1
|
Aboudalle A, Barthomeuf M, Castel X, Le Gendre L, Pissavin C. Antibacterial activity of photocatalytic titanium dioxide (TiO 2) thin films for Listeria monocytogenes biofilms disinfection. Photochem Photobiol 2025. [PMID: 40275714 DOI: 10.1111/php.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
The presence of microbial biofilms on equipment surfaces is a recurrent problem in the food industry. To reduce the risk of biofilm development, a preventive method based on photoactive antibacterial surfaces is proposed. In the present study, crystalline rutile form titanium dioxide (TiO2) thin layers are deposited on stainless steel substrates by RF sputtering under reactive plasma. Such layers are assessed for their bactericidal activity on two strains of Listeria monocytogenes. After 1 h of irradiation under UV-A at 365 nm, a decrease of 2 log of the number of adherent Listeria cells is observed. Analysis with scanning electron microscopy suggests damages to the bacterial walls. Moreover, the peroxidation of the membrane lipids of L. monocytogenes by the radical species formed by photocatalysis is confirmed since malondialdehyde was detected after irradiation. Furthermore, the present work investigates the role of the redox species generated by photocatalysis. Indeed, experiments carried out in the presence of scavenger molecules (DMSO, EDTA-2Na, superoxide dismutase) show that holes are the main redox species involved in the antibacterial activity of the deposited layers. These results allow a better understanding of the role of the redox species generated by the photocatalytic activity of the rutile TiO2 thin layers.
Collapse
Affiliation(s)
- Arwa Aboudalle
- Biological Engineering Department, Univ Rennes, IUT Saint-Brieuc, Saint-Brieuc, France
| | - Marion Barthomeuf
- Biological Engineering Department, Univ Rennes, IUT Saint-Brieuc, Saint-Brieuc, France
| | - Xavier Castel
- Univ Rennes, CNRS, IETR - UMR 6164, Saint-Brieuc, France
| | | | - Christine Pissavin
- Biological Engineering Department, Univ Rennes, IUT Saint-Brieuc, Saint-Brieuc, France
| |
Collapse
|
2
|
Pachnowska K, Kochel-Karakulska J, Augustyniak A, Obradović V, Ochmian I, Lachowicz-Wiśniewska S, Kapusta I, Maślana K, Mijowska E, Cendrowski K. UV-C and Nanomaterial-Based Approaches for Sulfite-Free Wine Preservation: Effects on Polyphenol Profile and Microbiological Quality. Molecules 2025; 30:221. [PMID: 39860091 PMCID: PMC11767371 DOI: 10.3390/molecules30020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Controlling the microorganisms employed in vinification is a critical factor for successful wine production. Novel methods aimed at lowering sulfites used for wine stabilization are sought. UV-C irradiation has been proposed as an alternative for reducing the viable cell count of microorganisms in wine and grape juice. Nevertheless, UV-C treatment poses the risk of altering the chemical properties of wine. Therefore, this study aimed to test and implement iron oxide-silica core-shell nanomaterial functionalized with TiO2 in UV-C treatment of white and red wines. Material for the study consisted of the synthesized nanocomposite, Saccharomyces cerevisiae as a model yeast, and Muscaris and Cabernet Cortis wines. The viability of yeasts under treatment, the physiochemical properties of wine, and polyphenol content were tested. Studies have shown that nanomaterial can modulate the effects of UV-C treatment regarding yeast viability and polyphenol content, and the effectiveness of the treatment depends on the wine type. These results open up discussion on the possible use of the proposed hurdle technology in winemaking to control the polyphenol composition and alcohol reduction.
Collapse
Affiliation(s)
- Kamila Pachnowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (K.P.); (K.M.)
- Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Juliusza Słowackiego 17, 71-434 Szczecin, Poland;
| | - Jolanta Kochel-Karakulska
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland
| | - Adrian Augustyniak
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland;
- Center for Advanced Materials and Manufacturing Process Engineering (CAMMPE), Piastow Avenue 42, 71-065 Szczecin, Poland
| | - Valentina Obradović
- Faculty of Tourism and Rural Development in Požega, Josip Juraj Strossmayer University of Osijek, Vukovarska 17, 34 000 Požega, Croatia
| | - Ireneusz Ochmian
- Department of Horticulture, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, Juliusza Słowackiego 17, 71-434 Szczecin, Poland;
| | - Sabina Lachowicz-Wiśniewska
- Department of Medicine and Health Science, Calisia University (University of Kalisz), Nowy Świat 4, 62-800 Kalisz, Poland;
- Department of Biotechnology and Food Analysis, University of Economy and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Science, Rzeszow University, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Klaudia Maślana
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (K.P.); (K.M.)
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 45, 70-311 Szczecin, Poland; (K.P.); (K.M.)
| | - Krzysztof Cendrowski
- Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów 50a, 70-311 Szczecin, Poland;
| |
Collapse
|
3
|
Zhang H, Huang S, Zhao Y, Tian HS, Lin M, Xie Y, Yu Z. Modification of microporous bionanocomposite films with visible light-activated photocatalytic antimicrobial TNT-CuO nanoparticles for active fruit packaging. Food Res Int 2025; 199:115356. [PMID: 39658159 DOI: 10.1016/j.foodres.2024.115356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Active packaging technologies are evolving to enhance the preservation of fresh produce by fighting against microbial contamination and controlling internal packaging atmospheres. This study introduced an active fruit packaging called MT film, created by modifying a microporous polyvinyl alcohol/chitosan/cellulose nanocrystal bionanocomposite film with CuO-doped titania nanotubes. The MT film, with an average micropore size of 2.4 μm, displayed excellent mechanical properties and hydrophobicity due to its crosslinked structure. When exposed to visible light, the MT film could produce reactive oxygen species, effectively inhibiting the growth of Staphylococcus aureus and Escherichia coli O157:H7. Moreover, experiments on blueberry preservation demonstrated that the MT film could remove excess CO2 and maintain a higher O2 level. Under visible light, this film significantly reduced total viable count (4.6 ± 0.2 log CFU/g) and mold colony count (2.6 ± 0.1 log CFU/g), with Bacillus and Ascochyta being the primary inhibited genera. These findings highlight the potential of MT film in utilizing visible light to prevent microbial growth on blueberries and regulating the gas exchange of food packaging. MT film holds promise as an active packaging solution to improve the quality and shelf life of fresh produce while reducing food losses in the supply chain.
Collapse
Affiliation(s)
- Huan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuting Huang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, Wuxi 214122, China
| | - Yali Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hong Sabrina Tian
- School of Food Technology and Natural Sciences, College of Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Mengshi Lin
- Food Science Program, University of Missouri, Columbia, MO 65211, USA
| | - Yunfei Xie
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhilong Yu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Leishangthem C, Mujumdar AS, Xiao HW, Sutar PP. Intrinsic and extrinsic factors influencing Bacillus cereus spore inactivation in spices and herbs: Thermal and non-thermal sterilization approaches. Compr Rev Food Sci Food Saf 2025; 24:e70056. [PMID: 39676487 DOI: 10.1111/1541-4337.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 12/17/2024]
Abstract
The presence of Bacillus cereus in spices and herbs has posed a detrimental effect on food safety. The absence of thorough testing, comprehensive reporting, and vigilant surveillance of the illness has resulted in a significant underestimation of the true prevalence of foodborne illness caused by B. cereus. B. cereus spores are resistant to thermal processing (superheated steam, microwave, radiofrequency, infrared) that remains a significant challenge for the spice industry. Non-thermal techniques, such as cold plasma, gamma irradiation, and electron beam irradiation, have gained significant interest for their ability to inactivate B. cereus spores. However, these technologies are constrained by inherent limitations. The composition of B. cereus spores, including dipicolinic acid, divalent cations, and low water content in the core, contributes significantly to their resistance properties. This review delves into the different factors that impact B. cereus spores in spices and herbs during sterilization, considering both intrinsic and extrinsic factors. This review also discussed the various techniques for inactivating B. cereus spores from spices and highlighted their effectiveness and constraints. It also provides valuable insights for enhancing sterilization strategies in the spices and herbs industry.
Collapse
Affiliation(s)
- Chinglen Leishangthem
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| | - A S Mujumdar
- Department of Bioresource Engineering, McGill University, Quebec, Canada
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - P P Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha, India
| |
Collapse
|
5
|
Azadi M, Mehraban Sangatash M, Ehtiati A, Azadi H. Impact of Fortified Yogurt on Micronutrient Deficits: A Survey on Food Security and Health in the Northeast of Iran. Nutrients 2024; 16:3325. [PMID: 39408291 PMCID: PMC11478376 DOI: 10.3390/nu16193325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Millions of people's access to food is threatened by the prevalence of micronutrient deficiencies in food, particularly in low- and middle-income nations. Objectives: The aim of this study was to evaluate the socio-economic impact of fortified food products on improving the food security of consumers in these regions. Methods: This study examined the use of popular products, such as yogurt fortified with inactive baker's yeast, from April 2023 to December 2023. A questionnaire was developed using a descriptive-inferential approach grounded in practical research. Results: The factors of expertise, level of education, and gender significantly influenced the enhancement of food security. Approximately 88% of the variations in food security enhancement factors were attributed to acceptance and consumption, food safety and health, and financial capability and pricing. Among these factors, the acceptance index made the greatest contribution to improving food security. Conclusions: Specialized communication and information operations are urgently needed in this area, considering the limited knowledge consumers have about the health effects of newly introduced fortified foods. Therefore, by addressing current shortcomings, this study can help planners, policymakers, and producers of fortified food items increase the demand for fortified goods and improve national food security.
Collapse
Affiliation(s)
- Mohammad Azadi
- Taleghani Educational, Research and Treatment Center for Accident and Emergency Operations, Mashhad University of Medical Sciences, Mashhad 9189500397, Iran
| | - Masoomeh Mehraban Sangatash
- Department of Food Quality and Safety, Food Science and Technology Research Institute, ACECR Khorasan Razavi Branch, Mashhad 9177949367, Iran
| | - Ahmad Ehtiati
- Research and Development Unit, Greeneh Food Industries, Khayam Industrial Zone, Neyshabur 9345114944, Iran
| | - Hossein Azadi
- Department of Economics and Rural Development, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
6
|
Yang P, Liao X. High pressure processing plus technologies: Enhancing the inactivation of vegetative microorganisms. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:145-195. [PMID: 38906586 DOI: 10.1016/bs.afnr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
High pressure processing (HPP) is a non-thermal technology that can ensure microbial safety without compromising food quality. However, the presence of pressure-resistant sub-populations, the revival of sub-lethally injured (SLI) cells, and the resuscitation of viable but non-culturable (VBNC) cells pose challenges for its further development. The combination of HPP with other methods such as moderate temperatures, low pH, and natural antimicrobials (e.g., bacteriocins, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils) or other non-thermal processes (e.g., CO2, UV-TiO2 photocatalysis, ultrasound, pulsed electric fields, ultrafiltration) offers feasible alternatives to enhance microbial inactivation, termed as "HPP plus" technologies. These combinations can effectively eliminate pressure-resistant sub-populations, reduce SLI or VBNC cell populations, and inhibit their revival or resuscitation. This review provides an updated overview of microbial inactivation by "HPP plus" technologies and elucidates possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China; National Engineering Research Center for Fruit & Vegetable Processing, Beijing, P.R. China; Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; Beijing Key laboratory for Food Non-thermal processing, Beijing, P.R. China.
| |
Collapse
|
7
|
Silva Amorim D, Silva Amorim I, Campos Chisté R, André Narciso Fernandes F, Regina Barros Mariutti L, Teixeira Godoy H, Rosane Barboza Mendonça C. Non-thermal technologies for the conservation of açai pulp and derived products: A comprehensive review. Food Res Int 2023; 174:113575. [PMID: 37986445 DOI: 10.1016/j.foodres.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Açai (Euterpe oleracea) is one of the main sustainable extractive crops in the Amazon region, widely consumed by the local population and a significant export product. This review presents the current knowledge regarding nonthermal technologies employed in açai processing. This review aims to discuss and compare the main results attained by the application of HPP, ultrasound, ozone, UV light, cold plasma, and pulsed electric field on microbial inactivation, enzymatic inhibition, and the content of anthocyanin and other bioactive compounds after açai pulp processing. The discussion compares these technologies with pasteurization, the current main technology applied to açai sanitization. This review shows that there are still many gaps to be filled concerning açai processing in thermal and non-thermal technologies. Data analysis allowed the conclusion that pasteurization and HPP are, up to now, the only technologies that enable a 5-log CFU reduction of yeasts, molds, and some bacteria in açai. However, no study has reported the inactivation of Trypanosoma cruzi, which is the major gap found in current knowledge. Other technologies, such as pulsed electric field, cold plasma, and ultrasound, require further development and process intensification studies to be as successful as HPP and pasteurization.
Collapse
Affiliation(s)
- Danyelly Silva Amorim
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil; Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| | - Isabelly Silva Amorim
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil; Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Renan Campos Chisté
- Faculdade de Engenharia de Alimentos (FEA), Instituto de Tecnologia (ITEC), Universidade Federal do Pará (UFPA), 66075-110 Belém, Pará, Brazil
| | - Fabiano André Narciso Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil
| | - Lilian Regina Barros Mariutti
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Helena Teixeira Godoy
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universida Estadual de Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Carla Rosane Barboza Mendonça
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos - Universidade Federal de Pelotas, 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Ran B, Ran L, Wang Z, Liao J, Li D, Chen K, Cai W, Hou J, Peng X. Photocatalytic Antimicrobials: Principles, Design Strategies, and Applications. Chem Rev 2023; 123:12371-12430. [PMID: 37615679 DOI: 10.1021/acs.chemrev.3c00326] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.
Collapse
Affiliation(s)
- Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Zuokai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinfeng Liao
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Dandan Li
- West China Hospital of Stomatology Sichuan University, Chengdu 610064, P. R. China
| | - Keda Chen
- Ability R&D Energy Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Wenlin Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, P. R. China
- State Key Laboratory of Fine Chemicals, College of Material Science and Engineering, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
9
|
Tasić T, Milanković V, Batalović K, Breitenbach S, Unterweger C, Fürst C, Pašti IA, Lazarević-Pašti T. Application of Viscose-Based Porous Carbon Fibers in Food Processing-Malathion and Chlorpyrifos Removal. Foods 2023; 12:2362. [PMID: 37372573 DOI: 10.3390/foods12122362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The increasing usage of pesticides to boost food production inevitably leads to their presence in food samples, requiring the development of efficient methods for their removal. Here, we show that carefully tuned viscose-derived activated carbon fibers can be used for malathion and chlorpyrifos removal from liquid samples, even in complex matrices such as lemon juice and mint ethanol extract. Adsorbents were produced using the Design of Experiments protocol for varying activation conditions (carbonization at 850 °C; activation temperature between 670 and 870 °C; activation time from 30 to 180 min; and CO2 flow rate from 10 to 80 L h-1) and characterized in terms of physical and chemical properties (SEM, EDX, BET, FTIR). Pesticide adsorption kinetics and thermodynamics were then addressed. It was shown that some of the developed adsorbents are also capable of the selective removal of chlorpyrifos in the presence of malathion. The selected materials were not affected by complex matrices of real samples. Moreover, the adsorbent can be regenerated at least five times without pronounced performance losses. We suggest that the adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods currently in use, which negatively affect the nutritional value of food products. Finally, data-based models trained on well-characterized materials libraries can direct the synthesis of novel adsorbents for the desired application in food processing.
Collapse
Affiliation(s)
- Tamara Tasić
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Vedran Milanković
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Katarina Batalović
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| | - Stefan Breitenbach
- Wood K Plus-Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria
- Institute of Chemical Technology of Inorganic Materials (TIM), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Christoph Unterweger
- Wood K Plus-Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria
| | - Christian Fürst
- Wood K Plus-Kompetenzzentrum Holz GmbH, Altenberger Strasse 69, 4040 Linz, Austria
| | - Igor A Pašti
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
10
|
Photoactive decontamination and reuse of face masks. E-PRIME - ADVANCES IN ELECTRICAL ENGINEERING, ELECTRONICS AND ENERGY 2023:100129. [PMCID: PMC9942455 DOI: 10.1016/j.prime.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The corona virus disease 2019 (COVID-19) pandemic has led to global shortages in disposable respirators. Increasing the recycling rate of masks is a direct, low-cost strategy to mitigate COVID-19 transmission. Photoactive decontamination of used masks attracts great attention due to its fast response, remarkable virus inactivation effect and full protection integrity. Here, we review state-of-the-art situation of photoactive decontamination. The basic mechanism of photoactive decontamination is firstly discussed in terms of ultraviolet, photothermal or photocatalytic properties. Among which, ultraviolet radiation damages DNA and RNA to inactivate viruses and microorganisms, and photothermal method damages them by destroying proteins, while photocatalysis kills them by destroying the structure. The practical applications of photoactive decontamination strategies are then fully reviewed, including ultraviolet germicidal irradiation, and unconventional masks made of functional nanomaterials with photothermal or photocatalytic properties. Their performance requirements are elaborated together with the advantages of long-term recycle use. Finally, we put forward challenges and prospects for further development of photoactive decontamination technology.
Collapse
|
11
|
Śmigiel J, Piszczek P, Wrzeszcz G, Jędrzejewski T, Golińska P, Radtke A. The Composites of PCL and Tetranuclear Titanium(IV)-Oxo Complex with Acetylsalicylate Ligands-Assessment of Their Biocompatibility and Antimicrobial Activity with the Correlation to EPR Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2022; 16:297. [PMID: 36614635 PMCID: PMC9822129 DOI: 10.3390/ma16010297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In our research, we have focused on the biological studies on composite materials produced by the dispersion of titanium(IV)-oxo complex (TOC) with acetylsalicylate ligands in a poly(ε-caprolactone) (PCL) matrix, which is a biodegradable thermoplastic polymer increasingly used in the production of medical devices. Using PCL as a matrix for the biologically active compounds, such as antimicrobial agents, antibiotics or other active medical substances, from which these individuals can be gradually released is fully understable. Composites of PCL + nTOC (n = 10, 15 and 20 wt.%) have been produced and, in such a form, the biological properties of TOCs have been estimated. Direct and indirect cytotoxicity studies have been performed in vitro on L929 and human umbilical vein endothelial cells (HUVEC) cell lines. The antibacterial and antifungal activity of the PCL + TOC samples have been assessed against two Staphylococcus aureus (ATCC 6538 and ATCC 25923) reference strains, two Escherichia coli (ATCC 8739 and ATCC 25922) reference strains and yeast of Candida albicans ATCC 10231. Obtained results have been correlated with electron paramagnetic resonance (EPR) spectroscopy data. We could conclude that photoexcitation by visible light of the surface of PCL + nTOC composite foils lead to the formation of different paramagnetic species, mainly O-, which slowly disappears over time; however, their destructive effect on bacteria and cells has been proven.
Collapse
Affiliation(s)
- Julia Śmigiel
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Piotr Piszczek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Grzegorz Wrzeszcz
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Tomasz Jędrzejewski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Patrycja Golińska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
12
|
Development of modern nanotecnologies and combined biotoxicity problems. EUREKA: LIFE SCIENCES 2022. [DOI: 10.21303/2504-5695.2022.002603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Fast progress in modern nanotechnologies based on use of nanoparticles, nanofibers and nanotubes with different composition, shape and size allows elaboration of materials with superhigh strength, thermal and electric conductivity, acoustical and optical properties. Those materials are already widely used in industry, transportation, aerospace, marine and civil engineering, food processing and medicine. Some examples of nanoreinforces composites, superhydrophobic self-cleaning surfaces, nanodyes and suspensions of nanoparticles are described. The problem of uncontrolled accumulation of some types of nanoparticles in our cells and tissues is discussed within the concept of nanotoxicity. Since the history of permanent observation of human health in connection with nanodust accumulation in the atmosphere, waters and soils is not enough long, the detailed evidences must be documented, systematized and discussed.
In this study a brief systematic review of literature on the biotoxicity problems caused by modern nanotechnologies is given. Production of the nanoparticles, nanofibers and nanotubes for industry, transportation, food processing, as well as utilization of the used materials which properties were modified by the nanotechnologies leads to permanent rise of the nanodust in the atmosphere, soils, river waters, lakes and the sea bottom. Their uncontrolled interaction with flora and fauna could be catastrophic for human health and life on the Earth. Promising ways for the problem solution and perspectives are discussed. Some own results on the protective action of nanodiamonds, silver and some other nanoparticles are presented. A vital necessity of an open access database on known types of nanoparticles, their use in the materials and documented influence of health of animals and humans is discussed
Collapse
|
13
|
Islam F, Saeed F, Afzaal M, Ahmad A, Hussain M, Khalid MA, Saewan SA, Khashroum AO. Applications of green technologies-based approaches for food safety enhancement: A comprehensive review. Food Sci Nutr 2022; 10:2855-2867. [PMID: 36171783 PMCID: PMC9469842 DOI: 10.1002/fsn3.2915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/16/2022] [Accepted: 04/09/2022] [Indexed: 12/18/2022] Open
Abstract
Food is the basic necessity for life that always motivated man for its preservation and making it available for an extended period. Food scientists always tried to preserve it with minimum deterioration in quality by employing and investigating innovative preservation techniques. The food sector always remained in search of eco-friendly and sustainable solutions to tackle food safety challenges. Green technologies (ozone, pulsed electric field, ohmic heating, photosensitization, ultraviolet radiations, high-pressure processing, ultrasonic, nanotechnology) are in high demand owing to their eco-friendly, rapid, efficient, and effective nature in controlling microbes with a negligible residual impact on food quality during processing. The use of green technologies would be a desirable substitute for conventionally available preservation techniques. This paper discusses different food preservation techniques with special reference to green technologies to minimize the deleterious impact on the environment and employs these innovative technologies to play role in enhancing the food safety.
Collapse
Affiliation(s)
- Fakhar Islam
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmad
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | | - Shamaail A. Saewan
- Department of Food SciencesCollege of AgricultureUniversity of BasrahBasrahIraq
| | - Ashraf O. Khashroum
- Department of Plant Production and ProtectionFaculty of AgricultureJerash UniversityJerashJordan
| |
Collapse
|
14
|
Ran R, Chen S, Su Y, Wang L, He S, He B, Li C, Wang C, Liu Y. Preparation of pH-colorimetric films based on soy protein isolate/ZnO nanoparticles and grape-skin red for monitoring pork freshness. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Jin B, Liu X, Liang W, Li Q, Yan J, Han Z. Preparation, physicochemical characteristics and bioactivity evaluation of pitaya peel extract/soy protein nanocomposite film containing zinc oxide nanoparticles by photocatalysis. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bei Jin
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Xunqi Liu
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Wanying Liang
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Qiyong Li
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - JingKun Yan
- School of Chemical Engineering & Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Zhiping Han
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
16
|
Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042202] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, food treatment technologies are constantly evolving due to an increasing demand for healthier and tastier food with longer shelf lives. In this review, our aim is to highlight the advantages and disadvantages of some of the most exploited industrial techniques for food processing and microorganism deactivation, dividing them into those that exploit high temperatures (pasteurization, sterilization, aseptic packaging) and those that operate thanks to their inherent chemical–physical principles (ultrasound, ultraviolet radiation, ozonation, high hydrostatic pressure). The traditional thermal methods can reduce the number of pathogenic microorganisms to safe levels, but non-thermal technologies can also reduce or remove the adverse effects that occur using high temperatures. In the case of ultrasound, which inactivates pathogens, recent advances in food treatment are reported. Throughout the text, novel discoveries of the last decade are presented, and non-thermal methods have been demonstrated to be more attractive for processing a huge variety of foods. Preserving the quality and nutritional values of the product itself and at the same time reducing bacteria and extending shelf life are the primary targets of conscious producers, and with non-thermal technologies, they are increasingly possible.
Collapse
|
17
|
Microstructure Characterization and Battery Performance Comparison of MOF-235 and TiO2-P25 Materials. CRYSTALS 2022. [DOI: 10.3390/cryst12020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing interest in energy storage has led to the urgent need for the development of high-performance cathode electrodes. The commercialized materials MOF-235 and TiO2-P25 exhibit characteristics that may be suitable as electrodes but there are inherent challenges that have yet to be addressed in the literature. In this study, a high-pressure hydrothermal synthesized MOF-235 and sol-gel-made TiO2-P25 were tested for battery performance. The results indicate that MOF-235 does not possess the desired performance due to uncontrollable agglomeration. On the other hand, TiO2-P25 showed good cycling life, and the performance can be further optimized by doping and minimizing the particle size. Additionally, SEM and TEM were applied for surface characterization, providing evidence that mesoporous TiO2-25 inhibits photo-generated carrier recombination. The mesoporous energy storage mechanism of those two materials is also discussed. This research will provide technical support for the industrialization of those two mesoporous materials.
Collapse
|
18
|
Chavan P, Sharma P, Sharma SR, Mittal TC, Jaiswal AK. Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods 2022; 11:122. [PMID: 35010248 PMCID: PMC8750622 DOI: 10.3390/foods11010122] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology's benefits and downsides. The breadth of ultrasound's application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications.
Collapse
Affiliation(s)
- Prasad Chavan
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144402, India;
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Pallavi Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Sajeev Rattan Sharma
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Tarsem Chand Mittal
- Department of Processing & Food Engineering, Punjab Agricultural University, Ludhiana 141004, India; (P.S.); (S.R.S.); (T.C.M.)
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Science, Technological University Dublin—City Campus, Central Quad, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin—City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
19
|
Advances in Vacuum Ultraviolet Photolysis in the Postharvest Management of Fruit and Vegetables Along the Value Chains: a Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Comprehensive Study of Light-Emitting Diodes (LEDs) and Ultraviolet-LED Lights Application in Food Quality and Safety. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Light-Emitting Diodes (LEDs) and Ultraviolet Light-Emitting Diodes (UV LEDs) consist in a semiconductor of light, that are emerging in the market, due to their singular characteristics, as being a solid-state cold source of light, which has potential application in food preservation. For this reason, this study lens to provide a review of the effects of LED and UV LED application in fresh fruits and vegetables, under refrigeration storage. Analyzing the LED role, in extending the shelf-life of postharvest food, these present the capability of improving the quality physicochemical and microbiological of fruits and vegetables, such as: color (chlorophyll), weight loss, total phenolic and flavonoid content, phenylalanine ammonia-lyase activity and total soluble solids. In addition, it’s able to stop chemical reactions and increasing the activity of fruits and vegetable defenses. UV LED light, on the other hand, operates in an effective and straightway in the inactivation the food pathogens, such as Escherichia coli, Pseudomonas fluorescens and Salmonella spp, for example. Therefore, UV LED light can be applied to delay the senescence of foods, however, the wavelength must match the target organism, depending on the food.
Collapse
|
21
|
Wang L, Forsythe SJ, Yang X, Fu S, Man C, Jiang Y. Invited review: Stress resistance of Cronobacter spp. affecting control of its growth during food production. J Dairy Sci 2021; 104:11348-11367. [PMID: 34364644 DOI: 10.3168/jds.2021-20591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022]
Abstract
Members of the Cronobacter genus include food-borne pathogens that can cause infections in infants, with a mortality rate as high as 40 to 80%. The high fatality rate of Cronobacter and its isolation from numerous types of food, especially from powdered infant formula, demonstrate the serious nature of this organism. The source tracking of Cronobacter spp. and the analysis of high-frequency species from different sources are helpful for a more targeted control. Furthermore, the persistence during food processing and storage may be attributed to strong resistance of Cronobacter spp. to environment stresses such as heat, pH, and desiccation. There are many factors that support the survival of Cronobacter spp. in harsh environments, such as some genes, regulatory systems, and biofilms. Advanced detection technology is helpful for the strict monitoring of Cronobacter spp. In addition to the traditional heat treatment, many new control techniques have been developed, and the ability to control Cronobacter spp. has been demonstrated. The control of this bacteria is required not only during manufacture, but also through the selection of packaging methods to reduce postprocessing contamination. At the same time, the effect of inactivation methods on product quality and safety must be considered. This review considers the advances in our understanding of environmental stress response in Cronobacter spp. with special emphasis on its implications in food processing.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Stephen J Forsythe
- Foodmicrobe.com, Adams Hill, Keyworth, Nottingham, United Kingdom, NG12 5GY
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shiqian Fu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
22
|
The Composites of PCL and Tetranuclear Titanium(IV)-oxo Complexes as Materials Exhibiting the Photocatalytic and the Antimicrobial Activity. Int J Mol Sci 2021; 22:ijms22137021. [PMID: 34209889 PMCID: PMC8268633 DOI: 10.3390/ijms22137021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 01/09/2023] Open
Abstract
Excessive misuse of antibiotics and antimicrobials has led to a spread of microorganisms resistant to most currently used agents. The resulting global threats has driven the search for new materials with optimal antimicrobial activity and their application in various areas of our lives. In our research, we focused on the formation of composite materials produced by the dispersion of titanium(IV)-oxo complexes (TOCs) in poly(ε-caprolactone) (PCL) matrix, which exhibit optimal antimicrobial activity. TOCs, of the general formula [Ti4O2(OiBu)10(O2CR’)2] (R’ = PhNH2 (1), C13H9 (2)) were synthesized as a result of the direct reaction of titanium(IV) isobutoxide and 4-aminobenzoic acid or 9-fluorenecarboxylic acid. The microcrystalline powders of (1) and (2), whose structures were confirmed by infrared (IR) and Raman spectroscopy, were dispersed in PCL matrixes. In this way, the composites PCL + nTOCs (n = 5 and 20 wt.%) were produced. The structure and physicochemical properties were determined on the basis of Raman microscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electron paramagnetic resonance spectroscopy (EPR), and UV–Vis diffuse reflectance spectroscopy (DRS). The degree of TOCs distribution in the polymer matrix was monitored by scanning electron microscopy (SEM). The addition of TOCs micro grains into the PCL matrix only slightly changed the thermal and mechanical properties of the composite compared to the pure PCL. Among the investigated PCL + TOCs systems, promising antibacterial properties were confirmed for samples of PCL + n(2) (n = 5, 20 wt.%) composites, which simultaneously revealed the best photocatalytic activity in the visible range.
Collapse
|
23
|
Kim JU, Shahbaz HM, Cho J, Lee H, Park J. Inactivation of Bacillus cereus spores using a combined treatment of UV-TiO2 photocatalysis and high hydrostatic pressure. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Qian J, Xing B, Zhang B, Yang H. Optimizing QR code readability for curved agro-food packages using response surface methodology to improve mobile phone-based traceability. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Sandhya J, Kalaiselvam S. UV responsive quercetin derived and functionalized CuO/ZnO nanocomposite in ameliorating photocatalytic degradation of rhodamine B dye and enhanced biocidal activity against selected pathogenic strains. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:835-848. [PMID: 34038321 DOI: 10.1080/10934529.2021.1930770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 05/27/2023]
Abstract
Quercetin was investigated for its role as a reducing agent in biosynthesizing CuO/ZnO nanocomposite, its subsequent surface functionalization and influence in Rhodamine B dye degradation and biocidal activity. The as synthesized quercetin functionalized CuO/ZnO nanocomposite (CuO/ZnO@Q) was analyzed using X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FTIR), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS) and Ultraviolet-visible spectroscopy (UV-Vis). XRD showed the formation of crystalline CuO, ZnO phases and FTIR analysis revealed the incorporation of quercetin functional groups in the synthesized nanocomposite. TEM image displayed the formation of quercetin deposited spherical CuO/ZnO nanostructure with the EDAX results confirming the presence of organic carbon composition from quercetin. The UV absorption spectra ascertained the presence and role of quercetin in the enhanced absorption of radiation in the UV range. CuO/ZnO@Q showed improved photocatalysis with complete Rhodamine B dye degradation after 75 min of UV irradiation, as against pure CuO/ZnO, which exhibited incomplete dye degradation even after 90 min of irradiation. Moreover, quercetin surface functionalization effectively ameliorated its antimicrobial activity against E. coli, S. aureus, Shigella, B. subtilis, A. niger and C. albicans, proving its potential in significantly enhancing biocidal activity along with photocatalytic dye degradation in a natural and eco-friendly route.
Collapse
Affiliation(s)
- J Sandhya
- Department of Applied Science and Technology, Anna University, Chennai, India
| | - S Kalaiselvam
- Department of Applied Science and Technology, Anna University, Chennai, India
| |
Collapse
|
26
|
Fonseca JDM, Alves MJDS, Soares LS, Moreira RDFPM, Valencia GA, Monteiro AR. A review on TiO 2-based photocatalytic systems applied in fruit postharvest: Set-ups and perspectives. Food Res Int 2021; 144:110378. [PMID: 34053562 DOI: 10.1016/j.foodres.2021.110378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
Titanium dioxide (TiO2) is a photocatalytic material used to degrade ethylene, and it has been studied as an alternative postharvest technology. Although several studies have indicated the effective action of TiO2 photocatalysis for delaying the fruit ripening, photocatalytic systems need to be well-designed for this application. Fruit is susceptible to environmental conditions like temperature, relative humidity, atmosphere composition and exposure to UV-light. This fragility associated with its variable ethylene production rate over its maturation stage limits the photocatalysis parameters optimization. Thus, this review aims to detail the reaction mechanisms, set-up, advantages, and limitations of TiO2 photocatalytic systems based on polymers-TiO2 nanocomposites and reactors containing TiO2 immobilized into inorganic supports designed for fruit applications. It is expected that this review can elucidate the fundamental aspects that should be considered for the use of these systems.
Collapse
Affiliation(s)
- Jéssica de Matos Fonseca
- Laboratory of Physical Properties of Foods, Chemical and Food Engineering Department, Federal University of Santa Catarina, UFSC, Brazil
| | - Maria Jaízia Dos Santos Alves
- Laboratory of Physical Properties of Foods, Chemical and Food Engineering Department, Federal University of Santa Catarina, UFSC, Brazil
| | - Lenilton Santos Soares
- Laboratory of Physical Properties of Foods, Chemical and Food Engineering Department, Federal University of Santa Catarina, UFSC, Brazil
| | | | - Germán Ayala Valencia
- Laboratory of Physical Properties of Foods, Chemical and Food Engineering Department, Federal University of Santa Catarina, UFSC, Brazil.
| | - Alcilene Rodrigues Monteiro
- Laboratory of Physical Properties of Foods, Chemical and Food Engineering Department, Federal University of Santa Catarina, UFSC, Brazil.
| |
Collapse
|
27
|
Chen X, Li X, Chen D, Wang L. Study on the photoelectrical performance of anodized titanium sheets. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201778. [PMID: 33959339 PMCID: PMC8074931 DOI: 10.1098/rsos.201778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Anodization is a widely used method to obtain multicoloured oxidized titanium sheets. However, most researchers paid great attention to the colour-related properties instead of photoelectrical properties of titanium oxide film obtained by anodization. In this work, to study their photoelectrical properties, a series of multicoloured oxidized titanium sheets were prepared by anodization method, and UV-vis absorption and photocurrents were tested. The relationship between anodization voltages/anodization durations and photocurrents of titanium sheets was studied. Results show that titanium sheets have excellent photoelectrical performance. With the increase of anodization voltage, the number of UV-vis absorption peaks increased under visible light which means increasing absorption. When anodization duration increased, absorption band edge also increased in the visible light region, which means the band gap needed to produce charge transfer transition decreased. Under simulated sunlight and applied voltage of +0.4 V, photocurrent increased with the increase of either anodization voltage or anodization duration, and can be expressed by linear equations. In addition, anodization currents were recorded during anodization. Morphology, crystal structure and photoelectrical properties of anodized titanium sheets were characterized. The anodized titanium sheets can not only be used as decorative material in jewellery and architecture fields etc. but also are supposed to be used as photoelectrical catalyst in further work.
Collapse
Affiliation(s)
- Xiangping Chen
- Jewelry Institute, Guangzhou Panyu Polytechnic, Guangzhou 511483, People's Republic of China
| | - Xin Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Dedong Chen
- Jewelry Institute, Guangzhou Panyu Polytechnic, Guangzhou 511483, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| |
Collapse
|
28
|
Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Compr Rev Food Sci Food Saf 2021; 20:1800-1828. [PMID: 33594773 DOI: 10.1111/1541-4337.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/15/2022]
Abstract
High pressure processing (HPP) as a nonthermal processing (NTP) technology can ensure microbial safety to some extent without compromising food quality. However, for vegetative microorganisms, the existence of pressure-resistant subpopulations, the revival of sublethal injury (SLI) state cells, and the resuscitation of viable but nonculturable (VBNC) state cells may constitute potential food safety risks and pose challenges for the further development of HPP application. HPP combined with selected hurdles, such as moderately elevated or low temperature, low pH, natural antimicrobials (bacteriocin, lactate, reuterin, endolysin, lactoferrin, lactoperoxidase system, chitosan, essential oils), or other NTP (CO2 , UV-TiO2 photocatalysis, ultrasound, pulsed electric field, ultrafiltration), have been highlighted as feasible alternatives to enhance microbial inactivation (synergistic or additive effect). These combinations can effectively eliminate the pressure-resistant subpopulation, reduce the population of SLI or VBNC state cells and inhibit their revival or resuscitation. This review provides an updated overview of the microbial inactivation by the combination of HPP and selected hurdles and restructures the possible inactivation mechanisms.
Collapse
Affiliation(s)
- Peiqing Yang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
29
|
Oxo-Titanium(IV) Complex/Polymer Composites-Synthesis, Spectroscopic Characterization and Antimicrobial Activity Test. Int J Mol Sci 2020; 21:ijms21249663. [PMID: 33352922 PMCID: PMC7766362 DOI: 10.3390/ijms21249663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of a large number of bacterial strains resistant to many drugs or disinfectants currently used contributed to the search of new, more effective antimicrobial agents. In the presented paper, we assessed the microbiocidal activity of tri- and tetranuclear oxo-titanium(IV) complexes (TOCs), which were dispersed in the poly(methyl methacrylate) (PMMA) matrix. The TOCs were synthesized in reaction to Ti(OR)4 (R = iPr, iBu) and HO2CR' (R' = 4-PhNH2 and 4-PhOH) in a 4:1 molar ratio at room temperature and in Ar atmosphere. The structure of isolated oxo-complexes was confirmed by IR and Raman spectroscopy and mass spectrometry. The antimicrobial activity of the produced composites (PMMA + TOCs) was estimated against Gram-positive (Staphylococcus aureus ATCC 6538 and S. aureus ATCC 25923) and Gram-negative (Escherichia coli ATCC 8739 and E. coli ATCC 25922) bacteria and yeasts of Candida albicans ATCC 10231. All produced composites showed biocidal activity against the bacteria. Composites containing {Ti4O2} cores and the {Ti3O} core stabilized by the 4-hydroxybenzoic ligand showed also high activity against yeasts. The results of investigations carried out suggest that produced (PMMA + TOCs) composites, due to their microbiocidal activity, could find an application in the elimination of microbial contaminations in various fields of our lives.
Collapse
|
30
|
Pérez-Lavalle L, Carrasco E, Valero A. Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products. Foods 2020; 9:E1558. [PMID: 33126448 PMCID: PMC7692465 DOI: 10.3390/foods9111558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing consumption of blueberries is associated with appreciation of their organoleptic properties together with their multiple health benefits. The increasing number of outbreaks caused by pathogenic microorganisms associated with their consumption in the fresh state and the rapid spoilage of this product which is mainly caused by moulds, has led to the development and evaluation of alternatives that help mitigate this problem. This article presents different strategies ranging from chemical, physical and biological technologies to combined methods applied for microbial decontamination of fresh blueberries and derived products. Sanitizers such as peracetic acid (PAA), ozone (O3), and electrolyzed water (EOW), and physical technologies such as pulsed light (PL) and cold plasma (CP) are potential alternatives to the use of traditional chlorine. Likewise, high hydrostatic pressure (HHP) or pulsed electrical fields (PEF) successfully achieve microbial reductions in derivative products. A combination of methods at moderate intensities or levels is a promising strategy to increase microbial decontamination with a minimal impact on product quality.
Collapse
Affiliation(s)
- Liliana Pérez-Lavalle
- Faculty of Basic and Biomedical Sciences, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Department of Food Science and Technology, International Campus of Excellence in the AgriFood Sector (CeiA3), University of Córdoba, 14014 Córdoba, Spain; (E.C.); (A.V.)
| | - Elena Carrasco
- Department of Food Science and Technology, International Campus of Excellence in the AgriFood Sector (CeiA3), University of Córdoba, 14014 Córdoba, Spain; (E.C.); (A.V.)
| | - Antonio Valero
- Department of Food Science and Technology, International Campus of Excellence in the AgriFood Sector (CeiA3), University of Córdoba, 14014 Córdoba, Spain; (E.C.); (A.V.)
| |
Collapse
|
31
|
Nishida Y, Honda K. Visualization of Potential Technical Solutions by SOM and Co-Clustering and its Extension to Multi-View Situation. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS 2020. [DOI: 10.20965/jaciii.2020.p0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In order to support inspiration of potential technical solutions, this paper considers visualization of solving means varied in patent documents through SOM. Non-structured patent document data can be quantified through two different scheme: word level co-occurrence probability vectors and correlation coefficients of the generated co-occurrence probability vectors. Comparing the two SOMs derived with the above schemes is useful for supporting innovation acceleration through extraction of important pairs of related factors in new technology development. In this paper, co-cluster structures are utilized for emphasizing field-related solutions by constructing multiple SOMs after co-clustering. Document × keyword co-occurrence analysis achieves extraction of co-clusters consisting of mutually related pairs in particular fields. Additionally, this paper also considers an extension to a multi-view situation, where each patent is characterized by additional patent classification system of F-term by Japan Patent Office. Through multi-view co-clustering among documents × keywords × F-terms, theme field-related knowledge is demonstrated to be extracted.
Collapse
|
32
|
Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Léveillé RJ, Papineau D, Rempfert KR, Sánchez-Román M, Spear JR, Southam G, Stern JC, Cleaves HJ. Deciphering Biosignatures in Planetary Contexts. ASTROBIOLOGY 2019; 19:1075-1102. [PMID: 31335163 PMCID: PMC6708275 DOI: 10.1089/ast.2018.1903] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/10/2019] [Indexed: 05/05/2023]
Abstract
Microbial life permeates Earth's critical zone and has likely inhabited nearly all our planet's surface and near subsurface since before the beginning of the sedimentary rock record. Given the vast time that Earth has been teeming with life, do astrobiologists truly understand what geological features untouched by biological processes would look like? In the search for extraterrestrial life in the Universe, it is critical to determine what constitutes a biosignature across multiple scales, and how this compares with "abiosignatures" formed by nonliving processes. Developing standards for abiotic and biotic characteristics would provide quantitative metrics for comparison across different data types and observational time frames. The evidence for life detection falls into three categories of biosignatures: (1) substances, such as elemental abundances, isotopes, molecules, allotropes, enantiomers, minerals, and their associated properties; (2) objects that are physical features such as mats, fossils including trace-fossils and microbialites (stromatolites), and concretions; and (3) patterns, such as physical three-dimensional or conceptual n-dimensional relationships of physical or chemical phenomena, including patterns of intermolecular abundances of organic homologues, and patterns of stable isotopic abundances between and within compounds. Five key challenges that warrant future exploration by the astrobiology community include the following: (1) examining phenomena at the "right" spatial scales because biosignatures may elude us if not examined with the appropriate instrumentation or modeling approach at that specific scale; (2) identifying the precise context across multiple spatial and temporal scales to understand how tangible biosignatures may or may not be preserved; (3) increasing capability to mine big data sets to reveal relationships, for example, how Earth's mineral diversity may have evolved in conjunction with life; (4) leveraging cyberinfrastructure for data management of biosignature types, characteristics, and classifications; and (5) using three-dimensional to n-D representations of biotic and abiotic models overlain on multiple overlapping spatial and temporal relationships to provide new insights.
Collapse
Affiliation(s)
- Marjorie A. Chan
- Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah
| | - Nancy W. Hinman
- Department of Geosciences, University of Montana, Missoula, Montana
| | | | - Keith E. Schubert
- Department of Electrical and Computer Engineering, Baylor University, Waco, Texas
| | - Richard J. Gillams
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Electronics and Computer Science, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Stanley M. Awramik
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, California
| | - Penelope J. Boston
- NASA Astrobiology Institute, NASA Ames Research Center, Moffett Field, California
| | - Dina M. Bower
- Department of Astronomy, University of Maryland College Park (CRESST), College Park, Maryland
- NASA Goddard Space Flight Center, Greenbelt, Maryland
| | | | - Jack D. Farmer
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona
| | - Tony Z. Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Penelope L. King
- Research School of Earth Sciences, The Australian National University, Canberra, Australia
| | - Robert M. Hazen
- Geophysical Laboratory, Carnegie Institution for Science, Washington, District of Columbia
| | - Richard J. Léveillé
- Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
- Geosciences Department, John Abbott College, Sainte-Anne-de-Bellevue, Canada
| | - Dominic Papineau
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
- Centre for Planetary Sciences, University College London, London, United Kingdom
- BioGeology and Environmental Geology State Key Laboratory, School of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado
| | - Mónica Sánchez-Román
- Earth Sciences Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado
| | - Gordon Southam
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | | | - Henderson James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, New Jersey
| |
Collapse
|
33
|
Zhu Z, Cai H, Sun D, Wang H. Photocatalytic effects on the quality of pork packed in the package combined with TiO2coated nonwoven fabrics. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.12993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhiwei Zhu
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou China
| | - Huanhuan Cai
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou China
| | - Da‐Wen Sun
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou China
- Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science CentreUniversity College Dublin, National University of Ireland Belfield Dublin 4 Ireland
| | - Hsiao‐Wen Wang
- School of Food Science and EngineeringSouth China University of Technology Guangzhou China
- Academy of Contemporary Food EngineeringSouth China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain FoodsGuangzhou Higher Education Mega Center Guangzhou China
| |
Collapse
|
34
|
Efficacy of UV-TiO2 photocatalysis technology for inactivation of Escherichia coli K12 on the surface of blueberries and a model agar matrix and the influence of surface characteristics. Food Microbiol 2018; 76:526-532. [DOI: 10.1016/j.fm.2018.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 01/23/2023]
|
35
|
Ramesh T, Yaparatne S, Tripp CP, Nayak B, Amirbahman A. Ultraviolet Light-Assisted Photocatalytic Disinfection of Escherichia coli and Its Effects on the Quality Attributes of White Grape Juice. FOOD BIOPROCESS TECH 2018. [DOI: 10.1007/s11947-018-2182-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Zhu Z, Cai H, Sun DW. Titanium dioxide (TiO 2 ) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Inactivation of Salmonella Typhimurium in fresh cherry tomatoes using combined treatment of UV-TiO 2 photocatalysis and high hydrostatic pressure. Food Sci Biotechnol 2018; 27:1531-1539. [PMID: 30319865 DOI: 10.1007/s10068-018-0368-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 10/17/2022] Open
Abstract
The antibacterial efficacy of UV-TiO2 photocatalysis pre-washing in a water-assisted system (UVT, 4.5 mW/cm2, 5-15 min) and high hydrostatic pressure (HHP, 300-500 MPa, 1 min at 25 °C) post-package combined treatment was evaluated against Salmonella Typhimurium inoculated onto whole cherry tomato surfaces and compared with chlorine disinfection (200 ppm). An air pump was fitted at the bottom of UVT reactor to create turbulent flow for rotation of fruits for uniform disinfection. UVT-HHP combined treatment at 500 MPa achieved bacterial reduction of more than 5 log via a synergistic effect, compared with chlorine disinfection. Lycopene and total phenolic contents and antioxidant activities were not significantly changed in tomatoes after any treatment. UVT-HHP combined treatment did not affect the surface color but caused softness in tomatoes. UVT pre-washing followed by HHP post-package treatment can be the effective intervention strategy alternative to conventional chlorine disinfection for production of ready-to-eat (RTE) fresh cherry tomatoes.
Collapse
|
38
|
López de Dicastillo C, Patiño C, Galotto MJ, Palma JL, Alburquenque D, Escrig J. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E128. [PMID: 29495318 PMCID: PMC5853759 DOI: 10.3390/nano8020128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 01/23/2023]
Abstract
The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
| | - Cristian Patiño
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
| | - María Jose Galotto
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
| | - Juan Luis Palma
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
- Department of Basic Sciences, Engineering Faculty, CIDES, Universidad Central de Chile, Santa Isabel 1186, 8330601 Santiago, Chile.
| | - Daniela Alburquenque
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
- Department of Physics, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile.
| | - Juan Escrig
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
- Department of Physics, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile.
| |
Collapse
|
39
|
Raie DS, Mhatre E, El-Desouki DS, Labena A, El-Ghannam G, Farahat LA, Youssef T, Fritzsche W, Kovács ÁT. Effect of Novel Quercetin Titanium Dioxide-Decorated Multi-Walled Carbon Nanotubes Nanocomposite on Bacillus subtilis Biofilm Development. MATERIALS 2018; 11:ma11010157. [PMID: 29346268 PMCID: PMC5793655 DOI: 10.3390/ma11010157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.
Collapse
Affiliation(s)
- Diana S Raie
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Eisha Mhatre
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena (FSU), Jena 07743, Germany.
| | - Doaa S El-Desouki
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Ahmed Labena
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Gamal El-Ghannam
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt.
| | - Laila A Farahat
- Process Design and Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | - Tareq Youssef
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt.
| | - Wolfgang Fritzsche
- Nanobiophotonic Department, Leibniz Institute of Photonic Technology Jena (IPHT), Jena 07745, Germany.
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
40
|
Yemmireddy VK, Hung YC. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety-Opportunities and Challenges. Compr Rev Food Sci Food Saf 2017; 16:617-631. [PMID: 33371565 DOI: 10.1111/1541-4337.12267] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 11/30/2022]
Abstract
Cross-contamination of foods with pathogenic microorganisms such as bacteria, viruses, and parasites may occur at any point in the farm to fork continuum. Food contact and nonfood contact surfaces are the most frequent source of microbial cross-contamination. In the wake of new and emerging food safety challenges, including antibiotic-resistant human pathogens, conventional sanitation and disinfection practices may not be sufficient to ensure safe food processing, proper preparation, and also not be environmentally friendly. Nanotechnology-enabled novel food safety interventions have a great potential to mitigate the risk of microbial cross-contamination in the food chain. Especially engineered nanoparticles (ENPs) are increasingly finding novel applications as antimicrobial agents. Among various ENPs, photocatalyst metal oxides have shown great promise as effective nontargeted disinfectants over a wide range of microorganisms. The present review provides an overview of antimicrobial properties of various photocatalyst metal oxides and their potential applications as surface coatings. Further, this review discusses the most common approaches to developing antimicrobial coatings, methods to characterize, test, and evaluate antimicrobial efficacy as well as the physical stability of the coatings. Finally, regulations and challenges concerning the use of these novel photocatalytic antimicrobial coatings are also discussed.
Collapse
Affiliation(s)
- Veerachandra K Yemmireddy
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, Ga., 30223-1797, U.S.A
| | - Yen-Con Hung
- Dept. of Food Science and Technology, Univ. of Georgia, 1109 Experiment Street, Griffin, Ga., 30223-1797, U.S.A
| |
Collapse
|