10.1016/j.idcr.2020.e00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 12/05/2022] Open
Abstract
Borrelia burgdorferi is a spirochete that can cause Lyme disease from an infected tick bite causing a myriad of syndromes ranging from erythema migrans to oligoarticular arthritis and/or atrioventricular conduction block in the heart. It can also infect the central nervous system (CNS) and peripheral nervous system (PNS) causing cranial neuropathy, radiculoneuropathy as well as myelopathy. It has rarely been reported to involve the phrenic nerve presenting as dyspnea from diaphragmatic paralysis. Here, we present a case of a patient presenting with orthopnea and dyspnea on exertion who was diagnosed with Lyme disease causing unilateral diaphragmatic paralysis with resolution after treatment.
Collapse
|
45
|
Joung HA, Ballard ZS, Wu J, Tseng DK, Teshome H, Zhang L, Horn EJ, Arnaboldi PM, Dattwyler RJ, Garner OB, Di Carlo D, Ozcan A. Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease Using a Multiplexed Paper-Based Immunoassay and Machine Learning. ACS NANO 2020; 14:229-240. [PMID: 31849225 DOI: 10.1021/acsnano.9b08151] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Caused by the tick-borne spirochete Borrelia burgdorferi, Lyme disease (LD) is the most common vector-borne infectious disease in North America and Europe. Though timely diagnosis and treatment are effective in preventing disease progression, current tests are insensitive in early stage LD, with a sensitivity of <50%. Additionally, the serological testing currently recommended by the U.S. Center for Disease Control has high costs (>$400/test) and extended sample-to-answer timelines (>24 h). To address these challenges, we created a cost-effective and rapid point-of-care (POC) test for early-stage LD that assays for antibodies specific to seven Borrelia antigens and a synthetic peptide in a paper-based multiplexed vertical flow assay (xVFA). We trained a deep-learning-based diagnostic algorithm to select an optimal subset of antigen/peptide targets and then blindly tested our xVFA using human samples (N(+) = 42, N(-) = 54), achieving an area-under-the-curve (AUC), sensitivity, and specificity of 0.950, 90.5%, and 87.0%, respectively, outperforming previous LD POC tests. With batch-specific standardization and threshold tuning, the specificity of our blind-testing performance improved to 96.3%, with an AUC and sensitivity of 0.963 and 85.7%, respectively.
Collapse
Affiliation(s)
- Hyou-Arm Joung
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
| | - Zachary S Ballard
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
| | - Jing Wu
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- Department of Chemistry , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Derek K Tseng
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
| | - Hailemariam Teshome
- Department of Neuroscience , University of California , Los Angeles , California 90025 , United States
| | - Linghao Zhang
- Department of Mechanical Engineering , University of California , Los Angeles , California 90025 , United States
| | | | - Paul M Arnaboldi
- Department of Microbiology/Immunology , New York Medical College , Valhalla , New York 10595 , United States
| | - Raymond J Dattwyler
- Department of Microbiology/Immunology , New York Medical College , Valhalla , New York 10595 , United States
| | - Omai B Garner
- Department of Pathology and Laboratory Medicine , University of California , Los Angeles , California 90025 , United States
| | - Dino Di Carlo
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
- Department of Mechanical Engineering , University of California , Los Angeles , California 90025 , United States
| | - Aydogan Ozcan
- Department of Electrical & Computer Engineering , University of California , Los Angeles , California 90025 , United States
- California NanoSystems Institute (CNSI) , University of California , Los Angeles , California 90025 , United States
- Department of Bioengineering , University of California , Los Angeles , California 90025 , United States
- Department of Surgery , University of California , Los Angeles , California 90025 , United States
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Since recognition in 1975, Lyme disease has become the most common vector-borne illness in North America and Europe. The clinical features are well-characterized and treatment is usually curative, but misperceptions about morbidity persist. The purpose of this review is to examine advances in the diagnosis and treatment of Lyme disease, as well as ongoing management challenges. RECENT FINDINGS It is useful to recognize that Lyme disease occurs in stages, with early- and late-stage disease. Clinical expression is in part determined by Borrelial variability. For example, some strains of Borrelia burgdorferi, the causative organism in North America, are particularly arthritogenic. Most patients with early Lyme disease can be cured with a single course of oral antibiotic therapy, in contrast to some patients with Lyme arthritis, a late-stage manifestation, who are more antibiotic refractory and require other treatment strategies. Successful treatment of Lyme disease begins with successful diagnosis and with an understanding of the emergence, clinical features, and impact of Lyme disease over the past half century.
Collapse
Affiliation(s)
- Robert T Schoen
- Section of Rheumatology, Allergy and Clinical Immunology, Yale University School of Medicine, 60 Temple Street, Suite 6A, New Haven, CT, 06510, USA.
| |
Collapse
|
47
|
Zhou Y, Qin S, Sun M, Tang L, Yan X, Kim TK, Caballero J, Glusman G, Brunkow ME, Soloski MJ, Rebman AW, Scavarda C, Cooper D, Omenn GS, Moritz RL, Wormser GP, Price ND, Aucott JN, Hood L. Measurement of Organ-Specific and Acute-Phase Blood Protein Levels in Early Lyme Disease. J Proteome Res 2020; 19:346-359. [PMID: 31618575 PMCID: PMC7981273 DOI: 10.1021/acs.jproteome.9b00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lyme disease results from infection of humans with the spirochete Borrelia burgdorferi. The first and most common clinical manifestation is the circular, inflamed skin lesion referred to as erythema migrans; later manifestations result from infections of other body sites. Laboratory diagnosis of Lyme disease can be challenging in patients with erythema migrans because of the time delay in the development of specific diagnostic antibodies against Borrelia. Reliable blood biomarkers for the early diagnosis of Lyme disease in patients with erythema migrans are needed. Here, we performed selected reaction monitoring, a targeted mass spectrometry-based approach, to measure selected proteins that (1) are known to be predominantly expressed in one organ (i.e., organ-specific blood proteins) and whose blood concentrations may change as a result of Lyme disease, or (2) are involved in acute immune responses. In a longitudinal cohort of 40 Lyme disease patients and 20 healthy controls, we identified 10 proteins with significantly altered serum levels in patients at the time of diagnosis, and we also developed a 10-protein panel identified through multivariate analysis. In an independent cohort of patients with erythema migrans, six of these proteins, APOA4, C9, CRP, CST6, PGLYRP2, and S100A9, were confirmed to show significantly altered serum levels in patients at time of presentation. Nine of the 10 proteins from the multivariate panel were also verified in the second cohort. These proteins, primarily innate immune response proteins or proteins specific to liver, skin, or white blood cells, may serve as candidate blood biomarkers requiring further validation to aid in the laboratory diagnosis of early Lyme disease.
Collapse
Affiliation(s)
- Yong Zhou
- Institute for Systems Biology, Seattle, Washington, USA
| | - Shizhen Qin
- Institute for Systems Biology, Seattle, Washington, USA
| | - Mingjuan Sun
- Institute for Systems Biology, Seattle, Washington, USA
- Second Military Medical University, Shanghai, China
| | - Li Tang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Xiaowei Yan
- Institute for Systems Biology, Seattle, Washington, USA
| | - Taek-Kyun Kim
- Institute for Systems Biology, Seattle, Washington, USA
| | - Juan Caballero
- Molecular and Developmental Complexity Lab, Langebio-Cinvestav, Irapuato, Guanajuato, Mexico
| | | | | | - Mark J. Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison W. Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carol Scavarda
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | - Denise Cooper
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | - Gilbert S. Omenn
- Institute for Systems Biology, Seattle, Washington, USA
- Center for Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY
| | | | - John N. Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, USA
- Providence St. Joseph Health, Seattle, Washington, USA
| |
Collapse
|
48
|
Nigrovic LE, Bennett JE, Balamuth F, Levas MN, Neville D, Lyons TW, Branda JA, Maulden AB, Lewander D, Garro A. Diagnostic Performance of C6 Enzyme Immunoassay for Lyme Arthritis. Pediatrics 2020; 145:peds.2019-0593. [PMID: 31836615 DOI: 10.1542/peds.2019-0593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES In Lyme disease endemic areas, initial management of children with arthritis can be challenging because diagnostic tests take several days to return results, leading to potentially unnecessary invasive procedures. Our objective was to examine the role of the C6 peptide enzyme immunoassay (EIA) test to guide initial management. METHODS We enrolled children with acute arthritis undergoing evaluation for Lyme disease presenting to a participating Pedi Lyme Net emergency department (2015-2019) and performed a C6 EIA test. We defined Lyme arthritis with a positive or equivocal C6 EIA test result followed by a positive supplemental immunoblot result and defined septic arthritis as a positive synovial fluid culture result or a positive blood culture result with synovial fluid pleocytosis. Otherwise, children were considered to have inflammatory arthritis. We report the sensitivity and specificity of the C6 EIA for the diagnosis of Lyme arthritis. RESULTS Of the 911 study patients, 211 children (23.2%) had Lyme arthritis, 11 (1.2%) had septic arthritis, and 689 (75.6%) had other inflammatory arthritis. A positive or equivocal C6 EIA result had a sensitivity of 100% (211 out of 211; 95% confidence interval [CI]: 98.2%-100%) and specificity of 94.2% (661 out of 700; 95% CI: 92.5%-95.9%) for Lyme arthritis. None of the 250 children with a positive or equivocal C6 EIA result had septic arthritis (0%; 95% CI: 0%-1.5%), although 75 children underwent diagnostic arthrocentesis and 27 underwent operative joint washout. CONCLUSIONS In Lyme disease endemic areas, a C6 EIA result could be used to guide initial clinical decision-making, without misclassifying children with septic arthritis.
Collapse
Affiliation(s)
- Lise E Nigrovic
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts; .,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jonathan E Bennett
- Division of Emergency Medicine, Alfred I. Dupont Hospital for Children and Jefferson School of Medicine, Wilmington, Delaware
| | - Fran Balamuth
- Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael N Levas
- Department of Pediatric Emergency Medicine, Children's Hospital of Wisconsin and Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Desiree Neville
- Division of Emergency Medicine, UPMC Children's Hospital of Pittsburgh and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Todd W Lyons
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Harvard University, Boston, Massachusetts
| | - John A Branda
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, Massachusetts; and
| | - Alexandra B Maulden
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - David Lewander
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Aris Garro
- Department of Pediatrics and Emergency Medicine, Hasbro Children's Hospital and Alpert Medical School, Brown University, Providence, Rhode Island
| | | |
Collapse
|
49
|
Sommerauer S, Blohm K, Spergser J, Buchner HHF. Arthritis, panuveitis and hyperaesthesia associated with
Borrelia afzelii
infection in a warmblood gelding. VETERINARY RECORD CASE REPORTS 2019. [DOI: 10.1136/vetreccr-2019-000911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sophia Sommerauer
- Department for Companion Animals and HorsesEquine ClinicUniversity of Veterinary Medicine ViennaViennaAustria
| | - Klaas‐Ole Blohm
- Department for Companion Animals and HorsesOphthalmology UnitUniversity of Veterinary Medicine ViennaViennaAustria
| | - Joachim Spergser
- Institute of Bacteriology, Mycology and HygieneUniversity of Veterinary Medicine ViennaViennaAustria
| | - Heinz Hans Florian Buchner
- Department for Companion Animals and HorsesEquine ClinicUniversity of Veterinary Medicine ViennaViennaAustria
| |
Collapse
|
50
|
Garcia-Monco JC, Benach JL. Lyme Neuroborreliosis: Clinical Outcomes, Controversy, Pathogenesis, and Polymicrobial Infections. Ann Neurol 2019; 85:21-31. [PMID: 30536421 DOI: 10.1002/ana.25389] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022]
Abstract
Lyme borreliosis is the object of numerous misconceptions. In this review, we revisit the fundamental manifestations of neuroborreliosis (meningitis, cranial neuritis, and radiculoneuritis), as these have withstood the test of time. We also discuss other manifestations that are less frequent. Stroke, as a manifestation of Lyme neuroborreliosis, is considered in the context of other infections. The summary of the literature regarding clinical outcomes of neuroborreliosis leads to its controversies. We also include new information on pathogenesis and on the polymicrobial nature of tick-borne diseases. In this way, we update the review that we wrote in this journal in 1995. ANN NEUROL 2019;85:21-31.
Collapse
Affiliation(s)
- Juan Carlos Garcia-Monco
- Department of Neurology, University Hospital of Basurto, Bilbao, Vizcaya, Spain.,Departments of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY
| | - Jorge L Benach
- Departments of Molecular Genetics and Microbiology, Stony Brook University School of Medicine, Stony Brook, NY.,Pathology, Stony Brook University School of Medicine, Stony Brook, NY
| |
Collapse
|