1
|
Zhang XY, Lu QQ, Li YJ, Shi SR, Ma CN, Miao M, Guo SD. Conditional knockdown of hepatic PCSK9 ameliorates high-fat diet-induced liver inflammation in mice. Front Pharmacol 2025; 16:1528250. [PMID: 39963241 PMCID: PMC11830812 DOI: 10.3389/fphar.2025.1528250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025] Open
Abstract
Instruction Accumulating evidence has shown that proprotein convertase subtilisin/kexin type 9 (PCSK9) is associated with inflammation in the vascular system. However, the roles of PCSK9 in hepatic inflammation remain unclear. Because PCSK9 is mainly expressed in the liver and modulates lipid uptake through low-density lipoprotein receptor family members, the present study aimed to elucidate the effect of conditional knockdown of hepatic PCSK9 on hyperlipidemia-induced inflammation and the underlying mechanisms of action. Methods PCSK9flox/flox mice were bred with ALB-Cre+ mice to obtain hepatic PCSK9 (-/-) , PCSK9 (+/-) , and PCSK9 (+/+) mice. These mice were fed with a high-fat diet for 9 weeks to induce inflammation. The effects of conditional knockdown of hepatic PCSK9 on inflammation and the underlying mechanisms were investigated by molecular biological techniques. Moreover, the findings were verified in vitro using HepG2 cells. Results and Discussion Conditional knockdown of hepatic PCSK9 remarkably decreased plasma levels of total cholesterol and alleviated hyperlipidemia-induced liver injury. Mechanistically, conditional knockdown of hepatic PCSK9 significantly reduced the levels of pro-inflammatory factors by downregulating the expression of Toll-like receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B, which subsequently attenuated the expression of downstream molecules, namely nuclear factor kappa-B and activator protein-1. The related mechanisms were confirmed using lipid-loaded HepG2 cells together with PCSK9 siRNA, alirocumab (anti-PCSK9 antibody), and/or a p38-MAPK inhibitor. These findings confirmed that conditional knockdown of hepatic PCSK9 attenuates liver inflammation following hyperlipidemia induction by modulating multiple signaling pathways; this suggests that targeting PCSK9 knockdown/inhibition with appropriate agents is useful not only for treating hyperlipidemia but also for ameliorating hyperlipidemia-induced liver inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Miao M, Zhang XY, Yu HX, Shi SR, Ma CN, Guo SD. Mechanisms underlying the effects of the conditional knockdown of hepatic PCSK9 in attenuating lipopolysaccharide-induced acute liver inflammation. Int J Biol Macromol 2025; 291:139066. [PMID: 39716700 DOI: 10.1016/j.ijbiomac.2024.139066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is known to promote hyperlipidemia primarily by inducing the degradation of the low-density lipoprotein receptor. Notably, recent studies have demonstrated that PCSK9 promotes inflammation in the vascular system, however, the roles of PCSK9 in hepatic inflammation remain unclear. As PCSK9 is primarily expressed in the liver, this study aimed to elucidate the roles of PCSK9 and the underlying mechanisms in lipopolysaccharide (LPS)-challenged hepatocytes. Next-generation sequencing analysis revealed that the conditional knockdown of hepatic PCSK9 significantly reduced the plasma levels of total cholesterol and modulated the expression of hundreds of genes. Importantly, PCSK9 knockdown attenuated hepatic inflammation by suppressing several signaling pathways related to inflammation, including the Toll-like receptor, mitogen-activated protein kinase (MAPK), and phosphoinositide-3 kinase/protein kinase B pathways. This subsequently altered the expression of nuclear factor kappa-B and activator protein 1. The underlying mechanisms were further confirmed by in vitro studies using primary hepatocytes and HepG2 cells, with a p38-MAPK inhibitor, a PCSK9 antibody, and two siRNAs against PCSK9. This study is the first to report that hepatic PCSK9 knockdown ameliorates LPS-induced acute liver inflammation via modulating multiple signaling pathways, thereby suggesting therapeutic potential of PCSK9 inhibitors in treating diseases related to hepatic inflammation.
Collapse
Affiliation(s)
- Miao Miao
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Hai-Xin Yu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shan-Rui Shi
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Chao-Nan Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
3
|
Chen P, Hao L, Li Q, Wang H, Chen H, Zhang M, Jia A, Jiang H, Dai H, Zhang R. Identification of targets and comparative study of administration methods for the lipid-lowering effects of fucoidan from Saccharina japonica. Int J Biol Macromol 2025; 290:139102. [PMID: 39716710 DOI: 10.1016/j.ijbiomac.2024.139102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The lipid-lowering activity of fucoidan has been widely reported, but the exploration of its mechanisms is relatively limited, and studies on its direct targets are even scarcer. Additionally, it is unclear whether different administration methods affect the lipid-lowering activity of fucoidan. In current study, we used fucoidan derived from Saccharina japonica (SJF) to investigate its targets. The results showed that not only did SJF directly inhibit the Niemann-Pick C1-like 1 (NPC1L1)-mediated cholesterol transport, but it also reduced the solubility of cholesterol in mixed micelles, thereby interfering with the cholesterol uptake. Furthermore, SJF not only directly inhibited the activity of pancreatic triglyceride lipase (PTL), but also interfered with the overall catalytic process facilitated by colipase, thereby reducing the absorption of triglycerides. Moreover, comparative studies on the lipid-lowering activity of SJF administered via different methods demonstrated that dietary supplementation with SJF provided better lipid-lowering effects compared with gavage administration. Our research not only elucidates the targets and mechanisms of SJF but also provides theoretical basis for the selection of administration methods for fucoidan in lipid-lowering therapy.
Collapse
Affiliation(s)
- Pengwei Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Li Hao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 528051, China
| | - Quancai Li
- Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, China
| | - Hao Wang
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiqin Chen
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Haofu Dai
- Hainan Key Laboratory for Research and Development of Natural Products from Li Folk Medicine, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Zheng M, Ouyang H, Hong T, Guo X, Wu W, Zhu Y, Ni H, Jiang Z. Bangia fusco-purpurea polysaccharide with ultra-high pressure assisted extraction alleviates dyslipidemia in high-fat diet induced mice. Int J Biol Macromol 2025; 290:138933. [PMID: 39706399 DOI: 10.1016/j.ijbiomac.2024.138933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Bangia fusco-purpurea polysaccharide (UBFP) with ultra-high pressure assisted extraction has good in vitro hypolipidemic activity. To be explored as a natural hypolipidemic agent, the alleviation effect of UBFP on in vivo dyslipidemia in high-fat diet (HFD) induced mice was further investigated. Compared with native polysaccharide (BFP), UBFP was better to reduce weight gain, fat accumulation, serum and hepatic lipid abnormalities for HFD induced mice. This might be caused by the factor that UBFP was more effective to improve the diversity and structure of gut microbiota especially with SCFAs-producing bacteria (e.g., Allprevotella and Akkermansia) increased. Moreover, UBFP could up-regulate tryptophan, 5-hydroxyindoleacetic acid, leptin and N-arachidonic acid glutamate levels, and exhibited significant differential enrichment in the pathways of lysine biosynthesis, arginine biosynthesis, and tryptophan metabolism. In addition, UBFP could regulate energy metabolism and enhance fatty acid oxidation by inhibiting PPARγ protein expression and activating AMPK and ACC signaling pathways. Overall, with ultra-high pressure assisted extraction, UBFP possessed better function of regulating lipid homeostasis, which resulted from the altered structure of polysaccharides, improved intestinal flora and metabolites. The findings can lay the theoretical foundation for the design and development of desirable polysaccharides on regulating lipid homeostasis through ultra-high pressure modification.
Collapse
Affiliation(s)
- Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Huan Ouyang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Weijing Wu
- Laboratory of nutrition and food safety, Xiamen Medical College, Xiamen, Fujian, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian 361021, China.
| |
Collapse
|
5
|
Liu T, Wang X, Wang YM, Sui FR, Zhang XY, Liu HD, Ma DY, Liu XX, Guo SD. A comparative study of the hypolipidemic effects and mechanisms of action of Laminaria japonica- and Ascophyllum nodosum-derived fucoidans in apolipoprotein E-deficient mice. Food Funct 2024; 15:5955-5971. [PMID: 38738998 DOI: 10.1039/d3fo05521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The structural characteristics of fucoidans exhibit species and regional diversity. Previous studies have demonstrated that Laminaria japonica- and Ascophyllum nodosum-derived fucoidans have type I and type II fucosyl chains, respectively. These chemical differences may contribute to distinct hypolipidemic effects and mechanisms of action. Chemical analysis demonstrated that the percentage contents of sulfate, glucuronic acid, and galactose were higher in L. japonica-derived fucoidans than those of A. nodosum-derived fucoidans. In hyperlipidemic apolipoprotein E-deficient mice, both A. nodosum- and L. japonica-derived fucoidans significantly decreased the plasma and hepatic levels of total cholesterol and triglyceride, leading to the reduction of atherosclerotic plaques. Western blotting experiments demonstrated that these fucoidans significantly enhanced the expression and levels of scavenger receptor B type 1, cholesterol 7 alpha-hydroxylase A1, and peroxisome proliferator-activated receptor (PPAR)-α, contributing to circulating lipoprotein clearance and fatty acid degradation, respectively. Differentially, L. japonica-derived fucoidan significantly increased the LXR/ATP-binding cassette G8 signaling pathway in the small intestine, as revealed by real-time quantitative PCR, which may lead to further cholesterol and other lipid excretion. Collectively, these data are useful for understanding the hypolipidemic mechanisms of action of seaweed-derived fucoidans, and their potential application for the prevention and/or treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Yan-Ming Wang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Feng-Rong Sui
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Hai-Di Liu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Dong-Yue Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Xiao-Xiao Liu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| |
Collapse
|
6
|
Ding G, Guo X, Li X, An L, Shi H. Study of active components and mechanisms mediating the hypolipidemic effect of Inonotus obliquus polysaccharides. Food Sci Nutr 2024; 12:2833-2845. [PMID: 38628208 PMCID: PMC11016437 DOI: 10.1002/fsn3.3964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/19/2024] Open
Abstract
Hyperlipidemia is a multifaceted metabolic disease, which is the major risk factor for atherosclerosis and cardiovascular diseases. Traditional Chinese medicine provides valuable therapeutic strategies in the treatment of hyperlipidemia. Inonotus obliquus has been used in traditional medicine to treat numerous diseases for a long time. To screen and isolate the fractions of I. obliquus polysaccharides (IOP) that can reduce blood lipid in the hyperlipemia animals and cell models, and investigate its mechanisms. The active component IOP-A2 was isolated, purified, and identified. In vivo, rats were randomly divided into blank control group (NG), the high-fat treatment group (MG), lovastatin group (PG), and IOP-A group. Compared with MG, the hyperlipidemic rats treated with IOP-A2 had decreased body weight and organ indexes, with the level of serum total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) significantly decreased (p < .05), and level of serum high-density lipoprotein cholesterol (HDL-C) significantly increased (p < .05). Hepatocyte steatosis in hepatic lobules was significantly reduced. In vitro, the accumulation of lipid droplets in the model of fatty degeneration of HepG2 cells was significantly alleviated, and cellular TC and TG content was significantly decreased (p < .01). Moreover, the expression of recombinant cytochrome P450 7A1 (CYP7A1) and Liver X Receptor α (LXRα) were up-regulated (p < .05) both in vivo and in vitro. The results showed that IOP-A2 may exert its hypolipidemic activity by promoting cholesterol metabolism and regulating the expression of the cholesterol metabolism-related proteins CYP7A1, LXRα, SR-B1, and ABCA1.
Collapse
Affiliation(s)
- Guanwen Ding
- Clinical Medical CollegeHarbin Medical UniversityHarbinChina
| | - Xiao Guo
- School of PharmacyBeihua UniversityJilinChina
| | - Xiao Li
- School of PharmacyBeihua UniversityJilinChina
| | - Liping An
- School of PharmacyBeihua UniversityJilinChina
| | - Huawen Shi
- Harbin Medical University Cancer HospitalHarbinChina
| |
Collapse
|
7
|
Zhang X, Lin W, Lei S, Zhang S, Cheng Y, Chen X, Lu Y, Zhao D, Zhang Y, Guo C. The anti-hyperlipidemic effects of Poria cocos (Schw.) Wolf extract: Modulating cholesterol homeostasis in hepatocytes via PPARα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117532. [PMID: 38048892 DOI: 10.1016/j.jep.2023.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos (Schw.) Wolf (Polyporaceae, P.cocos), which is born on the pine root, has a history of more than two thousand years of medicine in China. P.cocos was first recorded in the Shennong's Herbal Classic, studies have proved its lipid-lowering effect. AIM OF STUDY The aim of study was to investigate the underlying mechanism of P.cocos extract on hyperlipidemia. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats aged 9-12 weeks were intraperitoneally (IP) injected with Triton-WR 1339 to establish an acute hyperlipidemia model. At 0 h and 20 h after the model was established, low and high doses of P.cocos extract or simvastatin were given twice. After 48 h, the rats were sacrificed, and liver and serum samples were collected for analysis. The cell model was constructed by treating L02 cells with 1% fat emulsion-10% FBS-RPMI 1640 medium for 48 h. At the same time, low and high doses of P.cocos extract and simvastatin were administered. Oil red O staining was used to evaluate the lipid accumulation in the cells, and H&E staining was used to evaluate the liver lesions of rats. Real-time quantitative PCR and western blotting were used to detect the expressions of lipid metabolism-related genes. RESULTS P.cocos extract relieved lipid accumulation in vitro and alleviated hyperlipidemia in vivo. Both gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα) were shown to be up-regulated by P.cocos extract. Additionally, P.cocos extract down-regulated the expressions of fatty acid synthesis-related genes sterol regulatory element-binding protein-1 (SREBP-1), Acetyl-CoA Carboxylase 1 (ACC1) and fatty acid synthase (FAS), while up-regulated the expressions of cholesterol metabolism-related genes liver X receptor-α (LXRα), ATP-binding cassette transporter A1 (ABCA1), cholesterol 7alpha-hydroxylase (CYP7A1) and low density lipoprotein receptor (LDLR), which were reversed by the treatment with the PPARα inhibitor GW6471. CONCLUSION P.cocos extract ameliorates hyperlipidemia and lipid accumulation by regulating cholesterol homeostasis in hepatocytes through PPARα pathway. This study provides evidence that supplementation with P.cocos extract could be a potential strategy for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Xinyu Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Lin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Lei
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqi Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yujie Cheng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Zhang Y, Liu T, Qu ZJ, Wang X, Song WG, Guo SD. Laminaria japonica Aresch-Derived Fucoidan Ameliorates Hyperlipidemia by Upregulating LXRs and Suppressing SREBPs. Cardiovasc Ther 2024; 2024:8649365. [PMID: 38375358 PMCID: PMC10876302 DOI: 10.1155/2024/8649365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide, and hyperlipidemia is one major inducing factor of CVD. It is worthy to note that fucoidans are reported to have hypolipidemic activity with species specificity; however, the underlying mechanisms of action are far from clarification. This study is aimed at investigating the plasma lipid-lowering mechanisms of the fucoidan from L. japonica Aresch by detecting the levels of hepatic genes that are involved in lipid metabolism. Our results demonstrated that the fucoidan F3 significantly lowered total cholesterol and triglyceride in C57BL/6J mice fed a high-fat diet. In the mouse liver, fucoidan F3 intervention significantly increased the gene expression of peroxisome proliferator-activated receptor (PPAR) α, liver X receptor (LXR) α and β, and ATP-binding cassette transporter (ABC) G1 and G8 and decreased the expression of proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, cholesterol 7 alpha-hydroxylase A1, and sterol regulatory element-binding protein (SREBP) 1c and SREBP-2. These results demonstrated that the antihyperlipidemic effects of fucoidan F3 are related to its activation of PPARα and LXR/ABC signaling pathways and inactivation of SREBPs. In conclusion, fucoidan F3 may be explored as a potential compound for prevention or treatment of lipid disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang 550018, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ze-Jie Qu
- Cardiology Department, Qingzhou People's Hospital, Weifang 262500, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
9
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
10
|
Fan X, Zhang Q, Guo W, Wu Q, Hu J, Cheng W, Lü X, Rao P, Ni L, Chen Y, Chen L. The protective effects of Levilactobacillus brevis FZU0713 on lipid metabolism and intestinal microbiota in hyperlipidemic rats. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Optimisation of the Extraction Process of Naringin and Its Effect on Reducing Blood Lipid Levels In Vitro. Molecules 2023; 28:molecules28041788. [PMID: 36838786 PMCID: PMC9968178 DOI: 10.3390/molecules28041788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
The naringin extraction process was optimised using response surface methodology (RSM). A central component design was adopted, which included four parameters: extraction temperature (X1), material-liquid ratio (X2), extraction time (X3), and ultrasonic frequency (X4) of 74.79 °C, 1.58 h, 1:56.51 g/mL, and 28.05 KHz, respectively. Based on these optimal extraction conditions, naringin was tested to verify the model's accuracy. Naringin yield was 36.2502 mg/g, which was equivalent to the predicted yield of 36.0124 mg/g. DM101 macroporous adsorption resin was used to purify naringin. The effects of loading concentration, loading flow rate, and sample pH on the adsorption rate of naringin and the effect of ethanol concentration on the desorption rate of naringin were investigated. The optimum conditions for naringin purification using macroporous resins were determined. The optimal loading concentration, sample solution pH, and loading flow rate were 0.075 mg/mL, 3.5, and 1.5 mL/min, respectively. Three parallel tests were conducted under these conditions, and the average naringin yield was 77.5643%. Naringin's structure was identified using infrared spectroscopy and nuclear magnetic resonance. In vitro determination of the lipid-lowering activity of naringin was also conducted. These results showed that naringin has potential applications as a functional food for lowering blood lipid levels.
Collapse
|
12
|
Wu Y, Jin X, Zhang Y, Liu J, Wu M, Tong H. Bioactive Compounds from Brown Algae Alleviate Nonalcoholic Fatty Liver Disease: An Extensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1771-1787. [PMID: 36689477 DOI: 10.1021/acs.jafc.2c06578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases. The increasing NAFLD incidences are associated with unhealthy lifestyles. Currently, there are no effective therapeutic options for NAFLD. Thus, there is a need to develop safe, efficient, and economic treatment options for NAFLD. Brown algae, which are edible, contain abundant bioactive compounds, including polysaccharides and phlorotannins. They have been shown to ameliorate insulin resistance, as well as hepatic steatosis, and all of these biological functions can potentially alleviate NAFLD. Accumulating reports have shown that increasing dietary consumption of brown algae reduces the risk for NAFLD development. In this review, we summarized the animal experiments and clinical proof of brown algae and their bioactive compounds for NAFLD treatment within the past decade. Our findings show possible avenues for further research into the pathophysiology of NAFLD and brown algae therapy.
Collapse
Affiliation(s)
- Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ya Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Jian Liu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Mingjiang Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
13
|
Endocytosis of LXRs: Signaling in liver and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:347-375. [PMID: 36631198 DOI: 10.1016/bs.pmbts.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nuclear receptors are among one of the major transcriptional factors that induces gene regulation in the nucleus. Liver X receptor (LXR) is a transcription factor which regulates essential lipid homeostasis in the body including fatty acid, cholesterol and phospholipid synthesis. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer is activated by either of the ligand binding on LXR or RXR. The promoter region of the gene which is targeted by LXR is bound to the response element of LXR. The activators bind to the heterodimer once the corepressor is dissociated. The cellular process such as endocytosis aids in intracellular trafficking and endosomal formation in transportation of molecules for essential signaling within the cell. LXR isotypes play a crucial role in maintaining lipid homeostasis by regulating the level of cholesterol. In the liver, the deficiency of LXRα can alter the normal physiological conditions depicting the symptoms of various cardiovascular and liver diseases. LXR can degrade low density lipoprotein receptors (LDLR) by the signaling of LXR-IDOL through endocytic trafficking in lipoprotein uptake. Various gene expressions associated with cholesterol level and lipid synthesis are regulated by LXR transcription factor. With its known diversified ligand binding, LXR is capable of regulating expression of various specific genes responsible for the progression of autoimmune diseases. The agonists and antagonists of LXR stand to be an important factor in transcription of the ABC family, essential for high density lipoprotein (HDL) formation. Endocytosis and signaling mechanism of the LXR family is broad and complex despite their involvement in cellular growth and proliferation. Here in this chapter, we aimed to emphasize the master regulation of LXR activation, regulators, and their implications in various metabolic activities especially in lipid homeostasis. Furthermore, we also briefed the significant role of LXR endocytosis in T cell immune regulation and a variety of human diseases including cardiovascular and neuroadaptive.
Collapse
|
14
|
Li H, Huang Z, Zeng F. Opuntia dillenii Haw. Polysaccharide Promotes Cholesterol Efflux in THP-1-Derived Foam Cells via the PPARγ-LXRα Signaling Pathway. Molecules 2022; 27:molecules27248639. [PMID: 36557773 PMCID: PMC9781717 DOI: 10.3390/molecules27248639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux in ameliorating atherosclerosis. Opuntia dillenii Haw. polysaccharide (ODP-Ia), the most important functional component obtained from Opuntia dillenii Haw. stem, has anti-atherosclerosis effects. Therefore, we propose that ODP-Ia could promote cholesterol efflux via the PPARγ-LXRα signaling pathway. In this study, THP-1 foam cells derived from macrophages were treated with different concentrations of ODP-Ia, GGPP (antagonist of LXRα) and GW9662 (antagonist of PPARγ), with or without 15 nmol ODP-Ia. The total cholesterol content in the cells was measured. The mRNA of ABCA1, ABCG1, PPARγ, LXRα and their protein levels in the foam cells were detected by RT−PCR and Western blot, respectively. The results showed that ODP-Ia plays a role in significantly promoting cholesterol efflux (p < 0.05) by upregulating the expression of ABCA1, ABCG1, SR-BI, PPARγ, PPARα and LXRα. Meanwhile, PPARγ and LXRα antagonists dramatically interfered the cholesterol efflux mediated by ODP-Ia (p < 0.05) and dramatically inhibited the upregulating effect of ODP-Ia on the expression of PPARγ, LXRα, ABCA1 and ABCG1 at both protein and mRNA levels (p < 0.05). In conclusion, ODP-Ia promotes cholesterol efflux in the foam cells through activating the PPARγ-LXRα signaling pathway. This bioactivity suggested that ODP-Ia may be of benefit in treating atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- School of Food Science and Engineering, Lingnan Normal University, Zhanjiang 504048, China
- Correspondence:
| | - Zhenchi Huang
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| | - Fuhua Zeng
- School of Life Science and Technology, Lingnan Normal University, Zhanjiang 524048, China
| |
Collapse
|
15
|
Hypocholesterolemic effects of soy protein isolates from soybeans differing in 7S and 11S globulin subunits vary in rats fed a high cholesterol diet. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
P Karagodin V, I Summerhill V, Yet SF, N Orekhov A. The anti-atherosclerotic effects of natural polysaccharides: from phenomena to the main mechanisms of action. Curr Pharm Des 2022; 28:1823-1832. [PMID: 35585810 DOI: 10.2174/1381612828666220518095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Polysaccharides (PSs) of plant origin have a variety of biological activities, anti-atherosclerotic including, but their use in atherosclerosis therapy is hindered by insufficient knowledge on the cellular and molecular mechanisms of action. In this review, the influence of several natural PSs on the function of macrophages, viral activity, and macrophage cholesterol metabolism has been discussed considering the tight interplay between these aspects in the pathogenesis of atherosclerosis. The anti-atherosclerotic activities of natural PSs related to other mechanisms have been also explored. Directions for further research of anti-atherosclerotic effects of natural PSs have been outlined, the most promising of which can be nutrigenomic studies.
Collapse
Affiliation(s)
- Vasily P Karagodin
- Department of Commodity Research and Expertise, Plekhanov Russian University of Economics, 36 Stremyanny Pereulok, 117997 Moscow, Russia
| | - Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan R.O.C
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia.,Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
| |
Collapse
|
18
|
Wang K, Xu X, Wei Q, Yang Q, Zhao J, Wang Y, Li X, Ji K, Song S. Application of fucoidan as treatment for cardiovascular and cerebrovascular diseases. Ther Adv Chronic Dis 2022; 13:20406223221076891. [PMID: 35432845 PMCID: PMC9008857 DOI: 10.1177/20406223221076891] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fucoidan is a marine polysaccharide. In recent years, fucoidan has attracted wide-scale attention from the pharmaceutical industries due to its diverse biological activities such as lipid-lowering, anti-atherosclerosis, and anticoagulation. This review clarifies the pharmacological effects of fucoidan in the treatment of human cardiovascular and cerebrovascular diseases. Fucoidan exerts a hypolipidemic effect by increasing the reverse transport of cholesterol, inhibiting lipid synthesis, reducing lipid accumulation, and increasing lipid metabolism. Inflammation, anti-oxidation, and so on have a regulatory effect in the process of atherosclerosis endothelial cells, macrophages, smooth muscle cells, and so on; fucoidan can not only prevent thrombosis through anticoagulation and regulate platelet activation, but also promote the dissolution of formed thrombi. Fucoidan has a neuroprotective effect, and also has a positive effect on the prognosis of the cardiovascular and cerebrovascular. The prospects of applying fucoidan in cardio-cerebrovascular diseases are reviewed to provide some theoretical bases and inspirations for its full-scale development and utilization.
Collapse
Affiliation(s)
- Ke Wang
- Marine College, Shandong University, Weihai,
ChinaHeping Hospital Affiliated to Changzhi Medical College, Changzhi,
China
| | - Xueli Xu
- Binzhou Inspection and Testing Center, Binzhou,
China
| | - Qiang Wei
- Marine College, Shandong University, Weihai,
China
| | - Qiong Yang
- Marine College, Shandong University, Weihai,
China
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai,
China
| | - Yuan Wang
- Marine College, Shandong University, Weihai,
China
| | - Xia Li
- Marine College, Shandong University, Weihai,
China
| | - Kai Ji
- Department of Plastic Surgery, China-Japan
Friendship Hospital, Beijing 100029, China
| | - Shuliang Song
- Marine College, Shandong University, Weihai
264209, China
| |
Collapse
|
19
|
Huang W, Tan H, Nie S. Beneficial effects of seaweed-derived dietary fiber: Highlights of the sulfated polysaccharides. Food Chem 2022; 373:131608. [PMID: 34815114 DOI: 10.1016/j.foodchem.2021.131608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
Seaweeds and their derivatives are important bioresources of natural bioactive compounds. Nutritional studies indicate that dietary fibers derived from seaweeds have great beneficial potentials in human health and can be developed as functional food. Moreover, sulfated polysaccharides are more likely to be the main bioactive components which are widely distributed in various species of seaweeds including Phaeophyceae, Rhodophyceae and Chlorophyceae. The catabolism by gut microbiota of the seaweeds-derived dietary fibers (DFs) may be one of the pivotal pathways of their physiological functions. Therefore, in this review, we summarized the latest results of the physiological characteristics of seaweed-derived dietary fiber and highlighted the roles of sulfated polysaccharides in the potential regulatory mechanisms against disorders. Meanwhile, the effects of different types of seaweed-derived dietary fiber on gut microbiota were discussed. The analysis of the structure-function correlations and gut microbiota related mechanisms and will contribute to further better applications in food and biotherapeutics.
Collapse
Affiliation(s)
- Wenqi Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
20
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
21
|
Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutr Res 2022; 98:41-49. [DOI: 10.1016/j.nutres.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
|
22
|
Zhang S, Hong F, Ma C, Yang S. Hepatic Lipid Metabolism Disorder and Atherosclerosis. Endocr Metab Immune Disord Drug Targets 2021; 22:590-600. [PMID: 34931971 DOI: 10.2174/1871530322666211220110810] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Lipid metabolism disorder plays a fundamental role in the pathogenesis of atherosclerosis. As the largest metabolic organ of the human body, liver has a key role in lipid metabolism by influencing fat production, fat decomposition, and the intake and secretion of serum lipoproteins. Numerous clinical and experimental studies have indicated that the dysfunction of hepatic lipid metabolism is closely tied to the onset of atherosclerosis. However, the identity and functional role of hepatic lipid metabolism responsible for these associations remain unknown. This review presented that cholesterol synthesis, cholesterol transport, and the metabolism of triglyceride, lipoproteins, and fatty acids are all associated with hepatic lipid metabolism and atherosclerosis. Moreover, we also discussed the roles of gut microbiota, inflammatory response, and oxidative stress in the pathological association between hepatic lipid metabolism and atherosclerosis. These significant evidences support strongly that hepatic lipid metabolism disorders may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Sen Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Fenfang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Chen Ma
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| | - Shulong Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Yin F, Lin P, Yu WQ, Shen N, Li Y, Guo SD. The Cordyceps militaris-Derived Polysaccharide CM1 Alleviates Atherosclerosis in LDLR (-/-) Mice by Improving Hyperlipidemia. Front Mol Biosci 2021; 8:783807. [PMID: 34966782 PMCID: PMC8710727 DOI: 10.3389/fmolb.2021.783807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerotic cardiovascular disease has a high mortality worldwide. Our lab previously purified a polysaccharide designated as CM1 with (1→4)-β-D-Glcp and (1→2)-α-D-Manp glycosyls as the backbone. In this study, we investigated the anti-atherosclerosis effect of CM1 and the underlying mechanisms of action in a low-density lipoprotein receptor knockout (LDLR(-/-) mouse model. It was found that CM1 significantly decreased the formation of atherosclerotic plaques. Mechanistically, CM1 enhanced plasma level of apolipoprotein A-I and decreased the plasma levels of triglyceride, apolipoprotein B, and total cholesterol. In the absence of LDLR, CM1 elevated the expression of very low-density lipoprotein receptor for liver uptake of plasma apolipoprotein B-containing particles and reduced hepatic triglyceride synthesis by inhibiting sterol regulatory element binding protein 1c. CM1 improved lipids excretion by increasing the liver X receptor α/ATP-binding cassette G5 pathway in small intestine. CM1 reduced lipogenesis and lipolysis by inhibiting peroxisome proliferator-activated receptor γ and adipose triglyceride lipase in epididymal fat. Furthermore, CM1 improved lipid profile in C57BL/6J mice. Collectively, CM1 can modulate lipid metabolism by multiple pathways, contributing to reduced plasma lipid level and formation of atherosclerotic plaques in LDLR(-/-) mice. This molecule could be explored as a potential compound for prevention and treatment of hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
24
|
Li Y, Qin J, Cheng Y, Lv D, Li M, Qi Y, Lan J, Zhao Q, Li Z. Marine Sulfated Polysaccharides: Preventive and Therapeutic Effects on Metabolic Syndrome: A Review. Mar Drugs 2021; 19:md19110608. [PMID: 34822479 PMCID: PMC8618309 DOI: 10.3390/md19110608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome is the pathological basis of cardiovascular and cerebrovascular diseases and type 2 diabetes. With the prevalence of modern lifestyles, the incidence of metabolic syndrome has risen rapidly. In recent years, marine sulfate polysaccharides (MSPs) have shown positive effects in the prevention and treatment of metabolic syndrome, and they mainly come from seaweeds and marine animals. MSPs are rich in sulfate and have stronger biological activity compared with terrestrial polysaccharides. MSPs can alleviate metabolic syndrome by regulating glucose metabolism and lipid metabolism. In addition, MSPs prevent and treat metabolic syndrome by interacting with gut microbiota. MSPs can be degraded by gut microbes to produce metabolites such as short chain fatty acids (SCFAs) and free sulfate and affect the composition of gut microbiota. The difference between MSPs and other polysaccharides lies in the sulfation pattern and sulfate content, therefore, which is very important for anti-metabolic syndrome activity of MSPs. This review summarizes the latest findings on effects of MSPs on metabolic syndrome, mechanisms of MSPs in treatment/prevention of metabolic syndrome, interactions between MSPs and gut microbiota, and the role of sulfate group and sulfation pattern in MSPs activity. However, more clinical trials are needed to confirm the potential preventive and therapeutic effects on human body. It may be a better choice to develop new functional foods containing MSPs for dietary intervention in metabolic syndrome.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Juan Qin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Yinghui Cheng
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
| | - Dong Lv
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
| | - Meng Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Liaoning Provincial Aquatic Products Analyzing, Testing and Processing Technology Scientific Service Centre, Dalian 116023, China
| | - Jing Lan
- Dalian Zhenjiu Biological Industry Co., Ltd., Dalian 116023, China;
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Dalian Key Laboratory of Marine Bioactive Substances Development and High Value Utilization, Dalian 116023, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| | - Zhibo Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; (Y.L.); (J.Q.); (Y.C.); (D.L.); (M.L.); (Y.Q.)
- Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian 116023, China
- Correspondence: (Q.Z.); (Z.L.); Tel.: +86-411-84673500 (Q.Z.); +86-411-84763107 (Z.L.)
| |
Collapse
|
25
|
Zhang Q, Fan XY, Cao YJ, Zheng TT, Cheng WJ, Chen LJ, Lv XC, Ni L, Rao PF, Liang P. The beneficial effects of Lactobacillus brevis FZU0713-fermented Laminaria japonica on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet. Food Funct 2021; 12:7145-7160. [PMID: 34231612 DOI: 10.1039/d1fo00218j] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the beneficial effects of the oral administration of Lactobacillus brevis FZU0713-fermented Laminaria japonica (FLJ) on lipid metabolism and intestinal microbiota in hyperlipidemic rats fed with a high-fat diet (HFD). The results demonstrated that the oral administration of FLJ significantly inhibited obesity and improved the serum and hepatic biochemical parameters in HFD-fed rats. Histopathological results also indicated that FLJ intervention could significantly reduce the accumulation of lipid droplets in the liver induced by HFD feeding. Furthermore, FLJ intervention up-regulated the fecal short-chain fatty acid (SCFA) levels (mainly acetate, propionate and isobutyrate) in HFD-fed rats. Intestinal microbiota profiling by 16S rRNA gene sequencing revealed that FLJ intervention increased the relative abundance of Akkermansia, Collinsella, Ruminococcaceae_UCG-013, Defluviitaleaceae_UCG-011, Intestinimonas, Actinomyces and Tyzzerella, but decreased the abundance of Flavonifractor, Collinsella, Sporosarcina and Lacticigenium. Based on Spearman's correlation, the fecal levels of TC, TG, acetic acid and butyric acid were positively correlated with the relative abundance of Akkermansia and Ruminococcaceae_NK4A214, but negatively correlated with the relative amount of Flavonifractor and Collinsella. The metabolic function of intestinal microbiota predicted by PICRUSt analysis of 16S rRNA gene sequences demonstrated that primary and secondary bile acid biosyntheses, fatty acid biosynthesis, taurine and hypotaurine metabolism, arachidonic acid metabolism, glycolysis/gluconeogenesis, etc. were significantly down-regulated after 8 weeks of FLJ intervention. Additionally, FLJ intervention significantly regulated the hepatic mRNA levels (including BSEP, CYP7A1, LDLR, HMGCR, CD36 and SREBP1-C) involved in lipid metabolism and bile acid homeostasis. In conclusion, these findings support the possibility that Laminaria japonica fermented with probiotic Lactobacillus has the potential to reduce the disturbance of lipid metabolism by regulating intestinal microflora and liver gene expression profiles, so it can be employed as a potential functional food to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fonseca RJC, Mourão PAS. Pharmacological Activities of Sulfated Fucose-Rich Polysaccharides after Oral Administration: Perspectives for the Development of New Carbohydrate-Based Drugs. Mar Drugs 2021; 19:425. [PMID: 34436263 PMCID: PMC8400256 DOI: 10.3390/md19080425] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Marine organisms are a source of active biomolecules with immense therapeutic and nutraceutical potential. Sulfated fucose-rich polysaccharides are present in large quantities in these organisms with important pharmacological effects in several biological systems. These polysaccharides include sulfated fucan (as fucoidan) and fucosylated chondroitin sulfate. The development of these polysaccharides as new drugs involves several important steps, among them, demonstration of the effectiveness of these compounds after oral administration. The oral route is the more practical, comfortable and preferred by patients for long-term treatments. In the past 20 years, reports of various pharmacological effects of these polysaccharides orally administered in several animal experimental models and some trials in humans have sparked the possibility for the development of drugs based on sulfated polysaccharides and/or the use of these marine organisms as functional food. This review focuses on the main pharmacological effects of sulfated fucose-rich polysaccharides, with an emphasis on the antidislipidemic, immunomodulatory, antitumor, hypoglycemic and hemostatic effects.
Collapse
Affiliation(s)
- Roberto J. C. Fonseca
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro 21941-913, Brazil;
- Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A. S. Mourão
- Laboratório de Tecido Conjuntivo, Hospital Universitário Clementino Fraga Filho, Rio de Janeiro 21941-913, Brazil;
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
27
|
Du H, Li C, Wang Z, He Y, Wang Y, Zhou H, Wan H, Yang J. Effects of Danhong injection on dyslipidemia and cholesterol metabolism in high-fat diets fed rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114058. [PMID: 33766756 DOI: 10.1016/j.jep.2021.114058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong injection (DHI) is a Chinese medical injection applied to the clinical treatment of cardiovascular diseases that has anti-inflammatory, antiplatelet aggregation and antithrombotic effects. This study aimed to explore the effects of DHI on dyslipidemia and cholesterol metabolism in high-fat diet-fed rats. METHODS Sprague Dawley (SD) rats were randomly divided into six groups: normal group (Normal); hyperlipidemia model group (Model); DHI-treated groups at doses of 1.0 mL/kg, 2.0 mL/kg, 4.0 mL/kg; and simvastatin positive control group (2.0 mg/kg). The hypolipidemic effects of DHI were evaluated by measuring serum lipid levels, hepatic function and oxidative stress, respectively. And pathological changes in liver tissues were determined using hematoxylin-eosin (H&E) and oil red O staining. Moreover, the mRNA and protein expression levels of cholesterol metabolism related genes were detected by real-time PCR (RT-PCR) and Western blot. RESULTS Compared with the Model group, DHI treatment markedly decreased the liver index and improved the pathological morphology of liver tissues. DHI treatment dose-dependently decreased the levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA), and free fatty acids (FFA) in serum or liver tissues (P < 0.01 or P < 0.05), and increased the high-density lipoprotein cholesterol (HDL-C) and tripeptide glutathione (GSH) (P < 0.01 or P < 0.05). The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) were increased in the DHI-treated groups (P < 0.01 or P < 0.05), while the alanine transaminase (ALT) and aspartate transaminase (AST) were decreased (P < 0.01 or P < 0.05). Furthermore, the expression levels of LDL receptor (LDLR), cholesterol 7-α-hydroxylase (CYP7A1), liver X receptor α (LXRα), and peroxisome proliferator-activated receptor α (PPARα) were dose-dependently upregulated in the DHI-treated groups, whereas the expression of sterol regulatory element-binding protein-2 (SREBP-2) was downregulated. CONCLUSIONS Our study demonstrated that DHI markedly ameliorated hyperlipidemia rats by regulating serum lipid levels, inhibiting hepatic lipid accumulation and steatosis, improving hepatic dysfunction, and reducing oxidative stress. The potential mechanism was also tentatively investigated and may be related to the promotion of bile acid synthesis via activation of the PPARα-LXRα-CYP7A1 pathway. Therefore, DHI could be regarded as a potential hypolipidemic drug for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Haixia Du
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhixiong Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
28
|
Yang X, Lin P, Wang J, Liu N, Yin F, Shen N, Guo S. Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. Int J Biol Macromol 2021; 181:890-904. [PMID: 33878353 DOI: 10.1016/j.ijbiomac.2021.04.083] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Hyperlipidemia is one major cause of atherosclerosis, which is a basic pathological change of cardiovascular diseases. Polysaccharide is a water-soluble component with lipid-lowering effects. In this study, alkaline-extracted polysaccharides were obtained from the fruiting body of C. militaris. Polysaccharides were purified via anion exchange and size exclusion chromatography. Their structural characteristics were investigated via chemical and spectroscopic methods. CM3I was mainly composed of →4)α-D-Glcp(1 → glycosyls and differed from starch due to the presence of →4,6)β-D-Glcp(1 → glycosyls. CM3II was characterized by its backbone, which was composed of →4)-β-D-Manp(1 → 6)-α-D-Manp(1 → 6)-β-D-Manp(1 → linked glycosyls, and especially the presence of O-methyl. Moreover, CM3II exhibited powerful anti-atherosclerotic effects via lowering plasma lipid levels in apolipoprotein E-deficient mice. The underlying mechanisms were attributed to its promoting effect on LXRα and inhibitory effect on SREBP-2. Collectively, CM3I and CM3II are different from the previously reported polysaccharides from C. militaris, and CM3II has a potential application in hypolipidemia and anti-atherosclerosis.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Ping Lin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Jin Wang
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Na Liu
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Nuo Shen
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- Institute of Lipid metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
29
|
Purification, structural characterization, and PCSK9 secretion inhibitory effect of the novel alkali-extracted polysaccharide from Cordyceps militaris. Int J Biol Macromol 2021; 179:407-417. [PMID: 33662421 DOI: 10.1016/j.ijbiomac.2021.02.191] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 01/17/2023]
Abstract
One novel alkali-extracted polysaccharide, CM3-SII, was obtained from the fruiting body of C. militaris via column chromatography. Its structural characteristics were investigated via chemical and spectroscopic methods. The backbone of CM3-SII was composed of →4)-β-D-Manp(1→, →6)-β-D-Manp(1→, and →6)-α-D-Manp(1→ glycosyls, and branching at the O-4 positions of →6)-β-D-Manp(1→ glycosyls with β-D-Galp, (1→2) linked-β-D-Galf, and →2,6)-α-D-Manp(1→ residues. Furthermore, O-6 and O-2 positions of the →2,6)-α-D-Manp(1→ residues were substituted with methyl and β-D-Galp, respectively. This polysaccharide significantly enhanced the intracellular protein expression of low-density lipoprotein receptor and proprotein convertase subtilisin/kexin type 9 (PCSK9) via regulating sterol regulatory element-binding protein 2 in hepatoma Huh7 cells. Of note, CM3-SII significantly decreased PCSK9 secretion at the concentration of 200 μg/mL. Collectively, CM3-SII is different from the previously reported alkali-extracted polysaccharides isolated from the fruiting body of C. militaris, and it may have potential application in hypolipidemia or as a pharmaceutical additive.
Collapse
|
30
|
Current developments in the oral drug delivery of fucoidan. Int J Pharm 2021; 598:120371. [PMID: 33581274 DOI: 10.1016/j.ijpharm.2021.120371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Fucoidan is well known to have various biological functions and is often investigated for pharmaceutical applications. Several studies have been conducted on clinical applications of fucoidan in recent years, especially regarding its oral drug delivery. Although fucoidan has shown promising results in various dosage forms, its potential applications as a dietary supplement have been demonstrated, and recent studies show that oral administration of fucoidan is preferred. However, the focus on the oral delivery of fucoidan in recent studies has caused its potency in therapy to be understudied. This review aims to provide results on the promising fucoidan activity by oral administration with in vivo studies. In addition to using it as an active ingredient, the utilization of fucoidan as an excipient in oral drug delivery systems will be discussed. An overview of fucoidan administration by oral delivery in recent promising studies will provide a direction for further investigations in clinical applications, particularly for fucoidan, which has a broad spectrum of bioactive properties.
Collapse
|
31
|
Liu S, Gao J, He L, Zhao Z, Wang G, Zou J, Zhou L, Wan X, Tang S, Tang C. Myristica fragrans promotes ABCA1 expression and cholesterol efflux in THP-1-derived macrophages. Acta Biochim Biophys Sin (Shanghai) 2021; 53:63-71. [PMID: 33434281 DOI: 10.1093/abbs/gmaa146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/21/2022] Open
Abstract
Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis. However, the anti-atherogenic mechanisms of M. fragrans are still to be addressed. In this study, we explored the effect of M. fragrans on lipid metabolism and inflammation and its mechanisms in THP-1-derived macrophages. The quantitative polymerase chain reaction and western blot analysis results showed that M. fragrans promotes cholesterol efflux from THP-1-derived macrophages and reduces intracellular total cholesterol, cholesterol ester, and free cholesterol contents in a dose- and a time-dependent manner. Further study found that liver X receptor alpha (LXRα) antagonist GGPP significantly blocked the upregulation of ABCA1 expression with M. fragrans treatment. In addition, chromatin immunoprecipitation assay confirmed that GATA binding protein 3 (GATA3) can bind to the LXRα promoter, and inhibition of GATA3 led to the downregulation of LXRα and ATP-binding cassette subfamily A member 1 expression. Furthermore, M. fragrans reduced lipid accumulation, followed by decreasing tumor necrosis factor-α, interleukin (IL)-6, and IL-1β and increasing IL-10 produced by THP-1-derived macrophages. Therefore, M. fragrans is identified as a valuable therapeutic medicine for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shangming Liu
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Jiahui Gao
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linhao He
- School of Pharmacy and Life Science College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zhenwang Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Gang Wang
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Jin Zou
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Li Zhou
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiangjun Wan
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Shilin Tang
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Chaoke Tang
- Department of Intensive Care Unit, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
32
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
33
|
Zhao J, Cao Q, Xing M, Xiao H, Cheng Z, Song S, Ji A. Advances in the Study of Marine Products with Lipid-Lowering Properties. Mar Drugs 2020; 18:E390. [PMID: 32726987 PMCID: PMC7459887 DOI: 10.3390/md18080390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
With twice the number of cancer's deaths, cardiovascular diseases have become the leading cause of death worldwide. Atherosclerosis, in particular, is a progressive, chronic inflammatory cardiovascular disease caused by persistent damage to blood vessels due to elevated cholesterol levels and hyperlipidemia. This condition is characterized by an increase in serum cholesterol, triglycerides, and low-density lipoprotein, and a decrease in high-density lipoprotein. Although existing therapies with hypolipidemic effects can improve the living standards of patients with cardiovascular diseases, the drugs currently used in clinical practice have certain side effects, which insists on the need for the development of new types of drugs with lipid-lowering effects. Some marine-derived substances have proven hypolipidemic activities with fewer side effects and stand as a good alternative for drug development. Recently, there have been thousands of studies on substances with lipid-lowering properties of marine origin, and some are already implemented in clinical practice. Here, we summarize the active components of marine-derived products having a hypolipidemic effect. These active constituents according to their source are divided into algal, animal, plant and microbial and contribute to the development and utilization of marine medicinal products with hypolipidemic effects.
Collapse
Affiliation(s)
- Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Zeyu Cheng
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (J.Z.); (Q.C.); (M.X.); (H.X.); (Z.C.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| |
Collapse
|
34
|
Zhang Q, Fan XY, Guo WL, Cao YJ, Lin YC, Cheng WJ, Chen LJ, Rao PF, Ni L, Lv XC. The protective mechanisms of macroalgae Laminaria japonica consumption against lipid metabolism disorders in high-fat diet-induced hyperlipidemic rats. Food Funct 2020; 11:3256-3270. [PMID: 32219261 DOI: 10.1039/d0fo00065e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macroalgae Laminaria japonica (MLJ) has been reported to exhibit various biological activities including improving immunity, anti-aging, anti-tumor, anti-atherosclerosis and anti-diabetic, but the protective mechanisms of MLJ consumption against non-alcoholic fatty liver disease (NAFLD) associated with hyperlipidemia remain poorly understood. This study demonstrated that MLJ consumption prevented high-fat diet (HFD)-induced NAFLD associated with hyperlipidemia in a rat model, and improved hyperlipidemia-related parameters, e.g. serum and hepatic lipid profiles. Moreover, histological analysis showed that MLJ reduced lipid deposition in adipocytes and hepatocytes compared with the HFD group. Such beneficial effects may be associated with the modulation of the intestinal microbiota, especially some key microbial phylotypes involved in lipid metabolism homeostasis. The underlying protective mechanisms of MLJ consumption against HFD-induced NAFLD associated with hyperlipidemia were also studied by ultra-high performance liquid chromatography with quadruple-time of flight mass spectrometry (UPLC-QTOF/MS)-based liver metabolomics coupled with pathway analysis. The metabolic pathway enrichment analysis of the differentially abundant hepatic metabolites indicated that primary bile acid biosynthesis metabolism and cysteine and methionine metabolism were the two main metabolic pathways altered by MLJ consumption when compared with the model group. The analysis of the transcription levels of liver-related genes by RT-qPCR and the expressions of liver-related proteins by immunohistochemistry (IHC) showed that MLJ consumption could regulate the levels of mRNA transcription and protein expression related to hepatic lipid metabolism. In short, this study indicates that MLJ could be developed as functional food supplement for the prevention or treatment of NAFLD associated with hyperlipidemia.
Collapse
Affiliation(s)
- Qing Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiao-Yun Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Wei-Ling Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China and Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ying-Jia Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yi-Chen Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wen-Jian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Li-Jiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ping-Fan Rao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xu-Cong Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. and National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China and Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
35
|
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang H, Yu X, Liu Z. DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism. Food Funct 2020; 11:3621-3631. [PMID: 32292967 DOI: 10.1039/c9fo02606a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Disruptions to circadian rhythm have been associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). DHA has been found to affect both circadian rhythm and lipid metabolism. In this study, the relationship between DHA substitution and improvements in lipid metabolism and circadian clock regulation was studied. Male C57BL/6 mice were fed a control, a high fat or a DHA substituted diet for 12 weeks. Biochemical analysis and H&E staining showed that the high-fat diet (HFD) could induce NAFLD, and DHA substitution (AOH) could attenuate NAFLD. The qPCR results showed that the expressions of core clock genes Clock and Bmal1 were significantly higher at zeitgeber (ZT) 0 (7:00 am) than those at ZT12 (7:00 pm) in the control group, while this difference in day and night disappeared in the HFD group, but was observed in the AOH group. Western blotting results indicated that the expressions of rhythm output molecules (RORα and REV-ERBα) and their downstream protein INSIG2 all showed the corresponding circadian changes. SREBP-regulated proteins were significantly increased in the HFD group at both ZT0 and ZT12, but decreased in the AOH group accompanied by the corresponding changes in the protein expressions of HMGCR, LXR, CYP7A1 and CYP27A1. Altogether, HFD can decrease or disrupt circadian rhythm fluctuation by up-regulating the expression of core circadian rhythm genes Clock and Bmal1 at ZT12, and induce metabolic abnormalities through the INSIG2-SREBP pathway regulated by RORα and REV-ERBα. DHA substitution seems to restore circadian rhythm similar to the normal circadian rhythm of "night-high, day-low" through the metabolic pathway regulated by rhythmic nuclear receptors, improving the lipid metabolism rhythm and reducing liver fat.
Collapse
Affiliation(s)
- Rulong Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
The fucoidan from sea cucumber Apostichopus japonicus attenuates lipopolysaccharide-challenged liver injury in C57BL/6J mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
37
|
Yin J, Wang J, Li F, Yang Z, Yang X, Sun W, Xia B, Li T, Song W, Guo S. The fucoidan from the brown seaweed Ascophyllum nodosum ameliorates atherosclerosis in apolipoprotein E-deficient mice. Food Funct 2019; 10:5124-5139. [PMID: 31364648 DOI: 10.1039/c9fo00619b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Hyperlipidemia is a major cause of atherosclerosis. Reverse cholesterol transport (RCT) is believed to attenuate hyperlipidemia and the progression of atherosclerosis. Although fucoidans are reported to have hypolipidemic effects, the underlying mechanisms are unclear. Furthermore, few reports have revealed the anti-atherosclerotic effects and the underlying mechanisms of fucoidans. This study was designed to investigate the anti-atherosclerotic effect and mechanisms of the fucoidan from seaweed A. nodosum. Our results demonstrated that the fucoidan administration ameliorated atherosclerotic lesion and lipid profiles in a dose-dependent manner in the apolipoprotein E-deficient (apoE-/-) mice fed a high-fat diet. In the apoE-/- mice liver, the fucoidan treatment significantly increased the expression of scavenger receptor B type 1 (SR-B1), peroxisome proliferator-activated receptor (PPAR) α and β, liver X receptor (LXR) α, ATP-binding cassette transporter (ABC) A1 and ABCG8; and markedly decreased the expression of PPARγ and sterol regulatory element-binding protein (SREBP) 1c, but not low-density lipoprotein receptor, proprotein convertase subtilisin/kexin type 9, cholesterol 7 alpha-hydroxylase A1, LXRβ and ABCG1. In the small intestine of the apoE-/- mice, the fucoidan treatment significantly reduced the expression of Niemann-Pick C1-like 1 (NPC1L1) and dramatically improved ABCG8 levels. These results demonstrated for the first time that the fucoidan from A. nodosum attenuated atherosclerosis by regulating RCT-related genes and proteins expression in apoE-/- mice. In summary, this fucoidan from A. nodosum may be explored as a potential compound for prevention or treatment of hyperlipidemia-induced atherosclerosis.
Collapse
Affiliation(s)
- Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dataset of the infrared spectrometry, gas chromatography-mass spectrometry analysis and nuclear magnetic resonance spectroscopy of the polysaccharides from C. militaris. Data Brief 2019; 25:104126. [PMID: 31294065 PMCID: PMC6595413 DOI: 10.1016/j.dib.2019.104126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/02/2023] Open
Abstract
The data presented in this article describe characteristics of the polysaccharides, designated as CM1 and CMS, isolated from the fruiting body of C. militaris. Fourier transform infrared spectrometry analysis was used to identify the basic characteristics of the polysaccharides and the completeness of methylation. Gas chromatography-tandem mass spectrometry and nuclear magnetic resonance spectroscopy were carried out to reveal the glycosidic linkages of CM1 and CMS. Further interpretation and discussion could be found at our research article entitled “Structural characterisation and cholesterol efflux improving capacity of the novel polysaccharides from Cordyceps militaris” (Hu et al., 2019; https://doi.org/10.1016/j.ijbiomac.2019.03.078) [1].
Collapse
|