1
|
Jiang M, Pan Y, Yu K, Ma Y, Cui Y, Liu Y, Liu J, Zhang K, Li H. Metabolic profiling and gene expression analyses shed light on the cold adaptation mechanisms of Saposhnikovia divaricata (Turcz.) Schischk. Sci Rep 2025; 15:7070. [PMID: 40016325 PMCID: PMC11868412 DOI: 10.1038/s41598-025-91094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
The northeastern region of China experiences a distinctly cold climate influenced by the Siberian High during the winter months, thus resulting in severe cold weather conditions. Snow cover is prevalent and can persist for several months. This prolonged exposure to low temperatures necessitates specific adaptations in terms of agriculture and plant life, particularly for perennial herbs. Saposhnikovia divaricate (Turcz.) Schischk (SD) is a widely distributed perennial herb in the northeastern and northern provinces of China. However, there is limited documentation on the molecular mechanism through which this plant adapts to cold stress. Therefore, we elucidated the SD response to cold stress by transcriptome and metabolome analysis. Cold stress induced chlorosis and wilting in plants, thus leading to added function of antioxidant enzymes and higher levels of malondialdehyde, proline, soluble sugars. Notably, the differentially expressed genes (DEGs) were primarily related with sugar metabolism, ROS sweep, flavonoid and terpenoid biosynthesis, plant hormone signalling pathways, lipid metabolism, and transcription factors. Additionally, the differentially expressed metabolites (DEMs) mainly included lipids, flavonoids, terpenoid compounds, sugar-related metabolites, alkaloids and other metabolites. Furthermore, integrated analysis revealed coexpression patterns between carbohydrate metabolism-related genes and genes reference flavonoid and terpenoid biosynthesis, along with their corresponding metabolites. Finally, the qPCR results revealed notable over-expression levels of stress-related genes, including those participated in plant hormone signalling pathways (PP2C and AUX), flavonoid biosynthesis (CH3), antioxidant enzymes (AOX and CAT), and sugar-related metabolite metabolism (TPS, SPS, and SS). In conclusion, our findings suggest that cold stress strongly affects plant hormone signalling pathways, ROS scavenging mechanisms, unsaturated fatty acid synthesis and flavonoid and terpenoid biosynthesis in SD. These discoveries provide valuable insights into the impact of cold climates on herbaceous plants.
Collapse
Affiliation(s)
- Ming Jiang
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Yue Pan
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Kanchao Yu
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Yanshi Ma
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Ying Cui
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Yang Liu
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Jicheng Liu
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Keyong Zhang
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China
| | - Hui Li
- Qiqihar Medical University, No.333, Bukui Street, Jianhua District, Qiqihar, 161006, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
2
|
Jiang S, Cui Y, Wang B, Fu Z, Dong C. Acidic polysaccharides from Cistanche deserticola and their effects on the polarization of tumor-associated macrophages. Int J Biol Macromol 2024; 282:137207. [PMID: 39491707 DOI: 10.1016/j.ijbiomac.2024.137207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Three purified polysaccharides, CDAP-1, CDAP-2, and CDAP-3, were prepared from the rhizome of Cistanche deserticola and characterized. Structural analysis revealed that CDAP-1 and CDAP-2 are highly branched RG-I-type polysaccharides with side chains, including arabinans, galactans, and/or AGs, whereas CDAP-3 is a typical HG-type polysaccharide. In vivo tests revealed that treatment with the crude polysaccharide fraction (CDCP) significantly prolonged the survival of H22 tumor-bearing mice and exhibited antitumor effects. In vitro experiments demonstrated that all three polysaccharides could polarize M2-like TAMs toward the M1 phenotype. As a major component of CDCP, CDAP-2 could act on M2 macrophages through the TLR4 receptor-mediated NF-κB signaling pathway. An in vitro cell model verified that CDAP-2 could inhibit cell proliferation by reversing the polarization of M2-like TAMs to the cytotoxic M1 phenotype. Overall, we found that CDCP showed a clear antitumor effect and that its major component, CDAP-2, could reverse the suppressive TAM phenotype in the microenvironment, providing a scientific basis for the clinical application and development of C. deserticola.
Collapse
Affiliation(s)
- Siliang Jiang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yongsheng Cui
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Bo Wang
- College of Pharmacy, Ningxia Medical University, No.692 Sheng-Li Street, Xing-Qing District, Yinchuan 750004, China
| | - Zheng Fu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Kangzhe Pharmaceutical Technology Development Company, Ltd., Tianjin, China
| | - Caixia Dong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
3
|
Wang WJ, Tang HT, Ou SC, Shen WJ, Chen CY, Li YC, Chang SY, Chang WC, Hsueh PR, Huang ST, Hung MC. Novel SARS-CoV-2 inhibition properties of the anti-cancer Kang Guan Recipe herbal formula. Cancer Lett 2024; 604:217198. [PMID: 39197583 DOI: 10.1016/j.canlet.2024.217198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
The ongoing COVID-19 pandemic is a persistent challenge, with continued breakthrough infections despite vaccination efforts. This has spurred interest in alternative preventive measures, including dietary and herbal interventions. Previous research has demonstrated that herbal medicines can not only inhibit cancer progression but also combat viral infections, including COVID-19 by targeting SARS-CoV-2, indicating a multifaceted potential to address both viruses and cancer. Here, we found that the Kang Guan Recipe (KGR), a novel herbal medicine formula, associates with potent inhibition activity against the SARS-CoV-2 viral infection. We demonstrate that KGR exhibits inhibitory activity against several SARS-CoV-2 variants of concern (VOCs). Mechanistically, we found that KGR can block the interaction of the viral spike and human angiotensin-converting enzyme 2 (ACE2). Furthermore, we assessed the inhibitory effect of KGR on SARS-CoV-2 viral entry in vivo, observing that serum samples from healthy human subjects having taken KGR exhibited suppressive activity against SARS-CoV-2 variants. Our investigation provides valuable insights into the potential of KGR as a novel herbal-based preventive and therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Hsuan-Ting Tang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Shi-Chen Ou
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chung-Yu Chen
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Sui-Yuan Chang
- Dept of Clinical Laboratory Sciences and Medical Biotchnology, National Taiwan University College of Medicine, Taipei, Taiwan; Dept of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, Taichung, Taiwan; PhD Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan; Department of Laboratory Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan; Research Cancer Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 40402, Taiwan; Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
4
|
Sun Y, Liu Y, Yang R, Wang SY, Pan J, Guan W, Kuang HX, Wang YH, Yang BY. Chemical constituents from the Saposhnikovia divaricata and their antiproliferative activity. Z NATURFORSCH C 2024; 79:285-290. [PMID: 38780504 DOI: 10.1515/znc-2024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Nine compounds were isolated and identified from ethanolic extracts of Saposhnikovia divaricata, including one new alkaloid (1), one new pentacyclic triterpenoid (9), and seven known alkaloids (2-8). Structural elucidation of compounds 1 and 9 was established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. All compounds were evaluated for antiproliferative activity against two cancer cell lines (LN229, A549) in vitro. Compounds (1-9) showed no significant antiproliferative activity.
Collapse
Affiliation(s)
- Yan Sun
- 118437 Heilongjiang University of Chinese Medicine , Harbin, China
| | - Yan Liu
- 118437 Heilongjiang University of Chinese Medicine , Harbin, China
| | - Rui Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yan-Hong Wang
- 118437 Heilongjiang University of Chinese Medicine , Harbin, China
| | - Bing-You Yang
- 118437 Heilongjiang University of Chinese Medicine , Harbin, China
| |
Collapse
|
5
|
He X, Fan H, Sun M, Li J, Xia Q, Jiang Y, Liu B. Chemical structure and immunomodulatory activity of a polysaccharide from Saposhnikoviae Radix. Int J Biol Macromol 2024; 276:133459. [PMID: 38945333 DOI: 10.1016/j.ijbiomac.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
A new polysaccharide, named SP40015A01, was obtained from Saposhnikoviae Radix by water extraction, isolation and purification. SP40015A01 (9.7 × 105 Da) is composed of Rhamnose (Rha), Galacturonic acid (GalA), Galactose (Gal), and Arabinose (Ara) with the proportion of 1.6:85.6:5.8:7.6. The backbone of SP40015A01 is composed of 3-α-GalAp, 2-α-GalAp, 2,3-β-GalAp and 2,3-β-Galp, and branched at C3 of 2,3-β-GalAp, C3 of 2,3-β-Galp. Zebrafish experiments were used to explore the immunomodulatory activity of SP40015A01. Results showed that SP40015A01 could significantly improve the neutrophils density of immunocompromised zebrafish and reduce the content of nitric oxide (NO) and interleukin-1β (IL-1β). This study demonstrated that SP40015A01 has significant immunomodulatory activity, which can improve the neutrophils density and reduce inflammatory factor content, suggesting SP40015A01 may be a potential immunomodulator in Saposhnikoviae Radix (SR) for treatment of hypoimmunity related disease. This study supplemented the research on the polysaccharide components in traditional Chinese medicine and provided a scientific explanation for the development and clinical applications of SR.
Collapse
Affiliation(s)
- Xinyang He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Haitao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; College of Bioengineering, Beijing Polytechnic, Beijing 100029, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250103, China
| | - Yanyan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory of "Discovery of Effective Substances in Classical Prescriptions of Traditional Chinese Medicine", State Administration of Traditional Chinese Medicine, Beijing 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; Key Laboratory of "Discovery of Effective Substances in Classical Prescriptions of Traditional Chinese Medicine", State Administration of Traditional Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
6
|
Pan Y, Liu C, Jiang S, Guan L, Liu X, Wen L. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. ULTRASONICS SONOCHEMISTRY 2024; 108:106961. [PMID: 38936294 PMCID: PMC11260389 DOI: 10.1016/j.ultsonch.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.
Collapse
Affiliation(s)
- Ying Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Chunjuan Liu
- Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Shuo Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
7
|
Song M, Wang J, Bao K, Sun C, Cheng X, Li T, Wang S, Wang S, Wen T, Zhu Z. Isolation, structural characterization and immunomodulatory activity on RAW264.7 cells of a novel exopolysaccharide of Dictyophora rubrovalvata. Int J Biol Macromol 2024; 270:132222. [PMID: 38729468 DOI: 10.1016/j.ijbiomac.2024.132222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Fungal polysaccharides have been explored by many for both structural studies and biological activities, but few studies have been done on the extracellular polysaccharides of Dictyophora rubrovalvata, so a new exopolysaccharide was isolated from Dictyophora rubrovalvata and its structure and its immunological activity were investigated. The crude exopolysaccharide (EPS) was purified by DEAE52 cellulose and Sephadex G-200 to obtain a new acidic polysaccharide (DR-EPS). DR-EPS (2.66 × 103 kDa) was consisted mainly of mannose, glucose, galactose and glucuronic acid with a molar ratio of 1: 0.86: 0.20: 0.01. In addition, DR-EPS increased the phagocytic activity of RAW264.7 cells up to 2.67 times of the blank control group. DR-EPS improved intracellular nucleic acid and glycogen metabolism as observed by AO and PAS staining. DR-EPS(40 μg/mL) promoted NO production up to 30.66 μmol, enhanced acid phosphatase (ACP) and superoxide dismutase (SOD) activities, with activity maxima of 660 U/gprot and 96.27 U/mgprot, respectively, and DR-EPS (160 μg / mL) significantly increased the lysozyme content as 2.73 times of the control group. The good immunological activity of extracellular polysaccharides of Dictyophora rubrovalvata provides directions for the use of fermentation broths.
Collapse
Affiliation(s)
- Mingyang Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jiawen Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kaisheng Bao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Chong Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaolei Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tengda Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shanshan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Siqiang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingchi Wen
- Guizhou Panzheng Agriculture Ltd., PR China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China; The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Zhenyuan Zhu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China; Guizhou Panzheng Agriculture Ltd., PR China.
| |
Collapse
|
8
|
Li J, Sun M, Xu C, Zhou C, Jing SJ, Jiang YY, Liu B. An integrated strategy for rapid discovery and identification of the potential effective fragments of polysaccharides from Saposhnikoviae Radix. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117099. [PMID: 37640255 DOI: 10.1016/j.jep.2023.117099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Saposhnikoviae Radix (SR) is a traditional Chinese medicine, known as "Fangfeng". As one of the main active components, Saposhnikoviae Radix polysaccharides (SP) demonstrated a range of biological activities, especially immunity regulation activity. AIMS OF THE STUDY This study aimed at exploring whether polysaccharides have activity after degradation, then discovering the potential effective fragments of SP. MATERIALS AND METHODS Here we establish the chromatographic fingerprints method for 32 batches of 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives of oligosaccharides by HPLC, meanwhile evaluating its immunomodulatory activity in vivo. Then, the potential effective fragments of SP were screened out based on the spectrum-effect relationship analysis between fingerprints and the pharmacological results. Besides, liquid chromatography ion trap-time of flight mass spectrometry (LC-IT-TOF MS) coupled with multiple data-mining techniques was used to identify the potential effective oligosaccharides. RESULTS These findings showed that the hydrolysate of SP have significant immunomodulatory, and the immunity regulation activity varies under different hydrolysis conditions. The 4 potential effective peaks of the hydrolysate of SP were mined by spectrum-effect relationship. Finally, the chemical structure of 4 potential effective oligosaccharide fragments of SP was elucidated based on LC-IT-TOF MS. F10 was inferred tentatively to be Hex1→6Hex1→6Hex1→6Hex1→6Hex1→6Gal; F18 was confirmed to be Rhamnose; F14 was inferred tentatively to be Hex1→4Hex1→ 4Hex1→4Gal and F25 was tentatively inferred to be Ara1→6Gal. CONCLUSIONS This study may provide a sound experimental foundation in the exploration of the active fragments from macromolecular components with relatively complex structures such as polysaccharides.
Collapse
Affiliation(s)
- Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chang Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shu-Jin Jing
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, 102488, China.
| |
Collapse
|
9
|
Rao Z, Zhou H, Li Q, Zeng N, Wang Q. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Radix Saposhnikoviae: A review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116956. [PMID: 37487960 DOI: 10.1016/j.jep.2023.116956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Saposhnikoviae (R. Saposhnikoviae), commonly known as FangFeng, is a renowned medicinal herb in China extensively utilized in traditional Chinese medicine. It expels pathogenic wind from the body surface, alleviates pain by removing dampness, and relieves convulsion. Therefore, it is mainly used for treating exterior syndrome, itchy wind papules, rheumatic arthralgia, and splenic asthenia-induced dampness. R. saposhnikoviae has important medicinal value, and the polysaccharide component is one of its important active ingredients. AIM OF THE REVIEW This review summarizes the factors influencing the content of polysaccharides in R. Saposhnikoviae (PRSs), the techniques employed for their extraction, separation, and purification, their structural characterization, and their biological activities. MATERIALS AND METHODS Relevant research reports on PRSs were collected from the Chinese National Knowledge Infrastructure, Web of Science, PubMed, Wanfang Data Knowledge Service Platform, China Master Theses Full-text Database, and China Doctoral Dissertations Full-text Database. RESULTS The content of PRSs can vary depending on cultivation methods and harvesting time. PRSs were extracted using various extraction techniques such as hot water, ultrasonic-assisted, microwave-assisted, and enzymatic extractions, as well as water extraction and alcohol precipitation. Effective purification methods involve protein removal using trifluoro-trichloroethane and the decolorization of the polysaccharide using column chromatography with D280 anion exchange resins. Current research highlights the significant pharmacological activities of PRSs in R. Saposhnikoviae, including immunomodulatory, antioxidant, anti-allergic, anti-cancer, and anti-osteoporotic effects as well as prevention of calcium loss and maintenance of mucosal function. CONCLUSIONS PRSs play a crucial role as bioactive constituents of R. Saposhnikoviae, exhibiting diverse biological activities and promising applications. A deeper understanding of PRSs will contribute to the improved utilization of R. Saposhnikoviae and the development of related derivatives of the active ingredients.
Collapse
Affiliation(s)
- Zhili Rao
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine/The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, 400021, PR China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Qian Li
- Rehabilitation Department, Chongqing Hospital of Traditional Chinese Medicine/The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, 400021, PR China
| | - Nan Zeng
- Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China.
| | - Qin Wang
- Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine/The Fourth Affiliated Clinical Medical College of Chengdu University of Traditional Chinese Medicine, 400021, PR China.
| |
Collapse
|
10
|
Gao JW, Zhan Y, Wang YH, Zhao SJ, Han ZM. Advances in Phytochemistry and Modern Pharmacology of Saposhnikovia Divaricata (Turcz.) Schischk. Chin J Integr Med 2023; 29:1033-1044. [PMID: 37733271 DOI: 10.1007/s11655-023-3746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2023] [Indexed: 09/22/2023]
Abstract
Saposhnikovia divaricata (Turcz.) Schischk (S. divaricata, Fangfeng) is a herb in the Apiaceae family, and its root has been used since the Western Han Dynasty (202 B.C.). Chromones and coumarins are the pharmacologically active substances in S. divaricata. Modern phytochemical and pharmacological studies have demonstrated their antipyretic, analgesic, anti-inflammatory, antioxidant, anti-tumor, and anticoagulant activities. Technological and analytical strategy theory advancements have yielded novel results; however, most investigations have been limited to the main active substances-chromones and coumarins. Hence, we reviewed studies related to the chemical composition and pharmacological activity of S. divaricata, analyzed the developing trends and challenges, and proposed that research should focus on components' synergistic effects. We also suggested that, the structure-effect relationship should be prioritized in advanced research.
Collapse
Affiliation(s)
- Jun-Wen Gao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Yang Zhan
- Information Center, Jilin Agricultural University, Changchun, 130118, China
| | - Yun-He Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shu-Jie Zhao
- College of Resources and Environment, Jilin Agricultural University, Changchun, 130118, China.
| | - Zhong-Ming Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
11
|
Ma N, Palanisamy S, Yelithao K, Talapphet N, Zhang Y, Dae-Hee L, Shin IS, Lee DJ, You S. Structural properties and immune-enhancing activities of galactan isolated from red seaweed Grateloupia filicina. Chem Biol Drug Des 2023; 102:889-906. [PMID: 37571867 DOI: 10.1111/cbdd.14298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
A water-soluble polysaccharide (GFP) was isolated from Grateloupia filicina and fractionated using a DEAE Sepharose Fast Flow column to evaluate immunostimulatory activity. Carbohydrates (62.0%-68.4%) and sulfates (29.3%-34.3%) were the major components of GFP and its fractions (GFP-1 and GFP-2), with relatively lower levels of proteins (4.5%-15.4%) and uronic acid (1.4%-3.9%). The average molecular weight (Mw ) for GFP and its fractions was calculated between 98.2%-243.7 kDa. The polysaccharides were composed of galactose (62.1%-87.2%), glucose (4.5%-33.2%), xylose (3.1%-5.3%), mannose (1.4%-2.2%), rhamnose (1.2%-2.0%), and arabinose (0.9%-1.7%) units connected through →3)-Galp-(1→, →4)-Galp-(1→, →2)-Galp-(1→, →6)-Galp-(1→, →3,4)-Galp -(1→, →3,6)-Galp-(1→, →4,6)-Galp-(1→, →3,4,6)-Galp-(1→, →2,3)-Galp-(1→, →2,4)-Galp-(1→, →4)-Glcp-(1→, →6)-Glcp-(1→ and →4,6)-Glcp-(1→residues. The isolated polysaccharides effectively induced RAW264.7 murine macrophages by releasing nitric oxide (NO) and various cytokines via nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further, the expression of toll-like receptor-2 (TLR-2) and TLR-4 in RAW264.7 cells indicated their activation through TLR-2 and TLR-4 binding receptors. Among the polysaccharides, GFP-1 highly stimulated the activation of RAW264.7 cells, which was mainly constituted of (→1) terminal-D-galactopyranosyl, (1→3)-linked-ᴅ-galactopyranosyl, (1→4)-linked-ᴅ-galactopyranosyl and (1→3,4) -linked-ᴅ-galactopyranosyl residues. These findings demonstrate that GFP-1 from G. filicina are effective at stimulating the immune system and this warrants further investigation to determine potential biomedical applications.
Collapse
Affiliation(s)
- Nan Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Khamphone Yelithao
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- Department of Food Science and Technology, Souphanouvong University, Luang Prabang, Lao People's Democratic Republic
| | - Natchanok Talapphet
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Yutong Zhang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Lee Dae-Hee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Il-Shik Shin
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| | - Dong-Jin Lee
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Republic of Korea
| |
Collapse
|
12
|
Fan H, Sun M, Li J, Zhang S, Tu G, Liu K, Xia Q, Jiang Y, Liu B. Structure characterization and immunomodulatory activity of a polysaccharide from Saposhnikoviae Radix. Int J Biol Macromol 2023; 233:123502. [PMID: 36736976 DOI: 10.1016/j.ijbiomac.2023.123502] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
A new polysaccharide, named SP800201 with Mw of 2.17 × 105 g/mol, was isolated from Saposhnikoviae Radix. The monosaccharide composition of SP800201 mainly contained Gal, GalA, Ara, and Rha. SP800201 has a core structure containing GalA as the backbone and side chains consisting of GalA, Gal, Ara and Rha. Cell and zebrafish experiments were used to explore the immunomodulatory activity of SP800201. Results of vitro RAW264.7 cell experiments showed that SP800201 could significantly improve the proliferation and phagocytosis of macrophages, and promote the release of NO, TNF-α, IL-1β, and IL-6. Results of vivo experiments in immunocompromised zebrafish showed that SP800201 could also significantly increase the density of immune cells, the number of macrophages, and reduce NO, TNF-α, IL-1β, and IL-6. The above results showed that the Saposhnikoviae Radix polysaccharide has certain immunomodulatory activity.
Collapse
Affiliation(s)
- Haitao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; College of Bioengineering, Beijing Polytechnic, Beijing 100029, China
| | - Meng Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China
| | - Guangzhong Tu
- Beijing Institute of Microchemistry, Beijing 100091, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Yanyan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China.
| |
Collapse
|
13
|
The prepared and characterized polysaccharide polymer in Saposhnikovia divaricata(Trucz.) Schischk effectively controls the course of rheumatoid arthritis via TLR4/TRAF6–NF-κB/IκB-α signaling pathway. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
14
|
Li X, Li H, Wang T, Zhao Y, Shao Y, Sun Y, Zhang Y, Liu Z. Network pharmacology-based analysis of the mechanism of Saposhnikovia divaricata for the treatment of type I allergy. PHARMACEUTICAL BIOLOGY 2022; 60:1224-1236. [PMID: 35760567 PMCID: PMC9246231 DOI: 10.1080/13880209.2022.2086583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Saposhnikovia divaricata (Turcz.) Schischk (Apiaceae) (SD) has various pharmacological activities, but its effects on type I allergy (TIA) have not been comprehensively studied. OBJECTIVE This study evaluates the treatment and molecular mechanisms of SD against TIA. MATERIALS AND METHODS The effective components and action targets of SD were screened using TCMSP database, and allergy-related targets of SD were predicted using GeneCards and OMIM database. The obtained target intersections were imported into David database for GO analysis, and used R software to perform KEGG analysis. The RBL-2H3 cells sensitised by DNP-IgE/DNP-BSA were treated with different concentrations of SD (root decoction, 0.5, 1, and 2 mg/mL), prim-O-glucosylcimifugin (POG, 10, 40, and 80 μg/mL) and the positive control drug-ketotifen fumarate (KF, 30 μM) for 12 h, then subjected to cell degranulation and qPCR analysis. RESULTS Eighteen active compounds of SD and 38 intersection targets were obtained: TIA-related signal pathways mainly include calcium signal pathway, PI3K-Akt signal pathway and MAPK signal pathway. Taking the β-Hex release rate of the model group as the base, the release rate of SD and POG in high dose groups were 43.79% and 57.01%, respectively, which were significantly lower than model group (p < 0.01), and significantly lower than KF group (63.83%, p < 0.01, p < 0.05). SD and POG could down-regulate the expression of related proteins in the Lyn/Syk, PI3K/AKT and MAPK signalling pathways. DISCUSSION AND CONCLUSION Saposhnikovia divaricata could inhibit IgE-induced degranulation of mast cells, providing a scientific basis for further research and clinical applications of SD in TIA treatment.
Collapse
Affiliation(s)
- Xiangsheng Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing, China
| | - Tingting Wang
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yang Zhao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yuxin Shao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yizhao Sun
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yanfen Zhang
- Technology Transfer Center, Hebei University, Baoding, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
15
|
Yang L, Gu T, Xu Y, Liu Y, Zhang Y, Jiang Z, Peng L. Plant polysaccharides as novel biomaterials for microcapsule construction and therapeutics delivery. Int J Pharm 2022; 625:122137. [PMID: 36029991 DOI: 10.1016/j.ijpharm.2022.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Natural polysaccharides derived from medicinal plants, that are Dendrobium (DPS), Lycium barbarum (LBP), Ginseng (GPS), and Poria Cocos (PCP) were firstly combined with sodium alginate (SA) to construct microcapsules and improved the morphology, encapsulation efficiency, Biocompatibility and protective capability in drug loading. Diverse typical therapeutics, including VO2@ZIF67 nanoparticles, small molecule drugs salvianolic acid B (SaB)/ginsenoside (Rg1), probiotic Bacillus bifidus, and biomacromolecules SDF-1 were wrapped into 1.5 % GPS-0.5 % SA model microcapsules, respectively. Better mobility and formability were significantly observed, and showed 75 % survival rate of probiotics in simulated gastric juice and around 99 % encapsulation efficiency which is higher than single 2 % SA microcapsules. The microcapsules also obtained a delayed release and a higher cell index for SDF-1, which indicated better stability, biocompatibility and protective effect than single 2 % SA microcapsules. This study provides a strategy in developing plant derived polysaccharides as novel materials for the construction and improvement of traditional microcapsules.
Collapse
Affiliation(s)
- Lu Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Guizhou University of Traditional Chinese Medicine, Guiyang 550025, PR China
| | - Tingwei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuda Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, PR China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
| |
Collapse
|
16
|
Yu M, Xu G, Qin M, Li Y, Guo Y, Ma Q. Multiple Fingerprints and Spectrum-Effect Relationship of Polysaccharides from Saposhnikoviae Radix. Molecules 2022; 27:molecules27165278. [PMID: 36014516 PMCID: PMC9415499 DOI: 10.3390/molecules27165278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
PMP-HPLC, FT-IR, and HPSEC fingerprints of 10 batches of polysaccharides from Saposhnikoviae Radix with different production areas and harvest times have been prepared, and the chemometrics analysis was performed. The anti-allergic activity of 10 batches of Saposhnikoviae Radix polysaccharide (SP) was evaluated, and the spectrum-effect relationship of the 10 batches of SP was analyzed by gray correlation degree with the chromatographic fingerprint as the independent variable. The results showed that the PMP-HPLC, HPSEC, and FT-IR fingerprints of 10 batches of SP had a high similarity. Two monosaccharides (rhamnose and galactose), the polysaccharide fragment Mn = 8.67 × 106~9.56 × 106 Da, and the FT-IR absorption peak of 892 cm−1 can be used as the quality control markers of SPs. All 10 batches of SP could significantly inhibit the release of β-HEX in RBL-231 cells, and the polysaccharides harvested from Inner Mongolia in the winter had the best anti-allergic activity. The spectrum-effect relationship model showed that the monosaccharide composition and molecular weight were related to the anti-allergic activity of the SPs. Multiple fingerprints combined with spectrum-effect relationship analysis can evaluate and control the quality of SPs from the aspects of overall quality and efficacy, which has more application value.
Collapse
Affiliation(s)
| | | | | | | | | | - Qun Ma
- Correspondence: ; Tel.: +86-13910186491
| |
Collapse
|
17
|
Gong PX, Wu YC, Chen X, Zhou ZL, Chen X, Lv SZ, You Y, Li HJ. Immunological effect of fucosylated chondroitin sulfate and its oligomers from Holothuria fuscogilva on RAW 264.7 cells. Carbohydr Polym 2022; 287:119362. [PMID: 35422306 DOI: 10.1016/j.carbpol.2022.119362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Fucosylated chondroitin sulfate was obtained from the sea cucumber Holothuria fuscogilva (FCShf). The structure was elucidated by NMR and HILIC-FTMS analysis. FCShf contained a chondroitin core chain [→3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1→]n, where the sulfation positions were the O-4 or O-6 of the GalNAc residues. The ratio of sulfated and non-sulfated GalNAc at O-6 was 1:2, while the ratio of GalNAc at O-4 was 1:1. 2,4-disulfated-fucose (Fuc2,4S), 4-sulfated-fucose (Fuc4S) and 3,4-disulfated-fucose (Fuc3,4S) were attached to the O-3 of GlcA with a molar ratio of 1.00: 0.62: 1.32. The FCShf could significantly promote the proliferative rate, NO production and neutral red uptake of RAW 264.7 cells within the concentration range of 10-300 μg/mL. Compared with the fucosylation and deacetylation degrees, the molecular weight of FCShf had markedly influence on the activation of RAW 264.7 cells. A decrease in molecular weight dramatically improved the immunoregulatory activities. Furthermore, FCShf activated RAW 264.7 cells through TLR-2/4-NF-κB pathway.
Collapse
Affiliation(s)
- Pi-Xian Gong
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Ze-Lin Zhou
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Xi Chen
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Shi-Zhong Lv
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Yue You
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai 264209, PR China; Weihai Huiankang Biotechnology Co., Ltd, Weihai 264200, PR China.
| |
Collapse
|
18
|
Wei LB, Ma SY, Gu ZB, Wei QQ. A New Chromone from Roots of Saposhnikovia divaricata. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Yue F, Xu J, Zhang S, Hu X, Wang X, Lü X. Structural features and anticancer mechanisms of pectic polysaccharides: A review. Int J Biol Macromol 2022; 209:825-839. [PMID: 35447258 DOI: 10.1016/j.ijbiomac.2022.04.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/01/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
The anticancer activity of pectic polysaccharides (PPs) was proved by numerous studies, and which also indicated that the bioactivity of PPs was closely related to its complicated structures. Based on the summary and analysis about structure characteristics and corresponding enzymatic process of the reported PPs, the anticancer mechanism and related structural features were systematically clarified. It was found that not only the direct effects on the cancer cells by proliferation inhibition or apoptosis, but also the regulation of immune system, gut microbiota and gut metabolism as indirect effects, jointly played important roles in the anticancer of PPs. Nevertheless, during the study of PPs as promising anticancer components, the exact structure-function relationship, digestion process in vivo, and comprehensive action mechanism are still not well understanding. With the unveiling of the proposed issues, it is believed that PPs are promising to be exploited as effective cancer therapy/adjunctive therapy drugs or functional foods.
Collapse
Affiliation(s)
- Fangfang Yue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Jiaxin Xu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Sitan Zhang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xinyu Hu
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
20
|
Hamed M, Coelho E, Bastos R, Evtuguin DV, Ferreira SS, Lima T, Vilanova M, Sila A, Coimbra MA, Bougatef A. Isolation and identification of an arabinogalactan extracted from pistachio external hull: Assessment of immunostimulatory activity. Food Chem 2022; 373:131416. [PMID: 34717082 DOI: 10.1016/j.foodchem.2021.131416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
This work studies the extraction and purification of a novel arabinogalactan from pistachio external hull. It was extracted with a simple method from pistachio hull which is considered as unexploited waste. Based on the results of sugar analysis by GC-FID, glycosidic linkage by GC-MS, NMR spectroscopy, and molecular weight by Size Exclusion Chromatography, pistachio hull water soluble polysaccharides (PHWSP) were identified as a type II arabinogalactan (AG), with characteristic terminally linked α-Araf, (α1 → 5)-Araf, (α1 → 3,5)-Araf, terminally linked β-Galp, (β1 → 6)-Galp, and (β1 → 3,6)-Galp. DEPT-135, HSQC, HMBC and COSY NMR data suggested the presence of (β1 → 3)-Galp mainly branched at O-6 with (β1 → 6)-Galp chains, α-Araf chains, and terminally linked α-Araf. These AG from pistachio external hulls showed in vitro stimulatory activity for B cells, suggesting their possible use as an immunological stimulant in nutraceutical and biomedical applications.
Collapse
Affiliation(s)
- Mariem Hamed
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; Université de Tunis El Manar, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia
| | - Elisabete Coelho
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Bastos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dmitry V Evtuguin
- CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sónia S Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Porto, Portugal
| | - Manuel Vilanova
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal, Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4150-180, Portugal; ICBAS, Instituto de CiênciasBiomédicas de Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Assaad Sila
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia; Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa University, 2112 Gafsa, Tunisia
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ali Bougatef
- Laboratory for the Improvement of Plants and Valorization of Agroressources, National School of Engineering of Sfax (ENIS), University of Sfax, Sfax 3038, Tunisia.
| |
Collapse
|
21
|
Purification, structural characterization and antioxidant activity of a new arabinogalactan from Dorema ammoniacum gum. Int J Biol Macromol 2022; 194:1019-1028. [PMID: 34848241 DOI: 10.1016/j.ijbiomac.2021.11.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/24/2023]
Abstract
Gum ammoniacum is a polymer obtained from Dorema ammoniacum and its medicinal use was already known to the ancient times. In this study, a new D. ammoniacum carbohydrate (DAC-1) with a molecular weight of 27.1 kDa was extracted by hot water and then purified on DEAE-52-cellulose and Sephadex G-100 columns. The structural features of DAC-1 were investigated by partial acid hydrolysis, fourier-transform infrared spectroscopy (FT-IR), methylation, gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detection (GC-FID), and 1D and 2D nuclear magnetic resonance spectroscopy (1D & 2D NMR). The results indicated that DAC-1 was an arabinogalactan including galactose, arabinose, rhamnose, glucuronic acid and 4-O-methyl-β-d-glucopyranosyl uronic acid (meGlcpA) with a relative percentage of 44.63%, 23.30%, 13.46%. 12.47%, and 6.14%. The structure units of DAC-1 were elucidated as 3,1)-β-D-Galp-(6 → 1)-β-D-Galp-(3,6 → containing four branch chains of →1,6)-β-D-Galp-(3 → 1)-α-L-Araf-(5 → 1)-β-D-GlcpA-(4 → 1)-α-L-Rhap-T (two times), →1,6)-β-D-Galp-(3→1)-β-D-Galp-(3 → 1)-β-D-Galp-(3 → 1)-β-D-Galp-(3 → 1)-α-L-Araf-T and →1,6)-β-D-Galp-(3 → 1)-α-L-Araf-(5 → 1)-β-D-meGlcpA-T. X-ray diffraction (XRD) pattern indicated a semi-crystalline structure. Thermal behavior of the polysaccharide was evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and revealed temperatures higher than 200 °C as dominant region of weight loss. DAC-1 showed acceptable antioxidant activity when analyzed by DPPH, ABTS, FRAP, and OH radical removal methods.
Collapse
|
22
|
Li YX, Jiang SL, Hao YX, Zhang SP, Cui YS, Fu Z, Xue CL, Dong CX, Yao Z, Du J. Galactofucoidans from Sargassum fusiforme and their antagonistic effects against the proliferation-inhibition of RAW264.7 macrophage induced by culture supernatants of melanoma cells. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
23
|
Jiang S, Yin H, Li R, Shi W, Mou J, Yang J. The activation effects of fucoidan from sea cucumber Stichopus chloronotus on RAW264.7 cells via TLR2/4-NF-κB pathway and its structure-activity relationship. Carbohydr Polym 2021; 270:118353. [PMID: 34364600 DOI: 10.1016/j.carbpol.2021.118353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/06/2021] [Accepted: 06/13/2021] [Indexed: 11/27/2022]
Abstract
Sea cucumber Stichopus chloronotus is a traditional tonic food with high nutritive value in Southern China. Fucoidan from sea cucumber Stichopus chloronotus (Fuc-Sc) is its main bio-active polysaccharide, the immune-activation effects of which have been fully investigated on RAW264.7 cells in the present study. The results indicated that Fuc-Sc could stimulate the RAW264.7 cells by promoting the production of NO, TNF-α, IL-6 and IL-10. Western blot and RT-PCR analysis revealed that TLR4 and TLR2 were involved in the recognition of Fuc-Sc and activation of downstream NF-κB signal pathway. Moreover, the chemical structure parameter molecular weight showed obvious impact on the stimulation effects of Fuc-Sc on NO production. Degraded product of Fuc-Sc with weight average molecular weight of 113.1 × 104 Da exhibited higher activities than that of intact Fuc-Sc, suggesting the existent of optimum chain length to exert its highest activities. Taken together, Fuc-Sc exerted its immunostimulating activity via TLR2/4 activation of NF-κB pathway and showed potentials to be a good immunoadjuvant.
Collapse
Affiliation(s)
- Shuxin Jiang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Huanan Yin
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Rui Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Weiwei Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jiaojiao Mou
- School of Public Health, Weifang Medical University, Weifang 261053, Shandong, China.
| | - Jie Yang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, China; Innovative Drug Research and Development Center, Weifang Medical University, Weifang 261053, Shandong, China.
| |
Collapse
|
24
|
Saeidy S, Petera B, Pierre G, Fenoradosoa TA, Djomdi D, Michaud P, Delattre C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol Adv 2021; 53:107771. [PMID: 33992708 DOI: 10.1016/j.biotechadv.2021.107771] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Arabinogalactans (AGs) are plant heteropolysaccharides with complex structures occasionally attached to proteins (AGPs). AGs in cell matrix of different parts of plant are freely available or chemically bound to pectin rhamnogalactan. Type I with predominantly β-d-(1 → 4)-galactan and type II with β-d-(1 → 3) and/or (1 → 6)-galactan structural backbones construct the two main groups of AGs. In the current review, the chemical structure of AGs is firstly discussed focusing on non-traditional plant sources and not including well known industrial gums. After that, processes for their extraction and purification are considered and finally their techno-functional and biological properties are highlighted. The role of AG structure and function on health advantages such as anti-tumor, antioxidant, anti-ulcer- anti-diabetic and other activites and also the immunomodulatory effects on in-vivo model systems are overviewed.
Collapse
Affiliation(s)
- S Saeidy
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - B Petera
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - G Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - T A Fenoradosoa
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - P Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - C Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
25
|
Sun Y, Sun YP, Liu Y, Pan J, Guan W, Li XM, Liu Y, Naseem A, Yang BY, Kuang HX. Four new polyacetylenes from the roots of Saposhnikovia divaricata. Nat Prod Res 2021; 36:3579-3586. [PMID: 33930280 DOI: 10.1080/14786419.2020.1869973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Four new polyacetylene substances, sadivaethynes A-D, were isolated from the ethanol extract of the roots of Saposhnikovia divaricata (Turcz.) Schischk using repeated column chromatography. Structural elucidation of compounds 1-4 was established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. All compounds were evaluated for cytotoxicity against two human cancer cell lines (MGC-803, Ishikawa) in vitro.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Juan Pan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yuan Liu
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Anam Naseem
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
26
|
Babich O, Sukhikh S, Pungin A, Ivanova S, Asyakina L, Prosekov A. Modern Trends in the In Vitro Production and Use of Callus, Suspension Cells and Root Cultures of Medicinal Plants. Molecules 2020; 25:molecules25245805. [PMID: 33316965 PMCID: PMC7763305 DOI: 10.3390/molecules25245805] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
This paper studies modern methods of producing and using callus, suspension cells and root cultures of medicinal plants in vitro. A new solution for natural product production is the use of an alternative source of renewable, environmentally friendly raw materials: callus, suspension and root cultures of higher plants in vitro. The possibility of using hairy root cultures as producers of various biologically active substances is studied. It is proven that the application of the genetic engineering achievements that combine in vitro tissue culture and molecular biology methods was groundbreaking in terms of the intensification of the extraction process of compounds significant for the medical industry. It is established that of all the callus processing methods, suspension and root cultures in vitro, the Agrobacterium method is the most widely used in practice. The use of agrobacteria has advantages over the biolistic method since it increases the proportion of stable transformation events, can deliver large DNA segments and does not require special ballistic devices. As a result of the research, the most effective strains of agrobacteria are identified.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Artem Pungin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (A.P.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Correspondence: ; Tel.: +7-384-239-6832
| | - Lyudmila Asyakina
- Department of Bionanotechnology, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia;
| |
Collapse
|
27
|
Ding J, Guo Y, Jiang X, Li Q, Li K, Liu M, Fu W, Cao Y. Polysaccharides Derived from Saposhnikovia divaricata May Suppress Breast Cancer Through Activating Macrophages. Onco Targets Ther 2020; 13:10749-10757. [PMID: 33132702 PMCID: PMC7592155 DOI: 10.2147/ott.s267984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Saposhnikovia divaricata (SD) has been used in traditional Chinese medicine to treat pain, inflammation, and arthritis. Recently, it has been reported that SD extract may inhibit tumor growth, but the mechanism involved is elusive. The aim of this study was to investigate the anti-tumor activity of polysaccharides derived from SD in breast cancer and the underlying mechanisms. MATERIALS AND METHODS Polysaccharides isolated from SD were analyzed using Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Their effects on cell growth of U937, MCF-7, and MDA-MB-231, and tumor growth in a mouse MDA-MB 231 xenograft model were examined. Their role in U937 activation, MCF-7, and MDA-MB 231 cytokine release profiles were also tested. RESULTS In vitro studies showed that SD polysaccharides (SDPs) promoted U937 cell growth dose-dependently, with no obvious effect on growth of breast cancer cell lines MCF-7 and MDA-MB-231. SDP also showed an antagonistic effect against the growth inhibition of U937 by the culture supernatants of MCF-7 and MDA-MB-231, and reversed the polarization status of U937. Treatment of SCID mice bearing MDA-MB-231-derived xenograft tumors with SDP significantly reduced tumor growth. At all tested concentrations, no obvious toxic side-effects were recorded. DISCUSSION We tentatively concluded that SDPs potently promote the growth of U937 and activate it to inhibit the tumor growth of SCID mice bearing MDA-MB-231-derived xenograft tumors indirectly, with no obvious growth inhibition effects on MCF-7 and MDA-MB-231 in vitro. Our finding indicated that SDP could be a potential anticancer agent for breast cancer.
Collapse
Affiliation(s)
- Jingxian Ding
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| | - Yonghong Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330003, China
| | - Xiaoliu Jiang
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| | - Qingge Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| | - Kai Li
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| | - Min Liu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| | - Wenbing Fu
- Department of Radiation Oncology, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| | - Yali Cao
- Department of Breast Surgery, The Breast Cancer Institute, The Third Hospital of Nanchang, Nanchang, Jiangxi Province330025, China
| |
Collapse
|
28
|
Xiong L, Ouyang KH, Chen H, Yang ZW, Hu WB, Wang N, Liu X, Wang WJ. Immunomodulatory effect of Cyclocarya paliurus polysaccharide in cyclophosphamide induced immunocompromised mice. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2020; 24:100224. [DOI: 10.1016/j.bcdf.2020.100224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Tabarsa M, Dabaghian EH, You S, Yelithao K, Palanisamy S, Prabhu NM, Li C. Inducing inflammatory response in RAW264.7 and NK-92 cells by an arabinogalactan isolated from Ferula gummosa via NF-κB and MAPK signaling pathways. Carbohydr Polym 2020; 241:116358. [DOI: 10.1016/j.carbpol.2020.116358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022]
|
30
|
Isolation, purification, and structural characterization of polysaccharides from Atractylodis Macrocephalae Rhizoma and their immunostimulatory activity in RAW264.7 cells. Int J Biol Macromol 2020; 163:270-278. [PMID: 32619666 DOI: 10.1016/j.ijbiomac.2020.06.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 01/07/2023]
Abstract
Three water-soluble polysaccharides (AMAP-1, AMAP-2 and AMAP-3) were isolated and purified from Atractylodis Macrocephalae Rhizoma by using the combination of ion-exchange chromatography and gel permeation chromatography. The structures of the polysaccharides were characterized by chemical derivatization, HPGC, GC-MS, FT-IR, and NMR techniques. Structural analyses show that the three polysaccharides are pectin-type macromolecules consisting of homogalacturonan (HG) and rhamnogalacturonan type I (RG-I) regions in different ratios. Immunostimulatory assay highlighted that the RG-I-rich AMAP-1 and AMAP-2 with high molecular weights can stimulate RAW264.7 macrophages to release nitric oxide, but HG-rich AMAP-3 with a low molecular weight cannot. This finding suggests that the immune activity may be related to the side chains of the RG-I region, which provides a certain theoretical guidance for further exploring the structure-activity relationship. Meanwhile, AMAP-1 and AMAP-2, especially AMAP-2, from Atractylodis Macrocephalae Rhizoma show potential as immune adjuvants.
Collapse
|
31
|
Lee YK, Chang YH. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. Int J Biol Macromol 2020; 150:546-558. [DOI: 10.1016/j.ijbiomac.2020.02.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
32
|
Yang M, Wang CC, Wang WL, Xu JP, Wang J, Zhang CH, Li MH. Saposhnikovia divaricata-An Ethnopharmacological, Phytochemical and Pharmacological Review. Chin J Integr Med 2020; 26:873-880. [PMID: 32328867 PMCID: PMC7176574 DOI: 10.1007/s11655-020-3091-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2019] [Indexed: 01/08/2023]
Abstract
Saposhnikovia divaricata (Turcz.) Schischk., a perennial herb belonging to the family Umbelliferae, is widely distributed in Northeast Asia. Its dried root (Radix Saposhnikoviae) is used as a Chinese herbal medicine for the treatment of immune system, nervous system, and respiratory diseases. Phytochemical and pharmacological studies have shown that the main constituents of S. divaricata are chromones, coumarins, acid esters, and polyacetylenes, and these compounds exhibited significant anti-inflammatory, analgesic, antioxidant, antiproliferative, antitumor, and immunoregulatory activities. The purpose of this review is to provide comprehensive information on the botanical characterization and distribution, traditional use and ethnopharmacology, phytochemistry, and pharmacology of S. divaricata for further study concerning its mechanism of action and development of better therapeutic agents and health products from S. divaricata.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Cong-Cong Wang
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Wen-le Wang
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China
| | - Jian-Ping Xu
- Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Jie Wang
- Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Chun-Hong Zhang
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China.,Inner Mongolia Key Laboratory of Traditional Chinese Medicine Resources, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China
| | - Min-Hui Li
- Department of Pharmacy, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China. .,Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China. .,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China. .,Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, 014060, Baotou, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
33
|
Tabarsa M, You S, Yelithao K, Palanisamy S, Prabhu NM, Nan M. Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum. Carbohydr Polym 2020; 230:115636. [DOI: 10.1016/j.carbpol.2019.115636] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/03/2019] [Accepted: 11/16/2019] [Indexed: 01/04/2023]
|
34
|
Meng Y, Yi L, Chen L, Hao J, Li DX, Xue J, Xu NY, Zhang ZQ. Purification, structure characterization and antioxidant activity of polysaccharides from Saposhnikovia divaricata. Chin J Nat Med 2019; 17:792-800. [PMID: 31703760 DOI: 10.1016/s1875-5364(19)30096-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/22/2022]
Abstract
Polysaccharide from traditional Chinese herb, Saposhnikovia divaricata (Turcz.) Schischk. (SD) was extracted, fractionated and characterized in this work. Four fractions were prepared. Their molecular weight, monosaccharide compositions, linkage modes and structural properties were characterized with SEC-MALS-RI, HPAEC-PAD, GC-MS and NMR. SDP1 was assigned as a 1, 4-α-glucan with small amount of O-6 linked branches. SDP2 contained a big amount of the 1, 4-α-glucan and a small amount of arabinogalactan, while SDP3 possessed relatively lower amount of the 1, 4-α-glucan and a big amount of the arabinogalactan. SDP4 was defined as a pectic arabinogalactan. Four fractions showed antioxidant activities in both molecular and cellular levels and their activity was ranked as SDP4 ≈ SDP3>SDP2>SDP1. The 1, 4-α-glucan in SDP1 had the weakest, while SDP3 and SDP4 showed similar and the highest antioxidant activity. The arabinogalactan was the major component of both SDP3 and SDP4, which significantly contributed to the antioxidant activity of SDP.
Collapse
Affiliation(s)
- Yao Meng
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Yi
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lei Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Hao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Du-Xin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Nai-Yu Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China
| | - Zhen-Qing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Soochow University, Suzhou 215021, China.
| |
Collapse
|
35
|
Galermo AG, Nandita E, Castillo JJ, Amicucci MJ, Lebrilla CB. Development of an Extensive Linkage Library for Characterization of Carbohydrates. Anal Chem 2019; 91:13022-13031. [PMID: 31525948 DOI: 10.1021/acs.analchem.9b03101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The extensive characterization of glycosidic linkages in carbohydrates remains a challenge because of the lack of known standards and limitations in current analytical techniques. This study encompasses the construction of an extensive glycosidic linkage library built from synthesized standards. It includes an improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitation of glycosidic linkages derived from disaccharides, oligosaccharides, and polysaccharides present in complicated matrices. We present a method capable of the simultaneous identification of over 90 unique glycosidic linkages using ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/QqQ MS) operated in dynamic multiple reaction monitoring (dMRM) mode. To build the library, known monosaccharides commonly found in plants were subjected to partial methylation to yield partially derivatized species representing trisecting, bisecting, linear, and terminal structures. The library includes glycosidic linkage information for three hexoses (glucose, galactose, and mannose), three pentoses (xylose, arabinose, and ribose), two deoxyhexoses (fucose and rhamnose), and two hexuronic acids (glucuronic acid and galacturonic acid). The resulting partially methylated monosaccharides were then labeled with 1-phenyl-3-methyl-5-pyrazolone (PMP) followed by separation and analysis by UHPLC/dMRM MS. Validation of the synthesized standards was performed using disaccharide, oligosaccharide, and polysaccharide standards. Accuracy, reproducibility, and robustness of the method was demonstrated by analysis of xyloglucan (tamarind) and whole carrot root. The synthesized standards represent the most comprehensive group of carbohydrate linkages to date.
Collapse
Affiliation(s)
- Ace G Galermo
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - Eshani Nandita
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - Juan J Castillo
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| | - Matthew J Amicucci
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States.,Agricultural and Environmental Chemistry Graduate Group , University of California Davis , Davis , California 95616 , United States
| | - Carlito B Lebrilla
- Department of Chemistry , University of California Davis , Davis , California 95616 , United States
| |
Collapse
|
36
|
Matusiewicz M, Bączek KB, Kosieradzka I, Niemiec T, Grodzik M, Szczepaniak J, Orlińska S, Węglarz Z. Effect of Juice and Extracts from Saposhnikovia divaricata Root on the Colon Cancer Cells Caco-2. Int J Mol Sci 2019; 20:ijms20184526. [PMID: 31547375 PMCID: PMC6770654 DOI: 10.3390/ijms20184526] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer ranks 3rd in terms of cancer incidence. Growth and development of colon cancer cells may be affected by juice and extracts from Saposhnikovia divaricata root. The objective of the research was to analyze the effect of S. divaricata juice and extracts on the viability, membrane integrity and types of cell death of Caco-2 cells. Juice and extracts were analyzed using Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and in respect of the presence of antioxidants, total carbohydrates, protein, fat and polyphenols. The contents of cimifugin β-D-glucopyranoside, cimifugin, 4′-O-glucopyranosyl-5-O-methylvisamminol, imperatorin and protein were the highest in juice. 50% Hydroethanolic extract had the greatest antioxidant potential, concentration of polyphenols and fat. Water extract was characterized by the highest content of glutathione. Juice and 75% hydroethanolic extract contained the most carbohydrates. After the application of juice, 50% extract and the juice fraction containing the molecules with molecular weights >50 kDa, a decrease of the cell viability was noted. Juice and this extract exhibited the protective properties in relation to the cell membranes and they induced apoptosis. The knowledge of further mechanisms of anticancer activity of the examined products will allow to consider their use as part of combination therapy.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Katarzyna Barbara Bączek
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Iwona Kosieradzka
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Tomasz Niemiec
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jarosław Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Sylwia Orlińska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Zenon Węglarz
- Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
37
|
Jia Q, Sun W, Zhang L, Fu J, Lv Y, Lin Y, Han S. Screening the anti‐allergic components in
Saposhnikoviae Radix
using high‐expression Mas‐related G protein‐coupled receptor X2 cell membrane chromatography online coupled with liquid chromatography and mass spectrometry. J Sep Sci 2019; 42:2351-2359. [DOI: 10.1002/jssc.201900114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Qianqian Jia
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
| | - Wei Sun
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
| | - Liyang Zhang
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
| | - Jia Fu
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
| | - Yanni Lv
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
- Department of Pharmaceutical ScienceSchool of PharmacyUniversity of Wisconsin‐Madison Madison WI USA
| | - Yuanyuan Lin
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
- Department of Pharmaceutical ScienceSchool of PharmacyUniversity of Wisconsin‐Madison Madison WI USA
| | - Shengli Han
- School of PharmacyXi'an Jiaotong University Xi'an P. R. China
| |
Collapse
|
38
|
Bahramzadeh S, Tabarsa M, You S, Yelithao K, Klochkov V, Ilfat R. An arabinogalactan isolated from Boswellia carterii: Purification, structural elucidation and macrophage stimulation via NF-κB and MAPK pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|