1
|
Gómez-Ochoa SA, Möhn M, Malz MV, Ottenheijm R, Lanzer JD, Wiedmann F, Kraft M, Muka T, Schmidt C, Freichel M, Levinson RT. The transcriptional landscape of atrial fibrillation: A systematic review and meta-analysis. PLoS One 2025; 20:e0323534. [PMID: 40446189 PMCID: PMC12124854 DOI: 10.1371/journal.pone.0323534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/09/2025] [Indexed: 06/02/2025] Open
Abstract
BACKGROUND Despite advances in understanding atrial fibrillation (AF) pathophysiology, there is limited agreement on the key genes driving its pathophysiology. To understand the genome-wide transcriptomic landscape, we performed a meta-analysis from studies reporting gene expression patterns in atrial heart tissue from patients with AF and controls in sinus rhythm (SR). METHODS Bibliographic databases and data repositories were systematically searched for studies reporting gene expression patterns in atrial heart auricle tissue from patients with AF and controls in sinus rhythm. We calculated the pooled differences in individual gene expression from fourteen studies comprising 534 samples (353 AF and 181 SR) to create a consensus signature (CS), from which we identified differentially regulated pathways, estimated transcription factor activity, and evaluated its performance in classifying validation samples as AF or SR. RESULTS Despite heterogeneity in the top differentially expressed genes across studies, the AF-CS in both chambers were robust, showing a better performance in classifying AF status than individual study signatures. Functional analysis revealed commonality in the dysregulated cellular processes between chambers, including extracellular matrix remodeling (highlighting epithelial mesenchymal transition, actin filament organization, and actin binding hallmark pathways), cardiac conduction (including cardiac muscle cell action potential, gated channel activity, and cation channel activity pathways), metabolic derangements (highlighting oxidative phosphorylation and asparagine n linked glycosylation), and innate immune system activity (mainly neutrophil degranulation, and TNFα signaling pathways). Finally, the AF-CS showed a good performance differentiating AF from controls in three validation datasets (two from peripheral blood and one from left ventricle samples). CONCLUSIONS Despite variability in individual studies, this meta-analysis elucidated conserved molecular pathways involved in AF pathophysiology across its phenotypes and the potential of a transcriptomic signature in identifying AF from peripheral blood samples. Our work highlights the value of integrating published transcriptomics data in AF and the need for better data deposition practices.
Collapse
Affiliation(s)
- Sergio Alejandro Gómez-Ochoa
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Malte Möhn
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Faculty of Medicine, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | | | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Jan D. Lanzer
- Institute for Computational Biomedicine, Heidelberg University Faculty of Medicine, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany,
| | - Manuel Kraft
- Department of Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany,
| | | | - Constanze Schmidt
- Department of Cardiology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany,
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rebecca T. Levinson
- Department of General Internal Medicine and Psychosomatics, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- Institute for Computational Biomedicine, Heidelberg University Faculty of Medicine, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Bielawiec P, Harasim-Symbor E, Gołaszewska K, Chabowski A, Hodun K, Sztolsztener K. Apolipoprotein and sphingolipid measurements: Can be used in the clinical practice of atrial fibrillation diagnosing and evaluating the cryoablation effectiveness? PLoS One 2025; 20:e0315905. [PMID: 40036186 PMCID: PMC11878926 DOI: 10.1371/journal.pone.0315905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/29/2024] [Indexed: 03/06/2025] Open
Abstract
Atrial fibrillation (AF) has become the most common arrhythmia of clinical importance. A well-established and recommended therapeutic option for AF is the balloon-based cryoablation (CBA) method. There are still no sensitive biomarkers for AF prediction and cryoablation effectiveness assessment, therefore in our prospective study, we examined the plasma content of apolipoproteins (Apo) and sphingolipids, as well as the distribution of selected sphingolipids among lipoprotein fractions. The study included 33 patients with AF on admission and 24 h after cryoablation therapy, while 20 healthy volunteers were recruited to the control group. Plasma Apo concentrations were determined using a multiplex assay kit measuring fluorescence signal, whereas the high-performance liquid chromatography (HPLC) method was applied to assess the total plasma sphingolipid levels as well as their content in isolated lipoprotein fractions. Our results showed that cryoballoon ablation in AF patients markedly reduced the level of almost all Apo compared to the individuals from the control and Pre-CBA groups (Apo-A1: -25.9% and -20.0%, Apo-A2: -19.9% and -17.3%, Apo-B: -26.8% and -14.4%, Apo-C1: -20.3% and -13.4%, Apo-D: -15.9% and -22.2%, Apo-E: -18.3% and -14.3%, and Apo-J: -36.4% and -21.5%, p < 0.05, respectively). Importantly, the area under the curve of Apo-J (AUC 0.81; 95% CI, 0.71-0.92) indicates that it might be a useful biomarker of cryotherapy success in AF patients. Moreover, we also observed a pronounced increase in sphinganine (Sa; +33.5%), sphingosine (So; +24.6%), sphinganine-1-phosphate (Sa1P; +34.3%), and sphingosine-1-phosphate (So1P; +22.3%) concentrations in the Pre-CBA group in comparison with controls. This is the first study that evaluates such a broad panel of Apo and sphingolipids in patients with AF undergoing the CBA procedure, however, to confirm whether any of these parameters could be a clinically useful biomarker for predicting AF or assessing the effectiveness of treatment, further research will be necessary due to limitations of the study.
Collapse
Affiliation(s)
- Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, Białystok, Poland
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Białystok, Poland
| | - Karolina Gołaszewska
- Department of Cardiology, Ministry of Interior and Administration Hospital in Bialystok, Białystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Białystok, Poland
| | - Katarzyna Hodun
- Department of Physiology, Medical University of Bialystok, Białystok, Poland
| | | |
Collapse
|
4
|
Qian N, Jin J, Gao Y, Liu J, Wang Y. Sex Differences in Atrial Fibrillation: Evidence from Circulating Metabolites. Metabolites 2025; 15:170. [PMID: 40137135 PMCID: PMC11943541 DOI: 10.3390/metabo15030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Significant sex differences exist in atrial fibrillation (AF). Better understanding of its underlying mechanism would help AF management. This study aimed to investigate the contribution of circulating metabolites to sex differences in AF and the association between them. Methods: A total of 108 patients with AF were enrolled. Untargeted metabolomics were performed in plasma samples of male and female patients. Correlation analysis with clinical characteristics and Mendelian randomization were used to identify sex-specific metabolites associated with AF, which was further validated in additional patients. Transcriptomics data of the left atrium were used to investigate the molecular alteration of the left atrium responding to identified sex-specific circulating metabolites. The effect of selected sex-specific metabolites on cardiomyocytes was further investigated. Results: A total of 60 annotated metabolites were found with different levels between male and female patients. Among these sex-specific metabolites, three metabolites, 7-Methylguanosine, succinic acid, and N-Undecylbenzenesulfonic acid, were positively related to the left atrial remodeling. Additionally, succinic acid was significantly associated with increased risk of AF (OR = 1.26; 95% CI: 1.13 to 1.40; p < 0.001). And, SUCLA2, the gene of succinic acid metabolism, was significantly increased in the left atrium of male patients (fold change = 1.53; p = 0.008). Treatment with succinic acid led to cardiomyocyte hypertrophy and mitochondrial dysfunction. Conclusions: This study highlights sex differences in circulating metabolites in patients with AF and identifies the associations between sex-specific metabolites and AF. succinic acid, which is much higher in male patients, contributes to the process of AF.
Collapse
Affiliation(s)
- Ningjing Qian
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Junyan Jin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Jiayi Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Yaping Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; (N.Q.); (J.J.); (Y.G.); (J.L.)
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
5
|
Yang X, Lan W, Lin C, Zhu C, Ye Z, Chen Z, Zheng G. Atrial fibrillation risk model based on LASSO and SVM algorithms and immune infiltration of key mitochondrial energy metabolism genes. Sci Rep 2025; 15:6681. [PMID: 39994392 PMCID: PMC11850640 DOI: 10.1038/s41598-025-91047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
Atrial fibrillation (AF) is a predominant cardiac arrhythmia with unclear etiology. This study used bioinformatics and machine learning to explore the relationship between mitochondrial energy metabolism-related genes (MEMRGs) and immune infiltration in AF. The datasets GSE31821, GSE41177, and GSE79768 were retrieved from the Gene Expression Omnibus (GEO) database, and differential expression analysis identified 59 mitochondrial energy metabolism-related differentially expressed genes (MEMRDEGs) associated with AF. Key MEMRDEGs were selected using the least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM) methods, and a diagnostic model was developed. Immune infiltration was assessed using single-sample gene set enrichment analysis (ssGSEA) and the microenvironment cell population counter (MCPcounter). The diagnostic model, based on the key genes ACAT1, ALDH1L2, HTT, OGDH, and SLC25A3, achieved an area under the curve (AUC) of 0.903. Significant differences in immune cell composition were observed between the AF and control groups. ALDH1L2 was positively correlated with most immune cells, while SLC25A3 showed a negatively correlated with the monocytic lineage. The findings indicate that MEMRGs interact with immune responses in AF, offering insights into the potential molecular mechanisms and therapeutic targets for AF.
Collapse
Affiliation(s)
- Xunjie Yang
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Weng Lan
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Chunyi Lin
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Chunyu Zhu
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Zicong Ye
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Zhishi Chen
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China
| | - Guian Zheng
- Department of Cardiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
6
|
Belfiori M, Lazzari L, Hezzell M, Angelini GD, Dong T. Transcriptomics, Proteomics and Bioinformatics in Atrial Fibrillation: A Descriptive Review. Bioengineering (Basel) 2025; 12:149. [PMID: 40001669 PMCID: PMC11851880 DOI: 10.3390/bioengineering12020149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
Atrial fibrillation (AF) is the most frequent cardiac arrhythmia, with an estimated five million cases globally. This condition increases the likelihood of developing cardiovascular complications such as thromboembolic events, with a fivefold increase in risk of both heart failure and stroke. Contemporary challenges include a better understanding AF pathophysiology and optimizing therapeutical options due to the current lack of efficacy and adverse effects of antiarrhythmic drug therapy. Hence, the identification of novel biomarkers in biological samples would greatly impact the diagnostic and therapeutic opportunities offered to AF patients. Long noncoding RNAs, micro RNAs, circular RNAs, and genes involved in heart cell differentiation are particularly relevant to understanding gene regulatory effects on AF pathophysiology. Proteomic remodeling may also play an important role in the structural, electrical, ion channel, and interactome dysfunctions associated with AF pathogenesis. Different devices for processing RNA and proteomic samples vary from RNA sequencing and microarray to a wide range of mass spectrometry techniques such as Orbitrap, Quadrupole, LC-MS, and hybrid systems. Since AF atrial tissue samples require a more invasive approach to be retrieved and analyzed, blood plasma biomarkers were also considered. A range of different sample preprocessing techniques and bioinformatic methods across studies were examined. The objective of this descriptive review is to examine the most recent developments of transcriptomics, proteomics, and bioinformatics in atrial fibrillation.
Collapse
Affiliation(s)
- Martina Belfiori
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (L.L.)
| | - Lisa Lazzari
- School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy; (M.B.); (L.L.)
| | - Melanie Hezzell
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK;
| | - Gianni D. Angelini
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK;
| | - Tim Dong
- Bristol Heart Institute, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK;
| |
Collapse
|
7
|
Liu J, Zhou T, Bao Y, Lin C, Chen Q, Dai Y, Zhang N, Pan W, Jin Q, Lu L, Zhao Q, Ling T, Wu L. Identification of senescence-related genes for potential therapeutic biomarkers of atrial fibrillation by bioinformatics, human histological validation, and molecular docking. Heliyon 2024; 10:e37366. [PMID: 39381104 PMCID: PMC11456832 DOI: 10.1016/j.heliyon.2024.e37366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 10/10/2024] Open
Abstract
Background Cellular senescence is pivotal in the occurrence and progression of atrial fibrillation (AF). This study aimed to identify senescence-related genes that could be potential therapeutic biomarkers for AF. Methods AF-related differentially expressed genes (DEGs) were identified using the Gene Expression Omnibus dataset. Weighted gene co-expression network analysis (WGCNA) was used to analyze important modules and potential hub genes. Integrating senescence-related genes, potential biomarkers were identified. Their differential expression levels were then validated in human atrial tissue, HL-1 cells, and Angiotensin II-infused mice. Finally, molecular docking analysis was conducted to predict potential interactions between potential biomarkers and the senolytic drug Navitoclax. Results We identified seven genes common to AF-related DEGs and senescence-related genes. Three significant modules were selected from WGCNA analysis. Taken together, three senescence-related genes (ETS1, SP1, and WT1) were found to be significantly associated with AF. Protein-protein interaction network analysis revealed biological connections among the predicted target genes of ETS1, SP1, and WT1. Notably, ETS1, SP1, and WT1 exhibited significant differential expression in clinical samples as well as in vitro and in vivo models. Molecular docking revealed favorable binding affinity between senolytic Navitoclax and these potential biomarkers. Conclusions This study highlights ETS1, SP1, and WT1 as crucial senescence-related genes associated with AF, offering potential therapeutic targets, with supportive evidence of binding affinity with senolytic Navitoclax. These findings provide novel insights into AF pathogenesis from a senescence perspective.
Collapse
Affiliation(s)
- Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
8
|
Zhang J, Zhang B, Li T, Li Y, Zhu Q, Wang X, Lu T. Exploring the shared biomarkers between cardioembolic stroke and atrial fibrillation by WGCNA and machine learning. Front Cardiovasc Med 2024; 11:1375768. [PMID: 39267804 PMCID: PMC11390589 DOI: 10.3389/fcvm.2024.1375768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Background Cardioembolic Stroke (CS) and Atrial Fibrillation (AF) are prevalent diseases that significantly impact the quality of life and impose considerable financial burdens on society. Despite increasing evidence of a significant association between the two diseases, their complex interactions remain inadequately understood. We conducted bioinformatics analysis and employed machine learning techniques to investigate potential shared biomarkers between CS and AF. Methods We retrieved the CS and AF datasets from the Gene Expression Omnibus (GEO) database and applied Weighted Gene Co-Expression Network Analysis (WGCNA) to develop co-expression networks aimed at identifying pivotal modules. Next, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the shared genes within the modules related to CS and AF. The STRING database was used to build a protein-protein interaction (PPI) network, facilitating the discovery of hub genes within the network. Finally, several common used machine learning approaches were applied to construct the clinical predictive model of CS and AF. ROC curve analysis to evaluate the diagnostic value of the identified biomarkers for AF and CS. Results Functional enrichment analysis indicated that pathways intrinsic to the immune response may be significantly involved in CS and AF. PPI network analysis identified a potential association of 4 key genes with both CS and AF, specifically PIK3R1, ITGAM, FOS, and TLR4. Conclusion In our study, we utilized WGCNA, PPI network analysis, and machine learning to identify four hub genes significantly associated with CS and AF. Functional annotation outcomes revealed that inherent pathways related to the immune response connected to the recognized genes might could pave the way for further research on the etiological mechanisms and therapeutic targets for CS and AF.
Collapse
Affiliation(s)
- Jingxin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Bingbing Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tengteng Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Zhu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xiting Wang
- Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Tao Y, Feng T, Zhou L, Han L. Identification of key differentially expressed immune related genes in patients with persistent atrial fibrillation: an integrated bioinformation analysis. BMC Cardiovasc Disord 2024; 24:346. [PMID: 38977948 PMCID: PMC11229288 DOI: 10.1186/s12872-024-04007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE We aimed to investigate key differentially expressed immune related genes in persistent atrial fibrillation. METHODS Gene expression profiles were downloaded from Gene Expression Omnibus (GEO) using "GEO query" package. "limma" package and "sva" package were used to conduct normalization and eliminate batch effects, respectively. We screened out differentially expressed genes (DEGs) based on "limma" package with the standard of |log fold change (FC)| ≥ 1.5 and false discovery rate (FDR) < 0.05. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed by "clusterProfler" package. We further applied LASSO to select key DEGs, and intersected key DEGs with immune related genes from ImmPort database. The ROC curve of each DEIRG was constructed to evaluate its diagnostic efficiency for AF. RESULTS A total of 103 DEGs we were screened out, of them, 48 genes were down-regulated and 55 genes were up-regulated. Result of functional enrichment analysis show that, most of DEGs were related to immune response, inflammation, and oxidative stress. Ultimately, CYBB, RORB, S100A12, and CHGB were determined as key DEIRGs, each of which displayed a favor efficiency for diagnosing persistent AF. CONCLUSION CYBB, RORB, S100A12, and CHGB were identified as key DEIRGs in persistent AF, and future studies are needed to further explore the underlying roles of CYBB, RORB, S100A12, and CHGB in persistent AF.
Collapse
Affiliation(s)
- Yijing Tao
- Department of Cardiology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Changshu, 215500, China
| | - Tonghui Feng
- Department of Anesthesia Surgery, Zhejiang Hospital, Hangzhou, 310000, China.
| | - Lucien Zhou
- Independent researcher, Changshu, 215500, China.
| | - Leng Han
- Department of Cardiology, Changshu Hospital Affiliated to Soochow University, Changshu No. 1 People's Hospital, Changshu, 215500, China.
| |
Collapse
|
10
|
Fagone P, Mangano K, Basile MS, Munoz-Valle JF, Perciavalle V, Nicoletti F, Bendtzen K. Evaluation of Toll-like Receptor 4 (TLR4) Involvement in Human Atrial Fibrillation: A Computational Study. Genes (Basel) 2024; 15:634. [PMID: 38790263 PMCID: PMC11121426 DOI: 10.3390/genes15050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
In the present study, we have explored the involvement of Toll-like Receptor 4 (TLR4) in atrial fibrillation (AF), by using a meta-analysis of publicly available human transcriptomic data. The meta-analysis revealed 565 upregulated and 267 downregulated differentially expressed genes associated with AF. Pathway enrichment analysis highlighted a significant overrepresentation in immune-related pathways for the upregulated genes. A significant overlap between AF differentially expressed genes and TLR4-modulated genes was also identified, suggesting the potential role of TLR4 in AF-related transcriptional changes. Additionally, the analysis of other Toll-like receptors (TLRs) revealed a significant association with TLR2 and TLR3 in AF-related gene expression patterns. The examination of MYD88 and TICAM1, genes associated with TLR4 signalling pathways, indicated a significant yet nonspecific enrichment of AF differentially expressed genes. In summary, this study offers novel insights into the molecular aspects of AF, suggesting a pathophysiological role of TLR4 and other TLRs. By targeting these specific receptors, new treatments might be designed to better manage AF, offering hope for improved outcomes in affected patients.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | | | - José Francisco Munoz-Valle
- Institute for Research in Biomedical Sciences, University Center for Health Sciences, University of Guadalajara, Guadalajara 44100, Jalisco, Mexico
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet University Hospital, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Zhou T, Liu J, Bao Y, Ling T, Lin C, Pan W, Zhang N, Wei Y, Xie Y, Sha Z, Li X, Wu G, Chen Q, Lu L, Jin Q, Dai Y, Wu L. Soluble PILRα: A novel plasma biomarker for atrial fibrillation progression and recurrence after catheter ablation. Clin Chim Acta 2024; 553:117703. [PMID: 38097129 DOI: 10.1016/j.cca.2023.117703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND We aimed to identify plasma biomarkers of atrial fibrillation (AF) progression and recurrence after catheter ablation. METHODS Using AF gene profiling data from GEO database, a weighted gene co-expression network analysis (WGCNA) was conducted to determine the most significant module and hub genes associated with AF. Subsequently, 318 consecutively admitted patients who had undergone radiofrequency catheter ablation were enrolled in this study. RESULTS WGCNA results revealed that paired immunoglobulin-like type 2 receptor alpha (PILRA) was the only black module gene highly correlated with clinical traits. Plasma soluble PILRα (sPILRα) levels were elevated in patients with AF and significantly elevated in patients with persistent versus paroxysmal AF (4.64 ± 2.74 vs. 3.04 ± 1.56 ng/mL, p < 0.001). Elevated sPILRα level was an independent risk factor for AF progression even after adjusting for traditional factors (adjusted odds ratio: 3.06, 95 % confidence interval [CI]: 1.88-5.27, p < 0.001) and AF recurrence after catheter ablation in patients with persistent AF (adjusted hazards ratio: 4.41, 95 % CI: 1.22-15.92, p = 0.023). CONCLUSIONS WGCNA screening of GEO microarray gene profiling data showed PILRA expression levels to be correlated with AF progression and recurrence after catheter ablation in patients with persistent AF.
Collapse
Affiliation(s)
- Taojie Zhou
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingmeng Liu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangyang Bao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyou Ling
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changjian Lin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenqi Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Wei
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Xie
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimo Sha
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiang Li
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanhua Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiujing Chen
- Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Lu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qi Jin
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yang Dai
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institute of Cardiovascular Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Liqun Wu
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Zhou Y, Sun C, Ma Y, Huang Y, Wu K, Huang S, Lin Q, Zhu J, Ning Z, Liu N, Tu T, Liu Q. Identification and validation of aging-related genes in atrial fibrillation. PLoS One 2023; 18:e0294282. [PMID: 37956134 PMCID: PMC10642816 DOI: 10.1371/journal.pone.0294282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in the clinic. Aging plays an essential role in the occurrence and development of AF. Herein, we aimed to identify the aging-related genes associated with AF using bioinformatics analysis. Transcriptome profiles of AF were obtained from the GEO database. Differential expression analysis was performed to identify AF-specific aging-related genes. GO and KEGG enrichment analyses were performed. Subsequently, the LASSO, SVM-RFE, and MCC algorithms were applied to screen aging-related genes. The mRNA expression of the screened genes was validated in the left atrial samples of aged rapid atrial pacing-induced AF canine models and their counterparts. The ROC curves of them were drawn to evaluate their diagnostic potential. Moreover, CIBERSORT was used to estimate immune infiltration. A correlation analysis between screened aging-related genes and infiltrating immune cells was performed. A total of 24 aging-related genes were identified, which were found to be mainly involved in the FoxO signaling pathway, PI3K-Akt signaling pathway, longevity regulating pathway, and peroxisome according to functional enrichment analysis. LASSO, SVM-RFE, and MCC algorithms identified three genes (HSPA9, SOD2, TXN). Furthermore, the expression levels of HSPA9 and SOD2 were validated in aged rapid atrial pacing-induced AF canine models. HSPA9 and SOD2 could be potential diagnostic biomarkers for AF, as evidenced by the ROC curves. Immune infiltration and correlation analysis revealed that HSPA9 and SOD2 were related to immune cell infiltrates. Collectively, these findings provide novel insights into the potential aging-related genes associated with AF. HSPA9 and SOD2 may play a significant role in the occurrence and development of AF.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Chao Sun
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingxu Ma
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yunyin Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Shengyuan Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Jiayi Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Zuodong Ning
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Ningyuan Liu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Tao Tu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
13
|
Sang W, Wang L, Yan X, Sun H, Han Y, Wang F, Tang B, Li Y. Establishment of Risk Model and Analysis of Immunoinfiltration Based on Mitophagy-Related Associated Genes in Atrial Fibrillation. J Inflamm Res 2023; 16:2561-2583. [PMID: 37346800 PMCID: PMC10281282 DOI: 10.2147/jir.s415410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Objective Atrial fibrillation (AF) is a common tachyarrhythmia whose pathogenesis remains elusive. In the present study, we aimed to investigate the pathological mechanism of mitophagy and immunoinfiltration in AF. Methods First, we identified differentially expressed mitophagy-related genes (DEMRGs) based on the GSE79768 and GSE115574 datasets, subjecting them to functional enrichment analysis. STRING, TRRUST, miRNet, miRwalk, and Cytoscape were used to explore the potential regulatory roles of downstream signaling pathways. Subsequently, the random forest method was used to construct the AF risk model, and the DEMRGs most correlated with AF risk were determined by combining the Gini index. ssGSEA algorithm, NMF algorithm, and unsupervised clustering were used to subdivide AF molecular types. We then studied the characteristics of mitophagy- and immune infiltration-related genes in AF. Ultimately, we detected the expression of key genes in canine atrial tissues and HL-1 cells by immunofluorescence and Western blot. Results Mitophagy and immune infiltration were significantly enriched and activated in AF samples. Thirty-seven DEMRGs were screened, of which MAPK1, VDAC1, MAPK14, and MTERF3 were most associated with AF risk. The risk model based on these could identify patients at a high risk of AF. The infiltration of immunocells such as mast cells and neutrophils was significantly different among AF types. Finally, expression verification indicated that the expression trend of four key genes in canine atrial muscle tissue and HL-1 cells was consistent. Conclusion We found that mitophagy may participate in AF progression through immune activation. In addition, the AF risk prediction model composed of VDAC1, MAPK1, MAPK14, and MTERF3 has a good AF prediction performance, which provides new ideas for the study of AF pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xiaoji Yan
- Department of Emergency, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Huaxin Sun
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yafan Han
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
14
|
Shi W, Li X, Su Y, Liu D, Wu L, Li S, He W, Zhong G, Jiang Z. PILRA is associated with immune cells infiltration in atrial fibrillation based on bioinformatics and experiment validation. Front Cardiovasc Med 2023; 10:1082015. [PMID: 37396579 PMCID: PMC10311564 DOI: 10.3389/fcvm.2023.1082015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Background and aims inflammation plays an important role in atrial fibrillation (AF). In this study, we investigated the significance of immune cell infiltration in AF and identified the potential Hub genes involved in the regulation of immune cell infiltration in AF. Methods we obtained AF datasets from the GEO database and analyzed them for obtaining differentially expressed genes (DEGs) by R software. Then, we performed GO, KEGG, and GSEA enrichment analyses of DEGs. The Hub genes of AF were determined by least absolute shrinkage selection operator (LASSO) regression analysis and weighted gene co-expression network analysis (WGCNA). Their validation was verified by using quantitative polymerase chain reaction (qPCR) in the AF rat model. Finally, we used a single sample GSEA (ssGSEA) to analyze immune cell infiltration and its relationship with hub genes. Results We obtained 298 DGEs from the heatmap and found that DGEs were closely related to inflammation, immunity, and cytokine interactions by enrichment analyses. We obtained 10 co-expression modules by WGCNA. Among them, the module including CLEC4A, COTL1, EVI2B, FCER1G, GAPT, HCST, NCF2, PILRA, TLR8, and TYROBP had the highest correlation with AF. Four Hub genes (PILRA, NCF2, EVI2B, GAPT) were obtained further by LASSO analysis. The results suggested that the expression level of PILRA was significantly elevated in the rats with AF by qPCR, compared to the rats without AF. The results revealed that the infiltration of neutrophils, macrophages, monocytes, mast cells, immature B cells, myeloid-derived suppressor cell (MDSC), dendritic cell, and T cells and their partial subpopulations were closely related to AF by ssGSEA analysis, and PILRA was positively correlated with immature B cell, monocyte, macrophage, mast cell, dendritic cell, and T cells and their partial subpopulations by Spearman correlation analysis. Conclusions PILRA was closely related to multiple types of immune cell infiltration, which may be associated with AF. PILRA may be a novel target of intervention for AF.
Collapse
Affiliation(s)
- Weihua Shi
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiaoli Li
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yongxing Su
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Dezhao Liu
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Liying Wu
- Department of Pharmacy, Guangxi Zhuang Autonomous Region People’s Hospital, Nanning, China
| | - Shuo Li
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Wenxiu He
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guoqiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Kamihara T, Hirashiki A, Kokubo M, Shimizu A. Transcriptome Discovery of Genes in the Three Phases of Autophagy That Are Upregulated During Atrial Fibrillation. Circ Rep 2023; 5:114-122. [PMID: 37025933 PMCID: PMC10072901 DOI: 10.1253/circrep.cr-22-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Autophagy may contribute to the maintenance of atrial fibrillation (AF), but no previous study has concurrently surveyed all 3 phases of autophagy, namely autophagosome formation, lysosome formation, and autophagosome-lysosome fusion. Here we aimed to identify disorders involving various phases of autophagy during AF. Methods and Results: We used bioinformatic techniques to analyze publicly available DNA microarray datasets from the left atrium (LA) and right atrium (RA) of 7 patients with AF and 6 patients with normal sinus rhythm who underwent valvular surgeries. We compared gene expression levels in the LA (AF-LA) and RA of patients with AF with those in the LA and RA of patients with normal sinus rhythm. Several differentially expressed genes in the AF-LA sample were significantly associated with the Gene Ontogeny term 'Autophagy', indicating that the expression of autophagic genes was specifically altered in this dataset. In particular, the expression of genes known or suspected to be involved in autophagosome formation (autophagy related 5 [ATG5], autophagy related 10 [ATG10], autophagy related 12 [ATG12], and light chain 3B [LC3B]), lysosome formation (lysosomal associated membrane protein 1 [LAMP1] and lysosomal associated membrane protein 2 [LAMP2]), and autophagosome-lysosome fusion (synaptosome associated protein 29 [SNAP29], SNAP associated protein [SNAPIN], and syntaxin 17 [STX17]) was significantly upregulated in the LA-AF dataset. Conclusions: Autophagy is activated excessively in, and may perpetuate, AF.
Collapse
Affiliation(s)
- Takahiro Kamihara
- Department of Cardiology, National Center for Geriatrics and Gerontology Obu Japan
| | - Akihiro Hirashiki
- Department of Cardiology, National Center for Geriatrics and Gerontology Obu Japan
| | - Manabu Kokubo
- Department of Cardiology, National Center for Geriatrics and Gerontology Obu Japan
| | - Atsuya Shimizu
- Department of Cardiology, National Center for Geriatrics and Gerontology Obu Japan
| |
Collapse
|
16
|
Sun Z, Lin J, Zhang T, Sun X, Wang T, Duan J, Yao K. Combining bioinformatics and machine learning to identify common mechanisms and biomarkers of chronic obstructive pulmonary disease and atrial fibrillation. Front Cardiovasc Med 2023; 10:1121102. [PMID: 37057099 PMCID: PMC10086368 DOI: 10.3389/fcvm.2023.1121102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundPatients with chronic obstructive pulmonary disease (COPD) often present with atrial fibrillation (AF), but the common pathophysiological mechanisms between the two are unclear. This study aimed to investigate the common biological mechanisms of COPD and AF and to search for important biomarkers through bioinformatic analysis of public RNA sequencing databases.MethodsFour datasets of COPD and AF were downloaded from the Gene Expression Omnibus (GEO) database. The overlapping genes common to both diseases were screened by WGCNA analysis, followed by protein-protein interaction network construction and functional enrichment analysis to elucidate the common mechanisms of COPD and AF. Machine learning algorithms were also used to identify key biomarkers. Co-expression analysis, “transcription factor (TF)-mRNA-microRNA (miRNA)” regulatory networks and drug prediction were performed for key biomarkers. Finally, immune cell infiltration analysis was performed to evaluate further the immune cell changes in the COPD dataset and the correlation between key biomarkers and immune cells.ResultsA total of 133 overlapping genes for COPD and AF were obtained, and the enrichment was mainly focused on pathways associated with the inflammatory immune response. A key biomarker, cyclin dependent kinase 8 (CDK8), was identified through screening by machine learning algorithms and validated in the validation dataset. Twenty potential drugs capable of targeting CDK8 were obtained. Immune cell infiltration analysis revealed the presence of multiple immune cell dysregulation in COPD. Correlation analysis showed that CDK8 expression was significantly associated with CD8+ T cells, resting dendritic cell, macrophage M2, and monocytes.ConclusionsThis study highlights the role of the inflammatory immune response in COPD combined with AF. The prominent link between CDK8 and the inflammatory immune response and its characteristic of not affecting the basal expression level of nuclear factor kappa B (NF-kB) make it a possible promising therapeutic target for COPD combined with AF.
Collapse
Affiliation(s)
- Ziyi Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Lin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianya Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaoning Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianlin Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlong Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, China Academy of Chinese Medical Sciences, Beijing, China
- Correspondence: Kuiwu Yao
| |
Collapse
|
17
|
The Nine RNA Methylation Regulatory Gene Signature Is Associated with the Pathogenesis of Atrial Fibrillation by Modulating the Immune Microenvironment in the Atrial Tissues. DISEASE MARKERS 2023. [DOI: 10.1155/2023/7277369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background. Atrial fibrillation (AF) is the most common type of cardiac arrhythmias and a major cause of cardiovascular disease (CVD)-related deaths globally. RNA methylation is the most frequent posttranscriptional modification in the eukaryotic RNAs. Previous studies have demonstrated close associations between the status of RNA methylation and CVD. Methods. We comprehensively evaluated the relationship between RNA methylation and AF. Least absolute shrinkage and selection operator (LASSO) logistic regression analysis was used to establish a risk score model in AF. Biological functional analysis was used to explore the relationship between RNA methylation related signatures and immune microenvironment characteristics. Machine learning was used to recognize the outstanding RNA methylation regulators in AF. Results. There was a significant variant of the mRNA expression of RNA methylation regulators in AF. RNA methylation related risk score could predict the onset of AF and closely associated with immune microenvironment features. XG-Boost algorithm and SHAP recognized that NSUN3 and DCPS might play a key role in the development of AF. Meanwhile, NSUN3 and DCPS had potential diagnostic value in AF. Conclusion. RNA methylation regulatory genes are associated with the onset of AF by modulating the immune microenvironment. The nine AF risk-related RNA methylation regulatory gene signature is a potential diagnostic biomarker and therapeutic target for AF.
Collapse
|
18
|
Identification and Verification of Biomarkers and Immune Infiltration in Obesity-Related Atrial Fibrillation. BIOLOGY 2023; 12:biology12010121. [PMID: 36671813 PMCID: PMC9855995 DOI: 10.3390/biology12010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Obesity is an independent risk factor for atrial fibrillation (AF). However, the mechanisms underlying this crosstalk are still being uncovered. Co-differentially expressed genes (co-DEGs) of AF and obesity microarrays were identified by bioinformatics analysis. Subsequently, functional enrichment, cell-type enrichment, and protein-protein interaction network analyses of co-DEGs were carried out. Then, we validated the hub genes by qRT-PCR of patients' blood samples. Finally, CIBERSORT was utilized to evaluate the AF microarray to determine immune infiltration and the correlation between validated hub genes and immune cells. A total of 23 co-up-regulated DEGs in AF and obesity microarrays were identified, and these genes were enriched in inflammation- and immune-related function. The enriched cells were whole blood, CD33+ myeloid, and CD14+ monocytes. The hub genes were identified as MNDA, CYBB, CD86, FCGR2C, NCF2, LCP2, TLR8, HLA-DRA, LCP1, and PTPN22. All hub genes were only elevated in blood samples of obese-AF patients. The CIBERSORT analysis revealed that the AF patients' left atrial appendage had increased infiltration of naïve B cells and decreased infiltration of memory B cells. The hub genes were related positively to naïve B cells and negatively to memory B cells. Ten hub genes may serve as biomarkers for obesity-related AF. These findings may also aid in comprehending pathophysiological mechanisms for obesity-related AF.
Collapse
|
19
|
Chen Y, Ouyang T, Yin Y, Fang C, Tang CE, Luo J, Luo F. Analysis of infiltrated immune cells in left atriums from patients with atrial fibrillation and identification of circRNA biomarkers for postoperative atrial fibrillation. Front Genet 2022; 13:1003366. [PMID: 36568366 PMCID: PMC9780452 DOI: 10.3389/fgene.2022.1003366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Atrial fibrillation (AF) increases the risk of stroke and heart failure. Postoperative AF (POAF) increases the risk of mortality after cardiac surgery. This study aims to explore mechanisms underlying AF, analyze infiltration of immune cells in left atrium (LA) from patients with AF, and identify potential circular RNA (circRNA) biomarkers for POAF. Methods: Raw data of GSE797689, GSE115574, and GSE97455 were downloaded and processed. AF-related gene co-expression network was constructed using weighted gene correlation network analysis and enrichment analysis of genes in relevant module was conducted. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were applied to investigate pathways significantly enriched in AF group. Infiltration of immune cells was analyzed using single-sample GSEA. Differentially expressed genes (DEGs) between patients with or without AF were identified and competing endogenous RNA (ceRNA) networks of DEGs were constructed. To screen biomarkers for POAF, differentially expressed circRNAs (DEcircRNAs) between patients with or without POAF were identified. Intersection between DEcircRNAs and circRNAs in ceRNA networks of DEGs were extracted and circRNAs in the intersection were further screened using support vector machine, random forest, and neural network to identify biomarkers for POAF. Results: Three modules were found to be relevant with AF and enrichment analysis indicated that genes in these modules were enriched in synthesis of extracellular matrix and inflammatory response. The results of GSEA and GSVA suggested that inflammatory response-related pathways were significantly enriched in AF group. Immune cells like macrophages, mast cells, and neutrophils were significantly infiltrated in LA tissues from patients with AF. The expression levels of immune genes such as CHGB, HLA-DRA, LYZ, IGKV1-17 and TYROBP were significantly upregulated in patients with AF, which were correlated with infiltration of immune cells. ceRNA networks of DEGs were constructed and has_circ_0006314 and hsa_circ_0055387 were found to have potential predictive values for POAF. Conclusion: Synthesis of extracellular matrix and inflammatory response were main processes involved in development and progression of AF. Infiltration of immune cells was significantly different between patients with or without AF. Has_circ_0006314 and hsa_circ_0055387 were found to have potential predictive values for POAF.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Ouyang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yue Yin
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Fang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can-E Tang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, China,The Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, China
| | - Jingmin Luo
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Jingmin Luo, ; Fanyan Luo,
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Jingmin Luo, ; Fanyan Luo,
| |
Collapse
|
20
|
Colpitts ME, Caswell JL, Monteith G, Joshua J, O'Sullivan ML, Raheb S, Fonfara S. Cardiac gene activation varies between young and adult cats and in the presence of hypertrophic cardiomyopathy. Res Vet Sci 2022; 152:38-47. [PMID: 35917592 DOI: 10.1016/j.rvsc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Little is known about the difference of myocardial gene transcription in young and adult cats and how transcription is further modified in cats with hypertrophic cardiomyopathy (HCM) and with left atrial (LA) thrombus formation. We hypothesized that selected factors for coagulation, endothelial activation, inflammation, and remodelling are modified with age and are activated in the hearts of cats with HCM. Left atrial and ventricular (LV) samples from 12 cats with HCM (seven without (HCMwoAT] and five with LA thrombi [HCMwAT]), and six young (YC) and six adult (AC) control cats without cardiac disease were investigated for relative expression of the following genes using quantitative polymerase chain reaction: von Willebrand factor, a disintegrin and metalloproteinase with a thrombospondin type 1 motif member 13, platelet activating factor, E- and P-selectin, intercellular and vascular adhesion molecules-1, ß2-integrin, vascular endothelial growth factor, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), heat shock protein-70, and myocyte-specific enhancer factor 2C. Significant differences in gene activation were found between YC and AC, and YC and cats with HCM. Compared to AC, MCP-1 and IL-6 were significantly higher in cats with HCM. The presence of an LA thrombus was associated with higher IL-6 expression. These results illustrate the relevance of age and/or lifestyle on gene expression in the feline heart. The gene transcription pattern found in AC hearts might predispose cats to their characteristic cardiac remodelling processes and thrombus formation if disease occurs. It further supports the involvement of inflammation, but not coagulation and endothelial activation, in HCM.
Collapse
Affiliation(s)
- Michelle E Colpitts
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| | - Jeff L Caswell
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| | - Gabrielle Monteith
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada; Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| | - M Lynne O'Sullivan
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| | - Shari Raheb
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| | - Sonja Fonfara
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
21
|
Yang L, Chen Y, Huang W. Hub Genes Identification, Small Molecule Compounds Prediction for Atrial Fibrillation and Diagnostic Model Construction Based on XGBoost Algorithm. Front Cardiovasc Med 2022; 9:920399. [PMID: 35911532 PMCID: PMC9329605 DOI: 10.3389/fcvm.2022.920399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAtrial fibrillation (AF) is the most common sustained cardiac arrhythmia and engenders significant global health care burden. The underlying mechanisms of AF is remained to be revealed and current treatment options for AF have limitations. Besides, a detection system can help identify those at risk of developing AF and will enable personalized management.Materials and MethodsIn this study, we utilized the robust rank aggregation method to integrate six AF microarray datasets from the Gene Expression Omnibus database, and identified a set of differentially expressed genes between patients with AF and controls. Potential compounds were identified by mining the Connectivity Map database. Functional modules and closely-interacted clusters were identified using weighted gene co-expression network analysis and protein–protein interaction network, respectively. The overlapped hub genes were further filtered. Subsequent analyses were performed to analyze the function, biological features, and regulatory networks. Moreover, a reliable Machine Learning-based diagnostic model was constructed and visualized to clarify the diagnostic features of these genes.ResultsA total of 156 upregulated and 34 downregulated genes were identified, some of which had not been previously investigated. We showed that mitogen-activated protein kinase and epidermal growth factor receptor inhibitors were likely to mitigate AF based on Connectivity Map analysis. Four genes, including CXCL12, LTBP1, LOXL1, and IGFBP3, were identified as hub genes. CXCL12 was shown to play an important role in regulation of local inflammatory response and immune cell infiltration. Regulation of CXCL12 expression in AF was analyzed by constructing a transcription factor-miRNA-mRNA network. The Machine Learning-based diagnostic model generated in this study showed good efficacy and reliability.ConclusionKey genes involving in the pathogenesis of AF and potential therapeutic compounds for AF were identified. The biological features of CXCL12 in AF were investigated using integrative bioinformatics tools. The results suggested that CXCL12 might be a biomarker that could be used for distinguishing subsets of AF, and indicated that CXCL12 might be an important intermediate in the development of AF. A reliable Machine Learning-based diagnostic model was constructed. Our work improved understanding of the mechanisms of AF predisposition and progression, and identified potential therapeutic avenues for treatment of AF.
Collapse
|
22
|
Chen X, He XY, Dan Q, Li Y. FAM201A, a long noncoding RNA potentially associated with atrial fibrillation identified by ceRNA network analyses and WGCNA. BMC Med Genomics 2022; 15:80. [PMID: 35410298 PMCID: PMC8996407 DOI: 10.1186/s12920-022-01232-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Being the most common arrhythmia in clinic, atrial fibrillation (AF) causes various comorbidities to patients such as heart failure and stroke. LncRNAs were reported involved in pathogenesis of AF, yet, little is known about AF-associated lncRNAs. The present study aims to explore lncRNAs associated with AF susceptibility based on competing endogenous RNA (ceRNA) network analysis and weighted gene co-expression network analysis (WGCNA). Methods GSE41177 and GSE79768 datasets were obtained from the Gene Expression Omnibus (GEO) database. Competing endogenous RNA (ceRNA) network analysis was performed using GSE41177. Differentially expressed lncRNAs (DElncRNAs), mRNAs (DEmRNAs) between AF patients and patients with sinus rhythm (SR) were identified from GSE41177 using R software. Then, the ceRNA network was constructed based on DElncRNAs, the predicted target miRNAs and DEmRNAs. Weighted gene co-expression network analysis (WGCNA) was performed using GSE79768 to validate the AF-related lncRNAs identified from GSE41177. LncRNA modules and crucial lncRNAs relevant to AF and were identified. Results In summary, 18 DElncRNAs and 350 DEmRNAs were found between AF patients and SR patients. A total of 5 lncRNAs, 10 miRNAs, and 21 mRNAs were contained in the final ceRNA network. Taking into consideration both the ceRNA theory and inference scores from the comparative toxicogenomics database (CTD) database, the ceRNA axis FAM201A-miR-33a-3p-RAC3 was identified as mostly relevant to AF susceptibility. FAM201A (Gene significance, GS = − 0.62; Module membership, MM = 0.75) was also proved in the blue module, which was identified most highly relevant with AF by WGCNA. Conclusions These results demonstrated that decreased expression of FAM201A might be associated with susceptibility of AF. Working as the ceRNA to regulate RAC3 might be one function of FAM201A in AF susceptibility, which requires further exploration in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01232-w.
Collapse
Affiliation(s)
- Xi Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang-Yu He
- Department of Ophthalmology, The 958th Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Dan
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China
| | - Yang Li
- Department of Cardiology, General Hospital of Chinese People's Liberation Army, No. 28 Fu Xing Road, Beijing, 100853, China.
| |
Collapse
|
23
|
Wu LD, Li F, Chen JY, Zhang J, Qian LL, Wang RX. Analysis of potential genetic biomarkers using machine learning methods and immune infiltration regulatory mechanisms underlying atrial fibrillation. BMC Med Genomics 2022; 15:64. [PMID: 35305619 PMCID: PMC8934464 DOI: 10.1186/s12920-022-01212-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objective
We aimed to screen out biomarkers for atrial fibrillation (AF) based on machine learning methods and evaluate the degree of immune infiltration in AF patients in detail.
Methods
Two datasets (GSE41177 and GSE79768) related to AF were downloaded from Gene expression omnibus (GEO) database and merged for further analysis. Differentially expressed genes (DEGs) were screened out using “limma” package in R software. Candidate biomarkers for AF were identified using machine learning methods of the LASSO regression algorithm and SVM-RFE algorithm. Receiver operating characteristic (ROC) curve was employed to assess the diagnostic effectiveness of biomarkers, which was further validated in another independent validation dataset of GSE14975. Moreover, we used CIBERSORT to study the proportion of infiltrating immune cells in each sample, and the Spearman method was used to explore the correlation between biomarkers and immune cells.
Results
129 DEGs were identified, and CYBB, CXCR2, and S100A4 were identified as key biomarkers of AF using LASSO regression and SVM-RFE algorithm. Both in the training dataset and the validation dataset, CYBB, CXCR2, and S100A4 showed favorable diagnostic effectiveness. Immune infiltration analysis indicated that, compared with sinus rhythm (SR), the atrial samples of patients with AF contained a higher T cells gamma delta, neutrophils and mast cells resting, whereas T cells follicular helper were relatively lower. Correlation analysis demonstrated that CYBB, CXCR2, and S100A4 were significantly correlated with the infiltrating immune cells.
Conclusions
In conclusion, this study suggested that CYBB, CXCR2, and S100A4 are key biomarkers of AF correlated with infiltrating immune cells, and infiltrating immune cells play pivotal roles in AF.
Collapse
|
24
|
Herrera-Rivero M, Gandhi S, Witten A, Ghalawinji A, Schotten U, Stoll M. Cardiac chamber-specific genetic alterations suggest candidate genes and pathways implicating the left ventricle in the pathogenesis of atrial fibrillation. Genomics 2022; 114:110320. [PMID: 35218871 DOI: 10.1016/j.ygeno.2022.110320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/12/2022] [Accepted: 02/19/2022] [Indexed: 11/15/2022]
Abstract
It is believed that the atria play a predominant role in the initiation and maintenance of atrial fibrillation (AF), while the role of left ventricular dysfunction in the pathophysiology remains enigmatic. We sought to dissect chamber specificity of AF-associated transcriptional changes using RNA-sequencing. We performed intra- and inter-chamber differential expression analyses comparing AF against sinus rhythm to identify genes specifically dysregulated in human left atria, right atria, and left ventricle (LV), and integrated known AF genetic associations with expression quantitative trait loci datasets to inform the potential for disease causal contributions within each chamber. Inter-chamber patterns changed drastically. Vast AF-associated transcriptional changes specific to LV, enriched for biological pathway terms implicating mitochondrial function, developmental processes and immunity, were supported at the genetic level, but no major enrichments for candidate genes specific to the atria were found. Our observations suggest an active role of the LV in the pathogenesis of AF.
Collapse
Affiliation(s)
- Marisol Herrera-Rivero
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Shrey Gandhi
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany; Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Anika Witten
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Amer Ghalawinji
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Ulrich Schotten
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
25
|
Liu X, Zhong G, Li W, Zeng Y, Wu M. The Construction and Comprehensive Analysis of a ceRNA Immunoregulatory Network and Tissue-Infiltrating Immune Cells in Atrial Fibrillation. Int J Gen Med 2021; 14:9051-9066. [PMID: 34876841 PMCID: PMC8643171 DOI: 10.2147/ijgm.s338797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background At present, the mechanisms behind atrial fibrillation (AF) pathogenesis are still unclear. We construct a ceRNA immunoregulatory network to further understand the mechanism of AF. Methods Four AF mRNA datasets from the Gene Expression Omnibus (GEO) database were integrated by SVA method. AF-related immune genes (AF-IRGs) were selected via combining ImmPort database with the genes in the module most associated with AF obtained by a weighted gene coexpression network analysis (WGCNA). Then, circRNA and miRNA expressions from the GEO database were extracted and mapped with related databases. Next, an immune-related circRNA-miRNA-mRNA ceRNA network was constructed and hub genes were filtered from a protein–protein interaction (PPI) network, and the differentially expressed (DE) hub genes in AF were further screened. Additionally, immune infiltration was investigated in AF by using CIBERSORT. Subsequently, the relationships between DE hub genes and AF-related infiltrating immune cells were performed by using Pearson correlation coefficients. Ulteriorly, the immune-cells-related ceRNA subnetwork in AF was built. Results A total of 95 AF-IRGs were detected, and an immune-related ceRNA network in AF was constructed with 12 circRNAs, 7 miRNAs and 50 mRNAs. The immune infiltration analysis indicated that a higher level of neutrophils, as well as a lower level of T cells regulatory (Tregs) and NK cells activated in AF. Four DE hub genes (CXCL12, IL7R, TNFSF13B, CD8A) were associated with Tregs or NK cells activated immune cells (P < 0.05). Tregs or NK cells activated immune cells-related ceRNA subnetwork including 5 circRNAs (has_circ_0001190, has_circ_0006725, has_circ_0079284, has_circ_0005299, and has_circ_0002103), 4 miRNAs (has-miR-198, has-miR-623, has-miR-1246, and has-miR-339-3p) and 4 DE hub genes was eventually constructed in AF. Conclusion Our results provide new insights into the molecular mechanisms governing AF progression from the perspective of immune-related ceRNA network.
Collapse
Affiliation(s)
- Xing Liu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, People's Republic of China
| | - Guoqiang Zhong
- Department of Cardiology, Guangxi Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | - Wenbin Li
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, People's Republic of China
| | - Yiqian Zeng
- Department of Critical Care Medicine, Zhuzhou Central Hospital, Zhuzhou, Hunan, People's Republic of China
| | - Mingxing Wu
- Department of Cardiology, Xiangtan Central Hospital, Xiangtan, Hunan, People's Republic of China
| |
Collapse
|
26
|
Qu Q, Sun JY, Zhang ZY, Su Y, Li SS, Li F, Wang RX. Hub microRNAs and genes in the development of atrial fibrillation identified by weighted gene co-expression network analysis. BMC Med Genomics 2021; 14:271. [PMID: 34781940 PMCID: PMC8591905 DOI: 10.1186/s12920-021-01124-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
Co-expression network may contribute to better understanding molecular interaction patterns underlying cellular processes. To explore microRNAs (miRNAs) expression patterns correlated with AF, we performed weighted gene co-expression network analysis (WGCNA) based on the dataset GSE28954. Thereafter, we predicted target genes using experimentally verified databases (ENOCRI, miRTarBase, and Tarbase), and overlapped genes with differentially expressed genes (DEGs) from GSE79768 were identified as key genes. Integrated analysis of association between hub miRNAs and key genes was conducted to screen hub genes. In general, we identified 3 differentially expressed miRNAs (DEMs) and 320 DEGs, predominantly enriched in inflammation-related functional items. Two significant modules (red and blue) and hub miRNAs (hsa-miR-146b-5p and hsa-miR-378a-5p), which highly correlated with AF-related phenotype, were detected by WGCNA. By overlapping the DEGs and predicted target genes, 38 genes were screened out. Finally, 9 genes (i.e. ATP13A3, BMP2, CXCL1, GABPA, LIF, MAP3K8, NPY1R, S100A12, SLC16A2) located at the core region in the miRNA-gene interaction network were identified as hub genes. In conclusion, our study identified 2 hub miRNAs and 9 hub genes, which may improve the understanding of molecular mechanisms and help to reveal potential therapeutic targets against AF.
Collapse
Affiliation(s)
- Qiang Qu
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jin-Yu Sun
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhen-Ye Zhang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Yue Su
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shan-Shan Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Feng Li
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China
| | - Ru-Xing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, No. 299, Qingyang Road, Wuxi, 214023, China.
| |
Collapse
|
27
|
Molecular Signatures of Human Chronic Atrial Fibrillation in Primary Mitral Regurgitation. Cardiovasc Ther 2021; 2021:5516185. [PMID: 34737791 PMCID: PMC8538404 DOI: 10.1155/2021/5516185] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/11/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022] Open
Abstract
Objectives Transcriptomics of atrial fibrillation (AFib) in the setting of chronic primary mitral regurgitation (MR) remains to be characterized. We aimed to compare the gene expression profiles of patients with degenerative MR in AFib and sinus rhythm (SR) for a clearer picture of AFib pathophysiology. Methods After transcriptomic analysis and bioinformatics (n = 59), differentially expressed genes were defined using 1.5-fold change as the threshold. Additionally, independent datasets from GEO were included as meta-analyses. Results QRT-PCR analysis confirmed that AFib persistence was associated with increased expression molecular changes underlying a transition to heart failure (NPPB, P = 0.002; ANGPTL2, P = 0.002; IGFBP2, P = 0.010), structural remodeling including changes in the extracellular matrix and cellular stress response (COLQ, P = 0.003; COMP, P = 0.028; DHRS9, P = 0.038; CHGB, P = 0.038), and cellular stress response (DNAJA4, P = 0.038). Furthermore, AFib persistence was associated with decreased expression of the targets of structural remodeling (BMP7, P = 0.021) and electrical remodeling (CACNB2, P = 0.035; MCOLN3, P = 0.035) in both left and right atrial samples. The transmission electron microscopic analysis confirmed ultrastructural atrial remodeling and autophagy in human AFib atrial samples. Conclusions Atrial cardiomyocyte remodeling in persistent AFib is closely linked to alterations in gene expression profiles compared to SR in patients with primary MR. Study findings may lead to novel therapeutic targets. This trial is registered with ClinicalTrials.gov identifier: NCT00970034.
Collapse
|
28
|
Association between the APOE gene polymorphism and lipid profile and the risk of atrial fibrillation. Lipids Health Dis 2021; 20:123. [PMID: 34587962 PMCID: PMC8482687 DOI: 10.1186/s12944-021-01551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022] Open
Abstract
Background The relationship between the APOE gene polymorphism and lipid profiles and atrial fibrillation (AF) remains controversial. The current study purposed to investigate how the APOE gene SNPs (rs429358 and rs7412) and lipid profile are associated with the risk for AF among the Hakka population in southern China. Methods Finally, 1367 patients were enrolled in this study, including 706 participants with AF (41 ~ 98 years old, 58.64 % male) and 661 non-AF subjects (28 ~ 95 years old, 59.46 % male). The collected data included baseline characteristics, medical history, laboratory tests and echocardiography parameters. A general linear model (two-way analysis of variance (ANOVA)) and Tukey post-hoc tests were applied to identify an APOE allele, AF group, and interaction effect on lipid profiles. Logistic regression analysis was performed to identify risk factors for AF. Results For AF group, the most common genotype was E3/E3 (53.82 %), followed by E3/E4 (28.19 %), E2/E3 (13.60 %), E4/E4 (1.98 %), E2/E4 (1.84 %) and E2/E2 (0.57 %). The two-way ANOVA followed by the Tukey procedure showed the following: the lipid levels depended significantly on AF and APOE allele groups for TG, TC, LDL-C and Apo-B (all P < 0.001), and statistically significant interactions between AF and APOE allele were observed in the above 4 variables (all P < 0.05). Multivariate regression analysis indicated that age ≥ 65years (P < 0.001), high diastolic blood pressure (DBP ≥ 90mm Hg, P = 0.018), a high levels of total cholesterol (TC ≥ 5.2mmol/L, P < 0.001) and triglyceride (TG ≥ 1.7mmol/L, P = 0.028), but not the two SNPs of the APOE gene (rs7412 and rs429358) (OR 1.079, P = 0.683), were significant independent risk factors for AF in the study population. Conclusions The principal findings of this study showed that individuals at high risk for AF were those over 65 years of age, higher DBP as well as high levels of TC and TG among the southern China Hakka population. The levels of TG, TC, LDL-C and Apo-B depended significantly on AF and APOE allele groups, and statistically significant interactions between AF and APOE allele were observed in the above 4 variables, although the APOE gene SNPs (rs429358 and rs7412) were no significant risk for AF incidence. Further investigation is needed to elucidate whether other SNPs of the APOE gene have a bearing on AF incidents.
Collapse
|
29
|
Liu P, Sun H, Zhou X, Wang Q, Gao F, Fu Y, Li T, Wang Y, Li Y, Fan B, Li X, Jiang T, Qin X, Zheng Q. CXCL12/CXCR4 axis as a key mediator in atrial fibrillation via bioinformatics analysis and functional identification. Cell Death Dis 2021; 12:813. [PMID: 34453039 PMCID: PMC8397768 DOI: 10.1038/s41419-021-04109-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation (AF) is an increasingly prevalent arrhythmia with significant health and socioeconomic impact. The underlying mechanism of AF is still not well understood. In this study, we sought to identify hub genes involved in AF, and explored their functions and underlying mechanisms based on bioinformatics analysis. Five microarray datasets in GEO were used to identify the differentially expressed genes (DEGs) by Robust Rank Aggregation (RRA), and hub genes were screened out using protein-protein interaction (PPI) network. AF model was established using a mixture of acetylcholine and calcium chloride (Ach-CaCl2) by tail vein injection. We totally got 35 robust DEGs that mainly involve in extracellular matrix formation, leukocyte transendothelial migration, and chemokine signaling pathway. Among these DEGs, we identified three hub genes involved in AF, of which CXCL12/CXCR4 axis significantly upregulated in AF patients stands out as one of the most potent targets for AF prevention, and its effect on AF pathogenesis and underlying mechanisms were investigated in vivo subsequently with the specific CXCR4 antagonist AMD3100 (6 mg/kg). Our results demonstrated an elevated transcription and translation of CXCL12/CXCR4 axis in AF patients and mice, accompanied with the anabatic atrial inflammation and fibrosis, thereby providing the substrate for AF maintenance. Blocking its signaling via AMD3100 administration in AF model mice reduced AF inducibility and duration, partly ascribed to decreased atrial inflammation and structural remodeling. Mechanistically, these effects were achieved by reducing the recruitment of CD3+ T lymphocytes and F4/80+ macrophages, and suppressing the hyperactivation of ERK1/2 and AKT/mTOR signaling in atria of AF model mice. In conclusion, this study provides new evidence that antagonizing CXCR4 prevents the development of AF, and suggests that CXCL12/CXCR4 axis may be a potential therapeutic target for AF.
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongke Sun
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhou
- Department of Cardiology, The First Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaozhu Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yuping Fu
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixin Wang
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingqi Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boyuan Fan
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiannan Jiang
- Department of Internal Medicine, Health Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinghua Qin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qiangsun Zheng
- Department of Cardiology, The Second Affiliate Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Andriulė I, Pangonytė D, Almanaitytė M, Patamsytė V, Kuprytė M, Karčiauskas D, Mubagwa K, Mačianskienė R. Evidence for the expression of TRPM6 and TRPM7 in cardiomyocytes from all four chamber walls of the human heart. Sci Rep 2021; 11:15445. [PMID: 34326388 PMCID: PMC8322396 DOI: 10.1038/s41598-021-94856-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
The expression of the channels-enzymes TRPM6 and TRPM7 in the human heart remains poorly defined, and TRPM6 is generally considered not to be expressed in cardiomyocytes. We examined their expression at protein and mRNA levels using right atrial samples resected from patients (n = 72) with or without ischemic heart disease (IHD) and samples from all chamber walls of explanted human hearts (n = 9). TRPM6 and TRPM7 proteins were detected using immunofluorescence on isolated cardiomyocytes, ELISA on tissue homogenates, and immunostaining of cardiac tissue, whereas their mRNAs were detected by RT-qPCR. Both TRPM6 and TRPM7 were present in all chamber walls, with TRPM7 being more abundant. TRPM6 was co-expressed with TRPM7. The expression levels were dependent on cell incubation conditions (presence or absence of divalent cations, pH of the extracellular milieu, presence of TRP channel inhibitors 2-aminoethoxydiphenyl-borate and carvacrol). These drugs reduced TRPM7 immunofluorescence but increased that of TRPM6. TRPM6 and TRPM7 expression was increased in tissues from IHD patients. This is the first demonstration of the presence and co-expression of TRPM6 and TRPM7 in cardiomyocytes from all chamber walls of the human heart. The increased TRPM6 and TRPM7 expression in IHD suggests that the chanzymes are involved in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Inga Andriulė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dalia Pangonytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mantė Almanaitytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vaiva Patamsytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Kuprytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius Karčiauskas
- Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR, Congo
| | - Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
31
|
Victorino J, Alvarez-Franco A, Manzanares M. Functional genomics and epigenomics of atrial fibrillation. J Mol Cell Cardiol 2021; 157:45-55. [PMID: 33887329 DOI: 10.1016/j.yjmcc.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Atrial fibrillation is a progressive cardiac arrhythmia that increases the risk of hospitalization and adverse cardiovascular events. Despite years of study, we still do not have a full comprehension of the molecular mechanism responsible for the disease. The recent implementation of large-scale approaches in both patient samples, population studies and animal models has helped us to broaden our knowledge on the molecular drivers responsible for AF and on the mechanisms behind disease progression. Understanding genomic and epigenomic changes that take place during chronification of AF will prove essential to design novel treatments leading to improved patient care.
Collapse
Affiliation(s)
- Jesus Victorino
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Spain
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Miguel Manzanares
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
32
|
Multiomics Analysis of Genetics and Epigenetics Reveals Pathogenesis and Therapeutic Targets for Atrial Fibrillation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6644827. [PMID: 33834070 PMCID: PMC8018871 DOI: 10.1155/2021/6644827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Objective This study is aimed at understanding the molecular mechanisms and exploring potential therapeutic targets for atrial fibrillation (AF) by multiomics analysis. Methods Transcriptomics and methylation data of AF patients were retrieved from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) and differentially methylated sites between AF and normal samples were screened. Then, highly expressed and hypomethylated and lowly expressed and hypermethylated genes were identified for AF. Weighted gene coexpression network analysis (WGCNA) was presented to construct AF-related coexpression networks. 52 AF blood samples were used for whole exome sequence. The mutation was visualized by the maftools package in R. Key genes were validated in AF using independent datasets. Results DEGs were identified between AF and controls, which were enriched in neutrophil activation and regulation of actin cytoskeleton. RHOA, CCR2, CASP8, and SYNPO2L exhibited abnormal expression and methylation, which have been confirmed to be related to AF. PCDHA family genes had high methylation and low expression in AF. We constructed two AF-related coexpression modules. Single-nucleotide polymorphism (SNP) was the most common mutation type in AF, especially T > C. MUC4 was the most frequent mutation gene, followed by PHLDA1, AHNAK2, and MAML3. There was no statistical difference in expression of AHNAK2 and MAML3, for AF. PHLDA1 and MUC4 were confirmed to be abnormally expressed in AF. Conclusion Our findings identified DEGs related to DNA methylation and mutation for AF, which may offer possible therapeutic targets and a new insight into the pathogenesis of AF from a multiomics perspective.
Collapse
|
33
|
Lugenbiel P, Govorov K, Syren P, Rahm AK, Wieder T, Wunsch M, Weiberg N, Manolova E, Gramlich D, Rivinius R, Finke D, Lehmann LH, Schweizer PA, Frank D, El Tahry FA, Bruehl C, Heimberger T, Sandke S, Weis T, Most P, Schmack B, Ruhparwar A, Karck M, Frey N, Katus HA, Thomas D. Epigenetic regulation of cardiac electrophysiology in atrial fibrillation: HDAC2 determines action potential duration and suppresses NRSF in cardiomyocytes. Basic Res Cardiol 2021; 116:13. [PMID: 33630168 DOI: 10.1007/s00395-021-00855-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/18/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is associated with electrical remodeling, leading to cellular electrophysiological dysfunction and arrhythmia perpetuation. Emerging evidence suggests a key role for epigenetic mechanisms in the regulation of ion channel expression. Histone deacetylases (HDACs) control gene expression through deacetylation of histone proteins. We hypothesized that class I HDACs in complex with neuron-restrictive silencer factor (NRSF) determine atrial K+ channel expression. AF was characterized by reduced atrial HDAC2 mRNA levels and upregulation of NRSF in humans and in a pig model, with regional differences between right and left atrium. In vitro studies revealed inverse regulation of Hdac2 and Nrsf in HL-1 atrial myocytes. A direct association of HDAC2 with active regulatory elements of cardiac K+ channels was revealed by chromatin immunoprecipitation. Specific knock-down of Hdac2 and Nrsf induced alterations of K+ channel expression. Hdac2 knock-down resulted in prolongation of action potential duration (APD) in neonatal rat cardiomyocytes, whereas inactivation of Nrsf induced APD shortening. Potential AF-related triggers were recapitulated by experimental tachypacing and mechanical stretch, respectively, and exerted differential effects on the expression of class I HDACs and K+ channels in cardiomyocytes. In conclusion, HDAC2 and NRSF contribute to AF-associated remodeling of APD and K+ channel expression in cardiomyocytes via direct interaction with regulatory chromatin regions. Specific modulation of these factors may provide a starting point for the development of more individualized treatment options for atrial fibrillation.
Collapse
Affiliation(s)
- Patrick Lugenbiel
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Katharina Govorov
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Maximilian Wunsch
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Nadine Weiberg
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Emili Manolova
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Daniel Finke
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- Department of Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Lorenz H Lehmann
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- Department of Molecular Cardiology and Epigenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Derk Frank
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Claus Bruehl
- Institute for Physiology and Pathophysiology, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Steffi Sandke
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Kiel, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
- HCR (Heidelberg Center for Heart Rhythm Disorders), Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
34
|
Haas Bueno R, Recamonde-Mendoza M. Meta-analysis of Transcriptomic Data Reveals Pathophysiological Modules Involved with Atrial Fibrillation. Mol Diagn Ther 2020; 24:737-751. [PMID: 33095430 DOI: 10.1007/s40291-020-00497-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a complex disease and affects millions of people around the world. The biological mechanisms that are involved with AF are complex and still need to be fully elucidated. Therefore, we performed a meta-analysis of transcriptome data related to AF to explore these mechanisms aiming at more sensitive and reliable results. METHODS Ten public transcriptomic datasets were downloaded, analyzed for quality control, and individually pre-processed. Differential expression analysis was carried out for each dataset, and the results were meta-analytically aggregated using the rth ordered p value method. We analyzed the final list of differentially expressed genes through network analysis, namely topological and modularity analysis, and functional enrichment analysis. RESULTS The meta-analysis of transcriptomes resulted in 1197 differentially expressed genes, whose protein-protein interaction network presented 39 hubs-bottlenecks and four main identified functional modules. These modules were enriched for 39, 20, 64, and 10 biological pathways involved with the pathophysiology of AF, especially with the disease's structural and electrical remodeling processes. The stress of the endoplasmic reticulum, protein catabolism, oxidative stress, and inflammation are some of the enriched processes. Among hub-bottlenecks genes, which are highly connected and probably have a key role in regulating these processes, HSPA5, ANK2, CTNNB1, and MAPK1 were identified. CONCLUSION Our approach based on transcriptome meta-analysis revealed a set of key genes that demonstrated consistent overall changes in expression patterns associated with AF despite data heterogeneity related, among others, to type of tissue. Further experimental investigation of our findings may shed light on the pathophysiology of the disease and contribute to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Rodrigo Haas Bueno
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Mariana Recamonde-Mendoza
- Experimental and Molecular Cardiovascular Laboratory, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Bioinformatics Core, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.
- Institute of Informatics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Comprehensive Analysis of Differential Immunocyte Infiltration and Potential ceRNA Networks Involved in the Development of Atrial Fibrillation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8021208. [PMID: 33015181 PMCID: PMC7525288 DOI: 10.1155/2020/8021208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
Abstract
This study is aimed at identifying potential molecular mechanisms and candidate biomarkers in the left atrial regions for the diagnosis and treatment of valvular atrial fibrillation (VAF). Multibioinformatics methods, including linear models for microarray analysis (LIMMA), an SVA algorithm, CIBERSORT immune infiltration, and DNA methylation analysis, were employed. In addition, the protein-protein interaction (PPI) network, Gene Ontology (GO), and molecular pathways of differentially expressed genes (DEGs) or differential methylation regions were constructed. In all, compared with the normal rhythm group, 243 different mRNAs (29 downregulated and 214 upregulated) and 26 different lncRNAs (3 downregulated and 23 upregulated) were detected in the left atrium (LA) of atrial fibrillation (AF) patients, and the neutrophil and CD8+ T cell were infiltrated. Additionally, 199 different methylation sites (107 downregulated and 92 upregulated) were also identified based on DNA methylation analysis. After integration, ELOVL2, CCR2, and WEE1 were detected for differentially methylated and differentially transcribed genes. Among them, WEE1 was also a core gene identified by the competing endogenous RNA (ceRNA) network that included WEE1-KRBOX1-AS1-hsa-miR-17-5p, in VAF left atrial tissue. We combined the DNA methylation and transcriptional expression differential analysis and found that WEE1 (cg13365543) may well be a candidate gene regulated by DNA methylation modification. Moreover, KRBOX1-AS1 and WEE1 can compete endogenously and may mediate myocardial tissue infiltration into CD8+ T cells and participate in the AF process.
Collapse
|
36
|
Lipovsky CE, Jimenez J, Guo Q, Li G, Yin T, Hicks SC, Bhatnagar S, Takahashi K, Zhang DM, Brumback BD, Goldsztejn U, Nadadur RD, Perez-Cervantez C, Moskowitz IP, Liu S, Zhang B, Rentschler SL. Chamber-specific transcriptional responses in atrial fibrillation. JCI Insight 2020; 5:135319. [PMID: 32841220 PMCID: PMC7526559 DOI: 10.1172/jci.insight.135319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF. Distinct transcriptional changes occur in human left versus right atrial cardiomyocytes in atrial fibrillation, including Notch pathway activation, which alters electric properties and ploidy in murine models.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | - Qiusha Guo
- Department of Medicine, Cardiovascular Division
| | - Gang Li
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division
| | | | - Somya Bhatnagar
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | | | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Carlos Perez-Cervantez
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | | | - Bo Zhang
- Department of Developmental Biology, and
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Tsai FC, Chang GJ, Lai YJ, Chang SH, Chen WJ, Yeh YH. Ubiquitin Pathway Is Associated with Worsening Left Ventricle Function after Mitral Valve Repair: A Global Gene Expression Study. Int J Mol Sci 2020; 21:ijms21145073. [PMID: 32708358 PMCID: PMC7404186 DOI: 10.3390/ijms21145073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022] Open
Abstract
The molecular mechanism for worsening left ventricular (LV) function after mitral valve (MV) repair for chronic mitral regurgitation remains unknown. We wished to assess the LV transcriptome and identify determinants associated with worsening LV function post-MV repair. A total of 13 patients who underwent MV repair for chronic primary mitral regurgitation were divided into two groups, preserved LV function (N = 8) and worsening LV function (N = 5), for the study. Specimens of LV from the patients taken during surgery were used for the gene microarray study. Cardiomyocyte cell line HL-1 cells were transfected with gene-containing plasmids and further evaluated for mRNA and protein expression, apoptosis, and contractile protein degradation. Of 67,258 expressed sequence tags, microarrays identified 718 genes to be differentially expressed between preserved-LVF and worsening-LVF, including genes related to the protein ubiquitination pathway, bone morphogenetic protein (BMP) receptors, and regulation of eIF4 and p70S6K signaling. In addition, worsening-LVF was associated with altered expressions of genes pathologically relevant to heart failure, such asdownregulated apelin receptors and upregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A). HL-1 cardiomyocyte cells transfected with ubiquitination-related genes demonstrated activation of the protein ubiquitination pathwaywith an increase in the ubiquitin activating enzyme E1 (UAE-E1). It also led to increased apoptosis, downregulated and ubiquitinated X-linked inhibitor of apoptosis protein (XIAP), and reduced cell viability. Overexpression of ubiquitination-related genes also resulted in degradation and increased ubiquitination of α-smooth muscle actin (SMA). In conclusion, worsening-LVF presented differential gene expression profiles from preserved-LVF after MV repair. Upregulation of protein ubiquitination-related genes associated with worsening-LVF after MV repair may exert adverse effects on LV through increased apoptosis and contractile protein degradation.
Collapse
Affiliation(s)
- Feng-Chun Tsai
- Division of Cardiovascular and Thoracic Surgery, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Taoyuan 333, Taiwan;
| | - Ying-Ju Lai
- Department of Respiratory Therapy, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan;
| | - Shang-Hung Chang
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
- Cardiovascular Department, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wei-Jan Chen
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
- Cardiovascular Department, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yung-Hsin Yeh
- College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan; (S.-H.C.); (W.-J.C.)
- Cardiovascular Department, Chang-Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel./Fax: +886-3-3271192
| |
Collapse
|
38
|
Insight into atrial fibrillation through analysis of the coding transcriptome in humans. Biophys Rev 2020; 12:817-826. [PMID: 32666467 DOI: 10.1007/s12551-020-00735-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Atrial fibrillation is the most common sustained cardiac arrhythmia in humans, and its prevalence continues to increase because of the aging of the world population. Much still needs to be learned about the molecular pathways involved in the development and the persistence of the disease. Analysis of the transcriptome of cardiac tissue has provided valuable insight into diverse aspects of atrial remodeling, in particular concerning electrical remodeling-related to ion channels-and structural remodeling identified by dysregulation of processes linked to inflammation, fibrosis, oxidative stress, and thrombogenesis. The huge amount of data produced by these studies now represents a valuable source for the identification of novel potential therapeutic targets. In addition, the shift from cardiac tissue to peripheral blood as a substrate for transcriptome analysis revealed this strategy as a promising tool for improved diagnosis and therefore better patient care.
Collapse
|
39
|
Larupa Santos J, Rodríguez I, S. Olesen M, Hjorth Bentzen B, Schmitt N. Investigating gene-microRNA networks in atrial fibrillation patients with mitral valve regurgitation. PLoS One 2020; 15:e0232719. [PMID: 32392228 PMCID: PMC7213724 DOI: 10.1371/journal.pone.0232719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is predicted to affect around 17.9 million individuals in Europe by 2060. The disease is associated with severe electrical and structural remodelling of the heart, and increased the risk of stroke and heart failure. In order to improve treatment and find new drug targets, the field needs to better comprehend the exact molecular mechanisms in these remodelling processes. OBJECTIVES This study aims to identify gene and miRNA networks involved in the remodelling of AF hearts in AF patients with mitral valve regurgitation (MVR). METHODS Total RNA was extracted from right atrial biopsies from patients undergoing surgery for mitral valve replacement or repair with AF and without history of AF to test for differentially expressed genes and miRNAs using RNA-sequencing and miRNA microarray. In silico predictions were used to construct a mRNA-miRNA network including differentially expressed mRNAs and miRNAs. Gene and chromosome enrichment analysis were used to identify molecular pathways and high-density AF loci. RESULTS We found 644 genes and 43 miRNAs differentially expressed in AF patients compared to controls. From these lists, we identified 905 pairs of putative miRNA-mRNA interactions, including 37 miRNAs and 295 genes. Of particular note, AF-associated miR-130b-3p, miR-338-5p and miR-208a-3p were differentially expressed in our AF tissue samples. These miRNAs are predicted regulators of several differentially expressed genes associated with cardiac conduction and fibrosis. We identified two high-density AF loci in chromosomes 14q11.2 and 6p21.3. CONCLUSIONS AF in MVR patients is associated with down-regulation of ion channel genes and up-regulation of extracellular matrix genes. Other AF related genes are dysregulated and several are predicted to be targeted by miRNAs. Our novel miRNA-mRNA regulatory network provides new insights into the mechanisms of AF.
Collapse
Affiliation(s)
- Joana Larupa Santos
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ismael Rodríguez
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Morten S. Olesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Cardiology, Laboratory for Molecular Cardiology, The Heart Centre, Rigshospitalet, University Hospital of Copenhagen, Copenhagen Ø, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
40
|
Li W, Wang L, Wu Y, Yuan Z, Zhou J. Weighted gene co‑expression network analysis to identify key modules and hub genes associated with atrial fibrillation. Int J Mol Med 2019; 45:401-416. [PMID: 31894294 PMCID: PMC6984797 DOI: 10.3892/ijmm.2019.4416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common form of cardiac arrhythmia and significantly increases the risks of morbidity, mortality and health care expenditure; however, treatment for AF remains unsatisfactory due to the complicated and incompletely understood underlying mechanisms. In the present study, weighted gene co‑expression network analysis (WGCNA) was conducted to identify key modules and hub genes to determine their potential associations with AF. WGCNA was performed in an AF dataset GSE79768 obtained from the Gene Expression Omnibus, which contained data from paired left and right atria in cardiac patients with persistent AF or sinus rhythm. Differentially expressed gene (DEG) analysis was used to supplement and validate the results of WGCNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were also performed. Green and magenta modules were identified as the most critical modules associated with AF, from which 6 hub genes, acetyl‑CoA Acetyltransferase 1, death domain‑containing protein CRADD, gypsy retrotransposon integrase 1, FTX transcript, XIST regulator, transcription elongation factor A like 2 and minichromosome maintenance complex component 3 associated protein, were hypothesized to serve key roles in the pathophysiology of AF due to their increased intramodular connectivity. Functional enrichment analysis results demonstrated that the green module was associated with energy metabolism, and the magenta module may be associated with the Hippo pathway and contain multiple interactive pathways associated with apoptosis and inflammation. In addition, the blue module was identified to be an important regulatory module in AF with a higher specificity for the left atria, the genes of which were primarily correlated with complement, coagulation and extracellular matrix formation. These results suggest that may improve understanding of the underlying mechanisms of AF, and assist in identifying biomarkers and potential therapeutic targets for treating patients with AF.
Collapse
Affiliation(s)
- Wenyuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lijun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
41
|
Analysis of potential roles of combinatorial microRNA regulation in occurrence of valvular heart disease with atrial fibrillation based on computational evidences. PLoS One 2019; 14:e0221900. [PMID: 31479479 PMCID: PMC6719876 DOI: 10.1371/journal.pone.0221900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/16/2019] [Indexed: 11/19/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most common arrhythmia. Patients with valvular heart disease (VHD) frequently have AF. Growing evidence demonstrates that a specifically altered pattern of microRNA (miRNA) expression is related to valvular heart disease with atrial fibrillation (AF-VHD) processes. However, the combinatorial regulation by multiple miRNAs in inducing AF-VHD remains largely unknown. Methods The work identified AF-VHD-specific miRNAs and their combinations through mapping miRNA expression profile into differential co-expression network. The expressions of some dysregulated miRNAs were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The regulations of signaling pathways by the combinatorial miRNAs were predicted by enrichment analysis tools. Results Thirty-two differentially expressed (DE) miRNAs were identified to be AF-VHD-specific, some of which were new findings. These miRNAs interacted to form 5 combinations. qRT-PCR confirmed the different expression of several identified miRNAs, which illustrated the reliability and biomarker potentials of 32 dysregulation miRNAs. The biological characteristics of combinatorial miRNAs related to AF-VHD were highlighted. Twelve signaling pathways regulated by combinatorial miRNAs were predicted to be possibly associated with AF-VHD. Conclusions The AF-VHD-related signaling pathways regulated by combinatorial miRNAs may play an important role in the occurrence of AF-VHD. The work brings new insights into biomarkers and miRNA combination regulation mechanism in AF-VHD as well as further biological experiments.
Collapse
|
42
|
Thomas AM, Cabrera CP, Finlay M, Lall K, Nobles M, Schilling RJ, Wood K, Mein CA, Barnes MR, Munroe PB, Tinker A. Differentially expressed genes for atrial fibrillation identified by RNA sequencing from paired human left and right atrial appendages. Physiol Genomics 2019; 51:323-332. [PMID: 31172864 PMCID: PMC6732415 DOI: 10.1152/physiolgenomics.00012.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/22/2022] Open
Abstract
Atrial fibrillation is a significant worldwide contributor to cardiovascular morbidity and mortality. Few studies have investigated the differences in gene expression between the left and right atrial appendages, leaving their characterization largely unexplored. In this study, differential gene expression was investigated in atrial fibrillation and sinus rhythm using left and right atrial appendages from the same patients. RNA sequencing was performed on the left and right atrial appendages from five sinus rhythm (SR) control patients and five permanent AF case patients. Differential gene expression in both the left and right atrial appendages was analyzed using the Bioconductor package edgeR. A selection of differentially expressed genes, with relevance to atrial fibrillation, were further validated using quantitative RT-PCR. The distribution of the samples assessed through principal component analysis showed distinct grouping between left and right atrial appendages and between SR controls and AF cases. Overall 157 differentially expressed genes were identified to be downregulated and 90 genes upregulated in AF. Pathway enrichment analysis indicated a greater involvement of left atrial genes in the Wnt signaling pathway whereas right atrial genes were involved in clathrin-coated vesicle and collagen formation. The differing expression of genes in both left and right atrial appendages indicate that there are different mechanisms for development, support and remodeling of AF within the left and right atria.
Collapse
Affiliation(s)
- Alison M Thomas
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Claudia P Cabrera
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Malcolm Finlay
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Kulvinder Lall
- Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom
| | - Muriel Nobles
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Kristie Wood
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Charles A Mein
- Barts and London Genome Centre, School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Michael R Barnes
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
43
|
Yan ZT, Huang JM, Luo WL, Liu JW, Zhou K. Combined metabolic, phenomic and genomic data to prioritize atrial fibrillation-related metabolites. Exp Ther Med 2019; 17:3929-3934. [PMID: 31007735 PMCID: PMC6468506 DOI: 10.3892/etm.2019.7443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/14/2019] [Indexed: 12/19/2022] Open
Abstract
Metabolites in atrial fibrillation (AF) were characterized to further explore the molecular mechanisms of AF by integrating metabolic, phenomic and genomic data. Gene expression data on AF (E-GEOD-79768) were downloaded from the EMBL-EBI database, followed by identification of differentially expressed genes (DEGs) which were used to construct gene-gene network. Then, multi-omics composite networks were constructed. Subsequently, random walk with restart was expanded to a multi-omics composite network to identify and prioritize the metabolites according to the AF-related seed genes deposited in the OMIM database, the whole metabolome as candidates and the phenotype of AF. Using the interaction score among metabolites, we extracted the top 50 metabolites, and identified the top 100 co-expressed genes interacted with the top 50 metabolites. Based on the FDR <0.05, 622 DEGs were extracted. In order to demonstrate the intrinsic mode of this method, we sorted the metabolites of the composite network in descending order based on the interaction scores. The top 5 metabolites were respectively weighed potassium, sodium ion, chitin, benzo[a]pyrene-7,8-dihydrodiol-9,10-oxide, and celebrex (TN). Potassium and sodium ion possessed higher degrees in the subnetwork of the entire composite network and the co-expressed network. Metabolites such as potassium and sodium ion may provide valuable clues for early diagnostic and therapeutic targets for AF.
Collapse
Affiliation(s)
- Zhi-Tao Yan
- Department of Cardiology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Jin-Mei Huang
- Department of General Surgery, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Wen-Li Luo
- Department of Gerontology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| | - Ji-Wen Liu
- Department of Internal Medicine, Affiliated Midong Hospital of the People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, P.R. China
| | - Kang Zhou
- Department of Cardiology, The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
44
|
Johnson EK, Matkovich SJ, Nerbonne JM. Regional Differences in mRNA and lncRNA Expression Profiles in Non-Failing Human Atria and Ventricles. Sci Rep 2018; 8:13919. [PMID: 30224797 PMCID: PMC6141608 DOI: 10.1038/s41598-018-32154-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/22/2018] [Indexed: 01/27/2023] Open
Abstract
The four chambers of the human heart play distinct roles in the maintenance of normal cardiac function, and are differentially affected by inherited/acquired cardiovascular disease. To probe the molecular determinants of these functional differences, we examined mRNA and lncRNA expression profiles in the left (LA) and right (RA) atria, the left (LV) and right (RV) ventricles, and the interventricular septum (IVS) of non-failing human hearts (N = 8). Analysis of paired atrial and ventricular samples (n = 40) identified 5,747 mRNAs and 2,794 lncRNAs that were differentially (>1.5 fold; FDR < 0.05) expressed. The largest differences were observed in comparisons between the atrial (RA/LA) and ventricular (RV/LV/IVS) samples. In every case (e.g., LA vs LV, LA vs RV, etc.), >2,300 mRNAs and >1,200 lncRNAs, corresponding to 17-28% of the total transcripts, were differentially expressed. Heterogeneities in mRNA/lncRNA expression profiles in the LA and RA, as well as in the LV, RV and IVS, were also revealed, although the numbers of differentially expressed transcripts were substantially smaller. Gender differences in mRNA and lncRNA expression profiles were also evident in non-failing human atria and ventricles. Gene ontology classification of differentially expressed gene sets revealed chamber-specific enrichment of numerous signaling pathways.
Collapse
Affiliation(s)
- Eric K Johnson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scot J Matkovich
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jeanne M Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|