1
|
Li W, Chen L, Mohammad Sajadi S, Baghaei S, Salahshour S. The impact of acute and chronic aerobic and resistance exercise on stem cell mobilization: A review of effects in healthy and diseased individuals across different age groups. Regen Ther 2024; 27:464-481. [PMID: 38745840 PMCID: PMC11091462 DOI: 10.1016/j.reth.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Stem cells (SCs) play a crucial role in tissue repair, regeneration, and maintaining physiological homeostasis. Exercise mobilizes and enhances the function of SCs. This review examines the effects of acute and chronic aerobic and resistance exercise on the population of SCs in healthy and diseased individuals across different age groups. Both acute intense exercise and moderate regular training increase circulating precursor cells CD34+ and, in particular, the subset of angiogenic progenitor cells (APCs) CD34+/KDR+. Conversely, chronic exercise training has conflicting effects on circulating CD34+ cells and their function, which are likely influenced by exercise dosage, the health status of the participants, and the methodologies employed. While acute activity promotes transient mobilization, regular exercise often leads to an increased number of progenitors and more sustainable functionality. Short interventions lasting 10-21 days mobilize CD34+/KDR + APCs in sedentary elderly individuals, indicating the inherent capacity of the body to rapidly activate tissue-reparative SCs during activity. However, further investigation is needed to determine the optimal exercise regimens for enhancing SC mobilization, elucidating the underlying mechanisms, and establishing functional benefits for health and disease prevention. Current evidence supports the integration of intense exercise with chronic training in exercise protocols aimed at activating the inherent regenerative potential through SC mobilization. The physical activity promotes endogenous repair processes, and research on exercise protocols that effectively mobilize SCs can provide innovative guidelines designed for lifelong tissue regeneration. An artificial neural network (ANN) was developed to estimate the effects of modifying elderly individuals and implementing chronic resistance exercise on stem cell mobilization and its impact on individuals and exercise. The network's predictions were validated using linear regression and found to be acceptable compared to experimental results.
Collapse
Affiliation(s)
- Wei Li
- Department of Sports Medicine, Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Lingzhen Chen
- Department of Sports and Arts, Zhejiang Gongshang University HangZhou College of Commerce, No. 66, South Huancheng Road, Tonglu, Hangzhou, China
| | | | - Sh. Baghaei
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Iran
| | - Soheil Salahshour
- Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
- Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
2
|
García-Salazar LF, Pereira ND, Silva ESM, Ribeiro JAM, Nagai Ocamoto G, Mendes Zambetta R, de Oliveira SG, Catai AM, Borstad A, Russo TL. Could aerobic exercise applied before constraint-induced movement therapy change circulating molecular biomarkers in chronic post-stroke? Physiother Theory Pract 2024:1-12. [PMID: 39370701 DOI: 10.1080/09593985.2024.2411311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Integrating aerobic exercise (AE) into rehabilitation programs for post-stroke individuals could enhance motor recovery and cardiovascular health by increasing brain-derived neurotrophic factor (BDNF) and the myokine irisin. Chronic stroke survivors typically exhibit elevated matrix metalloproteinase-9 (MMP-9) activity, which is negatively correlated with steps and time in medium cadence, although the impact of AE on this biomarker remains unclear. OBJECTIVE To evaluate the effect of high-intensity AE training prior to modified constraint-induced movement therapy (mCIMT) on BDNF and irisin concentration, and on MMP-2 and MMP-9 activity in chronic post-stroke individuals and to associate these results with functional improvements. METHODS Nine participants received AE combined with mCIMT for two weeks, while the control group (n = 7) received mCIMT alone. Manual dexterity and functional capacity were assessed before and after the intervention. Serum samples were analyzed for BDNF, irisin, MMP-2 and MMP-9. RESULTS There were no significant main effects of assessment, group or interaction on molecular biomarkers. However, the AE group had a significant increase in MMP-9 activity post-intervention (p = .033; d = 0.67). For the Box and Block Test, there were significant main effects of assessment (F [1, 14] = 33.27, p = .000, ηp2 = 0.70) and group (F [1, 14] = 5.43, p = .035, ηp2 = .28). No correlations were found between biomarkers and clinical assessments. CONCLUSION AE prior to mCIMT did not influence circulating BDNF and irisin levels but did induce an acute rise in MMP-9 activity, suggesting potential effects on cardiovascular remodeling in this population.
Collapse
Affiliation(s)
- Luisa Fernanda García-Salazar
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- School of Medicine and Health Sciences, Rehabilitation Science Research Group, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Duarte Pereira
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | - Jean Alex Matos Ribeiro
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
- Undergraduate Physiotherapy Program, Morgana Potrich College (FAMP), Mineiros, Brazil
| | - Gabriela Nagai Ocamoto
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | | | | | - Aparecida Maria Catai
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Alexandra Borstad
- Physical Therapy Department, School of Health Sciences, The College of St. Scholastica, Duluth, MN, USA
| | - Thiago Luiz Russo
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
3
|
Kourek C, Briasoulis A, Karatzanos E, Zouganeli V, Psarra K, Pratikaki M, Alevra-Prokopiou A, Skoularigis J, Xanthopoulos A, Nanas S, Dimopoulos S. The Effects of a Cardiac Rehabilitation Program on Endothelial Progenitor Cells and Inflammatory Profile in Patients with Chronic Heart Failure of Different Severity. J Clin Med 2023; 12:6592. [PMID: 37892730 PMCID: PMC10607596 DOI: 10.3390/jcm12206592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial dysfunction and inflammation are common pathophysiological characteristics of chronic heart failure (CHF). Endothelial progenitor cells (EPCs) are recognized as useful markers of vascular damage and endothelial repair. The aim of this study was to investigate the effects of a cardiac rehabilitation program on EPCs and inflammatory profile in CHF patients of different severity. Forty-four patients with stable CHF underwent a 36-session cardiac rehabilitation program. They were separated into two different subgroups each time, according to the median peak VO2, predicted peak VO2, VE/VCO2 slope, and ejection fraction. EPCs, C-reactive protein (CRP), interleukin 6 (IL-6), interleukin 10 (IL-10), and vascular endothelial growth factor (VEGF) were measured. Flow cytometry was used for the quantification of EPCs. Mobilization of EPCs increased and the inflammatory profile improved within each severity group (p < 0.05) after the cardiac rehabilitation program, but there were no statistically significant differences between groups (p > 0.05). A 36-session cardiac rehabilitation program has similar beneficial effects on the mobilization of EPCs and on the inflammatory profile in patients with CHF of different severity.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 11521 Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Faculty of Medicine, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa Hospitals and Clinics, Iowa, IA 52242, USA
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Virginia Zouganeli
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Katherina Psarra
- Immunology and Histocompatibility Department, Evangelismos Hospital, 10676 Athens, Greece;
| | - Maria Pratikaki
- Clinical Biochemistry Department, Evangelismos Hospital, 10676 Athens, Greece; (M.P.); (A.A.-P.)
| | | | - John Skoularigis
- Department of Cardiology, University Hospital of Larissa, 41334 Larissa, Greece; (J.S.); (A.X.)
| | - Andrew Xanthopoulos
- Department of Cardiology, University Hospital of Larissa, 41334 Larissa, Greece; (J.S.); (A.X.)
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
4
|
Yasar Z, Ross MD, Gaffney CJ, Postlethwaite RD, Wilson R, Hayes LD. Aerobically trained older adults show impaired resting, but preserved exercise-induced circulating progenitor cell count, which was not improved by sprint interval training. Pflugers Arch 2023; 475:465-475. [PMID: 36786845 PMCID: PMC10011317 DOI: 10.1007/s00424-022-02785-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023]
Abstract
Older adults exhibit a reduced number and function of CD34 + circulating progenitor cells (CPC), a known risk factor for cardiovascular disease. Exercise promotes the mobilisation of CPCs from bone marrow, so whether ageing per se or physical inactivity in older age reduces CPCs is unknown. Thus, this study examined the effect of age on resting and exercise-induced changes in CPCs in aerobically trained adults and the effect of 8 weeks of sprint interval training (SIT) on resting and exercise-induced CPCs in older adults. Twelve young (22-34 years) and nine older (63-70 years) adults participated in the study. Blood was sampled pre and immediately post a graded exercise test to exhaustion in both groups. Older participants repeated the process after 8 weeks of SIT (3 × 20 s 'all-out' sprints, 2 × a week). Total CPCs (CD34+) and endothelial progenitor cells (EPCs: CD34+KDR+) were determined by flow cytometry. Older adults exhibited lower basal total CD34+ CPCs (828 ± 314 vs. 1186 ± 272 cells·mL-1, p = 0.0149) and CD34+KDR+ EPCs (177 ± 128 vs. 335 ± 92 cells·mL-1, p = 0.007) than younger adults. The maximal exercise test increased CPCs in young (CD34+: p = 0.004; CD34+KDR+: p = 0.017) and older adults (CD34+: p < 0.001; CD34+KDR+: p = 0.008), without difference between groups (p = 0.211). SIT did not alter resting or exercise-induced changes in CPCs in the older cohort (p > 0.232). This study suggests age per se does not impair exercise-induced CPC counts, but does lower resting CPC counts.
Collapse
Affiliation(s)
- Zerbu Yasar
- Active Ageing Research Group, Institute of Health, University of Cumbria, Lancaster, UK
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Christopher J. Gaffney
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | | | - Russell Wilson
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Lawrence D. Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
5
|
Baik Y, Maenetje P, Schramm D, Tiemessen C, Ncube I, Churchyard G, Wallis R, Vangu MDT, Kornfeld H, Li Y, Auld SC, Bisson GP. Lung function and collagen 1a levels are associated with changes in 6 min walk test distance during treatment of TB among HIV-infected adults: a prospective cohort study. BMC Pulm Med 2023; 23:53. [PMID: 36737697 PMCID: PMC9896708 DOI: 10.1186/s12890-023-02325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with tuberculosis (TB) and HIV often present with impairments in lung function and exercise capacity after treatment. We evaluated clinical and immunologic variables associated with a minimum clinically important difference (MCID) in the change in the 6 min walk test distance during the first 24 weeks of antiretroviral (ART) and anti-tubercular therapy. METHODS Adults initiating ART and anti-TB treatment in the setting of newly-diagnosed HIV and pulmonary TB were enrolled in a prospective cohort study in South Africa. Patients underwent 6 min walk tests and spirometry at weeks 0, 4, 12, and 24 and biomarker level measurements early during treatment, at weeks 0, 4, and 12, when inflammation levels are typically elevated. Biomarkers included matrix metalloproteinases-1 (MMP-1), tissue inhibitor of MMP (TIMP)-1, collagen 1a, IL-6, IL-8, vascular cell adhesion molecule 1 (VCAM-1), C-X-C motif chemokine 10 (CXCL-10), CXCL-11, macrophage colony-stimulating factor (M-CSF), plasminogen activator, vascular endothelial growth factor, and chemokine (C-C) motif-2 (CCL-2). An MCID was derived statistically, and achievement of an MCID was modeled as the outcome using logistic regression model. RESULTS Eighty-nine patients walked an average of 393 (± standard deviation = 69) meters at baseline, which increased by an average of 9% (430 ± 70 m) at week 24. The MCID for change in walk distance was estimated as 41 m. Patients experiencing an MCID on treatment had worse lung function, lower 6 min walk test distance, higher levels of proinflammatory biomarkers including TIMP-1 and M-CSF, and lower levels of collagen 1a at baseline. Experiencing an MCID during treatment was associated with increases in forced expiratory volume in 1-s [odds ratio (OR) = 1.17, 95% confidence interval (CI) = 1.05-1.33] and increases in blood collagen 1a levels (OR = 1.31, 95%CI 1.06-1.62). CONCLUSIONS ART and TB treatment are associated with substantial improvements in 6 min walk test distance over time. Achievement of an MCID in the 6 min walk test in this study was associated with more severe disease at baseline and increases in collagen 1a levels and lung function during therapy.
Collapse
Affiliation(s)
- Yeonsoo Baik
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, 832 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA
| | | | - Diana Schramm
- Department of Virology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Caroline Tiemessen
- Department of Virology, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Itai Ncube
- The Aurum Institute, Johannesburg, South Africa
| | - Gavin Churchyard
- The Aurum Institute, Johannesburg, South Africa
- School of Public Health, University of Witwatersrand, Johannesburg, South Africa
| | | | - Mboyo-di-Tamba Vangu
- Department of Nuclear Medicine, CM Johannesburg Academic Hospital, University of the Witwatersrand, Johannesburg, South Africa
| | - Hardy Kornfeld
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, USA
| | - Yun Li
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, 832 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA
| | - Sara C Auld
- Department of Medicine, Emory University Rollins School of Public Health and School of Medicine, Atlanta, GA, USA
| | - Gregory P Bisson
- Department of Biostatistics, Epidemiology, and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, 832 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104-6021, USA.
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Kourek C, Briasoulis A, Zouganeli V, Karatzanos E, Nanas S, Dimopoulos S. Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. J Cardiovasc Dev Dis 2022; 9:222. [PMID: 35877584 PMCID: PMC9322098 DOI: 10.3390/jcdd9070222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a major public health issue worldwide with increased prevalence and a high number of hospitalizations. Patients with chronic HF and either reduced ejection fraction (HFrEF) or mildly reduced ejection fraction (HFmrEF) present vascular endothelial dysfunction and significantly decreased circulating levels of endothelial progenitor cells (EPCs). EPCs are bone marrow-derived cells involved in endothelium regeneration, homeostasis, and neovascularization. One of the unsolved issues in the field of EPCs is the lack of an established method of identification. The most widely approved method is the use of monoclonal antibodies and fluorescence-activated cell sorting (FACS) analysis via flow cytometry. The most frequently used markers are CD34, VEGFR-2, CD45, CD31, CD144, and CD146. Exercise training has demonstrated beneficial effects on EPCs by increasing their number in peripheral circulation and improving their functional capacities in patients with HFrEF or HFmrEF. There are two potential mechanisms of EPCs mobilization: shear stress and the hypoxic/ischemic stimulus. The combination of both leads to the release of EPCs in circulation promoting their repairment properties on the vascular endothelium barrier. EPCs are important therapeutic targets and one of the most promising fields in heart failure and, therefore, individualized exercise training programs should be developed in rehabilitation centers.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 11521 Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Alexandra Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Virginia Zouganeli
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
7
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
9
|
Glue C, Haveron R, Smith ML, Thiagarajan P, Edwards H, Mulligan H, Wilkinson A. Six-minute walk test values for people with and without long-term conditions in relation to the Walk Score ®: a scoping review. PHYSICAL THERAPY REVIEWS 2020. [DOI: 10.1080/10833196.2020.1832719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Caitlin Glue
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Rowan Haveron
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Megan-Li Smith
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Pranav Thiagarajan
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Heather Edwards
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Hilda Mulligan
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| | - Amanda Wilkinson
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol 2019; 38:817-827. [DOI: 10.1016/j.repc.2019.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/30/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
|
11
|
Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: A systematic review and meta-analysis of randomized controlled trials. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.repce.2019.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Plasma matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs and aging and lifelong exercise adaptations in ventricular and arterial stiffness. Exp Gerontol 2019; 123:36-44. [PMID: 31095969 DOI: 10.1016/j.exger.2019.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/18/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023]
Abstract
The age-associated increase in cardiac and central arterial stiffness is attenuated with lifelong (>25 years) endurance exercise in a dose-dependent manner. Remodelling of the extracellular matrix of cardiovascular structures may underpin these lifelong exercise adaptations in structural stiffness. The primary aim was to examine whether matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) levels are associated with aging and lifelong exercise-related changes in cardiac and central arterial stiffness. Plasma MMPs and TIMPs, left ventricular (LV) (LV stiffness constant) and central arterial stiffness (pulse wave velocity) were examined in healthy adults stratified into five groups based on age and lifelong weekly exercise frequency: (1) young sedentary adults (28-50 years), and older adults (>60 years) who had performed either: (a) sedentary (0-1 sessions/week), (b) casual (2-3 sessions/week), (c) committed (4-5 sessions/week) or (d) athletic (≥6 sessions/week) frequency of exercise. MMP-1 was significantly lower in young compared to older sedentary (p = 0.049). Except for TIMP-2 (p = 0.018 versus committed) and the ratio of MMP-2/TIMP-4 (p = 0.047 versus committed), MMP and TIMP expression was not significantly different in lifelong exercise groups (≥casual) compared to the older sedentary group. MMP-1, -3 had a weak positive relationship with central PWV (r = 0.17-0.25, p ≤ 0.050) but there were no significant relationships between MMPs or TIMPs and LV stiffness constant (p ≥ 0.148). In conclusion, there was not a clear or consistent difference in plasma MMPs and TIMPs with lifelong exercise dose despite exhibiting lower cardiovascular stiffness at the highest exercise levels.
Collapse
|
13
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Bounihi A, Bitam A, Bouazza A, Yargui L, Koceir EA. Fruit vinegars attenuate cardiac injury via anti-inflammatory and anti-adiposity actions in high-fat diet-induced obese rats. PHARMACEUTICAL BIOLOGY 2017; 55:43-52. [PMID: 27595296 PMCID: PMC7011948 DOI: 10.1080/13880209.2016.1226369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 06/28/2016] [Accepted: 08/15/2016] [Indexed: 06/02/2023]
Abstract
CONTEXT Fruit vinegars (FVs) are used in Mediterranean folk medicine for their hypolipidemic and weight-reducing properties. OBJECTIVE To investigate the preventive effects of three types of FV, commonly available in Algeria, namely prickly pear [Opuntia ficus-indica (L.) Mill (Cectaceae)], pomegranate [Punica granatum L. (Punicaceae)], and apple [Malus domestica Borkh. (Rosaceae)], against obesity-induced cardiomyopathy and its underlying mechanisms. MATERIALS AND METHODS Seventy-two male Wistar rats were equally divided into 12 groups. The first group served as normal control (distilled water, 7 mL/kg bw), and the remaining groups were respectively treated with distilled water (7 mL/kg bw), acetic acid (0.5% w/v, 7 mL/kg bw) and vinegars of pomegranate, apple or prickly pear (at doses of 3.5, 7 and 14 mL/kg bw, acetic acid content as mentioned above) along with a high-fat diet (HFD). The effects of the oral administration of FV for 18 weeks on the body and visceral adipose tissue (VAT) weights, plasma inflammatory and cardiac enzymes biomarkers, and in heart tissue were evaluated. RESULTS Vinegars treatments significantly (p < .05) attenuated the HFD-induced increase in bw (0.2-0.5-fold) and VAT mass (0.7-1.8-fold), as well as increase in plasma levels of CRP (0.1-0.3-fold), fibrinogen (0.2-0.3-fold), leptin (1.7-3.7-fold), TNF-α (0.1-0.6-fold), AST (0.9-1.4-fold), CK-MB (0.3-1.4-fold) and LDH (2.7-6.7-fold). Moreover, vinegar treatments preserved myocardial architecture and attenuated cardiac fibrosis. DISCUSSION AND CONCLUSION These findings suggest that pomegranate, apple and prickly pear vinegars may prevent HFD-induced obesity and obesity-related cardiac complications, and that this prevention may result from the potent anti-inflammatory and anti-adiposity properties of these vinegars.
Collapse
Affiliation(s)
- Abdenour Bounihi
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Arezki Bitam
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
- Department of Food Technology and Human Nutrition, Ecole Nationale Supérieure Agronomique, El Harrach, Algiers, Algeria
| | - Asma Bouazza
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Lyece Yargui
- Department of Medicine, Faculty of Health Sciences, Central Biochemistry Laboratory, Mustapha Bacha Hospital, Algiers, Algeria
| | - Elhadj Ahmed Koceir
- Department of Biology and Physiology of Organisms, Bioenergetics and Intermediary Metabolism Team, FSB, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
15
|
Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Res Cardiovasc Med 2017. [DOI: 10.5812/cardiovascmed.34639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Recchioni R, Marcheselli F, Antonicelli R, Lazzarini R, Mensà E, Testa R, Procopio AD, Olivieri F. Physical activity and progenitor cell-mediated endothelial repair in chronic heart failure: Is there a role for epigenetics? Mech Ageing Dev 2016; 159:71-80. [DOI: 10.1016/j.mad.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 02/09/2023]
|
17
|
Guo Y, Ledesma RA, Peng R, Liu Q, Xu D. The Beneficial Effects of Cardiac Rehabilitation on the Function and Levels of Endothelial Progenitor Cells. Heart Lung Circ 2016; 26:10-17. [PMID: 27614559 DOI: 10.1016/j.hlc.2016.06.1210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 04/08/2016] [Accepted: 06/06/2016] [Indexed: 12/19/2022]
Abstract
Cardiac rehabilitation (CR) is a comprehensive program, which mainly focusses on exercise training, disease evaluation, cardiovascular risk factors control, medication therapy, psychosocial intervention, and patient education. Although the beneficial properties of CR have been widely evidenced, its mechanism is still not completely clarified. To date, endothelial progenitor cells (EPCs) have been explored by emerging studies, and evidence has suggested that CR, especially exercise training, significantly increases the function and levels of EPCs, which is likely to elucidate the profiting mechanism of CR. Thus, this review summarises the potential relationship between CR and EPCs with an aim of providing novel directions for future CR research.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Robert Andre Ledesma
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Ran Peng
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qiong Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
18
|
Landers-Ramos RQ, Corrigan KJ, Guth LM, Altom CN, Spangenburg EE, Prior SJ, Hagberg JM. Short-term exercise training improves flow-mediated dilation and circulating angiogenic cell number in older sedentary adults. Appl Physiol Nutr Metab 2016; 41:832-41. [PMID: 27441589 DOI: 10.1139/apnm-2015-0637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiovascular disease risk increases with age due, in part, to impaired endothelial function and decreased circulating angiogenic cell (CAC) number and function. We sought to determine if 10 days of aerobic exercise training improves endothelial function, CAC number, and intracellular redox balance in older sedentary adults. Eleven healthy subjects (4 men, 7 women), 61 ± 2 years of age participated in 60 min of aerobic exercise at 70% maximal oxygen consumption for 10 consecutive days while maintaining body weight. Before and after training, endothelial function was measured as flow-mediated dilation of the brachial artery and fasting blood was drawn to enumerate 3 CAC subtypes. Intracellular reactive oxygen species (ROS) and nitric oxide (NO) in CD34+ CACs were measured using fluorescent probes and reinforced via real-time quantitative polymerase chain reaction. Flow-mediated dilation improved significantly following training (10% ± 1.3% before vs. 16% ± 1.4% after training; P < 0.05). Likewise, CD34+/KDR+ number increased 104% and KDR+ number increased 151% (P < 0.05 for both), although CD34+ number was not significantly altered (P > 0.05). Intracellular NO and ROS levels in CD34+ CACs were not different after training (P > 0.05 for both). Messenger RNA expression of SOD1, endothelial nitric oxide synthase, and NADPH oxidase 2 and neutrophil cytosolic factor 1 in CD34+ CACs was not significantly altered with training (P > 0.05). In conclusion, 10 consecutive days of aerobic exercise increased flow-mediated dilation and CAC number in older, previously sedentary adults, but did not affect intracellular redox balance in CD34+ CACs. Overall, these data indicate that even short-term aerobic exercise training can have a significant impact on cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Kelsey J Corrigan
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Lisa M Guth
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Christine N Altom
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Espen E Spangenburg
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| | - Steven J Prior
- b University of Maryland School of Medicine and Baltimore VA GRECC, Baltimore, MD 21201, USA
| | - James M Hagberg
- a Department of Kinesiology, University of Maryland, College Park, MD 20742-2611, USA
| |
Collapse
|
19
|
Vascular Ageing and Exercise: Focus on Cellular Reparative Processes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3583956. [PMID: 26697131 PMCID: PMC4678076 DOI: 10.1155/2016/3583956] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022]
Abstract
Ageing is associated with an increased risk of developing noncommunicable diseases (NCDs), such as diabetes and cardiovascular disease (CVD). The increased risk can be attributable to increased prolonged exposure to oxidative stress. Often, CVD is preceded by endothelial dysfunction, which carries with it a proatherothrombotic phenotype. Endothelial senescence and reduced production and release of nitric oxide (NO) are associated with “vascular ageing” and are often accompanied by a reduced ability for the body to repair vascular damage, termed “reendothelialization.” Exercise has been repeatedly shown to confer protection against CVD and diabetes risk and incidence. Regular exercise promotes endothelial function and can prevent endothelial senescence, often through a reduction in oxidative stress. Recently, endothelial precursors, endothelial progenitor cells (EPC), have been shown to repair damaged endothelium, and reduced circulating number and/or function of these cells is associated with ageing. Exercise can modulate both number and function of these cells to promote endothelial homeostasis. In this review we look at the effects of advancing age on the endothelium and these endothelial precursors and how exercise appears to offset this “vascular ageing” process.
Collapse
|
20
|
Nascimento DDC, Durigan RDCM, Tibana RA, Durigan JLQ, Navalta JW, Prestes J. The response of matrix metalloproteinase-9 and -2 to exercise. Sports Med 2015; 45:269-78. [PMID: 25252612 DOI: 10.1007/s40279-014-0265-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a major group of enzymes that play essential roles in normal functioning of diverse tissues during growth, development, and aging. However, among the MMPs little is known regarding the role of exercise in MMP-9 and MMP-2 function in humans. OBJECTIVE The aim of this study was to provide a systematic comprehensive review of the literature examining the effect of different exercise interventions on MMP-9 and MMP-2 in human investigations. DATA SOURCES A comprehensive systematic database search was performed, including PubMed/MEDLINE, Scopus, ScienceDirect, and Web of Science. STUDY SELECTION Both the acute and chronic effects of exercise were included for evaluation in this systematic review. Inclusion criteria included the use of any type of planned, structured, and repetitive movement and its effects on the MMP-2 and MMP-9 response (obtained from plasma samples), participants (humans only) of any age with or without diseases, sedentary participants and those involved in light, moderate, and vigorous activity, randomized controlled trials (RCTs) and clinical trials (CTs), full text article citations with no restrictions in terms of language, and scored at least 5/11 on the Physiotherapy Evidence Database (PEDro) quality scale. STUDY APPRAISAL AND SYNTHESIS METHODS The PEDro scale was used to appraise study quality of RCTs and CTs. Two reviewers independently reviewed the full texts of all potentially relevant articles for eligibility and disagreements were discussed and resolved. RESULTS Seven studies met the previously determined quality indicators and were reviewed; three were RCTs and four were CTs. In general, the quality of the studies ranged from 5 to 9 out of a maximum of 11 on the PEDro quality criteria scale. Results revealed that chronic aerobic training induces a decrease in MMP-9 and MMP-2 levels, possibly indicating a cardioprotective effect, while resistance exercise training displayed conflicting results. CONCLUSION Alterations in MMP-9 and MMP-2 plasma concentrations may be valuable biomarkers to reflect the influence of exercise on the inflammatory state. Nevertheless, the limited evidence available regarding the effects of exercise on the MMP-9 and MMP-2 response in human participants suggests that further studies are needed to fully define the connection between the role of exercise on the MMP-9 and MMP-2 response.
Collapse
Affiliation(s)
- Dahan da Cunha Nascimento
- Graduation Program on Physical Education, Catholic University of Brasilia, Q.S. 07, Lote 01, EPTC-Bloco G, Brasilia, DF, 71966-700, Brazil,
| | | | | | | | | | | |
Collapse
|
21
|
Palmefors H, DuttaRoy S, Rundqvist B, Börjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis--a systematic review. Atherosclerosis 2014; 235:150-61. [PMID: 24835434 DOI: 10.1016/j.atherosclerosis.2014.04.026] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This systematic review aimed to summarize published papers on the effect of physical activity (PA)/exercise on key atherosclerotic factors in patients with risk factors for or established cardiovascular disease (CVD). METHODS Studies involving PA and cytokines, chemokines, adhesion molecules, CRP and angiogenic factors were searched for in Medline and Cochrane library. Original human studies of more than 2 weeks of PA intervention were included. Study quality was assessed according to the GRADE system of evidence. RESULTS Twenty-eight papers fulfilled the inclusion criteria. PA decreases the cytokines, tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interferon-y IFN-y (high, moderate and low evidence, respectively). The effect of PA on chemokines; stromal derived factor-1 (SDF-1), interleukin-8 (IL-8) (insufficient evidence) and monocyte chemoattractant protein-1 (MCP-1) (low evidence) was inconclusive. Aerobic exercise decreased the adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) (moderate and high evidence, respectively), while effects of PA on E- and P-selectin were inconclusive. PA decreases C-reactive protein (CRP) (high evidence). The angiogenic actors, endothelial progenitor cells (EPCs) are increased (high evidence) and VEGF is decreased (moderate evidence) by PA. The effect of PA on these factors seems to depend on the type and duration of exercise intervention and patient factors, such as presence of ischemia. CONCLUSION As presented in this review, there is a high level of evidence that physical activity positively affects key players in atherosclerosis development. These effects could partly explain the scientifically proven anti-atherogenic effects of PA, and do have important clinical implications.
Collapse
Affiliation(s)
- Henning Palmefors
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Smita DuttaRoy
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Bengt Rundqvist
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Mats Börjesson
- Swedish School of Sports and Health Sciences and Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
22
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
23
|
Wang JS, Lee MY, Lien HY, Weng TP. Hypoxic exercise training improves cardiac/muscular hemodynamics and is associated with modulated circulating progenitor cells in sedentary men. Int J Cardiol 2013; 170:315-23. [PMID: 24286591 DOI: 10.1016/j.ijcard.2013.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 06/23/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Circulating progenitor cells (CPCs) improve cardiovascular function and organ perfusion by enhancing the capacities of endothelial repair and neovasculogenesis. This study investigates whether exercise regimens with/without hypoxia affect cardiac and muscular hemodynamics by modulating CPCs and angiogenic factors. METHODS Forty sedentary males were randomly divided into hypoxic (HT, n=20) and normoxic (NT, n=20) training groups. The subjects were trained on a bicycle ergometer at 60%VO(2max) under 15% (HT) or 21% (NT) O2 conditions for 30 min daily, five days weekly for five weeks. RESULTS After the five-week interventions, the HT group exhibited a larger improvement in aerobic capacity than the NT group. Furthermore, the HT regimen (i) enhanced cardiac output (Q(H)) and perfusion (Q(M))/oxygenation of vastus lateralis during exercise; (ii) increased levels of CD34(+)/KDR(+)/CD117(+), CD34(+)/KDR(+)/CD133(+), and CD34(+)/KDR(+)/CD31(+) cells in blood; (iii) promoted the proliferative capacity of these CPC subsets, and (iv) elevated plasma nitrite/nitrate, stromal cell-derived factor-1 (SDF-1), matrix metalloproteinase-9 (MMP-9), and vascular endothelial growth factor-A (VEGF-A) concentrations. Despite the lack of changes in Q(H) and the number or proliferative capacity of CD34(+)/KDR(+)/CD117(+) or CD34(+)/KDR(+)/CD31(+) cells, the NT regimen elevated both Q(M) and plasma nitrite/nitrate levels and suppressed the shedding of endothelial cells (CD34(-)/KDR(+)/phosphatidylserine(+) cells). CONCLUSIONS The HT regimen improves cardiac and muscular hemodynamic adaptations, possibly by promoting the mobilization/function of CPCs and the production of angiogenic factors.
Collapse
Affiliation(s)
- Jong-Shyan Wang
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan; Heart Failure Center, Chang Gung Memorial Hospital, Keeling, Taiwan.
| | - Mei-Yi Lee
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Hen-Yu Lien
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Tzu-Pin Weng
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Chang Gung University, Tao-Yuan, Taiwan
| |
Collapse
|
24
|
Klose K, Roy R, Brodarac A, Kurtz A, Ode A, Kang KS, Bieback K, Choi YH, Stamm C. Impact of heart failure on the behavior of human neonatal stem cells in vitro. J Transl Med 2013; 11:236. [PMID: 24074138 PMCID: PMC3850697 DOI: 10.1186/1479-5876-11-236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/20/2013] [Indexed: 12/04/2022] Open
Abstract
Background Clinical cardiac cell therapy using autologous somatic stem cells is restricted by age and disease-associated impairment of stem cell function. Juvenile cells possibly represent a more potent alternative, but the impact of patient-related variables on such cell products is unknown. We therefore evaluated the behavior of neonatal cord blood mesenchymal stem cells (CB-MSC) in the presence of serum from patients with advanced heart failure (HF). Methods Human serum was obtained from patients with severe HF (n = 21) and from healthy volunteers (n = 12). To confirm the systemic quality of HF in the sera, TNF-α and IL-6 were quantified. CB-MSC from healthy neonates were cultivated for up to 14 days in medium supplemented with 10% protein-normalized human HF or control serum or fetal calf serum (FCS). Results All HF sera contained increased cytokine concentrations (IL-6, TNF-α). When exposed to HF serum, CB-MSC maintained basic MSC properties as confirmed by immunophenotyping and differentiation assays, but clonogenic cells were reduced in number and gave rise to substantially smaller colonies in the CFU-F assay. Cell cycle analysis pointed towards G1 arrest. CB-MSC metabolic activity and proliferation were significantly impaired for up to 3 days as measured by MTS turnover, BrdU incorporation and DAPI + nuclei counting. On day 5, however, CB-MSC growth kinetics approached control serum levels, though protein expression of cell cycle inhibitors (p21, p27), and apoptosis marker Caspase 3 remained elevated. Signal transduction included the stress and cytokine-induced JNK and ERK1/2 MAP kinase pathways. Conclusions Heart failure temporarily inhibits clonality and proliferation of “healthy” juvenile MSC in vitro. Further studies should address the in vivo and clinical relevance of this finding.
Collapse
Affiliation(s)
- Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Current world literature. Curr Opin Cardiol 2013; 28:259-68. [PMID: 23381096 DOI: 10.1097/hco.0b013e32835ec472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Koutroumpi M, Dimopoulos S, Psarra K, Kyprianou T, Nanas S. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects. World J Cardiol 2012; 4:312-326. [PMID: 23272272 PMCID: PMC3530787 DOI: 10.4330/wjc.v4.i12.312] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/31/2012] [Accepted: 11/06/2012] [Indexed: 02/06/2023] Open
Abstract
Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations.
Collapse
Affiliation(s)
- Matina Koutroumpi
- Matina Koutroumpi, Stavros Dimopoulos, Serafim Nanas, Cardiopulmonary Exercise Testing and Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece
| | | | | | | | | |
Collapse
|
27
|
Moderate-to-high-intensity training and a hypocaloric Mediterranean diet enhance endothelial progenitor cells and fitness in subjects with the metabolic syndrome. Clin Sci (Lond) 2012; 123:361-73. [DOI: 10.1042/cs20110477] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A reduction in EPC (endothelial progenitor cell) number could explain the development and progression of atherosclerosis in the MetS (metabolic syndrome). Although much research in recent years has focused on the Mediterranean dietary pattern and the MetS, the effect of this diet with/without moderate-to-high-intensity endurance training on EPCs levels and CrF (cardiorespiratory fitness) remains unclear. In the present study, the objective was to assess the effect of a Mediterranean diet hypocaloric model with and without moderate-to-high-intensity endurance training on EPC number and CrF of MetS patients. Thus 45 MetS patients (50–66 years) were randomized to a 12-week intervention with the hypocaloric MeD (Mediterranean diet) or the MeDE (MeD plus moderate-to-high-intensity endurance training). Training included two weekly supervised sessions [80% MaxHR (maximum heart rate); leg and arm pedalling] and one at-home session (65–75% MaxHR; walking controlled by heart rate monitors). Changes in: (i) EPC number [CD34+KDR+ (kinase insert domain-containing receptor)], (ii) CrF variables and (iii) MetS components and IRH (ischaemic reactive hyperaemia) were determined at the end of the study. A total of 40 subjects completed all 12 weeks of the study, with 20 in each group. The MeDE led to a greater increase in EPC numbers and CrF than did the MeD intervention (P≤0.001). In addition, a positive correlation was observed between the increase in EPCs and fitness in the MeDE group (r=0.72; r2=0.52; P≤0.001). Body weight loss, insulin sensitivity, TAGs (triacylglycerols) and blood pressure showed a greater decrease in the MeDE than MeD groups. Furthermore, IRH was only improved after the MeDE intervention. In conclusion, compliance with moderate-to-high-intensity endurance training enhances the positive effects of a model of MeD on the regenerative capacity of endothelium and on the fitness of MetS patients.
Collapse
|
28
|
Van Craenenbroeck EM, Conraads VM. Mending injured endothelium in chronic heart failure: a new target for exercise training. Int J Cardiol 2012; 166:310-4. [PMID: 22578733 DOI: 10.1016/j.ijcard.2012.04.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 12/16/2022]
Abstract
The recognition that poor cardiac performance is not the sole determinant of exercise intolerance in CHF patients has altered the target of exercise training. Endothelial dysfunction impairs exercise-induced vasodilation, thereby limiting oxygen supply to working muscles and increasing ventricular afterload. Since the 1990s, it has become clear that partial correction of this maladaptive reaction is a premise for the success of exercise training. Growing evidence indicates that increased NO bioavailability and reduction in oxidative stress result from regular physical activity. However, the basic concept of endothelial dysfunction has shifted from a pure "damage model" to a more dynamic process in which endothelial repair fails to keep pace with local injury. Indeed, recent evidence indicates that endothelial progenitor cells (EPC) and circulating angiogenic cells (CAC) contribute substantially to preservation of a structurally and functionally intact endothelium. In chronic heart failure, however, these endogenous repair mechanisms appear to be disrupted. In this review, we aim to give an overview on what is currently known about the influence of physical exercise on recruitment of EPC and activation of CAC in this particular patient group.
Collapse
|
29
|
Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 2012; 110:624-37. [PMID: 22343557 DOI: 10.1161/circresaha.111.243386] [Citation(s) in RCA: 515] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diverse subsets of endothelial progenitor cells (EPCs) are used for the treatment of ischemic diseases in clinical trials, and circulating EPCs levels are considered as biomarkers for coronary and peripheral artery disease. However, despite significant steps forward in defining their potential for both therapeutic and diagnostic purposes, further progress has been mired by unresolved questions around the definition and the mechanism of action of EPCs. Diverse culturing methods and detection of various combinations of different surface antigens were used to enrich and identify EPCs. These attempts were particularly challenged by the close relationship and overlapping markers of the endothelial and hematopoietic lineages. This article will critically review the most commonly used protocols to define EPCs by culture assays or by fluorescence-activated cell sorter in the context of their therapeutic or diagnostic use. We also delineate new research avenues to move forward our knowledge on EPC biology.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, University of Frankfurt, Theodor-Stern-Kai 7, Frankfurt, Germany
| | | | | |
Collapse
|