1
|
Hassan M, Naidu R, Qi F, Wang B, Wang L, Asadi S, Deb AK, Du J, Liu Y. Comparative immobilization of 30 PFAS mixtures onto biochar, clay, nanoparticle, and polymer derived engineered adsorbents: Machine learning insights into carbon chain length and removal mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137742. [PMID: 40043395 DOI: 10.1016/j.jhazmat.2025.137742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 04/16/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of fluorinated chemicals that cause potential risk in PFAS-impacted soil and water. The adsorption efficiency of 30 PFAS mixtures using different adsorbents in environmentally relevant concentrations was investigated. Different meso/microporous designed adsorbents (n = 7) were used for PFAS adsorption and their interfacial interactions. The adsorbents were tested for their ability to remove PFAS mixtures, including perfluoroalkyl sulfonic acids (PFSAs, n = 7, C4-C10), perfluoroalkyl carboxylic acids (PFCAs, n = 11, C4-C14), fluorotelomer sulfonic acids (FTSs, n = 4), perfluoroalkane sulfonamido acetic acids (FASAAs, n = 3, C8), perfluoroalkane sulfonamides (FASAs, n = 3, C8) and perfluoroalkane sulfonamidoethanols (FASEs, n = 2, C8). The overall removal rate of 30 PFAS was recorded as 86.20-89.29 %, 87.63-90.33 %, and 67.07-93.61 % for microporous biochar/modified biochar, halloysite nanoclays, and mesoporous polymer composites-based adsorbents, respectively. The presence of sugarcane bagasse-derived biochar, iron nanoparticles, and β-cyclodextrin in the composite adsorbents enhances the sorption of PFAS. Higher adsorption efficiency was observed for long-chain PFCAs, PFSAs, FTSs, FASAAs, FASAs, and FASEs, whereas, complete removal of short-chain PFCAs, PFSAs, and FTSs is still challenging by using all the studied adsorbents. The carbon chain length and head groups of PFAS play a vital role in removing PFAS. The correlation coefficient (R2) values between removal rate and carbon chain length, for PFCAs (n = 11), and PFSAs (n = 7) were found as 0.73, and 0.31 respectively. Appropriate machine learning tools including efficient linear least squares, Gaussian process regression, and stepwise linear regression, were applied to fit experimental data and assess model accuracy.
Collapse
Affiliation(s)
- Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia
| | - Fangjie Qi
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia; Nanjing Institute of Soil Science, Chinese Academy of Sciences, 298 Chuangyou Road, Nanjing, Jiangsu Province 210008, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Liang Wang
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia
| | - Srinivasulu Asadi
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia
| | - Amal Kanti Deb
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia; Institute of Leather Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianhua Du
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia; WSP Australia Pty Limited, Level 3, Mia Yellagonga Tower 2, 5 Spring Street, Perth 6000, Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; crc for Contamination Assessment and Remediation of the Environment (crcCARE), Callaghan, NSW 2308, Australia.
| |
Collapse
|
2
|
Ben Salem D, Yahiaoui K, Bernardo M, Gatica JM, Ouakouak A, Touahra F, Saad Eltaweil A, Tran HN. Insights into cadmium adsorption characteristics and mechanisms by new granular alginate hydrogels reinforced with biochar: Important role of cation exchange. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125407. [PMID: 40273783 DOI: 10.1016/j.jenvman.2025.125407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Green biochar-alginate composite (BAB) was synthesized by integrating biochar derived from peanut shells (PS700) with Na-alginate using a Ca2+ cross-linker. A hydrogel bead (SAB) was prepared using sodium alginate without biochar. The materials were characterized by the SEM-EDS, XRD, FTIR, XPS, TGA-DTG, and BET-analyzer techniques. They were applied as adsorbents to adsorb Cd2+ ions from aqueous solutions in batch adsorption experiments. XRD data confirmed that BAB exhibited a crystalline structure, with 2θ peaks corresponding to PS700 (∼24° and 42°) and SAB (∼13°). SEM images suggested PS700 was successfully encapsulated within alginate beads. BAB microsphere had a large specific surface area (353.2 m2/g) and dominant micropore (1.86 nm). Adsorption results indicated the Langmuir maximum adsorption capacities of BAB, SAB, and PS700 were 230.0, 125.6, and 92.3 mg/g. Cation exchange was a primary Cd adsorption mechanism by BAB that was determined by a qualitative study (%Ca decreasing from 2.43% to 1.27% after adsorption) and a quantitative experiment (cation exchange ratio between Ca exchange and Cd adsorption: qexchanged/qe = 0.7). The XPS spectrum for C 1s (binding energy peak at ∼282 eV) and Ca 2p (∼348 eV) highlighted that Ca in the Ca-C bond of BAB was remarkably replaced by Cd ions in solution to form the Cd-C bond in the Cd-laden BAB. The O 1s spectrum (peak at ∼532 eV) demonstrated the presence of surface complexation and electron-sharing phenomenon between the ionized carboxyl groups in BAB and Cd. Cd-π interaction was observed at 405.96 eV in the Cd 3d spectrum. Pore filling and van der Waals force played a minor role in adsorption mechanisms. The calculated costs (10-3 US$/g) for adsorbing 1 g of cadmium per the maximum adsorption capacity of PS700, SAB, and BAB were 2.69, 18.79-129.8, and 5.72-36.4, respectively. The innovative biochar-reinforced hydrogel beads can be an effective and green material for water treatment.
Collapse
Affiliation(s)
- Dhirar Ben Salem
- Research Laboratory in Subterranean and Surface Hydraulics, University of Biskra, PO Box 145, Biskra, 07000, Algeria.
| | - Khemissi Yahiaoui
- Hydraulic and Civil Engineering Department, University of El Oued, PO Box 789, El Oued, 39000, Algeria
| | - Maria Bernardo
- LAQV/REQUIMTE, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - Jose Manuel Gatica
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica e Instituto de Microscopía Electrónica y Materiales (IMEYMAT), Universidad de Cádiz, Puerto Real, 11510, Spain
| | - Abdelkader Ouakouak
- Hydraulic and Civil Engineering Department, University of El Oued, PO Box 789, El Oued, 39000, Algeria
| | - Fouzia Touahra
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 384 Bou-Ismail, Tipaza, Algeria
| | | | - Hai Nguyen Tran
- Center for Energy and Environmental Materials, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 70000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City, 50000, Viet Nam.
| |
Collapse
|
3
|
Youssif MM, Wojnicki M. Efficacious Removal of Cd 2+ and Pb 2+ Ions from Wastewater Using a Novel Fe 3O 4/SiO 2/PANI-SDBS Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2083. [PMID: 40363585 PMCID: PMC12072378 DOI: 10.3390/ma18092083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
The current work synthesizes and characterizes a new Fe3O4/SiO2/PANI-SDBS nanocomposite designed as an efficient adsorbent for the removal of Cd2+ and Pb2+ ions from contaminated water. The process includes the polymerization of aniline on the Fe3O4/SiO2 nanocomposite in the presence of SDBS. The Fe3O4/SiO2/PANI-SDBS nanocomposite was characterized by using a variety of techniques, including FT-IR, XRD, TEM, SEM, BET, TGA, zeta potential measurements, and particle size distribution analysis, to evaluate its magnetic, structural, and surface properties. For the elimination of both Cd2+ and Pb2+ ions, ideal adsorption parameters were examined, including pH, adsorbent dose, and contact duration. The solution medium's optimal pH for achieving the highest effectiveness of elimination for both metal ions was decided to be 7.0. The Fe3O4/SiO2/PANI-SDBS adsorbent demonstrated high adsorption capacities for both Pb2+ (72.20 mg g-1) and Cd2+ (67.84 mg g-1) at pH 7, with corresponding removal efficiencies of over 94.10% and 77.47%, respectively. This efficiency is attributed to the composite's large specific surface area and the strong binding affinity of its PANI and SDBS functional groups toward heavy metal ions. Multilayer adsorption on heterogeneous surfaces was shown by isotherm analysis that matched the Freundlich model and adsorption kinetic investigations that showed strong conformance with pseudo-second order for both metal ions. The thermodynamic study proves endothermic and spontaneous process for the removal of metal ions. Furthermore, the adsorbent may be readily recovered from solution thanks to the magnetic core, and regeneration by acid treatment enables reusability with consistent adsorption efficiency across several cycles, making it a cost-effective and sustainable option for continuous water purification processes. Its high adsorption capacity and reusability also make it suitable for use in emergency-response situations, such as the rapid cleanup of wastewater.
Collapse
Affiliation(s)
- Mahmoud M. Youssif
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Marek Wojnicki
- Faculty of Non-Ferrous Metals, AGH University of Krakow, al. A. Mickewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
4
|
Siddiqui VU, Ilyas RA, Sapuan SM, Hamid NHA, Khoo PS, Chowdhury A, Atikah MSN, Rani MSA, Asyraf MRM. Alginate-based materials as adsorbent for sustainable water treatment. Int J Biol Macromol 2025; 298:139946. [PMID: 39824402 DOI: 10.1016/j.ijbiomac.2025.139946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/21/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
With the encroaching issue of water pollution, the use of involved chemicals to remove pollutants from water is not only a risk of chemical contamination, a potential hazard to the environment and human health but also requires significant investment in managing and improving the chemicals. Therefore, alginate as one of the nanomaterial-adorned polysaccharides-based entity that usually extract from brown algae has been used as novel and more efficient catalysts in the removal of a variety of aqueous pollutants from wastewater, including ionic metals and organic/inorganic pollutants by using the adsorption techniques. Adsorption is a technique used in water treatment where non-polar or particles less soluble in water are stuck to the surface of the adsorbent and therefore purifying it. An example of pollutant typically removed via this method is an organic dye. Alginate-based composites due to their ability to bind to metals like Cd, Au, Cu, Fe, Ni, Pb, and Zn, are a common low-cost and highly effective adsorbents used to remove heavy metals, industrial paints, pesticides, and antibiotics. This review focusses on augmenting the recent status, challenges, and further prospects in alginate-based materials for their potential role exclusively in wastewater treatment, including their modification as adsorbents and their adsorption behaviors. Various applications of alginate-based adsorbent are showcased and tabulated their role in treatment of diverse range of pollutants. It can be concluded that the role of alginate in wastewater treatment is indispensable in the future with its biodegradability, low cost, stability, and high-water permeability properties. However, some challenges need to be identified and overcome to ensure the application of alginate in wastewater treatment can be widely used throughout the world, especially in Malaysia, a country with an abundance of water.
Collapse
Affiliation(s)
- Vasi Uddin Siddiqui
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - S M Sapuan
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nur Hafizah Ab Hamid
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor, Malaysia
| | - P S Khoo
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| | - Amreen Chowdhury
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM, Johor, Malaysia
| | - M S N Atikah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M S A Rani
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - M R M Asyraf
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
| |
Collapse
|
5
|
Miyah Y, El Messaoudi N, Benjelloun M, Georgin J, Franco DSP, El-Habacha M, Ali OA, Acikbas Y. A comprehensive review of β-cyclodextrin polymer nanocomposites exploration for heavy metal removal from wastewater. Carbohydr Polym 2025; 350:122981. [PMID: 39647935 DOI: 10.1016/j.carbpol.2024.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
This review focuses on the application of β-cyclodextrin (β-CD) polymer nanocomposites (NCs) in the heavy metals (HMs) removal from contaminated water sources. This manuscript's originality consists of an in-depth analysis of recent advances in using β-cyclodextrin nanocomposites (β-CD-NCs) to remove HMs from wastewater, highlighting literature gaps, innovations, and challenges in this field, suggesting perspectives on existing theories, and outlining implications for future research directions. Combining nanoparticles with the β-CD polymer yields stable, reusable β-CD-NCs that are effective and efficient in HM adsorption. The article reviews the various techniques for synthesizing β-CD-NCs and their structural characterization. It also includes processing and functionalization strategies to optimize binding capacity and selectivity for specific HMs. The paper reviews mechanisms underpinning HM adsorption through complexation, ion exchange, and electrostatic interactions. It also reviews how adsorption efficiency is affected by different environmental conditions, such as variations in pH, temperature, and competing ions. This will enable case studies on the applications of β-CD-NCs, particularly for addressing global water pollution. Finally, the current limitations and future perspectives are considered, focusing on the further research needed to optimize these materials for sustainable and cost-effective HM removal on a large scale.
Collapse
Affiliation(s)
- Youssef Miyah
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco; Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000 Agadir, Morocco
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mohamed El-Habacha
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000 Agadir, Morocco
| | - Oumaima Ait Ali
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200 Usak, Turkey
| |
Collapse
|
6
|
Hassan M, Wang B, Wu P, Wang S. Engineered biochar for in-situ and ex-situ remediation of contaminants from soil and water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177384. [PMID: 39510289 DOI: 10.1016/j.scitotenv.2024.177384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Tailoring physical and chemical properties of biochar enhances its selectivity, treatability, and efficiency in contaminant remediation. Thus, engineered biochar has emerged as a promising remedy for both in-situ and ex-situ remediation of polluted soil and water. Several factors influence the effectiveness of engineered biochar, including feedstock sources, pyrolysis conditions, surface functionalization, mode of application, and site characteristics. The advantages and disadvantages of different modification approaches to engineered biochar and their specific treatability for in-situ and ex-situ remediation are obscure and must be adequately addressed. This review critically evaluates the application of engineered biochar for on/off-spot contamination management, taking into account the long-term stability and biocompatibility prospects. The properties of engineered biochar resulting from modification with clay minerals, nanoparticles, polymers, surfactants, and oxidants/reductants were critically reviewed. Recent progress and advances in remediation mechanisms and modes of application were elaborated for the effective removal of organic and inorganic contaminants, including heavy metals, pesticides, dyes, polycyclic aromatic hydrocarbons, per- and poly-fluoroalkyl substances, and agrochemicals. Several crucial parameters influence in-situ remediation, including the distribution of contaminants, background electrolytes, hydraulic conductivity, as well as dispersion and stability of adsorbents. Ex-situ remediation of pollutants relies heavily on adsorption or degradation kinetics, background electrolytes, adsorbent dose, and pollutant concentrations. In addition, factors restricting the application of engineered biochar were highlighted for long-term sustainable contaminant management and maintaining low environmental impact. Finally, the challenges and future perspectives of utilizing engineered biochar for field-scale demonstration of contaminated sites are proposed.
Collapse
Affiliation(s)
- Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
7
|
Yang X, Zhou Y, Hu J, Zheng Q, Zhao Y, Lv G, Liao L. Clay minerals and clay-based materials for heavy metals pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176193. [PMID: 39278488 DOI: 10.1016/j.scitotenv.2024.176193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.
Collapse
Affiliation(s)
- Xiaotong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhou
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Jingjing Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qinwen Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunpu Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
8
|
Zhang H, Yang X, Zhang X, Liu W, Fan M, Wang L. Functionalized Cyclodextrin/Carboxymethyl Cellulose Composite Hydrogel with Double Network Structure for Adsorption of Heavy Metal Ions in Wastewater. Molecules 2024; 29:5414. [PMID: 39598802 PMCID: PMC11597103 DOI: 10.3390/molecules29225414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Heavy metal ions in industrial wastewater pose significant environmental and ecological threats. In this work, a hydrogel featuring a double network structure was synthesized via radical polymerization and cross-linking of β-cyclodextrin (CD) and carboxymethylcellulose (CMC) with acrylic acid (AA). The hydrogel's functional groups and microstructure were characterized using Fourier transform infrared spectroscopy (FTIR-ATR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Mechanical properties were evaluated through rheological and compression tests. The study examined the impact of initial metal ion concentration, adsorbent-ion contact time, and solution pH on adsorption capacity. The maximum adsorption capacities of the functionalized CD/CMC-PAA-MBA hydrogel for Cu2+, Pb2+, and Cd2+ ions were 158.12, 393.56, and 290.12 mg/g, respectively. Notably, the hydrogel exhibited the highest selectivity for Pb2+ in mixed solutions. The adsorption kinetics of the metal ions were modeled using the pseudo-second-order rate equation and the Langmuir adsorption isotherm.
Collapse
Affiliation(s)
- Hong Zhang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Xiaodong Yang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Xin Zhang
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Wenbin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150009, China;
| | - Meiqing Fan
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (H.Z.); (X.Y.); (X.Z.)
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, China
| |
Collapse
|
9
|
Li H, Chen X, Sun Y, Li H, Wang Z, Zhu S, Mao Z, Nan G, Wang Z, Huang Y, Duan S, Ren C. Construction and characterization of sodium alginate/polyvinyl alcohol double-network hydrogel beads with surfactant-tailored adsorption capabilities for efficient tetracycline hydrochloride removal. Int J Biol Macromol 2024; 280:135879. [PMID: 39322154 DOI: 10.1016/j.ijbiomac.2024.135879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The extensive use of tetracycline (TC) for disease control and the residuals in wastewater has resulted in the spread and accumulation of antibiotic resistance genes, posing a severe threat to the human health and environmental safety. To solve this problem, a series of double-network hydrogel beads based on sodium alginate and polyvinyl alcohol were constructed with the introduction of various surfactants to modulate the morphology. The results showed that the introduction of surfactants can modulate the surface morphology and internal structure, which can also regulate the adsorption ability of the hydrogel beads. The SDS-B beads with SDS as surfactant exhibited highest adsorption efficiency for removal of TC with a maximum adsorption capacity up to 121.6 mg/g, which possessed a resistance to various cations and humic acid. The adsorption mechanism revealed that the superior adsorption performance of the hydrogel beads was primarily attributed to hydrogen bonding, electrostatic attraction, and π-π EDA interactions. Adsorption kinetics demonstrated that the pseudo-second-order model fitted the adsorption process well and adsorption isotherm showed the adsorption of TC occurred through both chemical and physical interactions. Moreover, the adsorption efficiency remained approximately 87.5 % after three adsorption-desorption cycles, which may have potential application and practical value in TC adsorption.
Collapse
Affiliation(s)
- Hao Li
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Xiaorui Chen
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Yuxin Sun
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Haihong Li
- Department of Food Engineering, Shandong Business Institute, Yantai 264670, Shandong, China
| | - Zhenyu Wang
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Shengli Zhu
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Zixu Mao
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Guoning Nan
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China.
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, Sichuan, China.
| | - Yanan Huang
- School of Life Sciences, Yantai University, Yantai 264005, Shandong, China
| | - Sijin Duan
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China
| | - Chunguang Ren
- School of Pharmacy, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
10
|
Gai T, Jiang J, Wang S, Ren Y, Yang S, Qin Z, Shao L, Wu Q, Zhang J, Liao J. Photoreduced Ag +/sodium alginate supramolecular hydrogel as a sensitive SERS membrane substrate for rapid detection of uranyl ions. Anal Chim Acta 2024; 1316:342826. [PMID: 38969424 DOI: 10.1016/j.aca.2024.342826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND In the fields of environmental monitoring and nuclear emergency, in order to obtain the relevant information of uranyl-induced environmental pollution and nuclear accident, it is necessary to establish a rapid quantitative analytical technique for uranyl ions. As a new promising technique, surface-enhanced Raman scattering (SERS) is hopeful to achieve this goal. However, uranyl ions are easily desorbed from SERS substrates under acidic conditions, and the structures of SERS substrates will be destroyed in the strong acidic aqueous solutions. Besides, the quantitative detection ability of SERS for uranyl ions needs to be promoted. Hence, it is necessary to develop new SERS substrates for accurate quantitative detection of trace uranyl in environmental water samples, especially in acidic solutions. RESULTS In this work, we prepared silver ions/sodium alginate supramolecular hydrogel membrane (Ag+/SA SMH membrane), and the Ag+ ions from the membrane were transformed into Ag/Ag2O complex nanoparticles under laser irradiation. The Raman signal of uranyl was strongly enhanced under the synergistic interaction of electromagnetic enhancement derived from the Ag nanoparticles and charge transfer enhancement between uranyl and Ag2O. Utilizing the peak of SA (550 cm-1) as an internal standard, a quantitative detection with a LOD of 6.7 × 10-9 mol L-1 was achieved due to a good linear relation of uranyl concentrations from 1.0 × 10-8 mol L-1 to 2 × 10-6 mol L-1. Furthermore, foreign metal ions hardly affected the SERS detection of uranyl, and the substrate could determine trace uranyl in natural water samples. Particularly, the acidity had no obvious effect on SERS signals of uranyl ions. Therefore, in addition to the detection of uranyl ions in natural water samples, the proposed strategy could also detect uranyl ions in strong acidic solutions. SIGNIFICANCE AND NOVELTY A simple one-step method was used to prepare an Ag+/SA SMH membrane for rapid quantitative detection of uranyl ions for the first time. The proposed substrate successfully detected uranyl ions under acidic conditions by immobilizing uranyl ion in hydrogel structure. In comparison with the previous studies, a more accurate quantitative analysis for uranyl ions was achieved by using an internal standard, and the proposed strategy could determine trace uranyl in either natural water samples or strong acidic solutions.
Collapse
Affiliation(s)
- Tao Gai
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Jiaolai Jiang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Shaofei Wang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China.
| | - Yiming Ren
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Shanli Yang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Zhen Qin
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Lang Shao
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Qian Wu
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Jun Zhang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Junsheng Liao
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China.
| |
Collapse
|
11
|
Liu G, Tu C, Li Y, Yang S, Wang Q, Wu X, Zhou T, Luo Y. Rapidly reducing cadmium from contaminated farmland soil by novel magnetic recyclable Fe 3O 4/mercapto-functionalized attapulgite beads. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124056. [PMID: 38677464 DOI: 10.1016/j.envpol.2024.124056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Reducing cadmium (Cd) content from contaminated farmland soils remains a major challenge due to the difficulty in separating commonly used adsorbents from soils. This study synthesized novel millimeter-sized magnetic Fe3O4/mercapto-functionalized attapulgite beads (MFBs) through a facile one-step gelation process incorporating alginate. The MFBs inherit the environmental stability of alginate and enhance its mechanical strength by hybridizing Fe3O4 and clay mineral components. MFBs can be easily separated from flooded soils by magnets. When applied to 12 Cd-polluted paddy soils and 14 Cd-polluted upland soils, MFBs achieved Cd(II) removal rates ranging from 16.9% to 62.2% and 9.8%-54.6%, respectively, within a 12-h period. The MFBs predominantly targeted the exchangeable and acid soluble, and reducible fractions of Cd, with significantly enhanced removal efficiencies in paddy soils compared to upland soils. Notably, MFBs exhibited superior adsorption performance in soils with lower pH and organic matter (OM) content, where the bioavailability and mobility of Cd are heightened. The reduction of Cd content by MFBs is a sustainable and safe method, as it permanently removes the bioavailable Cd from soil, rather than temporarily reducing its bioavailability. The functional groups such as -SH, -OH, present in attapulgite and alginate of MFBs, played a crucial role in Cd(II) adsorption. Additionally, attapulgite and zeolite provided a porous matrix structure that further enhanced Cd(II) adsorption. The results of X-ray photoelectron spectroscopy suggested that both chemical precipitation and surface complexation contributed to Cd(II) removal. The MFBs maintained 87.6% Cd removal efficiency after 5 regeneration cycles. The surface of the MFBs exposed new adsorption sites and increased the specific surface area during multiple cycles with Cd-contaminated soil. This suggests that MFBs treatment with magnetic retrieval is a potentially effective pathway for the rapid removal of Cd from contaminated farmland soils.
Collapse
Affiliation(s)
- Guoming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Tu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences, Yantai 264003, China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, China
| | - Shuai Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qihao Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyou Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
12
|
Ghani MI, Ahanger MA, Sial TA, Haider S, Siddique JA, Fan R, Liu Y, Ali EF, Kumar M, Yang X, Rinklebe J, Chen X, Lee SS, Shaheen SM. Almond shell-derived biochar decreased toxic metals bioavailability and uptake by tomato and enhanced the antioxidant system and microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172632. [PMID: 38653412 DOI: 10.1016/j.scitotenv.2024.172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The effectiveness of almond shell-derived biochar (ASB) in immobilizing soil heavy metals (HMs) and its impact on soil microbial activity and diversity have not been sufficiently studied. Hence, a pot study was carried out to investigate the effectiveness of ASB addition at 2, 4, and 6 % (w/w) on soil biochemical characteristics and the bioavailability of Cd, Cu, Pb, and Zn to tomato (Solanum lycopersicum L.) plants, as compared to the control (contaminated soil without ASB addition). The addition of ASB promoted plant growth (up to two-fold) and restored the damage to the ultrastructure of chloroplast organelles. In addition, ASB mitigated the adverse effects of HMs toxicity by decreasing oxidative damage, regulating the antioxidant system, improving soil physicochemical properties, and enhancing enzymatic activities. At the phylum level, ASB addition enhanced the relative abundance of Actinobacteriota, Acidobacteriota, and Firmicutes while decreasing the relative abundance of Proteobacteria and Bacteroidota. Furthermore, ASB application increased the relative abundance of several fungal taxa (Ascomycota and Mortierellomycota) while reducing the relative abundance of Basidiomycota in the soil. The ASB-induced improvement in soil properties, microbial community, and diversity led to a significant decrease in the DTPA-extractable HMs down to 41.0 %, 51.0 %, 52.0 %, and 35.0 % for Cd, Cu, Pb, and Zn, respectively, as compared to the control. The highest doses of ASB (ASB6) significantly reduced the metals content by 26.0 % for Cd, 78.0 % for Cu, 38.0 % for Pb, and 20.0 % for Zn in the roots, and 72.0 % for Cd, 67.0 % for Cu, 46.0 % for Pb, and 35.0 % for Zn in the shoots, as compared to the control. The structural equation model predicts that soil pH and organic matter are driving factors in reducing the availability and uptake of HMs. ASB could be used as a sustainable trial for remediation of HMs polluted soils and reducing metal content in edible plants.
Collapse
Affiliation(s)
- Muhammad Imran Ghani
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Geo-resources and Environment, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China; College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | | | - Tanveer Ali Sial
- Department of Soil Science, Sindh Agriculture University Tandojam, Sindh 70060, Pakistan
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Junaid Ali Siddique
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Ruidong Fan
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yanjiang Liu
- College of Ecology and Environment, Tibet University, Lhasa 850012, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Xiaoyulong Chen
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang 550025, China; Key Laboratory of Karst Geo-resources and Environment, College of Resources and Environmental Engineering, Guizhou University, Guiyang, China; College of Ecology and Environment, Tibet University, Lhasa 850012, China.
| | - Sang Soo Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
13
|
Moridi H, Gh AB. Functionalization of a cast NaAl/binary ZnO/SiO 2 nanohybrid with amine and Schiff base ligands as an adsorbent of divalent cations in water system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28454-28473. [PMID: 38539000 DOI: 10.1007/s11356-024-32148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 04/30/2024]
Abstract
Casting method was used to synthesize a novel sodium alginate nanohybrid functionalized with aminated ZnO/SiO2 Schiff base for adsorption of nickel (Ni2+) and copper (Cu2+) divalent cations in single and binary water systems. The cast Schiff base nanohybrids were investigated using FESEM, XRD, BET, FTIR, TGA, and XPS analyses. The influence of unfunctionalized binary ZnO/SiO2 nano oxides and aminated Schiff base ligands formed by the reaction between salicylaldehyde and O-phenylenediamine on the adsorption of Ni2+ and Cu2+ cations was evaluated. The results confirmed that the aminated Schiff base ligands led to a higher adsorption ability of the cast nanohybrids containing interaction of divalent cations with nitrogen and oxygen atoms, as well as carboxyl and hydroxyl groups. The adsorption kinetics and isotherm for both cations followed a double-exponential model and the Redlich-Peterson model, respectively. The maximum monolayer capacity was found to be 249.8 mg/g for Cu2+ cation and 96.4 mg/g for Ni2+ cation. Thermodynamic analysis revealed an endothermic and spontaneous adsorption process with an increase in entropy. Furthermore, the synthesized Schiff base adsorbent could be easily reused over five times. The simultaneous adsorption in binary system exhibited a higher adsorption selectivity of the cast Schiff base nanohybrid for Cu2+ cation compared to Ni2+ cation. It was found that the removal percentages of Cu2+ and Ni2+ from industrial electroplating wastewater were 91.3 and 64.5%, respectively. Lastly, cost analysis of the synthesized nanohybrid was investigated.
Collapse
Affiliation(s)
- Hadis Moridi
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azar Bagheri Gh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
K AK, Mahesh Y, Panwar J, Gupta S. Remediation of multifarious metal ions and molecular docking assessment for pathogenic microbe disinfection in aqueous solution by waste-derived Ca-MOF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21545-21567. [PMID: 38393560 DOI: 10.1007/s11356-024-32311-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
The present study demonstrates an eco-friendly and cost-effective synthesis of calcium terephthalate metal-organic frameworks (Ca-MOF). The Ca-MOF were composed of metal ions (Ca2+) and organic ligands (terephthalic acid; TPA); the former was obtained from egg shells, and the latter was obtained from processing waste plastic bottles. Detailed characterization using standard techniques confirmed the synthesis of Ca-MOF with an average particle size of 461.9 ± 15 nm. The synthesized Ca-MOF was screened for its ability to remove multiple metal ions from an aqueous solution. Based on the maximum sorption capacity, Pb2+, Cd2+, and Cu2+ ions were selected for individual parametric batch studies. The obtained results were interpreted using standard isotherms and kinetic models. The maximum sorption capacity (qm) obtained from the Langmuir model was found to be 644.07 ± 47, 391.4 ± 26, and 260.5 ± 14 mg g-1 for Pb2+, Cd2+, and Cu2+, respectively. Moreover, Ca-MOF also showed an excellent ability to remove all three metal ions simultaneously from a mixed solution. The metal nodes and bonded TPA from Ca-MOF were dissociated by the acid dissolution method, which protonated and isolated TPA for reuse. Further, the crystal structure of Ca-MOF was prepared and docked with protein targets of selected pathogenic water-borne microbes, which showed its disinfection potential. Overall, multiple metal sorption capability, regeneration studies, and broad-spectrum antimicrobial activity confirmed the versatility of synthesized Ca-MOF for industrial wastewater treatment.
Collapse
Affiliation(s)
- Anil Kumar K
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Yeshwanth Mahesh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, India
| | - Suresh Gupta
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, 333031, India.
| |
Collapse
|
15
|
Li Y, Feng Y, Li H, Yao Y, Xu C, Ju J, Ma R, Wang H, Jiang S. Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168163. [PMID: 37918735 DOI: 10.1016/j.scitotenv.2023.168163] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Deep-sea mining disturbs the sediment on the seabed to form plumose flows, carrying metal ions that are transmitted through the food chain, posing a serious threat to marine ecosystems and human health. In this study, two types of marine raw materials were screened: Oceanic Manganese Nodules (OMN) and Deep-sea Sediments (DSS), and prepared the spherical regenerative adsorption materials OMN@SA, DSS@SA and OMN&DSS@SA using sodium alginate (SA) by sol-gel method. Preliminary investigations on the adsorption effect of metal ions were carried out. OMN@SA exhibited the best adsorption capacity, with the adsorption quantities for Cu2+, Co2+ and Ni2+ reaching 31.12, 21.11 and 16.66 mg/g, respectively. The adsorption behaviour is consistent with the Langmuir, pseudo-second-order kinetics and particle diffusion model, indicating that the adsorption process is mainly spontaneous, monolayer chemical adsorption, and the adsorption rate is mainly controlled by internal particle diffusion. SEM-EDS, XRD, FTIR and XPS analyses suggest that the adsorption mechanism includes surface physical adsorption, ion exchange, functional group complexation, electrostatic attraction and precipitation. The fixed bed column experiment shows that OMN@SA can effectively remove metal ions Cu2+, demonstrating excellent stability, safety and good regenerability. This study paves a new direction for the design of efficient and sustainable materials for heavy metal adsorption. More importantly, as marine primordial materials, OMN and DSS have strong technical and economic feasibility for future use in in-situ fixation of metal ions in seafloor sediments and restoration of the original seabed environment.
Collapse
Affiliation(s)
- Yunhao Li
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yali Feng
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Haoran Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yisong Yao
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenglong Xu
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinrong Ju
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruiyu Ma
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoyu Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shiwei Jiang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
16
|
Radoor S, Karayil J, Jayakumar A, Kandel DR, Kim JT, Siengchin S, Lee J. Recent advances in cellulose- and alginate-based hydrogels for water and wastewater treatment: A review. Carbohydr Polym 2024; 323:121339. [PMID: 37940239 DOI: 10.1016/j.carbpol.2023.121339] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 11/10/2023]
Abstract
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Collapse
Affiliation(s)
- Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jasila Karayil
- Department of Applied Science, Government Engineering College West Hill, Kozhikode, Kerala, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suchart Siengchin
- Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Jaewoo Lee
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.
| |
Collapse
|
17
|
Zheng Q, Li Q, Tao Y, Gong J, Shi J, Yan Y, Guo X, Yang H. Efficient removal of copper and silver ions in electroplating wastewater by magnetic-MOF-based hydrogel and a reuse case for photocatalytic application. CHEMOSPHERE 2023; 340:139885. [PMID: 37604344 DOI: 10.1016/j.chemosphere.2023.139885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Direct discharge of electroplating wastewater containing hazardous metal ions such as Cu2+ and Ag + results in environmental pollution. In this study, we rationally prepare a magnetic composite hydrogel consisted of Fe3O4, UiO-66-NH2, chitosan (CTS) and polyethyleneimine (PEI), namely Fe3O4@UiO-66-NH2/CTS-PEI. Thanks to the strong attraction between the amino group and metal cations, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel shows the maximum adsorption capacities of 321.67 mg g-1 for Cu2+ ions and 226.88 mg g-1 for Ag + ions within 120 min. As real scenario, the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel exhibits excellent removal efficiencies for metallic ions even in the complicated media of actual electroplating wastewater. In addition, we explore the competitive adsorption order of metal cations by using experimental characterization and theoretical calculations. The optimal configuration of CTS-PEI is also discovered with the density functional theory, and the water retention within hydrogel is simulated through molecular dynamics modeling. We find that the Fe3O4@UiO-66-NH2/CTS-PEI hydrogel could be reused and after 5 cycles of adsorption-desorption, removal efficiency could maintain 80%. Finally, the Ag+ accumulated by hydrogel are reduced to generate a photocatalyst for efficient degradation of Rhodamine B. The novel magnetic hydrogel paves a promising path for efficient removal of heavy metal ions in wastewater and further resource utilization as photocatalysts.
Collapse
Affiliation(s)
- Qiangting Zheng
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qinyi Li
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ying Tao
- School of Environmental and Geological Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiamin Gong
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Jiangli Shi
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Yu Yan
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaoyu Guo
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Haifeng Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
18
|
Cho EJ, Kang JK, Lee CG, Bae S, Park SJ. Use of thermally activated Fenton sludge for Cd removal in zinc smelter wastewater: Mechanism and feasibility of Cd removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122166. [PMID: 37429491 DOI: 10.1016/j.envpol.2023.122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/12/2023]
Abstract
Fenton sludge is a byproduct of the Fenton process that contains large amounts of Fe and Ca. Because of the secondary contamination generated during the disposal of this byproduct, ecofriendly treatment methods are needed. In this study, we used Fenton sludge to remove the Cd discharged from a zinc smelter factory, using thermal activation to enhance the Cd adsorption capacity. Among the various temperatures considered (300-900 °C), the Fenton sludge that was thermally activated at 900 °C (TA-FS-900) adsorbed the highest amount of Cd because of its high specific surface area and high Fe content. Cd was adsorbed onto TA-FS-900 via complexation with C-OH, C-COOH, FeO-, and FeOH and cation exchange with Ca2+. The maximum adsorption of TA-FS-900 was 260.2 mg/g, indicating that TA-FS-900 is an efficient adsorbent, comparable to those reported in the literature. The initial Cd concentration in the zinc smelter wastewater discharged was 105.7 mg/L, 98.4% of which was removed by applying TA-FS-900, suggesting the applicability of TA-FS-900 for real wastewater containing high concentrations of various cations and anions. The leaching of heavy metals from TA-FS-900 was within the EPA standard limits. We concluded that the environmental impact of Fenton sludge disposal can be reduced, and the use of Fenton sludge can add value to the treatment of industrial wastewater in terms of the circular economy and environment.
Collapse
Affiliation(s)
- Eun-Ji Cho
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jin-Kyu Kang
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea
| | - Chang-Gu Lee
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seong-Jik Park
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| |
Collapse
|
19
|
Almutairi T, Al-Rasheed HH, Alaqil ZM, Hajri AK, Elsayed NH. Green Synthesis of Magnetic Supramolecules β-Cyclodextrin/Iron Oxide Nanoparticles for Photocatalytic and Antibacterial Applications. ACS OMEGA 2023; 8:32067-32077. [PMID: 37692231 PMCID: PMC10483690 DOI: 10.1021/acsomega.3c04117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Iron oxide nanoparticles (Fe3O4NPs) are a fascinating field of study due to their wide range of practical applications in environmental and medical contexts. This study presents a straightforward, environmentally friendly method for producing Fe3O4NPs utilizing β-cyclodextrin (β-CD) as a reducing and capping agent. This approach results in the rapid and effective eco-friendly synthesis of β-CD/Fe3O4NPs. The properties and characteristics of β-CD/Fe3O4NPs were investigated using various methods, including ultraviolet-visible (UV/vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetry analysis (TGA), and vibrating-sample magnetometry (VSM). The absorption of β-CD/Fe3O4NPs caused a distinct peak at 349 nm, as evidenced by the results of UV/vis studies. This peak was attributed to the absorption of surface plasmon resonance. The crystalline nature of β-CD/Fe3O4NPs was confirmed through XRD analysis. The SEM and TEM analyses have verified the geometry and structural characteristics of β-CD/Fe3O4NPs. The β-CD/Fe3O4NPs exhibited remarkable effectiveness in the decomposing efficiency (%) of methylene blue (MB) dye with 52.2, 94.1, and 100% for 0.2, 0.4, and 0.6 g β-CD/Fe3O4NPs, respectively. In addition, the highest efficiency in hunting radicals was observed (347.2 ± 8.2 mg/g) at 100 mg/mL β-CD/Fe3O4NPs; the combination of β-CD/Fe3O4NPs exhibited remarkable effectiveness in inhibiting the growth of some bacteria that cause infections. The capabilities of β-CD/Fe3O4NPs for various applications showed that these materials could be used in photocatalytic, antioxidants, and antibacterial. Additionally, the eco-friendly synthesis of these materials makes them a promising option for the remediation of harmful pollutants and microbes.
Collapse
Affiliation(s)
- Tahani
M. Almutairi
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hessa H. Al-Rasheed
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab M. Alaqil
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Amira K. Hajri
- Department
of Chemistry, Alwajh College, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | - Nadia H. Elsayed
- Department
of Polymers and Pigments, National Research
Centre, Dokki, Cairo 12311, Egypt
| |
Collapse
|
20
|
Luo X, Du H, Zhang X, Tang B, Zhang M, Kang H, Ma Y. Enhanced adsorption and co-adsorption of heavy metals using highly hydrophilicity amine-functionalized magnetic hydrochar supported MIL-53(Fe)-NH 2: performance, kinetics, and mechanism studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27740-5. [PMID: 37233931 DOI: 10.1007/s11356-023-27740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
It is a "kill two birds with one stone" method to convert invasive plants into hydrochar via hydrothermal carbonization as well as coinciding with 3R rules (reduction, recycling, and reuse). In this work, a series of hydrochars (pristine, modified, and composite) derived from invasive plants Alternanthera philoxeroides (AP) were prepared and applied to the adsorption and co-adsorption of heavy metals (HMs) such as Pb(II), Cr(VI), Cu(II), Cd(II), Zn(II), and Ni(II). The results show that MIL-53(Fe)-NH2- magnetic hydrochar composite (M-HBAP) displayed a strong affinity for HMs, which the maximum adsorption capacities for HMs were 153.80 (Pb(II)), 144.77 (Cr(VI)), 80.58 (Cd(II)), 78.62 (Cu(II)), 50.39 (Zn(II)), and 52.83(Ni(II)) mg/g (c0 = 200 mg/L, t = 24 h, T = 25 ℃, pH = 5,2,6,4,6,5). This may be because the doping of MIL-53(Fe)-NH2 enhanced the surface hydrophilicity of hydrochar, which allows hydrochar to disperse in the water within 0.12 s and possessed excellent dispersibility compared with pristine hydrochar (BAP) and amine-functionalized magnetic modified hydrochar (HBAP). Furthermore, the BET surface area of BAP was improved from 5.63 to 64.10 m2/g after doing MIL-53(Fe)-NH2. M-HBAP shows a strong adsorption effect on the single HMs system (52-153 mg/g), while it decreased significantly (17-62 mg/g) in the mixed HMs system due to the competitive adsorption. Cr(VI) can produce strong electrostatic interaction with M-HBAP, Pb(II) can react with CaC2O4 on the surface of M-HBAP for chemical precipitation, and other HMs can react with functional groups on the surface of M-HBAP for complexation and ion exchange. In addition, five adsorption-desorption cycle experiments and vibrating sample magnetometry (VSM) curves also proved the feasibility of the M-HBAP application.
Collapse
Affiliation(s)
- Xin Luo
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Haiying Du
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
- Chengdu Yike Science and Technology Company Limited, Chengdu, Sichuan, China.
- Sichuan Keshengxin Environmental Technology Company, Chengdu, Sichuan, China.
| | - Xiaochao Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Bo Tang
- Chengdu Yike Science and Technology Company Limited, Chengdu, Sichuan, China
| | - Meichen Zhang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Heng Kang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yanqi Ma
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| |
Collapse
|
21
|
Zhao W, Feng K, Zhang H, Han L, He Q, Huang F, Yu W, Guo F, Wang W. Sustainable green conversion of coal gangue waste into cost-effective porous multimetallic silicate adsorbent enables superefficient removal of Cd(II) and dye. CHEMOSPHERE 2023; 324:138287. [PMID: 36871800 DOI: 10.1016/j.chemosphere.2023.138287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Converting solid wastes into new materials for wastewater decontamination is a feasible "one stone, three birds" strategy to achieve sustainable value-added utilization of resources and minimize waste emissions, but significant challenges remain. In response to this, we proposed an efficient "mineral gene reconstruction" method to synchronously transform coal gangue (CG) into a green porous silicate adsorbent without using any harmful chemicals (i.e., surfactants, organic solvents). The one of the synthesized adsorbents with a high specific surface area (582.28 m2/g) and multimetallic active centres shows outstanding adsorption performance (adsorption capacities: 168.92 mg/g for Cd(II), 234.19 mg/g for methylene blue (MB); removal rate: 99.04% for Cd(II) and 99.9% for MB). The adsorbent can also reach a high removal rate of 99.05%∼99.46% and 89.23%∼99.32% for MB and Cd(II) in real water samples (i.e., Yangtze River, Yellow River, seawater and tap water), respectively. After 5 adsorption-desorption cycles, the adsorption efficiency remained above 90%. The adsorbents mainly adsorbed Cd(II) by electrostatic attraction, surface complexation and partial ion exchange and MB by electrostatic and hydrogen bonding interactions. This study provides a sustainable and promising platform for developing a new-generation cost-efficient adsorbent from waste for clean water production.
Collapse
Affiliation(s)
- Wenting Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Ke Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Huan Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Lei Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Qingdong He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Fei Huang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Wenmeng Yu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, PR China.
| |
Collapse
|
22
|
Wu K, Wang B, Dou R, Zhang Y, Xue Z, Liu Y, Niu Y. Synthesis of functional poly(amidoamine) dendrimer decorated apple residue cellulose for efficient removal of aqueous Hg(II). Int J Biol Macromol 2023; 231:123327. [PMID: 36681224 DOI: 10.1016/j.ijbiomac.2023.123327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Water pollution caused by Hg(II) exerts hazardous effect to the environment and public health. The design and fabrication of eco-friendly bioadsorbents for efficient removal of Hg(II) from aqueous solution is a promising strategy. Herein, a series of bioadsorbents were synthesized by the decoration of apple residue cellulose with different generation (G) Schiff base functionalized poly(amidoamine) (PAMAM) dendrimers (SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE). The structures of SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE were characterized and their adsorption performances were determined comprehensively by considering various factors. The maximum adsorption capacity of SA-G0/CE, SA-G1.0/CE and SA-G2.0/CE for Hg(II) are 1.18, 1.73 and 1.88 mmol·g-1, respectively. The as-prepared bioadsorbents exhibit competitive adsorption capacity as compared with other reported adsorbents. Moreover, they exhibit remarkable adsorption selectivity toward Hg(II) with the coexistence of Ni(II), Cd(II), Mn(II), or Pb(II). The bioadsorbents display satisfactory adsorption performance in real water sample and can be reused with good regeneration property. Adsorption mechanism reveals that the functional groups of OH, -CONH-, CN and NC take part in the adsorption for Hg(II). The work not only opens a pathway to realize the reuse of apple residue, but also provides a promising strategy to construct efficient bioadsorbents for the decontamination of Hg(II) from aqueous solution.
Collapse
Affiliation(s)
- Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Bingxiang Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Ruyue Dou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yiqun Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yongfeng Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
23
|
Li J, Chen M, Yang X, Zhang L. Preparation of a novel hydrogel of sodium alginate using rural waste bone meal for efficient adsorption of heavy metals cadmium ion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160969. [PMID: 36549539 DOI: 10.1016/j.scitotenv.2022.160969] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Adsorption has been an important method for removing heavy metals from industrial wastewater. However, there has been a lack of an environmentally friendly, low-cost, biodegradable and easily recyclable material. China produces bones are not fully utilized leads to a waste of resources Therefore, efficient application of bone meal (BM) for remediation of contaminants in water would provide a promising alternative for resource utilization of bones. In this paper, we use a combination of BM and sodium alginate (SA) to prepare a novel BM/SA/calcium ion (BM/SA/Ca2+) double cross-linked composite hydrogel (BMSAH). Enhance the mechanical structure of SA while making the BM easy to recycle and reuse. The morphology and structure of the BMSAH were characterized using FT-IR spectroscopy and SEM-EDS. suggesting that the BMSAH can provide a larger specific surface area and high number of adsorption sites. The effects of the solution pH, ionic strength and contact time on the adsorption capacity of the BMSAH were investigated in depth, Under different conditions, BMSAH has a strong adsorption capacity of >90 %. XPS and FT-IR analysis showed that Cd2+ was adsorbed mainly via coordination interactions and hydrogen bonds with the carboxyl groups and nitrogen atoms in the BMSAH. A pseudo-second-order kinetic model, particle diffusion model and Isothermal adsorption lines indicate that the surface of the BMSAH is non-uniform suggesting that the adsorption of heavy metal ions by the BMSAH involves a combination of surface adsorption and intraparticle diffusion mechanisms, which is an overall chemical-physical adsorption process. In addition, the adsorption capacity of BMSAH remained above 90 % after three desorption cycles. Our work provides a new method for the preparation of a low-cost, high mechanical performance, biodegradable and easily recyclable physical hydrogels used for the removal of heavy metal ions.
Collapse
Affiliation(s)
- Jiapeng Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Mengxin Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Xiaoqian Yang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China
| | - Lei Zhang
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266005, PR China.
| |
Collapse
|
24
|
Zhang G, Yang Z, Teng Q, Han Y, Zhang S, Liu S. Adsorption of Pb (II) and Cu (II) by magnetic beads loaded with xanthan gum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33624-33635. [PMID: 36481855 DOI: 10.1007/s11356-022-24620-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Green and environmentally friendly and efficient separation adsorbents have attracted much attention in the treatment of heavy metal ions wastewater. In this study, xanthan gum (XG) was supported by fly ash magnetic beads (FAMB) to prepare adsorbent XG@FAMB. The effects of XG@FAMB dosage, pH value of the solution, adsorption time, and initial Pb (II) and Cu (II) concentration on its adsorption performance for Pb (II) and Cu (II) were investigated. The results show that under the conditions of pH 6, dosage of XG@FAMB 4.0 g/L, adsorption time 120 min, and initial concentration 60 mg/L, the maximum adsorption capacity of XG@FAMB for Pb (II) and Cu (II) was 14.93 mg/g and 14.88 mg/g, respectively. The adsorption process of Pb (II) and Cu (II) by XG@FAMB could be better described by the quasi-second-order kinetic model and Langmuir isothermal adsorption model, that is, the adsorption process is monolayer adsorption controlled by chemical action. The adsorption mechanism is that Pb (II) and Cu (II) coordinate with oxygen-containing functional groups hydroxyl and carboxyl on XG@FAMB surface, accompanied by electrostatic adsorption. XG@FAMB has the advantages of environmental protection of XG and easy solid-liquid separation of FAMB, and has a good removal effect on Pb (II) and Cu (II).
Collapse
Affiliation(s)
- Guoyang Zhang
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhichao Yang
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Qing Teng
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yingqi Han
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Suhong Zhang
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shengyu Liu
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
25
|
A novel magnetic loading porous liquid absorbent for removal of Cu(II) and Pb(II) from the aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
26
|
Elgarahy AM, Al-Mur BA, Akhdhar A, El-Sadik HA, El-Liethy MA, Elwakeel KZ, Salama AM. Biosorption kinetics of cerium(III) and cobalt(II) from liquid wastes using individual bacterial species isolated from low-level liquid radioactive wastes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15198-15216. [PMID: 36166126 DOI: 10.1007/s11356-022-23241-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The existence of toxic heavy metals in the aquatic environment has emphasized a considerable exigency to develop several multifunctional biosorbents for their removal. Herein, three individual bacterial species of Cellulosimicrobium cellulans, Bacillus coagulans, and Microbacterium testaceum were successfully isolated from low-level liquid radioactive wastes. Their loading capacities towards cerium and cobalt metal ions were inclusivity inspected under variable operational parameters of pH, primary pollutant concentration, interaction time, temperature, stirring speed, and biosorbent dosage. By analyzing the influence of solution pH, concentration, temperature, biosorbent mass, and agitation speed on the biosorption kinetics, the biosorption process confirms pseudo-second-order kinetic, intraparticle diffusion, and Elovich equation. Remarkably, the isolated Microbacterium testaceum exhibited high loading capacities reaching 68.1 mg g-1, and 49.6 mg g-1 towards Ce(III), and Co(II) ions, respectively, at the initial concentration of 2.8 mM, pH 4.5, and 25 °C. Overall, the isolated bacterial species can potentially be offered up as a promising scavenger for Ce(III) and Co(II) from liquid waste effluents.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| | - Bandar A Al-Mur
- Department of Environmental Science, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science , University of Jeddah, Jeddah, Saudi Arabia
| | - Hamdy A El-Sadik
- Water Quality Audit Department, Egyptian Water and Wastewater Regulatory Agency (EWRA), New Cairo City, Egypt
- Hot Laboratories and Waste Management Centre, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Dokki, P.O. Box 12262., Giza, Egypt
| | - Khalid Z Elwakeel
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
- Department of Chemistry, College of Science , University of Jeddah, Jeddah, Saudi Arabia.
| | - Abeer M Salama
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
27
|
Du Y, Zhang Q, Yu M, Jiao B, Chen F, Yin M. Sodium alginate-based composite microspheres for controlled release of pesticides and reduction of adverse effects of copper in agricultural soils. CHEMOSPHERE 2023; 313:137539. [PMID: 36521750 DOI: 10.1016/j.chemosphere.2022.137539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Excessive copper (Cu) concentrations pose significant health risks to both plants and humans. In this study, sodium alginate (SA)-gelatin (GEL)-polyvinyl pyrrolidone (PVP)- embedded dinotefuran (DIN) microspheres were prepared using spray-drying technology. The loading content and encapsulation efficiency of optimal microspheres determined by physical modifications were 19.77% and 99.32%, respectively. In addition, the microspheres showed variable stimuli-responsive controlled release capacities in different temperatures and types of soil, as well as showed better control efficiency of larvae of Protaetia brevitarsis at pesticide application in the early stage, with the potential ability to control pest outbreaks at high temperatures. In addition, blank microspheres improved the growth and physiological activity of cucumber seedlings, reduced copper content in leaves, increased soil nutrient content, and prevented soil acidification. Further, the use of blank microspheres increased the relative abundance of soil beneficial functional bacteria communities, which mediate heavy metal (HM) immobilization/tolerance and promote plant growth. Redundancy analysis (RDA) and Spearman correlation analysis showed that these beneficial functional bacteria were mainly positively correlated with soil EC, A-N, and N-N. In summary, this study showed that the technique of combining physically modified carrier materials with pesticides has the potential to reduce Cu contamination in the surrounding agricultural soil during pesticide application, thereby reducing Cu uptake by crops.
Collapse
Affiliation(s)
- Yu Du
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qizhen Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Manli Yu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Jiao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fuliang Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingming Yin
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
28
|
Velempini T, Ahamed MEH, Pillay K. Heavy-metal spent adsorbents reuse in catalytic, energy and forensic applications- a new approach in reducing secondary pollution associated with adsorption. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
29
|
Ren H, Li H, Fan H, Qi G, Liu Y. Facile synthesis of CoFe2O4-graphene oxide nanocomposite by high-gravity reactor for removal of Pb(II). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Chen Y, Hassan M, Nuruzzaman M, Zhang H, Naidu R, Liu Y, Wang L. Iron-modified biochar derived from sugarcane bagasse for adequate removal of aqueous imidacloprid: sorption mechanism study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4754-4768. [PMID: 35974268 PMCID: PMC9892118 DOI: 10.1007/s11356-022-22357-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 06/05/2023]
Abstract
Adsorption has been considered as a promising remediation technology to separate organic and inorganic agrochemicals from contaminated soil and water. Low-cost adsorbents, including waste derived materials, clay composites, biochar, and biochar modified materials, have attracted enormous attention for the removal of organic contaminants, including pesticides. In this study, iron-modified base-activated biochar (FeBBC) was prepared by pyrolysis (at 400 °C for 1 h) of iron-doped base (KOH) activated sugarcane bagasse for the removal of a widely used insecticide, namely imidacloprid (IMI) from water. The maximum adsorption capacity of the adsorbent (FeBBC) was calculated as 10.33 (± 1.57) mg/g from Langmuir isotherm model. The adsorbents could remove up to ~ 92% of IMI from aqueous solution at 23.8 mg/L IMI. Experimental data fitted well with the Freundlich model and pseudo-second-order model, demonstrating physisorption, as well as chemosorption, contributed to the sorption process. Even at highly acidic/basic solution pH, the FeBBC could remove substantial amount of IMI demonstrating hydrophobic interaction and pore diffusion play vital role for removal of IMI. The slight improving of IMI sorption with increasing solution pH indicated the sorption was also facilitated through ionic interaction alongside physical sorption. However, physical sorption including hydrophobic interaction and pore-filling interaction plays a vital role in the sorption of IMI.
Collapse
Affiliation(s)
- Yongliang Chen
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Masud Hassan
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
| | - Md Nuruzzaman
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
- Cooperative Research Centre for High Performance Soil (CRC SOIL), IDB Building, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Huiming Zhang
- Electron Microscope and X-Ray (EMX) Unit, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
| | - Yanju Liu
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308 Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Callaghan, NSW 2308 Australia
- Cooperative Research Centre for High Performance Soil (CRC SOIL), IDB Building, The University of Newcastle, Callaghan, NSW 2308 Australia
| | - Ling Wang
- School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Zakaria AF, Kamaruzaman S, Abdul Rahman N, Yahaya N. Sodium Alginate/β-Cyclodextrin Reinforced Carbon Nanotubes Hydrogel as Alternative Adsorbent for Nickel(II) Metal Ion Removal. Polymers (Basel) 2022; 14:polym14245524. [PMID: 36559892 PMCID: PMC9786609 DOI: 10.3390/polym14245524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Water pollution issues, particularly those caused by heavy metal ions, have been significantly growing. This paper combined biopolymers such as sodium alginate (SA) and β-cyclodextrin (β-CD) to improve adsorption performance with the help of calcium ion as the cross-linked agent. Moreover, the addition of carbon nanotubes (CNTs) into the hybrid hydrogel matrix was examined. The adsorption of nickel(II) was thoroughly compared between pristine sodium alginate/β-cyclodextrin (SA-β-CD) and sodium alginate/β-cyclodextrin immobilized carbon nanotubes (SA-β-CD/CNTs) hydrogel. Both hydrogels were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis, field emission scanning electron microscopy (FESEM), electron dispersive spectroscopy (EDX), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed SA-β-CD/CNTs hydrogel exhibits excellent thermal stability, high specific surface area and large porosity compared with SA-β-CD hydrogel. Batch experiments were performed to study the effect of several adsorptive variables such as initial concentration, pH, contact time and temperature. The adsorption performance of the prepared SA-β-CD/CNTs hydrogel was comprehensively reported with maximum percentage removal of up to 79.86% for SA-β-CD/CNTs and 69.54% for SA-β-CD. The optimum adsorption conditions were reported when the concentration of Ni(II) solution was maintained at 100 ppm, pH 5, 303 K, and contacted for 120 min with a 1000 mg dosage. The Freundlich isotherm and pseudo-second order kinetic model are the best fits to describe the adsorption behavior. A thermodynamic study was also performed. The probable interaction mechanisms that enable the successful binding of Ni(II) on hydrogels, including electrostatic attraction, ion exchange, surface complexation, coordination binding and host-guest interaction between the cationic sites of Ni(II) on both SA-β-CD and SA-β-CD/CNTs hydrogel during the adsorption process, were discussed. The regeneration study also revealed the high efficiency of SA-β-CD/CNTs hydrogel on four successive cycles compared with SA-β-CD hydrogel. Therefore, this work signifies SA-β-CD/CNTs hydrogel has great potential to remove Ni(II) from an aqueous environment compared with SA-β-CD hydrogel.
Collapse
Affiliation(s)
- Aiza Farhani Zakaria
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Natural Medicines and Product Research Laboratory (NaturMeds), Institute of Bioscience (IBS), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence:
| | - Norizah Abdul Rahman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Materials Processing and Technology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorfatimah Yahaya
- Department of Toxicology, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia
| |
Collapse
|
32
|
Cyclodextrin Inclusion Complexes and Their Application in Food Safety Analysis: Recent Developments and Future Prospects. Foods 2022; 11:foods11233871. [PMID: 36496679 PMCID: PMC9736450 DOI: 10.3390/foods11233871] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Food safety issues are a major threat to public health and have attracted much attention. Therefore, exploring accurate, efficient, sensitive, and economical detection methods is necessary to ensure consumers' health. In this regard, cyclodextrins (CDs) are promising candidates because they are nontoxic and noncaloric. The main body of CDs is a ring structure with hydrophobic cavity and hydrophilic exterior wall. Due to the above characteristics, CDs can encapsulate small guest molecules into their cavities, enhance their stability, avoid agglomeration and oxidation, and, at the same time, interact through hydrogen bonding and electrostatic interactions. Additionally, they can selectively capture the target molecules to be detected and improve the sensitivity of food detection. This review highlights recent advances in CD inclusion technology in food safety analysis, covering various applications from small molecule and heavy metal sensing to amino acid and microbial sensing. Finally, challenges and prospects for CDs and their derivatives are presented. The current review can provide a reference and guidance for current research on CDs in the food industry and may inspire breakthroughs in this field.
Collapse
|
33
|
Aden M, Elmi A, Husson J, Idriss S, Filiatre C, Knorr M. Silica-Supported Alginates From Djiboutian Seaweed as Biomass-Derived Materials for Efficient Adsorption of Ni(II). CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Yu CH, Betrehem UM, Ali N, Khan A, Ali F, Nawaz S, Sajid M, Yang Y, Chen T, Bilal M. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. CHEMOSPHERE 2022; 306:135656. [PMID: 35820475 DOI: 10.1016/j.chemosphere.2022.135656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Inorganic nanoparticles (NPs) have a tunable shape, size, surface morphology, and unique physical properties like catalytic, magnetic, electronic, and optical capabilities. Unlike inorganic nanomaterials, organic polymers exhibit excellent stability, biocompatibility, and processability with a tailored response to external stimuli, including pH, heat, light, and degradation properties. Nano-sized assemblies derived from inorganic and polymeric NPs are combined in a functionalized composite form to import high strength and synergistically promising features not reflected in their part as a single constituent. These new properties of polymer/inorganic functionalized materials have led to emerging applications in a variety of fields, such as environmental remediation, drug delivery, and imaging. This review spotlights recent advances in the design and construction of polymer/inorganic functionalized materials with improved attributes compared to single inorganic and polymeric materials for environmental sustainability. Following an introduction, a comprehensive review of the design and potential applications of polymer/inorganic materials for removing organic pollutants and heavy metals from wastewater is presented. We have offered valuable suggestions for piloting, and scaling-up polymer functionalized nanomaterials using simple concepts. This review is wrapped up with a discussion of perspectives on future research in the field.
Collapse
Affiliation(s)
- Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Uwase Marie Betrehem
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Tiantian Chen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
35
|
Chen X, Hossain MF, Duan C, Lu J, Tsang YF, Islam MS, Zhou Y. Isotherm models for adsorption of heavy metals from water - A review. CHEMOSPHERE 2022; 307:135545. [PMID: 35787879 DOI: 10.1016/j.chemosphere.2022.135545] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Adsorption is a widely used technology for removing and separating heavy metal from water, attributed to its eco-friendly, cost-effective, and high efficiency. Adsorption isotherm modeling has been used for many years to predict the adsorption equilibrium mechanism, adsorption capacity, and the inherent characteristics of the adsorption process, all of which are substantial in evaluating the performance of adsorbents. This review summarizes the development history, fundamental characteristics, and mathematical derivations of various isotherm models, along with their applicable conditions and application scenarios in heavy metal adsorption. The latest progress in applying isotherm models with a one-parameter, two-parameter, and three-parameter in heavy metal adsorption using carbon-based materials, which has gained much attention in recent years as low-cost adsorbents, is critically reviewed and discussed. Several experimental factors affecting the adsorption equilibrium, such as solution pH, temperature, ionic strength, adsorbent dose, and initial heavy metal concentration, are briefly discussed. The criteria for selecting the optimum isotherm for heavy metal adsorption are proposed by comparing various adsorption models and analyzing mathematical error functions. Finally, the relative performance of different isotherm models for heavy metal adsorption is compared, and the future research gaps are identified.
Collapse
Affiliation(s)
- Xinyu Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Md Faysal Hossain
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong, China
| | - Chengyu Duan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong, China
| | - Md Shoffikul Islam
- Department of Soil Science, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
36
|
Zhang P, Yuan L, Zeng J, Zou K, Liu B, Qing T, Feng B. Alginate production of Pseudomonas strains and its application in preparation of alginate-biomass hydrogel for heavy metal adsorption. Int J Biol Macromol 2022; 222:1511-1521. [DOI: 10.1016/j.ijbiomac.2022.09.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
|
37
|
Removal of an Azo Dye from Wastewater through the Use of Two Technologies: Magnetic Cyclodextrin Polymers and Pulsed Light. Int J Mol Sci 2022; 23:ijms23158406. [PMID: 35955538 PMCID: PMC9369244 DOI: 10.3390/ijms23158406] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
Water pollution by dyes is a huge environmental problem; there is a necessity to produce new decolorization methods that are effective, cost-attractive, and acceptable in industrial use. Magnetic cyclodextrin polymers offer the advantage of easy separation from the dye solution. In this work, the β-CD-EPI-magnetic (β-cyclodextrin-epichlorohydrin) polymer was synthesized, characterized, and tested for removal of the azo dye Direct Red 83:1 from water, and the fraction of non-adsorbed dye was degraded by an advanced oxidation process. The polymer was characterized in terms of the particle size distribution and surface morphology (FE-SEM), elemental analysis (EA), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), infrared spectrophotometry (IR), and X-ray powder diffraction (XRD). The reported results hint that 0.5 g and pH 5.0 were the best conditions to carry out both kinetic and isotherm models. A 30 min contact time was needed to reach equilibrium with a qmax of 32.0 mg/g. The results indicated that the pseudo-second-order and intraparticle diffusion models were involved in the assembly of Direct Red 83:1 onto the magnetic adsorbent. Regarding the isotherms discussed, the Freundlich model correctly reproduced the experimental data so that adsorption was confirmed to take place onto heterogeneous surfaces. The calculation of the thermodynamic parameters further demonstrates the spontaneous character of the adsorption phenomena (ΔG° = −27,556.9 J/mol) and endothermic phenomena (ΔH° = 8757.1 J/mol) at 25 °C. Furthermore, a good reusability of the polymer was evidenced after six cycles of regeneration, with a negligible decline in the adsorption extent (10%) regarding its initial capacity. Finally, the residual dye in solution after treatment with magnetic adsorbents was degraded by using an advanced oxidation process (AOP) with pulsed light and hydrogen peroxide (343 mg/L); >90% of the dye was degraded after receiving a fluence of 118 J/cm2; the discoloration followed a pseudo first-order kinetics where the degradation rate was 0.0196 cm2/J. The newly synthesized β-CD-EPI-magnetic polymer exhibited good adsorption properties and separability from water which, when complemented with a pulsed light-AOP, may offer a good alternative to remove dyes such as Direct Red 83:1 from water. It allows for the reuse of both the polymer and the dye in the dyeing process.
Collapse
|
38
|
Syeda SEZ, Nowacka D, Khan MS, Skwierawska AM. Recent Advancements in Cyclodextrin-Based Adsorbents for the Removal of Hazardous Pollutants from Waters. Polymers (Basel) 2022; 14:2341. [PMID: 35745921 PMCID: PMC9228831 DOI: 10.3390/polym14122341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
Water is an essential substance for the survival on Earth of all living organisms. However, population growth has disturbed the natural phenomenon of living, due to industrial growth to meet ever expanding demands, and, hence, an exponential increase in environmental pollution has been reported in the last few decades. Moreover, water pollution has drawn major attention for its adverse effects on human health and the ecosystem. Various techniques have been used to treat wastewater, including biofiltration, activated sludge, membrane filtration, active oxidation process and adsorption. Among the mentioned, the last method is becoming very popular. Moreover, among the sorbents, those based on cyclodextrin have gained worldwide attention due to their excellent properties. This review article overviewed recent contributions related to the synthesis of Cyclodextrin (CD)-based adsorbents to treat wastewater, and their applications, especially for the removal of heavy metals, dyes, and organic pollutants (pharmaceuticals and endocrine disruptor chemicals). Furthermore, new adsorption trends and trials related to CD-based materials are also discussed regarding their regenerative potential. Finally, this review could be an inspiration for new research and could also anticipate future directions and challenges associated with CD-based adsorbents.
Collapse
Affiliation(s)
- Shan E. Zehra Syeda
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Dominika Nowacka
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Muhammad Shahzeb Khan
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Anna Maria Skwierawska
- Department of Chemistry and Technology of Functional Materials, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
39
|
Musarurwa H, Tavengwa NT. Stimuli-responsive polymers and their applications in separation science. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|