1
|
Yang T, Guo Y, Zhang R, Zhong J, Xu Z, Liu L, Peng Z, Wang F, Jiang Y, Zhu Y, Liu Q, Wu Y, Meng Q, Duoji Z, Han M, Meng X, Chen R, Kan H, Liu C, Hong F. Associations between long-term exposure to ultrafine particles and type 2 diabetes: A large-scale, multicenter study in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137364. [PMID: 39892136 DOI: 10.1016/j.jhazmat.2025.137364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Few studies have examined the associations between long-term exposure to ultrafine particles (UFP) and type 2 diabetes (T2DM). This study aimed to investigate the impact of long-term UFP exposure on diabetes prevalence and stages, as well as glycemic markers, using data from a large multi-center cohort collected from 2017 to 2021. The health outcomes assessed included diabetes prevalence and stages (normoglycemia, prediabetes, and diabetes), as well as glycemic markers, i.e., fasting blood glucose (FPG) and glycated hemoglobin (HbA1c). The three-year average UFP concentration prior to baseline was used as the long-term UFP exposure level. This cross-sectional study included 93,990 participants, with a diabetes prevalence of 10.97 %. An interquartile range increase in UFP was significantly associated with diabetes prevalence and stages, with ORs of 1.20 (95 % CI: 1.14, 1.26) and 1.11 (95 % CI: 1.07, 1.44), respectively. Specifically, for comparison between normoglycemia and prediabetes, and between prediabetes and diabetes, the corresponding ORs were 1.01 (95 % CI: 0.96, 1.04) and 1.24 (95 % CI: 1.17, 1.31), respectively. UFP exposure was also significantly associated with elevated levels of FPG and HbA1c. These findings suggest that long-term UFP exposure may be a potential risk factor for diabetes with larger risks in the prediabetes population.
Collapse
Affiliation(s)
- Tingting Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yi Guo
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renhua Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Jianqin Zhong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Zixuan Xu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Leilei Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Ziwei Peng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Fuchao Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixiang Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qiaolan Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yunyun Wu
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Qiong Meng
- School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Zhuoma Duoji
- School of Medicine, Tibet University, Lhasa 850000, China
| | - Mingming Han
- Chengdu Centre for Disease Control and Prevention, Chengdu 610041, China
| | - Xia Meng
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China.
| |
Collapse
|
2
|
Lachowicz JI, Gać P. Short-Term and Long-Term Effects of Inhaled Ultrafine Particles on Blood Markers of Cardiovascular Diseases: A Systematic Review and Meta-Analysis. J Clin Med 2025; 14:2846. [PMID: 40283676 PMCID: PMC12028172 DOI: 10.3390/jcm14082846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/03/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Air pollution is the highest environmental risk factor of mortality and morbidity worldwide, leading to over 4 million deaths each year. Among different air pollutants, ultrafine particles (UFPs) constitute the highest risk factor of cardiovascular diseases (CVDs). Epidemiological studies have associated UFPs with the short- and long-term imbalance of numerous blood markers. Our objective was to systematically review the short-term and long-term impact of UFP exposure on blood markers of CVDs. Methods: We prepared the systematic review of CVD blood markers and meta-analyses of the short- and long-term effects of UFP exposure on high-sensitivity C-reactive protein (hsCRP) concentration. The eligibility criteria were established with the use of the Provider, Enrollment, Chain, and Ownership System (PECOS) model, and the literature search was conducted in Web of Science, PubMed, and Scopus databases from 1 January 2013 to 9 January 2025. The risk of bias (RoB) was prepared according to a World Health Organization (WHO) template. Results: The results showed an increase in hsCRP as a result of both short-term and long-term UFPs. Moreover, IL-6 and IL-1β together with other inflammatory markers increased after short-term UFP exposure. In addition, different nucleic acids, among which were miR-24-3p and let-7d-5p, were differentially expressed (DE) as a result of short-term UFP exposure. Chronic exposure to UFPs could lead to a persistent increase in hsCRP and other blood markers of CVDs. Conclusions: Our findings underline that UFPs may lead to the development and/or worsening of cardiovascular outcomes in fragile populations living in air-polluted areas.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Environmental Health, Occupational Medicine and Epidemiology, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | | |
Collapse
|
3
|
Lu M, Zhan Z, Li D, Chen H, Li A, Hu J, Huang Z, Yi B. Protective role of vitamin D receptor against mitochondrial calcium overload from PM 2.5-Induced injury in renal tubular cells. Redox Biol 2025; 80:103518. [PMID: 39891958 PMCID: PMC11836507 DOI: 10.1016/j.redox.2025.103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
PURPOSE This research explores the consequences of being exposed to PM2.5 contribute to renal injury while also evaluating the protective role of Vitamin D-VDR signaling in alleviating mitochondrial calcium imbalance and oxidative stress in renal tubular cells. METHODS Animal models of chronic PM2.5 exposure were used to simulate environmental conditions in wild type and VDR-overexpressing mice specific to renal tubules. In parallel, HK-2 cell lines were treated with PM2.5 in vitro. Mitochondrial function, calcium concentration, and oxidative stress markers were assessed. VDR activation, achieved through genetic overexpression and paricalcitol, was induced to examine its effect on mitochondrial calcium uniporter (MCU) expression and mitochondrial calcium regulation. RESULTS PM2.5 exposure caused significant mitochondrial damage in renal tubular cells, including mitochondrial calcium overload, increased oxidative stress, reduced membrane potential, and diminished ATP production. Elevated MCU expressions were a key contributor to these disruptions. VDR activation effectively reversed these effects by downregulating MCU, restoring mitochondrial calcium balance, reducing oxidative stress, and improving renal function. CONCLUSION This study shows that activating Vitamin D-VDR signaling shields the kidneys from PM2.5-induced damage by reestablishing mitochondrial calcium balance and lowering oxidative stress via inhibition of the MCU. These results unveil a new protective role of VDR in defending against environmental pollutants and suggest that targeting the MCU could offer a potential therapeutic strategy for treating chronic kidney disease linked to pollution exposure.
Collapse
Affiliation(s)
- Mengqiu Lu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zishun Zhan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China; Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China; Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dan Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Hengbing Chen
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Aimei Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Jing Hu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China
| | - Zhijun Huang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Center for Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China.
| | - Bin Yi
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Research Center for Critical Kidney Disease in Hunan Province, China.
| |
Collapse
|
4
|
Ruscitti P, Nunziato M, Caso F, Scarpa R, Di Maggio F, Giacomelli R, Salvatore F. Prevention of rheumatoid arthritis using a familial predictive medicine approach. Autoimmun Rev 2024; 23:103653. [PMID: 39370029 DOI: 10.1016/j.autrev.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Most of the chronic-degenerative diseases deserve a very early recognition of symptoms and signs for the earliest secondary prevention, which could be also very useful in many cases for the most precocious clinical approach. The periodic monitoring of a subject at risk of a specific disease, because of genomic predisposition by predictive medicine approach, may help to earlier detection of onset and/or the progression of the pathology itself, through intra-individual monitoring. This is particularly the case of rheumatoid arthritis (RA) for which an early diagnosis is undoubtedly the first step to ensure the most proper therapy for the patient. Thus, the earlier identification of individuals at high risk of RA could lead to ultra-preventive strategies to start for the best lifestyle performances and/or for any other effective therapeutic interventions to contrast the onset, and/or the evolution of the putative RA. This will also optimize both costs and medical resources, according to the health care policies of many countries.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy.
| |
Collapse
|
5
|
Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) - a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:459-478. [PMID: 36932657 DOI: 10.1515/reveh-2022-0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The health risks associated with individual air pollutant exposures have been studied and documented, but in real-life, the population is exposed to a multitude of different substances, designated as mixtures. A body of literature on air pollutants indicated that the next step in air pollution research is investigating pollutant mixtures and their potential impacts on health, as a risk assessment of individual air pollutants may actually underestimate the overall risks. This review aims to synthesize the health effects related to air pollutant mixtures containing selected pollutants such as: volatile organic compounds, particulate matter, sulfur and nitrogen oxides. For this review, the PubMed database was used to search for articles published within the last decade, and we included studies assessing the associations between air pollutant mixtures and health effects. The literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A number of 110 studies were included in the review from which data on pollutant mixtures, health effects, methods used, and primary results were extracted. Our review emphasized that there are a relatively small number of studies addressing the health effects of air pollutants as mixtures and there is a gap in knowledge regarding the health effects associated with these mixtures. Studying the health effects of air pollutant mixtures is challenging due to the complexity of components that mixtures may contain, and the possible interactions these different components may have.
Collapse
Affiliation(s)
- Emese Fazakas
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iulia A Neamtiu
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eugen S Gurzau
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Research Center for functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Yang Y, Wu H, Zeng Y, Xu F, Zhao S, Zhang L, An Z, Li H, Li J, Song J, Wu W. Short-term exposure to air pollution on peripheral white blood cells and inflammation biomarkers: a cross-sectional study on rural residents. BMC Public Health 2024; 24:1702. [PMID: 38926692 PMCID: PMC11201365 DOI: 10.1186/s12889-024-19116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Effects of short-term exposure to ambient air pollution on systemic immunological and inflammatory biomarkers in rural population have not been adequately characterized. From May to July 2021, 5816 participants in rural villages of northern Henan Province, China, participated in this cross-sectional study. Blood biomarkers of systemic inflammation were determined including peripheral white blood cells (WBC), eosinophils (EOS), basophils (BAS), monocytes (MON), lymphocytes (LYM), neutrophils (NEU), neutrophil-lymphocyte ratio (NLR), and serum high-sensitivity C-reactive protein (hs-CRP). The concentrations of ambient fine particulate matter (PM2.5), PM10, nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) were assessed up to 7 days prior to the blood draw. A generalized linear model was used to analyze the associations between air pollution exposure and the above-mentioned blood biomarkers. Significantly positive associations were revealed between PM2.5, CO and WBC; CO, O3 and LYM; PM2.5, PM10, SO2, CO and NEU; PM2.5, PM10, SO2, CO and NLR; PM2.5, PM10, SO2, NO2, CO, O3 and hs-CRP. Meanwhile, negative associations were found between SO2 and WBC; PM2.5, PM10, NO2, CO, or O3 and EOS; PM2.5, SO2, or CO and BAS; SO2, NO2 or O3 and MON; PM2.5, PM10, SO2, or NO2 and LYM. Moreover, men, individuals with normal body mass index (BMI), current smokers, and those older than 60 years were found vulnerable to air pollution effects. Taken together, short-term exposure to air pollution was associated with systemic inflammatory responses, providing insight into the potential mechanisms for air pollution-induced detrimental systemic effects in rural residents.
Collapse
Affiliation(s)
- Yishu Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Yuling Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Fei Xu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Shuaiqi Zhao
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Ling Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
7
|
Li J, Gu J, Liu L, Cao M, Wang Z, Tian X, He J. The relationship between air pollutants and preterm birth and blood routine changes in typical river valley city. BMC Public Health 2024; 24:1677. [PMID: 38915004 PMCID: PMC11197378 DOI: 10.1186/s12889-024-19140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE To collect maternal maternity information on preterm births in two tertiary hospitals in the urban area of Baota District, Yan'an City, from January 2018 to December 2020, to explore the long-term and short-term effects of air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) and preterm births, and to explore changes in blood cell counts due to air pollutants. METHODS Daily average mass concentration data of six air pollutants in the urban area of Yan'an City from January 1, 2017 to December 31, 2020 were collected from the monitoring station in Baota District, Yan'an City. Meteorological information was obtained from the Meteorological Bureau of Yan'an City, including temperature,relative humidity and wind speed for the time period. The mass concentration of air pollutants in each exposure window of pregnant women was assessed by the nearest monitoring station method, and conditional logistic regression was used to analyze the relationship between air pollutants and preterm births, as well as the lagged and cumulative effects of air pollutants. Multiple linear regression was used to explore the relationship between air pollutants and blood tests after stepwise linear regression was used to determine confounders for each blood test. RESULTS The long-term effects of pollutants showed that PM2.5, PM10, SO2, NO2and CO were risk factors for preterm birth. In the two-pollutant model, PM2.5, PM10, SO2 and NO2 mixed with other pollutants were associated with preterm birth. The lagged effect showed that PM2.5, PM10, SO2, NO, and CO were associated with preterm birth; the cumulative effect showed that other air pollutants except O3 were associated with preterm birth. The correlation study between air pollutants and blood indicators showed that air pollutants were correlated with leukocytes, monocytes, basophils, erythrocytes, hs-CRPand not with CRP. CONCLUSION Exposure to air pollutants is a risk factor for preterm birth. Exposure to air pollutants was associated with changes in leukocytes, monocytes, basophils and erythrocytes and hs-CRP.
Collapse
Affiliation(s)
- Jimin Li
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jiajia Gu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Lang Liu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Meiying Cao
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Zeqi Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Xi Tian
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jinwei He
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
8
|
Ye Y, Ma H, Dong J, Wang J. Association between short-term ambient air pollutants and type 2 diabetes outpatient visits: a time series study in Lanzhou, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:778-790. [PMID: 38546508 DOI: 10.1039/d3em00464c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Diabetes is a global public health problem, and the impact of air pollutants on type 2 diabetes mellitus (T2DM) has attracted people's attention. This study aimed to assess the association of short-term exposure to six criteria air pollutants with T2DM outpatient visits in Lanzhou, China. We collected data on daily outpatient visits for T2DM, daily meteorological data and hourly concentrations of air pollutants in Lanzhou from 2013 to 2019. An over-dispersed passion generalized addictive model combined with a distributed lag non-linear model was applied to estimate the associations and stratified analyses were performed by gender, age, and season. The models were fitted with different lag structures, including single lag days from the current to the previous seven days (lag0 to lag7) and moving average concentrations over seven lag days (lag01 to lag07). A positive association between multiple air pollutants, especially PM2.5, NO2, O38h and CO and hospital outpatient visits for T2DM was observed. The largest association between T2DM outpatient visits and PM2.5 was observed at lag06 (RR 1.013, 95% CI: 1.001, 1.027), NO2 at lag03 (RR 1.034, 95% CI: 1.018, 1.050), O38h at lag05 (RR 1.012, 95% CI: 1.001, 1.023) for an increase of 10 μg m-3 and CO at lag03 (RR 1.084, 95% CI: 1.029, 1.142) for an increase of 1 mg m-3 in the concentrations. In addition, people aged <65 and males are more susceptible, and air pollutants have a greater impact on the cold season. This study showed that although the air pollution in Lanzhou was improved, there was still a statistical correlation between air pollution exposure and T2DM outpatient visits. Therefore, the local government still needs to strengthen the control of air pollution and enhance the protection awareness of the diabetic population through education and publicity.
Collapse
Affiliation(s)
- Yilin Ye
- School of Public Health, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Hongran Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Jiyuan Dong
- School of Public Health, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Jiancheng Wang
- Gansu Health Vocational College, Lanzhou 730050, People's Republic of China
| |
Collapse
|
9
|
Wass SY, Hahad O, Asad Z, Li S, Chung MK, Benjamin EJ, Nasir K, Rajagopalan S, Al-Kindi SG. Environmental Exposome and Atrial Fibrillation: Emerging Evidence and Future Directions. Circ Res 2024; 134:1029-1045. [PMID: 38603473 PMCID: PMC11060886 DOI: 10.1161/circresaha.123.323477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
There has been increased awareness of the linkage between environmental exposures and cardiovascular health and disease. Atrial fibrillation is the most common sustained cardiac arrhythmia, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Although numerous studies have explored the role of genetic and lifestyle factors in the development and progression of atrial fibrillation, the potential impact of environmental determinants on this prevalent condition has received comparatively less attention. This review aims to provide a comprehensive overview of the current evidence on environmental determinants of atrial fibrillation, encompassing factors such as air pollution, temperature, humidity, and other meteorologic conditions, noise pollution, greenspace, and the social environment. We discuss the existing evidence from epidemiological and mechanistic studies, critically evaluating the strengths and limitations of these investigations and the potential underlying biological mechanisms through which environmental exposures may affect atrial fibrillation risk. Furthermore, we address the potential implications of these findings for public health and clinical practice and identify knowledge gaps and future research directions in this emerging field.
Collapse
Affiliation(s)
- Sojin Youn Wass
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (M.K.C., S.Y.W.)
| | - Omar Hahad
- Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Germany (O.H.)
| | - Zain Asad
- Division of Cardiovascular Medicine, University of Oklahoma Medical Center, Oklahoma City (Z.A.)
| | - Shuo Li
- Biomedical Engineering, Case Western Reserve University, Cleveland, OH (S.L.)
| | - Mina K Chung
- Heart, Vascular and Thoracic Institute, Cleveland Clinic, OH (M.K.C., S.Y.W.)
| | - Emelia J Benjamin
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine and Department of Epidemiology, Boston University School of Public Health, MA (E.J.B.)
| | - Khurram Nasir
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, TX (K.N., S.G.A.-K.)
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH (S.R.)
- Case Western Reserve University School of Medicine, Cleveland, OH (S.R.)
| | - Sadeer G Al-Kindi
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, TX (K.N., S.G.A.-K.)
| |
Collapse
|
10
|
Vogli M, Peters A, Wolf K, Thorand B, Herder C, Koenig W, Cyrys J, Maestri E, Marmiroli N, Karrasch S, Zhang S, Pickford R. Long-term exposure to ambient air pollution and inflammatory response in the KORA study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169416. [PMID: 38123091 DOI: 10.1016/j.scitotenv.2023.169416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Previous studies consistently showed an association between fine atmospheric particulate matter (PM2.5) and cardiovascular diseases. Concerns about adverse health effects of ultrafine particles (UFP) are growing but long-term studies are still scarce. In this study, we examined the association between long-term exposure to ambient air pollutants and blood biomarkers of inflammation and coagulation, including fibrinogen, high-sensitivity C-reactive protein (hs-CRP), serum amyloid A (SAA) adiponectin and interleukin-6 (IL-6), measured in the German KORA-S4 cohort study (1999-2001). IL-6 was available for older participants only, who were therefore considered as a subsample. Annual mean concentrations of UFP (as particle number concentration), particulate matter in different particles sizes (PM10, PMcoarse, PM2.5, PM2.5 absorbance), ozone (O3), and nitrogen oxides (NO2, NOX) were estimated by land-use regression models and assigned to participants' home addresses. We performed a multiple linear regression between each pollutant and each biomarker with adjustment for confounders. Per 1 interquartile range (IQR, 1945 particles/cm3) increase of UFP, fibrinogen increased by 0.70 % (0.04; 1.37) and hs-CRP increased by 3.16 % (-0.52; 6.98). Adiponectin decreased by -2.53 % (-4.78; -0.24) per 1 IQR (1.4 μg/m3) increase of PM2.5. Besides, PM2.5 was associated with increased IL-6 in the subsample. In conclusion, we observed that long-term exposure to air pollutants, including both fine and ultrafine particles, was associated with higher concentrations of pro-inflammatory and lower concentrations of an anti-inflammatory blood biomarkers, which is consistent with an increased risk for cardiovascular disease observed for long-term exposure to air pollutants.
Collapse
Affiliation(s)
- Megi Vogli
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Munich Heart Alliance, German Center for Cardiovascular Health (DZHK e.V., partner-site Munich), Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Koenig
- German Research Center for Cardiovascular Disease, Partner Site of Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Stefan Karrasch
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
| |
Collapse
|
11
|
Ruan Y, Bao Q, Wang L, Wang Z, Zhu W, Wang J. Cardiovascular diseases burden attributable to ambient PM 2.5 pollution from 1990 to 2019: A systematic analysis for the global burden of disease study 2019. ENVIRONMENTAL RESEARCH 2024; 241:117678. [PMID: 37984788 DOI: 10.1016/j.envres.2023.117678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Ambient PM2.5 pollution (APMP2.5) was the leading environmental risk factor for cardiovascular diseases (CVDs) worldwide. An up-to-date comprehensive study is needed to provide global epidemiological patterns. METHODS Detailed data on CVDs burden attributable to APMP2.5 were obtained from the Global Burden of Disease Study (GBD) 2019. We calculated the estimated annual percentage change (EAPC) to assess temporal trends in age-standardized rates of deaths and disability-adjusted life years (DALYs) over 30 years. RESULTS Globally, CVDs attributable to APMP2.5 resulted in 2.48 million deaths and 60.91 million DALYs, with an increase of 122%, respectively from 1990 to 2019. In general, men suffered markedly higher burden than women, but the gap will likely turn narrow. As for age distribution, CVDs deaths and DALYs attributable to APMP2.5 mainly occurred in the elder group (>70 years). Low- and middle-income regions endured the higher CVDs burden due to the higher exposure to APMP2.5, and the gap may potentially expand further compared with high-income regions. For regions, the highest age-standardized rates of APMP2.5-related CVDs deaths and DALYs were observed mainly in Central Asia, while the lowest was observed in Australasia. At the national level, countries with the largest ASDR decline were clustered in western Europe, while Equatorial Guinea, Timor-Leste and Bhutan exhibited relatively rapid increases over this period. CONCLUSIONS The global CVDs burden attributable to APMP2.5 has contributed to the heterogeneity of spatial and temporal distribution. APMP2.5-related CVDs deaths have largely shifted from higher SDI regions to those with a lower SDI. Globally, APMP2.5-attributable CVDs pose a significant threat to public health and diseases burden has increased over time, particularly in male, old-aged populations. The governments and health systems should take measures to reduce air pollution to impede this rising trend.
Collapse
Affiliation(s)
- Yixin Ruan
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Qinyi Bao
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Lingjun Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Zhuo Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Wei Zhu
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, China; State Key Laboratory of Transvascular Implantation Devices, China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, Proteomic, and Metabolomic Correlates of Traffic-Related Air Pollution in the Context of Cardiorespiratory Health: A Systematic Review, Pathway Analysis, and Network Analysis. TOXICS 2023; 11:1014. [PMID: 38133415 PMCID: PMC10748071 DOI: 10.3390/toxics11121014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead to cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA; (C.C.); (F.K.); (C.U.); (D.S.M.); (K.K.)
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
13
|
Casella C, Kiles F, Urquhart C, Michaud DS, Kirwa K, Corlin L. Methylomic, proteomic, and metabolomic correlates of traffic-related air pollution: A systematic review, pathway analysis, and network analysis relating traffic-related air pollution to subclinical and clinical cardiorespiratory outcomes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.30.23296386. [PMID: 37873294 PMCID: PMC10592990 DOI: 10.1101/2023.09.30.23296386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A growing body of literature has attempted to characterize how traffic-related air pollution (TRAP) affects molecular and subclinical biological processes in ways that could lead to cardiorespiratory disease. To provide a streamlined synthesis of what is known about the multiple mechanisms through which TRAP could lead cardiorespiratory pathology, we conducted a systematic review of the epidemiological literature relating TRAP exposure to methylomic, proteomic, and metabolomic biomarkers in adult populations. Using the 139 papers that met our inclusion criteria, we identified the omic biomarkers significantly associated with short- or long-term TRAP and used these biomarkers to conduct pathway and network analyses. We considered the evidence for TRAP-related associations with biological pathways involving lipid metabolism, cellular energy production, amino acid metabolism, inflammation and immunity, coagulation, endothelial function, and oxidative stress. Our analysis suggests that an integrated multi-omics approach may provide critical new insights into the ways TRAP could lead to adverse clinical outcomes. We advocate for efforts to build a more unified approach for characterizing the dynamic and complex biological processes linking TRAP exposure and subclinical and clinical disease, and highlight contemporary challenges and opportunities associated with such efforts.
Collapse
Affiliation(s)
- Cameron Casella
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Frances Kiles
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Catherine Urquhart
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Dominique S. Michaud
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Kipruto Kirwa
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA 02155, USA
| |
Collapse
|
14
|
Mouliou DS. C-Reactive Protein: Pathophysiology, Diagnosis, False Test Results and a Novel Diagnostic Algorithm for Clinicians. Diseases 2023; 11:132. [PMID: 37873776 PMCID: PMC10594506 DOI: 10.3390/diseases11040132] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
The current literature provides a body of evidence on C-Reactive Protein (CRP) and its potential role in inflammation. However, most pieces of evidence are sparse and controversial. This critical state-of-the-art monography provides all the crucial data on the potential biochemical properties of the protein, along with further evidence on its potential pathobiology, both for its pentameric and monomeric forms, including information for its ligands as well as the possible function of autoantibodies against the protein. Furthermore, the current evidence on its potential utility as a biomarker of various diseases is presented, of all cardiovascular, respiratory, hepatobiliary, gastrointestinal, pancreatic, renal, gynecological, andrological, dental, oral, otorhinolaryngological, ophthalmological, dermatological, musculoskeletal, neurological, mental, splenic, thyroid conditions, as well as infections, autoimmune-supposed conditions and neoplasms, including other possible factors that have been linked with elevated concentrations of that protein. Moreover, data on molecular diagnostics on CRP are discussed, and possible etiologies of false test results are highlighted. Additionally, this review evaluates all current pieces of evidence on CRP and systemic inflammation, and highlights future goals. Finally, a novel diagnostic algorithm to carefully assess the CRP level for a precise diagnosis of a medical condition is illustrated.
Collapse
|
15
|
Kjerulff B, Thisted Horsdal H, Kaspersen K, Mikkelsen S, Manh Dinh K, Hørup Larsen M, Rye Ostrowski S, Ullum H, Sørensen E, Birger Pedersen O, Topholm Bruun M, René Nielsen K, Brandt J, Geels C, Frohn LM, Christensen JH, Sigsgaard T, Eric Sabel C, Bøcker Pedersen C, Erikstrup C. Medium term moderate to low-level air pollution exposure is associated with higher C-reactive protein among healthy Danish blood donors. ENVIRONMENTAL RESEARCH 2023; 233:116426. [PMID: 37336432 DOI: 10.1016/j.envres.2023.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Air pollution is a significant contributor to the global burden of disease with a plethora of associated health effects such as pulmonary and systemic inflammation. C-reactive protein (CRP) is associated with a wide range of diseases and is associated with several exposures. Studies on the effect of air pollution exposure on CRP levels in low to moderate pollution settings have shown inconsistent results. In this cross-sectional study high sensitivity CRP measurements on 18,463 Danish blood donors were linked to modelled air pollution data for NOx, NO2, O3, CO, SO2, NH3, mineral dust, black carbon, organic carbon, sea salt, secondary inorganic aerosols and its components, primary PM2.5, secondary organic aerosols, total PM2.5, and total PM10 at their residential address over the previous month. Associations were analysed using ordered logistic regression with CRP quartile as individuals outcome and air pollution exposure as scaled deciles. Analyses were adjusted for health related and socioeconomic covariates using health questionnaires and Danish register data. Exposure to different air pollution components was generally associated with higher CRP (odds ratio estimates ranging from 1.11 to 1.67), while exposure to a few air pollution components was associated with lower CRP. For example, exposure to NO2 increased the odds of high CRP 1.32-fold (95%CI 1.16-1.49), while exposure to NH3 decreased the odds of high CRP 0.81-fold (95%CI 0.73-0.89). This large study among healthy individuals found air pollution exposure to be associated with increased levels of CRP even in a setting with low to moderate air pollution levels.
Collapse
Affiliation(s)
- Bertram Kjerulff
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.
| | - Henriette Thisted Horsdal
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, DK-8210, Aarhus V, Denmark
| | - Kathrine Kaspersen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark
| | - Khoa Manh Dinh
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark
| | - Margit Hørup Larsen
- Dept. of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Sisse Rye Ostrowski
- Dept. of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark
| | | | - Erik Sørensen
- Dept. of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, Copenhagen University, Denmark; Dept. of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark; IClimate - Interdisciplinary Centre for Climate Change, Aarhus University, DK-4000, Denmark
| | - Torben Sigsgaard
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Public Health, Aarhus University, DK-8000, Aarhus, Denmark
| | - Clive Eric Sabel
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Public Health, Aarhus University, DK-8000, Aarhus, Denmark
| | - Carsten Bøcker Pedersen
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; National Centre for Register-based Research, Aarhus BSS, Aarhus University, DK-8210, Aarhus V, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, DK-8200, Aarhus N, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Denmark; Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
16
|
Han D, Chen R, Kan H, Xu Y. The bio-distribution, clearance pathways, and toxicity mechanisms of ambient ultrafine particles. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:95-106. [PMID: 38074989 PMCID: PMC10702920 DOI: 10.1016/j.eehl.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 02/17/2024]
Abstract
Ambient particles severely threaten human health worldwide. Compared to larger particles, ultrafine particles (UFPs) are highly concentrated in ambient environments, have a larger specific surface area, and are retained for a longer time in the lung. Recent studies have found that they can be transported into various extra-pulmonary organs by crossing the air-blood barrier (ABB). Therefore, to understand the adverse effects of UFPs, it is crucial to thoroughly investigate their bio-distribution and clearance pathways in vivo after inhalation, as well as their toxicological mechanisms. This review highlights emerging evidence on the bio-distribution of UFPs in pulmonary and extra-pulmonary organs. It explores how UFPs penetrate the ABB, the blood-brain barrier (BBB), and the placental barrier (PB) and subsequently undergo clearance by the liver, kidney, or intestine. In addition, the potential underlying toxicological mechanisms of UFPs are summarized, providing fundamental insights into how UFPs induce adverse health effects.
Collapse
Affiliation(s)
- Dongyang Han
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
Sangaramoorthy M, Yang J, Tseng C, Wu J, Ritz B, Larson TV, Fruin S, Stram DO, Park SSL, Franke AA, Wilkens LR, Samet JM, Le Marchand L, Shariff-Marco S, Haiman CA, Wu AH, Cheng I. Particulate matter, traffic-related air pollutants, and circulating C-reactive protein levels: The Multiethnic Cohort Study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121962. [PMID: 37277070 PMCID: PMC10870935 DOI: 10.1016/j.envpol.2023.121962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Inhaled particles and gases can harm health by promoting chronic inflammation in the body. Few studies have investigated the relationship between outdoor air pollution and inflammation by race and ethnicity, socioeconomic status, and lifestyle risk factors. We examined associations of particulate matter (PM) and other markers of traffic-related air pollution with circulating levels of C-reactive protein (CRP), a biomarker of systemic inflammation. CRP was measured from blood samples obtained in 1994-2016 from 7,860 California residents participating in the Multiethnic Cohort (MEC) Study. Exposure to PM (aerodynamic diameter ≤2.5 μm [PM2.5], ≤10 μm [PM10], and between 2.5 and 10 μm [PM10-2.5]), nitrogen oxides (NOx, including nitrogen dioxide [NO2]), carbon monoxide (CO), ground-level ozone (O3), and benzene averaged over one or twelve months before blood draw were estimated based on participants' addresses. Percent change in geometric mean CRP levels and 95% confidence intervals (CI) per standard concentration increase of each pollutant were estimated using multivariable generalized linear regression. Among 4,305 females (55%) and 3,555 males (45%) (mean age 68.1 [SD 7.5] years at blood draw), CRP levels increased with 12-month exposure to PM10 (11.0%, 95% CI: 4.2%, 18.2% per 10 μg/m3), PM10-2.5 (12.4%, 95% CI: 1.4%, 24.5% per 10 μg/m3), NOx (10.4%, 95% CI: 2.2%, 19.2% per 50 ppb), and benzene (2.9%, 95% CI: 1.1%, 4.6% per 1 ppb). In subgroup analyses, these associations were observed in Latino participants, those who lived in low socioeconomic neighborhoods, overweight or obese participants, and never or former smokers. No consistent patterns were found for 1-month pollutant exposures. This investigation identified associations of primarily traffic-related air pollutants, including PM, NOx, and benzene, with CRP in a multiethnic population. The diversity of the MEC across demographic, socioeconomic, and lifestyle factors allowed us to explore the generalizability of the effects of air pollution on inflammation across subgroups.
Collapse
Affiliation(s)
- Meera Sangaramoorthy
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Juan Yang
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chiuchen Tseng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jun Wu
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, USA
| | - Beate Ritz
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, CA, USA
| | - Timothy V Larson
- Department of Civil & Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Scott Fruin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sung-Shim Lani Park
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Adrian A Franke
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Lynne R Wilkens
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Jonathan M Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Loïc Le Marchand
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Salma Shariff-Marco
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anna H Wu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Iona Cheng
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Schwarz M, Schneider A, Cyrys J, Bastian S, Breitner S, Peters A. Impact of Ambient Ultrafine Particles on Cause-Specific Mortality in Three German Cities. Am J Respir Crit Care Med 2023; 207:1334-1344. [PMID: 36877186 PMCID: PMC10595437 DOI: 10.1164/rccm.202209-1837oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Rationale: Exposure to ambient air pollution has been associated with adverse effects on morbidity and mortality. However, the evidence for ultrafine particles (UFPs; 10-100 nm) based on epidemiological studies remains scarce and inconsistent. Objectives: We examined associations between short-term exposures to UFPs and total particle number concentrations (PNCs; 10-800 nm) and cause-specific mortality in three German cities: Dresden, Leipzig, and Augsburg. Methods: We obtained daily counts of natural, cardiovascular, and respiratory mortality between 2010 and 2017. UFPs and PNCs were measured at six sites, and measurements of fine particulate matter (PM2.5; ⩽2.5 μm in aerodynamic diameter) and nitrogen dioxide were collected from routine monitoring. We applied station-specific confounder-adjusted Poisson regression models. We investigated air pollutant effects at aggregated lags (0-1, 2-4, 5-7, and 0-7 d after UFP exposure) and used a novel multilevel meta-analytical method to pool the results. Additionally, we assessed interdependencies between pollutants using two-pollutant models. Measurements and Main Results: For respiratory mortality, we found a delayed increase in relative risk of 4.46% (95% confidence interval, 1.52 to 7.48%) per 3,223-particles/cm3 increment 5-7 days after UFP exposure. Effects for PNCs showed smaller but comparable estimates consistent with the observation that the smallest UFP fractions showed the largest effects. No clear associations were found for cardiovascular or natural mortality. UFP effects were independent of PM2.5 in two-pollutant models. Conclusions: We found delayed effects for respiratory mortality within 1 week after exposure to UFPs and PNCs but no associations for natural or cardiovascular mortality. This finding adds to the evidence on the independent health effects of UFPs.
Collapse
Affiliation(s)
- Maximilian Schwarz
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology, Dresden, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Liu Y, Shao J, Liu Q, Zhou W, Huang R, Zhou J, Ning N, Tang X, Ma Y. Association between household fuel combustion and diabetes among middle-aged and older adults in China: A cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114974. [PMID: 37150109 DOI: 10.1016/j.ecoenv.2023.114974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND Few studies examined the associations of household fuel combustion with incident diabetes. The current study emphasizes the association of domestic fuel combustion with diabetes among middle- and older- Chinese. METHODS The data was extracted from a national and prospective cohort, the China Health and Retirement Longitudinal Study (CHARLS), which enrolled adults ≥ 45 years. A total of 4610 and 5570 participants were involved in heating and cooking-related analyses. Multivariable logistic models were conducted to assess the association of domestic fuel combustion for heating and cooking with diabetes. Furthermore, we also examined whether it differed from switching fuel types. Subgroup and interaction analyses were performed based on covariates to examine the robustness and find potential effect modifiers. RESULTS After about 5-year follow-up, 592 and 716 diabetes were diagnosed in heating and cooking-related analyses. Compared to cleaner fuel users, those who used solid fuel for heating [OR (95 % CI):1.32 (1.05-1.66)] maintained higher risks of incident diabetes. In addition, participants who were exposed to solid fuel for both heating and cooking [OR (95 % CI):1.55 (1.17-2.06)] might have further elevated diabetic risk. Those risks are likely to be attenuated if people switched cooking fuel from solid to cleaner [OR (95 % CI): 0.68 (0.53-0.89)]. CONCLUSIONS Home solid fuel use for heating is associated with an increased risk of incident diabetes. If solid fuel was concurrently used for both cooking and heating, those risks might be further elevated. Interestingly, as compared to solid fuel users, the participants switching cooking fuel types from solid to cleaner presented reduced diabetic risk.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Jinang Shao
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Qitong Liu
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Wenhui Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Rong Huang
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Jin Zhou
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Ning Ning
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| | - Xiao Tang
- Department of Health Statistics, School of Public Health, Dalian Medical University, Dalian, Liaoning, China.
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
20
|
Yang M, Wu K, Wu Q, Huang C, Xu Z, Ho HC, Tao J, Zheng H, Hossain MZ, Zhang W, Wang N, Su H, Cheng J. A systematic review and meta-analysis of air pollution and angina pectoris attacks: identification of hazardous pollutant, short-term effect, and vulnerable population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32246-32254. [PMID: 36735120 DOI: 10.1007/s11356-023-25658-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We conducted a systematic review and meta-analysis of global epidemiological studies of air pollution and angina pectoris, aiming to explore the deleterious air pollutant(s) and vulnerable sub-populations. PubMed and Web of Science databases were searched for eligible articles published between database inception and October 2021. Meta-analysis weighted by inverse-variance was utilized to pool effect estimates based on the type of air pollutant, including particulate matters (PM2.5 and PM10: particulate matter with an aerodynamic diameter ≤ 2.5 µm and ≤ 10 µm), gaseous pollutants (NO2: nitrogen dioxide; CO: carbon monoxide; SO2: sulfur dioxide, and O3: ozone). Study-specific effect estimates were standardized and calculated with percentage change of angina pectoris for each 10 µg/m3 increase in air pollutant concentration. Twelve studies involving 663,276 angina events from Asia, America, Oceania, and Europe were finally included. Meta-analysis showed that each 10 µg/m3 increase in PM2.5 and PM10 concentration was associated with an increase of 0.66% (95%CI: 0.58%, 0.73%; p < 0.001) and 0.57% (95%CI: 0.20%, 0.94%; p = 0.003) in the risk of angina pectoris on the second day of exposure. Adverse effects were also observed for NO2 (0.67%, 95%CI: 0.33%, 1.02%; p < v0.001) on the second day, CO (0.010%, 95%CI: 0.006%, 0.014%; p < 0.001). The elderly and patients with coronary artery disease (CAD) appeared to be at higher risk of angina pectoris. Our findings suggest that short-term exposure to PM2.5, PM10, NO2, and CO was associated with an increased risk of angina pectoris, which may have implications for cardiologists and patients to prevent negative cardiovascular outcomes.
Collapse
Affiliation(s)
- Min Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Keyu Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Qiyue Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Zhiwei Xu
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, 4214, Australia
| | - Hung Chak Ho
- Department of Anaesthesiology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Mohammad Zahid Hossain
- Bangladesh (Icddr,B), International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Wenyi Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ning Wang
- National Center for Chronic and Non-Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
21
|
Deng Z, Tan C, Pan J, Xiang Y, Shi G, Huang Y, Xiong Y, Xu K. Mining biomarkers from routine laboratory tests in clinical records associated with air pollution health risk assessment. ENVIRONMENTAL RESEARCH 2023; 216:114639. [PMID: 36309217 DOI: 10.1016/j.envres.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Clinical laboratory in hospital can produce amounts of health data every day. The purpose of this study was to mine biomarkers from clinical laboratory big data associated with the air pollution health risk assessment using clinical records. 13, 045, 629 clinical records of all 27 routine laboratory tests in Changsha Central Hospital, including ALB, TBIL, ALT, DBIL, AST, TP, UREA, UA, CREA, GLU, CK, CKMB, LDL-C, TG, TC, HDL-C, CRP, WBC, Na, K, Ca, Cl, APTT, PT, FIB, TT, RBC and those daily air pollutants concentration monitoring data of Changsha, including PM2.5, PM10, SO2, NO2, CO, and O3 from 2014 to 2016, were retrieved. The moving average method was used to the biological reference interval was established. The tests results were converted into daily abnormal rate. After data cleaning, GAM statistical model construction and data analysis, a concentration-response relationship between air pollutants and daily abnormal rate of routine laboratory tests was observed. Our study found that PM2.5 had a stable association with TP (lag07), ALB (lag07), ALT (lag07), AST (lag07), TBIL (lag07), DBIL (lag07), UREA (lag07), CREA (lag07), UA (lag07), CK (lag 06), GLU (lag07), WBC (lag07), Cl (lag07) and Ca (lag07), (P < 0.05); O3 had a stable association with AST (lag01), CKMB (lag06), TG (lag07), TC (lag05), HDL-C (lag07), K (lag05) and RBC (lag07) (P < 0.05); CO had a stable association with UREA (lag07), Na (lag7) and PT (lag07) (P < 0.05); SO2 had a stable association with TP (lag07) and LDL-C (lag0) (P < 0.05); NO2 had a stable association with APTT (lag7) (P < 0.05). These results showed that different air pollutants affected different routine laboratory tests and presented different pedigrees. Therefore, biomarkers mined from routine laboratory tests may potentially be used to low-cost assess the health risks associated with air pollutants.
Collapse
Affiliation(s)
- Zhonghua Deng
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China; Department of Medical Laboratory, Hunan Provincial People's Hospital, Changsha, 410005, PR China; The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, PR China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, Changsha, 410005, PR China; The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, PR China
| | - Jianhua Pan
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Yangen Xiang
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Guomin Shi
- Department of Medical Laboratory, Changsha Central Hospital, Changsha, 410004, PR China
| | - Yue Huang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yican Xiong
- Department of Gastrointestinal Pediatric Surgery, Hunan Provincial People's Hospital, Changsha, 410005, PR China
| | - Keqian Xu
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, PR China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
22
|
Yao Y, Schneider A, Wolf K, Zhang S, Wang-Sattler R, Peters A, Breitner S. Longitudinal associations between metabolites and long-term exposure to ambient air pollution: Results from the KORA cohort study. ENVIRONMENT INTERNATIONAL 2022; 170:107632. [PMID: 36402035 DOI: 10.1016/j.envint.2022.107632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Long-term exposure to air pollution has been associated with cardiopulmonary diseases, while the underlying mechanisms remain unclear. OBJECTIVES To investigate changes in serum metabolites associated with long-term exposure to air pollution and explore the susceptibility characteristics. METHODS We used data from the German population-based Cooperative Health Research in the Region of Augsburg (KORA) S4 survey (1999-2001) and two follow-up examinations (F4: 2006-08 and FF4: 2013-14). Mass-spectrometry-based targeted metabolomics was used to quantify metabolites among serum samples. Only participants with repeated metabolites measurements were included in the current analysis. Land-use regression (LUR) models were used to estimate annual average concentrations of ultrafine particles, particulate matter (PM) with an aerodynamic diameter less than 10 μm (PM10), coarse particles (PMcoarse), fine particles, PM2.5 absorbance (a proxy of elemental carbon related to traffic exhaust, PM2.5abs), nitrogen oxides (NO2, NOx), and ozone at individuals' residences. We applied confounder-adjusted mixed-effects regression models to examine the associations between long-term exposure to air pollution and metabolites. RESULTS Among 9,620 observations from 4,261 KORA participants, we included 5,772 (60.0%) observations from 2,583 (60.6%) participants in this analysis. Out of 108 metabolites that passed stringent quality control across three study points in time, we identified nine significant negative associations between phosphatidylcholines (PCs) and ambient pollutants at a Benjamini-Hochberg false discovery rate (FDR) corrected p-value < 0.05. The strongest association was seen for an increase of 0.27 μg/m3 (interquartile range) in PM2.5abs and decreased phosphatidylcholine acyl-alkyl C36:3 (PC ae C36:3) concentrations [percent change in the geometric mean: -2.5% (95% confidence interval: -3.6%, -1.5%)]. CONCLUSIONS Our study suggested that long-term exposure to air pollution is associated with metabolic alterations, particularly in PCs with unsaturated long-chain fatty acids. These findings might provide new insights into potential mechanisms for air pollution-related adverse outcomes.
Collapse
Affiliation(s)
- Yueli Yao
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Rui Wang-Sattler
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, DZD, Munich-Neuherberg, Germany
| | - Annette Peters
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, DZD, Munich-Neuherberg, Germany; German Centre for Cardiovascular Research, DZHK, Partner Site Munich, Munich, Germany
| | - Susanne Breitner
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Ludwig-Maximilians-Universität München, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
23
|
Kim JH, Woo HD, Choi S, Song DS, Lee JH, Lee K. Long-Term Effects of Ambient Particulate and Gaseous Pollutants on Serum High-Sensitivity C-Reactive Protein Levels: A Cross-Sectional Study Using KoGES-HEXA Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191811585. [PMID: 36141854 PMCID: PMC9517608 DOI: 10.3390/ijerph191811585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 05/23/2023]
Abstract
Ambient air pollutants reportedly increase inflammatory responses associated with multiple chronic diseases. We investigated the effects of long-term exposure to ambient air pollution on high-sensitivity C-reactive protein (hs-CRP) using data from 60,581 participants enrolled in the Korean Genome and Epidemiology Study-Health Examinees Study between 2012 and 2017. Community Multiscale Air Quality System with surface data assimilation was used to estimate the participants' exposure to criteria air pollutants based on geocoded residential addresses. Long-term exposure was defined as the 2-year moving average concentrations of PM10, PM2.5, SO2, NO2, and O3. Multivariable linear and logistic regression models were utilized to estimate the percent changes in hs-CRP and odds ratios of systemic low-grade inflammation (hs-CRP > 3 mg/L) per interquartile range increment in air pollutants. We identified positive associations between hs-CRP and PM10 (% changes: 3.75 [95% CI 2.68, 4.82]), PM2.5 (3.68, [2.57, 4.81]), SO2 (1.79, [1.10, 2.48]), and NO2 (3.31, [2.12, 4.52]), while negative association was demonstrated for O3 (-3.81, [-4.96, -2.65]). Elevated risks of low-grade inflammation were associated with PM10 (odds ratio: 1.07 [95% CI 1.01, 1.13]), PM2.5 (1.08 [1.02, 1.14]), and SO2 (1.05 [1.01, 1.08]). The odds ratios reported indicated that the exposures might be risk factors for inflammatory conditions; however, they did not reflect strong associations. Our findings suggest that exposure to air pollutants may play a role in the inflammation process.
Collapse
|
24
|
Shi X, Zheng Y, Cui H, Zhang Y, Jiang M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113893. [PMID: 35917711 DOI: 10.1016/j.ecoenv.2022.113893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Due to the highly evolved industrialization and modernization, air quality has deteriorated in most countries. As reported by the World Health Organization (WHO), air pollution is now considered as one of the major threats to global health and a principal risk factor for noncommunicable diseases. Meanwhile, the increasing worldwide prevalence of overweight and obesity is attracting more public attentions. Recently, accumulating epidemiological studies have provided evidence that overweight and obesity may be partially attributable to environmental exposure to air pollution. This review summarizes the epidemiological evidence for the correlation between exposure to various outdoor and indoor air pollutants (mainly particulate matter (PM), nitrogen oxides (NOx), ozone (O3), and polycyclic aromatic hydrocarbons (PAHs)) and overweight and obesity outcomes in recent years. Moreover, it discusses the multiple effects of air pollution during exposure periods throughout life and sex differences in populations. This review also describes the potential mechanism underlying the increased risk of obesity caused by air pollution, including inflammation, oxidative stress, metabolic imbalance, intestinal flora disorders and epigenetic modifications. Finally, this review proposes macro- and micro-measures to prevent the negative effects of air pollution exposure on the obesity prevalence.
Collapse
Affiliation(s)
- Xiaoyi Shi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haiwen Cui
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxi Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
25
|
Ge Z, Ma Y, Xing W, Wu Y, Peng S, Mao L, Miao Z. Inorganic Nitrogen-Containing Aerosol Deposition Caused "Excessive Photosynthesis" of Herbs, Resulting in Increased Nitrogen Demand. PLANTS (BASEL, SWITZERLAND) 2022; 11:2225. [PMID: 36079607 PMCID: PMC9460276 DOI: 10.3390/plants11172225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
The amount of atmospheric nitrogen-containing aerosols has increased dramatically due to the globally rising levels of nitrogen from fertilization and atmospheric deposition. Although the balance of carbon and nitrogen in plants is a crucial component of physiological and biochemical indexes and plays a key role in adaptive regulation, our understanding of how nitrogen-containing aerosols affect this remains limited; in particular, regarding the associated mechanisms. Using a fumigation particle generator, we generated ammonium nitrate solution (in four concentrations of 0, 15, 30, 60 kg N hm-2 year-1) into droplets, in 90% of which the diameters were less than 2.5 μm, in the range of 0.35-4 μm, and fumigated Iris germanica L. and Portulaca grandiflora Hook. for 30 days in April and August. We found that the weight percentage of nitrogen in the upper epidermis, mesophyll tissue, and bulk of leaves decreased significantly with the N addition rate, which caused a decrease of carbon:nitrogen ratio, due to the enhanced net photosynthetic rate. Compared with Portulaca grandiflora Hook., Iris germanica L. responded more significantly to the disturbance of N addition, resulting in a decrease in the weight percentage of nitrogen in the roots, due to a lower nitrogen use efficiency. In addition, the superoxide dismutase activity of the two plants was inhibited with a higher concentration of nitrogen sol; a reduction of superoxide dismutase activity in plants means that the resistance of plants to various environmental stresses is reduced, and this decrease in superoxide dismutase activity may be related to ROS signaling. The results suggest that inorganic nitrogen-containing aerosols caused excessive stress to plants, especially for Iris germanica L.
Collapse
Affiliation(s)
- Zhiwei Ge
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- NFU Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing 210037, China
| | - Yunran Ma
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Xing
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Academy of Forestry, Nanjing 211100, China
| | - Yongbo Wu
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sili Peng
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lingfeng Mao
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- NFU Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing 210037, China
| | - Zimei Miao
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- NFU Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing 210037, China
| |
Collapse
|
26
|
Darras-Hostens M, Achour D, Muntaner M, Grare C, Zarcone G, Garçon G, Amouyel P, Zerimech F, Matran R, Guidice JML, Dauchet L. Short-term and residential exposure to air pollution: Associations with inflammatory biomarker levels in adults living in northern France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:154985. [PMID: 35398417 DOI: 10.1016/j.scitotenv.2022.154985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Air pollution has an impact on health, and low-grade inflammation might be one of the underlying mechanisms. The objective of the present study of adults from northern France was to assess the associations between short-term and residential exposure to air pollution and levels of various inflammatory biomarkers. METHODS The cross-sectional Enquête Littoral Souffle Air Biologie Environnement (ELISABET) study was conducted from 2011 to 2013 in the Lille and Dunkirk urban areas of northern France. Here, we evaluated the associations between PM10, NO2 and O3 exposure (on the day of the blood sample collection and on the day before, and the mean annual residential level) and levels of the inflammatory biomarkers high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17A, IL-22, and tumor necrosis factor α. RESULTS We assessed 3074 participants for the association with hsCRP and a subsample of 982 non-smokers from Lille for the association with plasma cytokine levels. A 10 μg/m3 increment in PM10 and NO2 levels on the day of sample collection and on the day before was associated with a higher hsCRP concentration (3.43% [0.68; 6.25] and 1.75% [-1.96; 5.61], respectively, whereas a 10 μg/m3 increment in O3 was associated with lower hsCRP concentration (-1.2% [-3.95; 1.64]). The associations between mean annual exposure and the hsCRP level were not significant. Likewise, the associations between exposure and plasma cytokine levels were not statistically significant. CONCLUSION Short-term exposure to air pollution was associated with higher serum hsCRP levels in adult residents of two urban areas in northern France. Our results suggest that along with other factors, low-grade inflammation might explain the harmful effects of air pollution on health.
Collapse
Affiliation(s)
- Marion Darras-Hostens
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Djamal Achour
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Manon Muntaner
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Céline Grare
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Gianni Zarcone
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Guillaume Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Philippe Amouyel
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| | - Farid Zerimech
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Régis Matran
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Jean-Marc Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483 - IMPECS - IMPact de l'Environnement Chimique sur la Santé, F-59000 Lille, France.
| | - Luc Dauchet
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France.
| |
Collapse
|
27
|
de Prado-Bert P, Warembourg C, Dedele A, Heude B, Borràs E, Sabidó E, Aasvang GM, Lepeule J, Wright J, Urquiza J, Gützkow KB, Maitre L, Chatzi L, Casas M, Vafeiadi M, Nieuwenhuijsen MJ, de Castro M, Grazuleviciene R, McEachan RRC, Basagaña X, Vrijheid M, Sunyer J, Bustamante M. Short- and medium-term air pollution exposure, plasmatic protein levels and blood pressure in children. ENVIRONMENTAL RESEARCH 2022; 211:113109. [PMID: 35292243 DOI: 10.1016/j.envres.2022.113109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 05/26/2023]
Abstract
Exposure to air pollution influences children's health, however, the biological mechanisms underlying these effects are not completely elucidated. We investigated the association between short- and medium-term outdoor air pollution exposure with protein profiles and their link with blood pressure in 1170 HELIX children aged 6-11 years. Different air pollutants (NO2, PM10, PM2.5, and PM2.5abs) were estimated based on residential and school addresses at three different windows of exposure (1-day, 1-week, and 1-year before clinical and molecular assessment). Thirty-six proteins, including adipokines, cytokines, or apolipoproteins, were measured in children's plasma using Luminex. Systolic and diastolic blood pressure (SBP and DBP) were measured following a standardized protocol. We performed an association study for each air pollutant at each location and time window and each outcome, adjusting for potential confounders. After correcting for multiple-testing, hepatocyte growth factor (HGF) and interleukin 8 (IL8) levels were positively associated with 1-week home exposure to some of the pollutants (NO2, PM10, or PM2.5). NO2 1-week home exposure was also related to higher SBP. The mediation study suggested that HGF could explain 19% of the short-term effect of NO2 on blood pressure, but other study designs are needed to prove the causal directionality between HGF and blood pressure.
Collapse
Affiliation(s)
- Paula de Prado-Bert
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Charline Warembourg
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Audrius Dedele
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004 Paris, France
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, IAB, 38000, Grenoble, France
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Jose Urquiza
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Léa Maitre
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA; Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Maribel Casas
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Mark J Nieuwenhuijsen
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Regina Grazuleviciene
- Department of Environmental Science, Vytautas Magnus University, 44248, Kaunas, Lithuania
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford Royal, UK
| | - Xavier Basagaña
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- ISGlobal, Dr. Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
28
|
Wu X, Cao X, Lintelmann J, Peters A, Koenig W, Zimmermann R, Schneider A, Wolf K. Assessment of the association of exposure to polycyclic aromatic hydrocarbons, oxidative stress, and inflammation: A cross-sectional study in Augsburg, Germany. Int J Hyg Environ Health 2022; 244:113993. [PMID: 35777219 DOI: 10.1016/j.ijheh.2022.113993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to acute and chronic health effects through the suggested pathways of oxidative stress and inflammation. However, evidence is still limited. We aimed to investigate jointly the relationship of PAHs, oxidative stress, and inflammation. METHODS We measured 13 biomarkers of PAH exposure (n = 6: hydroxylated polycyclic aromatic hydrocarbons, [OH-PAHs]), oxidative stress (n = 6: malondialdehyde (MDA); 8-hydroxy-2'-deoxyguanosine (8-OHdG); and 4 representatives of the compound class of F2α-isoprostanes) in urine, and inflammation (n = 1: high-sensitivity C-reactive protein, [hs-CRP]) in serum from 400 participants at the second follow-up (2013/2014) of the German KORA survey S4. Multiple linear regression models were applied to investigate the interplay between biomarkers. RESULTS Concentrations of biomarkers varied according to sex, age, smoking status, season, and a history of obesity, diabetes, or chronic kidney disease. All OH-PAHs were significantly and positively associated with oxidative stress biomarkers. An interquartile range (IQR) increase in sum OH-PAHs was associated with a 13.3% (95% CI: 9.9%, 16.9%) increase in MDA, a 6.5% (95% CI: 3.5%, 9.6%) increase in 8-OHdG, and an 8.4% (95% CI: 6.6%, 11.3%) increase in sum F2α-isoprostanes. Associations were more pronounced between OH-PAHs and F2α-isoprostanes but also between OH-PAHs and 8-OHdG for participants with potential underlying systemic inflammation (hs-CRP ≥ 3 mg/L). We observed no association between OH-PAHs and hs-CRP levels. While 8-OHdG was significantly positively associated with hs-CRP (13.7% [95% CI: 2.2%, 26.5%] per IQR increase in 8-OHdG), F2α-isoprostanes and MDA indicated only a positive or null association, respectively. CONCLUSION The results of this cross-sectional study suggest, at a population level, that exposure to PAHs is associated with oxidative stress even in a low exposure setting. Oxidative stress markers, but not PAHs, were associated with inflammation. Individual risk factors were important contributors to these processes and should be considered in future studies. Further longitudinal studies are necessary to investigate the causal chain of the associations.
Collapse
Affiliation(s)
- Xiao Wu
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xin Cao
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jutta Lintelmann
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; German Center for Diabetes Research, Munich, Germany; Institute for Medical Information Processing, Biometry and Epidemiology, Medical Faculty, Ludwig Maximilian University of Munich, Munich, Germany
| | - Wolfgang Koenig
- German Heart Centre Munich, Technical University of Munich, Munich, Germany; DZHK, German Centre for Cardiovascular Research, Partner Site Munich, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Ralf Zimmermann
- Division of Analytical and Technical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany; Cooperation Group of Comprehensive Molecular Analytics, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | | |
Collapse
|
29
|
Brynge M, Gardner R, Sjöqvist H, Karlsson H, Dalman C. Maternal levels of acute phase proteins in early pregnancy and risk of autism spectrum disorders in offspring. Transl Psychiatry 2022; 12:148. [PMID: 35393396 PMCID: PMC8989993 DOI: 10.1038/s41398-022-01907-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Previous research supports a contribution of early-life immune disturbances in the etiology of autism spectrum disorders (ASD). Biomarker studies of the maternal innate (non-adaptive) immune status related to ASD risk have focused on one of the acute phase proteins (APP), C-reactive protein (CRP), with conflicting results. We evaluated levels of eight different APP in first-trimester maternal serum samples, from 318 mothers to ASD cases and 429 mothers to ASD-unaffected controls, nested within the register-based Stockholm Youth Cohort. While no overall associations between high levels of APP and ASD were observed, associations varied across diagnostic sub-groups based on co-occurring conditions. Maternal levels of CRP in the lowest compared to the middle tertile were associated with increased risk of ASD without ID or ADHD in offspring (OR = 1.92, 95% CI 1.08-3.42). Further, levels of maternal ferritin in the lowest (OR = 1.78, 95% CI 1.18-2.69) and highest (OR = 1.64, 95% CI 1.11-2.43) tertiles were associated with increased risk of any ASD diagnosis in offspring, with stronger associations still between the lowest (OR = 3.81, 95% CI 1.91-7.58) and highest (OR = 3.36, 95% CI 1.73-6.53) tertiles of ferritin and risk of ASD with ID. The biological interpretation of lower CRP levels among mothers to ASD cases is not clear but might be related to the function of the maternal innate immune system. The finding of aberrant levels of ferritin conferring risk of ASD-phenotypes indicates a plausibly important role of iron during neurodevelopment.
Collapse
Affiliation(s)
- Martin Brynge
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Renee Gardner
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Hugo Sjöqvist
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Håkan Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Christina Dalman
- Department of Global Public Health, Karolinska Institutet, Stockholm, 17177, Sweden
- Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, 17129, Sweden
| |
Collapse
|
30
|
Benka-Coker ML, Clark ML, Rajkumar S, Young BN, Bachand AM, Brook RD, Nelson TL, Volckens J, Reynolds SJ, Wilson A, L'Orange C, Good N, Quinn C, Koehler K, Africano S, Osorto Pinel AB, Diaz-Sanchez D, Neas L, Peel JL. Household air pollution from wood-burning cookstoves and C-reactive protein among women in rural Honduras. Int J Hyg Environ Health 2022; 241:113949. [PMID: 35259686 PMCID: PMC8934269 DOI: 10.1016/j.ijheh.2022.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 11/15/2022]
Abstract
Household air pollution from solid fuel combustion was estimated to cause 2.31 million deaths worldwide in 2019; cardiovascular disease is a substantial contributor to the global burden. We evaluated the cross-sectional association between household air pollution (24-h gravimetric kitchen and personal particulate matter (PM2.5) and black carbon (BC)) and C-reactive protein (CRP) measured in dried blood spots among 107 women in rural Honduras using wood-burning traditional or Justa (an engineered combustion chamber) stoves. A suite of 6 additional markers of systemic injury and inflammation were considered in secondary analyses. We adjusted for potential confounders and assessed effect modification of several cardiovascular-disease risk factors. The median (25th, 75th percentiles) 24-h-average personal PM2.5 concentration was 115 μg/m3 (65,154 μg/m3) for traditional stove users and 52 μg/m3 (39, 81 μg/m3) for Justa stove users; kitchen PM2.5 and BC had similar patterns. Higher concentrations of PM2.5 and BC were associated with higher levels of CRP (e.g., a 25% increase in personal PM2.5 was associated with a 10.5% increase in CRP [95% CI: 1.2-20.6]). In secondary analyses, results were generally consistent with a null association. Evidence for effect modification between pollutant measures and four different cardiovascular risk factors (e.g., high blood pressure) was inconsistent. These results support the growing evidence linking household air pollution and cardiovascular disease.
Collapse
Affiliation(s)
- Megan L Benka-Coker
- Department of Health Sciences, Gettysburg College, Gettysburg, PA, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Rajkumar
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Annette M Bachand
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert D Brook
- Division of Cardiovascular Diseases, Wayne State University, Detroit, MI, USA
| | - Tracy L Nelson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Stephen J Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Anibal B Osorto Pinel
- Trees, Water & People, Fort Collins, CO, USA; Asociación Hondureña para el Desarrollo, Tegucigalpa, Honduras
| | - David Diaz-Sanchez
- U.S. Environmental Protectection Agency, ORD, NHEERL, Environmental Public Health Divsion, USA
| | - Lucas Neas
- U.S. Environmental Protectection Agency, ORD, NHEERL, Environmental Public Health Divsion, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
31
|
Zhao L, Fang J, Tang S, Deng F, Liu X, Shen Y, Liu Y, Kong F, Du Y, Cui L, Shi W, Wang Y, Wang J, Zhang Y, Dong X, Gao Y, Dong L, Zhou H, Sun Q, Dong H, Peng X, Zhang Y, Cao M, Wang Y, Zhi H, Du H, Zhou J, Li T, Shi X. PM2.5 and Serum Metabolome and Insulin Resistance, Potential Mediation by the Gut Microbiome: A Population-Based Panel Study of Older Adults in China. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27007. [PMID: 35157499 PMCID: PMC8843086 DOI: 10.1289/ehp9688] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/19/2021] [Accepted: 01/03/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Insulin resistance (IR) affects the development of type 2 diabetes mellitus (T2DM), which is also influenced by accumulated fine particle air pollution [particulate matter (PM) with aerodynamic diameter of <2.5μm (PM2.5)] exposure. Previous experimental and epidemiological studies have proposed several potential mechanisms by which PM2.5 contributes to IR/T2DM, including inflammation imbalance, oxidative stress, and endothelial dysfunction. Recent evidence suggests that the imbalance of the gut microbiota affects the metabolic process and may precede IR. However, the underlying mechanisms of PM2.5, gut microbiota, and metabolic diseases are unclear. OBJECTIVES We investigated the associations between personal exposure to PM2.5 and fasting blood glucose and insulin levels, the IR index, and other related biomarkers. We also explored the potential underlying mechanisms (systemic inflammation and sphingolipid metabolism) between PM2.5 and insulin resistance and the mediating effects between PM2.5 and sphingolipid metabolism. METHODS We recruited 76 healthy seniors to participate in a repeated-measures panel study and conducted clinical examinations every month from September 2018 to January 2019. Linear mixed-effects (LME) models were used to analyze the associations between PM2.5 and health data (e.g., functional factors, the IR index, inflammation and other IR-related biomarkers, metabolites, and gut microbiota). We also performed mediation analyses to evaluate the effects of mediators (gut microbiota) on the associations between exposures (PM2.5) and featured metabolism outcomes. RESULTS Our prospective panel study illustrated that exposure to PM2.5 was associated with an increased risk of higher IR index and functional biomarkers, and our study provided mechanistic evidence suggesting that PM2.5 exposure may contribute to systemic inflammation and altered sphingolipid metabolism. DISCUSSION Our findings demonstrated that PM2.5 was associated with the genera of the gut microbiota, which partially mediated the association between PM2.5 and sphingolipid metabolism. These findings may extend our current understanding of the pathways of PM2.5 and IR. https://doi.org/10.1289/EHP9688.
Collapse
Affiliation(s)
- Liang Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaohui Liu
- National Protein Science Technology Center and School of Life Sciences, Tsinghua University, Beijing, China
| | - Yu Shen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fanling Kong
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liangliang Cui
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Wanying Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingjian Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaoyan Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Gao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huichan Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinghua Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiumiao Peng
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Cao
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingyang Zhou
- Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
Xu Z, Wang W, Liu Q, Li Z, Lei L, Ren L, Deng F, Guo X, Wu S. Association between gaseous air pollutants and biomarkers of systemic inflammation: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118336. [PMID: 34634403 DOI: 10.1016/j.envpol.2021.118336] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Studies have linked gaseous air pollutants to multiple health effects via inflammatory pathways. Several major inflammatory biomarkers, including C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) have also been considered as predictors of cardiovascular disease. However, there has been no meta-analysis to evaluate the associations between gaseous air pollutants and these typical biomarkers of inflammation to date. OBJECTIVES To evaluate the overall associations between short-term and long-term exposures to ambient ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon dioxide (CO) and major inflammatory biomarkers including CRP, fibrinogen, IL-6 and TNF-α. METHODS A meta-analysis was conducted for publications from PubMed, Web of Science, Scopus and EMBASE databases up to Feb 1st, 2021. RESULTS The meta-analysis included 38 studies conducted among 210,438 participants. Generally, we only observed significant positive associations between short-term exposures to gaseous air pollutants and inflammatory biomarkers. For a 10 μg/m3 increase in short-term exposure to O3, NO2, and SO2, there were significant increases of 1.05% (95%CI: 0.09%, 2.02%), 1.60% (95%CI: 0.49%, 2.72%), and 10.44% (95%CI: 4.20%, 17.05%) in CRP, respectively. Meanwhile, a 10 μg/m3 increase in NO2 was also associated with a 4.85% (95%CI: 1.10%, 8.73%) increase in TNF-α. Long-term exposures to gaseous air pollutants were not statistically associated with these biomarkers, but the study numbers were relatively small. Subgroup analyses found more apparent associations in studies with better study design, higher quality, and smaller sample size. Meanwhile, the associations also varied across studies conducted in different geographical regions. CONCLUSION Short-term exposure to gaseous air pollutants is associated with increased levels of circulating inflammatory biomarkers, suggesting that a systemic inflammatory state is activated upon exposure. More studies on long-term exposure to gaseous air pollutants and inflammatory biomarkers are warranted to verify the associations.
Collapse
Affiliation(s)
- Zhouyang Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Zichuan Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lihua Ren
- Division of Maternal and Child Nursing, School of Nursing, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
33
|
Guo M, Du C, Li B, Yao R, Tang Y, Jiang Y, Liu H, Su H, Zhou Y, Wang L, Yang X, Zhou M, Yu W. Reducing particulates in indoor air can improve the circulation and cardiorespiratory health of old people: A randomized, double-blind crossover trial of air filtration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149248. [PMID: 34325134 DOI: 10.1016/j.scitotenv.2021.149248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Exposure to indoor air particulate pollution increases respiratory and cardiovascular morbidity and mortality, especially in the elderly. To assess a short-term, indoor air filtration's potential benefit on circulatory and cardiopulmonary health among healthy older people, a randomized, double-blind crossover trial was conducted with 24 healthy residents of an aged-care center in Chongqing, China in 2020. Each room received a high-efficiency particulate air filter air purifier and a placebo air purifier for two days. Fifteen circulatory system biomarkers of inflammation, coagulation, and oxidative stress; lung function; blood pressure (BP); heart rate (HR) and fractional exhaled nitric oxide (FeNO) were measured end of each two days. Indoor air particulate pollution was monitored throughout the study period. Linear mixed-effect models were used to associate health outcome variables with indoor particles. This intervention study demonstrated that air filtration was associated with significantly decreased concentrations of inflammatory and coagulation biomarkers, but not of biomarkers of oxidative stress and lung function. Just 48 h of air filtration can improve the cardiopulmonary health of the elderly. Air purifiers may be a public health measure that can be taken to improve circulatory and cardiopulmonary health among older people.
Collapse
Affiliation(s)
- Miao Guo
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Runming Yao
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Yuping Tang
- Department of Geriatrics, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Yi Jiang
- Department of Geriatrics, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Hong Liu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Hongjie Su
- Department of Physical Examination Center, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Yixi Zhou
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Lexiang Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China
| | - Xu Yang
- Lab of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan 430079, China; Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China
| | - Min Zhou
- Department of Geriatrics, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings (Ministry of Science and Technology), Chongqing University, Chongqing, China.
| |
Collapse
|
34
|
Zang ST, Luan J, Li L, Wu QJ, Chang Q, Dai HX, Zhao YH. Air pollution and metabolic syndrome risk: Evidence from nine observational studies. ENVIRONMENTAL RESEARCH 2021; 202:111546. [PMID: 34265350 DOI: 10.1016/j.envres.2021.111546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/05/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Globally, the number of metabolic syndrome (MetS) cases has increased substantially over time. However, the association between air pollution (AP) and MetS risk has been contradictory in observational studies. This is the first reported meta-analysis quantitatively exploring the aforementioned association. METHODS We searched PubMed, Embase, and Web of Science database entries up to September 14, 2020, and searches were updated up to December 6, 2020 to identify eligible articles on the AP-MetS risk association. No language restriction was imposed. Random-effects models were applied to estimate summary and subgroup effect sizes with 95% confidence intervals (CIs). PROSPERO registration number: CRD42020210431. RESULTS Eight articles (nine studies) were eligible for the meta-analysis. Increased MetS prevalence was not found to be associated with particulate matter less than 1 μm (PM1), 2.5 μm (PM2.5), and 10 μm (PM10) in diameter or nitrogen dioxide (NO2), and the summary effect sizes were 1.33 (95% CI: 0.95-1.85), 1.34 (95% CI: 0.96-1.89), 1.18 (95% CI: 0.98-1.19), and 1.28 (95% CI: 0.89-1.82), respectively, based on cross-sectional studies. The summary results indicated no association between each 10 μg/m3 increase in PM2.5 and MetS incidence (effect size 2.78 [95% CI: 0.70-11.02]), based on cohort studies. Subgroup analysis demonstrated that MetS incidence in older men increased dramatically by 992% with each 10 μg/m3 increase in PM2.5. CONCLUSIONS The evidence presented here suggests that although exposure to PM1, PM2.5, PM10, or NO2 was not found to have a significant association with the occurrence of MetS, the statistical significance of the relationship between exposure to PM1, PM2.5, or PM10 and MetS prevalence was approximately borderline. More studies on AP-MetS risk association in low-/middle-income countries, as well as on the association between other air pollutants and MetS risk, are warranted. A sufficient number of high-quality studies is required to perform a meaningful meta-analysis of the relationship between air pollutants and MetS.
Collapse
Affiliation(s)
- Si-Tian Zang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Jie Luan
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Ling Li
- Center for Precision Medicine Research and Training, University of Macau, Avenida da Universidade Taipa, Macau, 999078, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Qing Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Hui-Xu Dai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China; Clinical Research Center, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, Liaoning, 110022, China.
| | - Yu-Hong Zhao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
35
|
Heo YJ, Kim HS. Ambient air pollution and endocrinologic disorders in childhood. Ann Pediatr Endocrinol Metab 2021; 26:158-170. [PMID: 34610703 PMCID: PMC8505042 DOI: 10.6065/apem.2142132.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient air pollution has been proposed as an important environmental risk factor that increases global mortality and morbidity. Over the past decade, several human and animal studies have reported an association between exposure to air pollution and altered metabolic and endocrine systems in children. However, the results for these studies were mixed and inconclusive and did not demonstrate causality because different outcomes were observed due to different study designs, exposure periods, and methodologies for exposure measurements. Current proposed mechanisms include altered immune response, oxidative stress, neuroinflammation, inadequate placental development, and epigenetic modulation. In this review, we summarized the results of previous pediatric studies that reported effects of prenatal and postnatal air pollution exposure on childhood type 1 diabetes mellitus, obesity, insulin resistance, thyroid dysfunction, and timing of pubertal onset, along with underlying related mechanisms.
Collapse
Affiliation(s)
- You Joung Heo
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea,Address for correspondence: Hae Soon Kim Department of Pediatrics, Ewha Women’s University College of Medicine, 260, Gonghang-daero, Gangseo-gu, Seoul 07804, Korea
| |
Collapse
|
36
|
Liu Y, Li L, Xie J, Jiao X, Hu H, Zhang Y, Tao R, Tao F, Zhu P. Foetal 25-hydroxyvitamin D moderates the association of prenatal air pollution exposure with foetal glucolipid metabolism disorder and systemic inflammatory responses. ENVIRONMENT INTERNATIONAL 2021; 151:106460. [PMID: 33662886 DOI: 10.1016/j.envint.2021.106460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previous studies have indicated that systemic inflammation may play an important role in the association between air pollution exposure and glucolipid metabolism disorders, and vitamin D supplementation was beneficial in improving systemic inflammation and glucolipid metabolism. However, the role of foetal 25-hydroxyvitamin D (25(OH)D) and high-sensitivity C-reactive protein (hs-CRP) in the association between prenatal air pollution exposure and foetal glucolipid metabolism disorders is still not clear. OBJECTIVE To verify whether foetal 25(OH)D can improve glucolipid metabolism disorders induced by prenatal air pollution exposure by inhibiting the systemic inflammation. METHODS A total of 2,754 mother-newborn pairs were enrolled from three hospitals in Hefei city, China, between 2015 and 2019. We obtained air pollutants (PM2.5, PM10, SO2, CO, and NO2) data from the Hefei City Ecology and Environment Bureau. Cord blood biomarkers (25(OH)D, hs-CRP, C-peptide, HDL-C, LDL-C, TC, and TG) were measured. RESULTS We found that prenatal air pollution exposure was positively associated with foetal glucolipid metabolic index levels after adjusting for confounders. Additionally, an IQR increase in exposure to PM2.5, PM10, SO2, and CO was associated with 20.0% (95% confidence interval (CI): 16.9, 23.6), 20.1% (16.8, 23.3), 22.9% (20.6, 25.3), and 16.7% (14.4, 19.0) higher cord blood hs-CRP levels, respectively, and an SD increase in hs-CRP was associated with 1.4% (0.1, 2.8), 2.2% (1.6, 2.9), 1.4% (0.9, 2.0), and 3.9% (2.8, 4.9) higher C-peptide, LDL-C, TC, and TG levels in the cord blood, respectively. However, there was a monotonic decrease in βs between cord blood 25(OH)D and biomarkers (P for trend < 0.001). Furthermore, mediation analysis revealed that the association between air pollution exposure and foetal glucolipid metabolic indexes mediated by hs-CRP and 25(OH)D was 19.35%. In stratified analyses, the significant negative association between cord blood 25(OH)D with foetal hs-CRP and glucolipid metabolic indexes was observed only at low-medium levels of air pollution exposure. CONCLUSIONS Prenatal air pollution exposure could damage foetal glucolipid metabolic function through systemic inflammation. High foetal 25(OH)D levels may improve foetal systemic inflammation and glucolipid metabolism at low-medium levels of prenatal air pollution exposure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Lei Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Jun Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Xuechun Jiao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Honglin Hu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Tao
- Department of Gynecology and Obstetrics, Hefei First People's Hospital, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, China.
| |
Collapse
|
37
|
Vander Hoorn S, Murray K, Nedkoff L, Hankey GJ, Flicker L, Yeap BB, Almeida OP, Norman P, Brunekreef B, Nieuwenhuijsen M, Heyworth J. Long-term exposure to outdoor air pollution and risk factors for cardiovascular disease within a cohort of older men in Perth. PLoS One 2021; 16:e0248931. [PMID: 33780497 PMCID: PMC8006998 DOI: 10.1371/journal.pone.0248931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
While there is clear evidence that high levels of pollution are associated with increased all-cause mortality and cardiovascular mortality and morbidity, the biological mechanisms that would explain this association are less understood. We examined the association between long-term exposure to air pollutants and risk factors associated with cardiovascular disease. Air pollutant concentrations were estimated at place of residence for cohort members in the Western Australian Centre for Health and Ageing Health in Men Study. Blood samples and blood pressure measures were taken for a cohort of 4249 men aged 70 years and above between 2001 and 2004. We examined the association between 1-year average pollutant concentrations with blood pressure, cholesterol, triglycerides, C-reactive protein, and total homocysteine. Linear regression analyses were carried out, with adjustment for confounding, as well as an assessment of potential effect modification. The four pollutants examined were fine particulate matter, black carbon (BC), nitrogen dioxide, and nitrogen oxides. We found that a 2.25 μg/m3 higher exposure to fine particulate matter was associated with a 1.1 percent lower high-density cholesterol (95% confidence interval: -2.4 to 0.1) and 4.0 percent higher serum triglycerides (95% confidence interval: 1.5 to 6.6). Effect modification of these associations by diabetes history was apparent. We found no evidence of an association between any of the remaining risk factors or biomarkers with measures of outdoor air pollution. These findings indicate that long-term PM2.5 exposure is associated with elevated serum triglycerides and decreased HDL cholesterol. This requires further investigation to determine the reasons for this association.
Collapse
Affiliation(s)
- Stephen Vander Hoorn
- School of Population and Global Health, The University of Western Australia, Perth, Australia
- Centre for Air Pollution, Energy and Health Research, Glebe, New South Wales, Australia
| | - Kevin Murray
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Lee Nedkoff
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Graeme J. Hankey
- Medical School, The University of Western Australia, Crawley, Australia
| | - Leon Flicker
- Medical School, The University of Western Australia, Crawley, Australia
- WA Centre for Health & Ageing, The University of Western Australia, Crawley, Australia
| | - Bu B. Yeap
- Medical School, The University of Western Australia, Crawley, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Osvaldo P. Almeida
- Medical School, The University of Western Australia, Crawley, Australia
- WA Centre for Health & Ageing, The University of Western Australia, Crawley, Australia
| | - Paul Norman
- Medical School, The University of Western Australia, Crawley, Australia
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | | | - Jane Heyworth
- School of Population and Global Health, The University of Western Australia, Perth, Australia
- Centre for Air Pollution, Energy and Health Research, Glebe, New South Wales, Australia
| |
Collapse
|
38
|
Elbarbary M, Oganesyan A, Honda T, Morgan G, Guo Y, Guo Y, Negin J. Systemic Inflammation (C-Reactive Protein) in Older Chinese Adults Is Associated with Long-Term Exposure to Ambient Air Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18063258. [PMID: 33809857 PMCID: PMC8004276 DOI: 10.3390/ijerph18063258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 01/08/2023]
Abstract
There is an established association between air pollution and cardiovascular disease (CVD), which is likely to be mediated by systemic inflammation. The present study evaluated links between long-term exposure to ambient air pollution and high-sensitivity C reactive protein (hs-CRP) in an older Chinese adult cohort (n = 7915) enrolled in the World Health Organization (WHO) study on global aging and adult health (SAGE) China Wave 1 in 2008–2010. Multilevel linear and logistic regression models were used to assess the associations of particulate matter (PM) and nitrogen dioxide (NO2) on log-transformed hs-CRP levels and odds ratios of CVD risk derived from CRP levels adjusted for confounders. A satellite-based spatial statistical model was applied to estimate the average community exposure to outdoor air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), and 1 μm or less (PM1) and NO2) for each participant of the study. hs-CRP levels were drawn from dried blood spots of each participant. Each 10 μg/m3 increment in PM10, PM2.5, PM1, and NO2 was associated with 12.8% (95% confidence interval; (CI): 9.1, 16.6), 15.7% (95% CI: 10.9, 20.8), 10.2% (95% CI: 7.3, 13.2), and 11.8% (95% CI: 7.9, 15.8) higher serum levels of hs-CRP, respectively. Our findings suggest that air pollution may be an important factor in increasing systemic inflammation in older Chinese adults.
Collapse
Affiliation(s)
- Mona Elbarbary
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- Correspondence: or ; Tel.: +61-416-405-016
| | - Artem Oganesyan
- Department of Hematology and Transfusion Medicine, National Institute of Health, Yerevan 0051, Armenia;
| | - Trenton Honda
- Bouvé College of Health Sciences, Northeastern University, Boston, MA 02115, USA;
| | - Geoffrey Morgan
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- School of Public Health, University Centre for Rural Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia;
| | - Yanfei Guo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Joel Negin
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
| |
Collapse
|
39
|
Altuwayjiri A, Taghvaee S, Mousavi A, Sowlat MH, Hassanvand MS, Kashani H, Faridi S, Yunesian M, Naddafi K, Sioutas C. Association of systemic inflammation and coagulation biomarkers with source-specific PM 2.5 mass concentrations among young and elderly subjects in central Tehran. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:191-208. [PMID: 32758070 DOI: 10.1080/10962247.2020.1806140] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 05/20/2023]
Abstract
In this study, we investigated the association between short-term exposure to different sources of fine particulate matter (PM2.5) and biomarkers of coagulation and inflammation in two different panels of elderly and healthy young individuals in central Tehran. Five biomarkers, including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF) were analyzed in the blood samples drawn every 8 weeks from the subjects between May 2012 and May 2013. The studied populations consisted of 44 elderly individuals at a retirement home as well as 40 young adults residing at a school dormitory. Positive Matrix Factorization (PMF)-resolved source-specific PM2.5 mass concentrations and biomarker levels were used as the input to the linear mixed-effects regression model to evaluate the impact of exposure to previously identified PM sources at retirement home and school dormitory in two time lag configurations: lag 1-3 (1-3 days before the blood sampling), and lag 4-6 (4-6 days before the blood sampling). Our analysis of the elderly revealed positive associations of all biomarkers (except hsCRP) with particles of secondary origin in both time lags, further corroborating the toxicity of secondary aerosols formed by photochemical processing in central Tehran. Moreover, industrial emissions, and road dust particles were positively associated with WBC, sTNF-RII, and IL-6 among seniors, while vehicular emissions exhibited positive associations with all biomarkers in either first- or second-time lag. In contrast, most of the PM2.5 sources showed insignificant associations with biomarkers of inflammation in the panel of healthy young subjects. Therefore, findings from this study indicated that various PM2.5 sources increase the levels of inflammation and coagulation biomarkers, although the strength and significance of these associations vary depending on the type of PM sources, demographic characteristics, and differ across the different time lags. Implications: Tehran, the capital of Iran with a population of more than 9 million people, has been facing serious air pollution challenges as a result of extensive vehicular, and industrial activities in the previous years. Among various air pollutants in Tehran, fine particulate matters (PM2.5, particles with aerodynamic diameters < 2.5 µm) are known as one of the most important critical pollutants, causing several adverse health impacts including lung cancer, respiratory, cardiovascular, and cardiopulmonary diseases. Therefore, a number of studies in the area have tried to investigate the adverse health impacts of exposure to PM2.5. However, no studies have ever been conducted in Tehran to examine the association between specific PM2.5 sources and biomarkers of coagulation and systemic inflammation as indicators of cardiovascular disorders. Indeed, this is the first study in the area investigating the association of source-specific PM2.5 with biomarkers of inflammation including white blood cells (WBC), high sensitive C-reactive protein (hsCRP), tumor necrosis factor-soluble receptor-II (sTNF-RII), interleukin-6 (IL-6), and von Willebrand factor (vWF). Our results have important implications for policy makers in identifying the most toxic sources of PM2.5, and in turn designing schemes for mitigating adverse health impacts of air pollution in Tehran.
Collapse
Affiliation(s)
- Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Sina Taghvaee
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Amirhosein Mousavi
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| | - Mohammad H Sowlat
- Advanced Monitoring Technologies, Science and Technology Advancement Division, South Coast Air Quality Management District , Diamond Bar, CA, USA
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
| | - Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Masud Yunesian
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences , Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences , Tehran, Iran
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California , Los Angeles, CA, USA
| |
Collapse
|
40
|
Riaz H, Syed BM, Laghari Z, Pirzada S. Analysis of inflammatory markers in apparently healthy automobile vehicle drivers in response to exposure to traffic pollution fumes. Pak J Med Sci 2020; 36:657-662. [PMID: 32494251 PMCID: PMC7260889 DOI: 10.12669/pjms.36.4.2025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: This study aimed to evaluate pattern of markers of inflammation in apparently healthy drivers who exposed to traffic fumes. Methods: This cross-sectional study was conducted from June 2016 to January 2017 at Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro. It looked into the effects of traffic pollutants on markers of inflammation including CRP, Leukocytes count, IL-6, TNF-α, TNF-β of healthy human volunteers. Eighty-seven, apparently healthy, non-smoking automobile vehicle drivers, having daily contact of traffic exhaust for at least six hours, aged between 18-40 years recruited for this study. Levels of traffic-generated pollutants P.M2.5, P.M10, NOx were recorded in different areas of Hyderabad City. Results: P.M2.5 found to be positively correlated with markers of inflammation including IL-6 (rs = 0.99), TNF-α (rs = 0.41), CRP mg/dl (rs = 0.99) , neutrophils (rs = 0.29), lymphocytes (rs = 0.31), eosinophils (rs = 0.20), monocytes (rs = 0.42) and basophils (rs = 0.16). Positive correlation present among IL-6 (rs = 0.21), TNF-α (rs = 0.49) and CRP mg/dl (rs = 0.22) % (rs = -0.31), Leukocytes (rs = 0.14) neutrophils (rs = 0.31), lymphocytes (rs = 0.21), monocytes (rs = 0.50), basophils (rs = 0.17) with P.M10. NOx showed positive correlation with IL-6 (rs = 0.22), TNF-α (rs = 0.48), CRP (rs = 0.22), neutrophils (rs = 0.31), lymphocytes (rs = 0.13), basophils (rs = 0.17) and monocytes (rs = 0.48). Conclusion: Findings of our study suggest that almost all markers of inflammation are positively correlated with traffic pollutants and this condition might raise the risk of systemic diseases.
Collapse
Affiliation(s)
- Hina Riaz
- Dr. Hina Riaz, MBBS, Lecturer, Department of Physiology, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Binafsha Manzoor Syed
- Dr. Binafsha Manzoor Syed, MBBS, PhD, Director Medical Research Centre, Director Clinical Research Division, Director ORIC, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| | - Zulfiqar Laghari
- Prof. Dr. Zulfiqar Laghari, PhD, Chairperson, Department of Physiology, University of Sindh, Jamshoro, Pakistan
| | - Suleman Pirzada
- Dr. Suleman Peerzada, MBBS, PhD, Assistant Professor, Department of Molecular Biology and Genetics, Liaquat University of Medical & Health Sciences (LUMHS), Jamshoro, Pakistan
| |
Collapse
|
41
|
Gaseous Pollutants and Particulate Matter (PM) in Ambient Air and the Number of New Cases of Type 1 Diabetes in Children and Adolescents in the Pomeranian Voivodeship, Poland. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1648264. [PMID: 32099842 PMCID: PMC7036089 DOI: 10.1155/2020/1648264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
The increase in type 1 diabetes mellitus (T1DM) incidence in children is worrying and not yet fully explored. It is suggested that probably air pollution exposure could contribute to the development of T1DM. The aim of the study was to investigate the relationship between the concentration of gaseous pollutants including, nitrogen dioxide (NO2), nitric oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO), and particulate matter (PM) in the air, and the number of new cases of T1DM in children. The number of new cases of T1DM was obtained from the Clinic of Paediatrics, Diabetology, and Endocrinology, Medical University of Gdańsk. The number of children of 0-18 years old in Pomeranian Voivodeship was acquired from the Statistical Yearbook. The concentrations of PM10 absorbance, NO2, NOx, SO2, and CO were measured at 41 measuring posts, between 1 January 2015 and 31 December 2016. It was detected that the average annual concentration of PM10 was higher than the value acceptable to the WHO. Furthermore, the average 24-hour concentration of PM10 was 92 μg/m3 and was higher compared to the acceptable value of 50 μg/m3 (acc. to EU and WHO). Moreover, the number of new cases of T1DM showed a correlation with the annual average concentration of PM10 (β = 2.396, p < 0.001), SO2 (β = 2.294, p < 0.001), and CO (β = 2.452, p < 0.001). High exposure to gaseous pollutants and particulate matter in ambient air may be one of the factors contributing to the risk of developing T1DM in children. Therefore, it is important to take action to decrease air pollutant emissions in Poland. It is crucial to gradually but consistently eliminate the use of solid fuels, such as coal and wood in households, in favour of natural gas and electricity. The development of new technologies to improve air quality, such as "best available techniques" (BAT) or renewable energy sources (water, wind, and solar generation) is of critical importance as well.
Collapse
|
42
|
Simon MC, Naumova EN, Levy JI, Brugge D, Durant JL. Ultrafine Particle Number Concentration Model for Estimating Retrospective and Prospective Long-Term Ambient Exposures in Urban Neighborhoods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1677-1686. [PMID: 31934748 PMCID: PMC8374642 DOI: 10.1021/acs.est.9b03369] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Short-term exposure to ultrafine particles (UFP; <100 nm in diameter), which are present at high concentrations near busy roadways, is associated with markers of cardiovascular and respiratory disease risk. To date, few long-term studies (months to years) have been conducted due to the challenges of long-term exposure assignment. To address this, we modified hybrid land-use regression models of particle number concentrations (PNCs; a proxy for UFP) for two study areas in Boston (MA) by replacing the measured PNC term with an hourly model and adjusting for overprediction. The hourly PNC models used covariates for meteorology, traffic, and sulfur dioxide concentrations (a marker of secondary particle formation). We compared model performance against long-term PNC data collected continuously from 9 years before and up to 3 years after the model-development period. Model predictions captured the major temporal variations in the data and model performance remained relatively stable retrospectively and prospectively. The Pearson correlation of modeled versus measured hourly log-transformed PNC at a long-term monitoring site for 9 years prior was 0.74. Our results demonstrate that highly resolved spatial-temporal PNC models are capable of estimating ambient concentrations retrospectively and prospectively with generally good accuracy, giving us confidence in using these models in epidemiological studies.
Collapse
Affiliation(s)
- Matthew C Simon
- Department of Environmental Health , Boston University School of Public Health , 715 Albany Street , Boston , Massachusetts 02118 , United States
- Department of Civil and Environmental Engineering , Tufts University , 200 College Avenue , Medford , Massachusetts 02155 , United States
| | - Elena N Naumova
- Department of Civil and Environmental Engineering , Tufts University , 200 College Avenue , Medford , Massachusetts 02155 , United States
- Friedman School of Nutrition Science and Policy , Tufts University , 150 Harrison Avenue , Boston , Massachusetts 02111 , United States
| | - Jonathan I Levy
- Department of Environmental Health , Boston University School of Public Health , 715 Albany Street , Boston , Massachusetts 02118 , United States
| | - Doug Brugge
- Department of Civil and Environmental Engineering , Tufts University , 200 College Avenue , Medford , Massachusetts 02155 , United States
- Department of Public Health and Community Medicine , Tufts University , 136 Harrison Avenue , Boston , Massachusetts 02111 , United States
- Department of Community Medicine and Health Care , University of Connecticut , 195 Farmington Avenue , Farmington , Connecticut 06032 , United States
| | - John L Durant
- Department of Civil and Environmental Engineering , Tufts University , 200 College Avenue , Medford , Massachusetts 02155 , United States
| |
Collapse
|
43
|
Chen K, Schneider A, Cyrys J, Wolf K, Meisinger C, Heier M, von Scheidt W, Kuch B, Pitz M, Peters A, Breitner S, for the KORA Study Group. Hourly Exposure to Ultrafine Particle Metrics and the Onset of Myocardial Infarction in Augsburg, Germany. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17003. [PMID: 31939685 PMCID: PMC7015564 DOI: 10.1289/ehp5478] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Epidemiological evidence on the health effects of ultrafine particles (UFP) remains insufficient to infer a causal relationship that is largely due to different size ranges and exposure metrics examined across studies. Moreover, evidence regarding the association between UFP and cardiovascular disease at a sub-daily timescale is lacking. OBJECTIVE We investigated the relationship between different particle metrics, including particle number (PNC), length (PLC), and surface area (PSC) concentrations, and myocardial infarction (MI) at an hourly timescale. METHODS We collected hourly air pollution and meteorological data from fixed urban background monitoring sites and hourly nonfatal MI cases from a MI registry in Augsburg, Germany, during 2005-2015. We conducted a time-stratified case-crossover analysis with conditional logistic regression to estimate the association between hourly particle metrics and MI cases, adjusted for air temperature and relative humidity. We also examined the independent effects of a certain particle metric in two-pollutant models by adjusting for copollutants, including particulate matter (PM) with an aerodynamic diameter of ≤10μm or 2.5μm (PM10 and PM2.5, respectively), nitrogen dioxide, ozone, and black carbon. RESULTS Overall, a total of 5,898 cases of nonfatal MI cases were recorded. Exploratory analyses showed similar associations across particle metrics in the first 6-12 h. For example, interquartile range increases in PNC within the size range of 10-100 nm, PLC, and PSC were associated with an increase of MI 6 h later by 3.27% [95% confidence interval (CI): 0.27, 6.37], 5.71% (95% CI: 1.79, 9.77), and 5.84% (95% CI: 1.04, 10.87), respectively. Positive, albeit imprecise, associations were observed for PNC within the size range of 10-30 nm and 100-500 nm. Effect estimates for PLC and PSC remained similar after adjustment for PM and gaseous pollutants. CONCLUSIONS Transient exposure to particle number, length, and surface area concentrations or other potentially related exposures may trigger the onset of nonfatal myocardial infraction. https://doi.org/10.1289/EHP5478.
Collapse
Affiliation(s)
- Kai Chen
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- UNIKA-T, Ludwig-Maximilians-Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- MONICA/KORA Myocardial Infarction Registry, University Hospital of Augsburg, Augsburg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang von Scheidt
- Department of Internal Medicine I–Cardiology, University Hospital of Augsburg, Augsburg, Germany
| | - Bernhard Kuch
- Department of Internal Medicine I–Cardiology, University Hospital of Augsburg, Augsburg, Germany
- Department of Internal Medicine/Cardiology, Hospital of Nördlingen, Nördlingen, Germany
| | - Mike Pitz
- Bavarian State Office for the Environment, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
44
|
Young BN, Peel JL, Nelson TL, Bachand AM, Heiderscheidt JM, Luna B, Reynolds SJ, Koehler KA, Volckens J, Diaz-Sanchez D, Neas LM, Clark ML. C-reactive protein from dried blood spots: Application to household air pollution field studies. INDOOR AIR 2020; 30:24-30. [PMID: 31539172 PMCID: PMC6917940 DOI: 10.1111/ina.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 05/03/2023]
Abstract
Household air pollution (HAP) is estimated to be an important risk factor for cardiovascular disease, but little clinical evidence exists and collecting biomarkers of disease risk is difficult in low-resource settings. Among 54 Nicaraguan women with woodburning cookstoves, we evaluated cross-sectional associations between 48-hour measures of HAP (eg, fine particulate matter, PM2.5 ) and C-reactive protein (CRP) via dried blood spots; secondary analyses included seven additional biomarkers of systemic injury and inflammation. We conducted sub-studies to calculate the intraclass correlation coefficient (ICC) in biomarkers collected over four consecutive days in Nicaragua and to assess the validity of measuring biomarkers in dried blood by calculating the correlation with paired venous-drawn samples in Colorado. Measures of HAP were associated with CRP (eg, a 25% increase in indoor PM2.5 was associated with a 7.4% increase in CRP [95% confidence interval: 0.7, 14.5]). Most of the variability in CRP concentrations over the 4-day period was between-person (ICC: 0.88), and CRP concentrations were highly correlated between paired dried blood and venous-drawn serum (Spearman ρ = .96). Results for secondary biomarkers were primarily consistent with null associations, and the sub-study ICCs and correlations were lower. Assessing CRP via dried blood spots provides a feasible approach to elucidate the association between HAP and cardiovascular disease risk.
Collapse
Affiliation(s)
- Bonnie N. Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - Jennifer L. Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - Tracy L. Nelson
- Department of Health and Exercise Science, Colorado State University, USA
| | - Annette M. Bachand
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - Judy M. Heiderscheidt
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - Bevin Luna
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - Stephen J. Reynolds
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - Kirsten A Koehler
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| | - David Diaz-Sanchez
- U.S. Environmental Protection Agency, ORD, NHEERL, Environmental Public Health Division, USA
| | - Lucas M. Neas
- U.S. Environmental Protection Agency, ORD, NHEERL, Environmental Public Health Division, USA
| | - Maggie L. Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, USA
| |
Collapse
|
45
|
Zhao T, Markevych I, Standl M, Schikowski T, Berdel D, Koletzko S, Jörres RA, Nowak D, Heinrich J. Short-term exposure to ambient ozone and inflammatory biomarkers in cross-sectional studies of children and adolescents: Results of the GINIplus and LISA birth cohorts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113264. [PMID: 31563778 DOI: 10.1016/j.envpol.2019.113264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND While exposure to ambient particulate matter (PM) and nitrogen dioxide (NO2) is thought to be associated with diseases via inflammatory response, the association between exposure to ozone, an oxidative pollutant, and inflammation has been less investigated. AIM We analyzed associations between short-term exposure to ozone and three inflammatory biomarkers among children and adolescents. METHODS These cross-sectional analyses were based on two follow-ups of the GINIplus and LISA German birth cohorts. We included 1330 10-year-old and 1591 15-year-old participants. Fractional exhaled nitric oxide (FeNO) and high-sensitivity C-reactive protein (hs-CRP) were available for both age groups while interleukin (IL)-6 was measured at 10 years only. Maximum 8-h averages of ozone and daily average concentrations of NO2 and PM with an aerodynamic diameter <10 μm (PM10) were adopted from two background monitoring stations 0 (same day), 1, 2, 3, 5, 7, 10 and 14 days prior to the FeNO measurement or blood sampling. To assess associations, we utilized linear regression models for FeNO, and logistic regressions for IL-6 and hs-CRP, adjusting for potential covariates and co-pollutants NO2 and PM10. RESULTS We found that short-term ozone exposure was robustly associated with higher FeNO in adolescents at age 15, but not at age 10. No consistent associations were observed between ozone and IL-6 in children aged 10 years. The relationship between hs-CRP levels and ozone was J-shaped. Relatively low ozone concentrations (e.g., <120 μg/m³) were associated with reduced hs-CRP levels, while high concentrations (e.g., ≥120 μg/m³) tended to be associated with elevated levels for both 10- and 15-year-old participants. CONCLUSIONS Our study demonstrates significant associations between short-term ozone exposure and FeNO at 15 years of age and a J-shaped relationship between ozone and hs-CRP. The finding indicates that high ozone exposure may favor inflammatory responses in adolescents, especially regarding airway inflammation.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital Munich, University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Rudolf A Jörres
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig Maximilian University of Munich, Comprehensive Pneumology Center (CPC) Munich, Member DZL, German Center for Lung Research, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
46
|
Liu F, Chen G, Huo W, Wang C, Liu S, Li N, Mao S, Hou Y, Lu Y, Xiang H. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1235-1245. [PMID: 31252121 DOI: 10.1016/j.envpol.2019.06.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 05/21/2023]
Abstract
Previous meta-analyses on associations between air pollution (AP) and type 2 diabetes mellitus (T2DM) were mainly focused on studies conducted in high-income countries. Evidence should be updated by including more recent studies, especially those conducted in low- and middle-income countries. We therefore conducted a systematic review and meta-analysis of epidemiological studies to conclude an updated pooled effect estimates between long-term AP exposure and the prevalence and incidence of T2DM. We searched PubMed, Embase, and Web of Science to identify studies regarding associations of AP with T2DM prevalence and incidence prior to January 2019. A random-effects model was employed to analyze the overall effects. A total of 30 articles were finally included in this meta-analysis. The pooled results showed that higher levels of AP exposure were significantly associated with higher prevalence of T2DM (per 10 μg/m3 increase in concentrations of particles with aerodynamic diameter < 2.5 μm (PM2.5): odds ratio (OR) = 1.09, 95% confidence interval (95%CI): 1.05, 1.13; particles with aerodynamic diameter < 10 μm (PM10): OR = 1.12, 95%CI: 1.06, 1.19; nitrogen dioxide (NO2): OR = 1.05, 95%CI:1.03, 1.08). Besides, higher level of PM2.5 exposure was associated with higher T2DM incidence (per 10 μg/m3 increase in concentration of PM2.5: hazard ratio (HR) = 1.10, 95%CI:1.04, 1.16), while the associations between PM10, NO2 and T2DM incidence were not statistically significant. The associations between AP exposure and T2DM prevalence showed no significant difference between high-income countries and low- and middle-incomes countries. However, different associations were identified between PM2.5 exposure and T2DM prevalence in different geographic areas. No significant differences were found in associations of AP and T2DM prevalence/incidence between females and males, except for the effect of NO2 on T2DM incidence. Overall, AP exposure was positively associated with T2DM. There still remains a need for evidence from low- and middle-income countries on the relationships between AP and T2DM.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Suyang Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yitan Hou
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China
| | - Yuanan Lu
- Environmental Health Laboratory, Department of Public Health Sciences, University Hawaii at Manoa, 1960 East West Rd, Biomed Bldg, D105, Honolulu, USA
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan, China.
| |
Collapse
|
47
|
de Jesus AL, Rahman MM, Mazaheri M, Thompson H, Knibbs LD, Jeong C, Evans G, Nei W, Ding A, Qiao L, Li L, Portin H, Niemi JV, Timonen H, Luoma K, Petäjä T, Kulmala M, Kowalski M, Peters A, Cyrys J, Ferrero L, Manigrasso M, Avino P, Buonano G, Reche C, Querol X, Beddows D, Harrison RM, Sowlat MH, Sioutas C, Morawska L. Ultrafine particles and PM 2.5 in the air of cities around the world: Are they representative of each other? ENVIRONMENT INTERNATIONAL 2019; 129:118-135. [PMID: 31125731 DOI: 10.1016/j.envint.2019.05.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 05/06/2023]
Abstract
Can mitigating only particle mass, as the existing air quality measures do, ultimately lead to reduction in ultrafine particles (UFP)? The aim of this study was to provide a broader urban perspective on the relationship between UFP, measured in terms of particle number concentration (PNC) and PM2.5 (mass concentration of particles with aerodynamic diameter < 2.5 μm) and factors that influence their concentrations. Hourly average PNC and PM2.5 were acquired from 10 cities located in North America, Europe, Asia, and Australia over a 12-month period. A pairwise comparison of the mean difference and the Kolmogorov-Smirnov test with the application of bootstrapping were performed for each city. Diurnal and seasonal trends were obtained using a generalized additive model (GAM). The particle number to mass concentration ratios and the Pearson's correlation coefficient were calculated to elucidate the nature of the relationship between these two metrics. Results show that the annual mean concentrations ranged from 8.0 × 103 to 19.5 × 103 particles·cm-3 and from 7.0 to 65.8 μg·m-3 for PNC and PM2.5, respectively, with the data distributions generally skewed to the right, and with a wider spread for PNC. PNC showed a more distinct diurnal trend compared with PM2.5, attributed to the high contributions of UFP from vehicular emissions to PNC. The variation in both PNC and PM2.5 due to seasonality is linked to the cities' geographical location and features. Clustering the cities based on annual median concentrations of both PNC and PM2.5 demonstrated that a high PNC level does not lead to a high PM2.5, and vice versa. The particle number-to-mass ratio (in units of 109 particles·μg-1) ranged from 0.14 to 2.2, >1 for roadside sites and <1 for urban background sites with lower values for more polluted cities. The Pearson's r ranged from 0.09 to 0.64 for the log-transformed data, indicating generally poor linear correlation between PNC and PM2.5. Therefore, PNC and PM2.5 measurements are not representative of each other; and regulating PM2.5 does little to reduce PNC. This highlights the need to establish regulatory approaches and control measures to address the impacts of elevated UFP concentrations, especially in urban areas, considering their potential health risks.
Collapse
Affiliation(s)
- Alma Lorelei de Jesus
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Md Mahmudur Rahman
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Mandana Mazaheri
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Helen Thompson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Herston, QLD 4006, Australia
| | - Cheol Jeong
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, ON M5S 3ES, Canada
| | - Greg Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, ON M5S 3ES, Canada
| | - Wei Nei
- Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Qixia, Nanjing 210023, China
| | - Aijun Ding
- Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Qixia, Nanjing 210023, China
| | - Liping Qiao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Harri Portin
- Helsinki Region Environmental Services Authority, HSY, FI-00066 Helsinki, Finland
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority, HSY, FI-00066 Helsinki, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland
| | - Krista Luoma
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tuukka Petäjä
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Markku Kulmala
- Department of Physics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Michal Kowalski
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Annette Peters
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Josef Cyrys
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Luca Ferrero
- GEMMA and POLARIS Research Centres, Department of Earth and Environmental Sciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Maurizio Manigrasso
- Department of Technological Innovations, National Institute for Insurance against Accidents at Work, Research Area, Rome, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via F. De Sanctis, I-86100 Campobasso, Italy
| | - Giorgio Buonano
- Department of Engineering, University of Naples "Parthenope", Via Ammiraglio Ferdinando Acton, 38, 80233 Napoli, Italy
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA, Spanish Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA, Spanish Research Council (CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - David Beddows
- National Centre of Atmospheric Science, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roy M Harrison
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mohammad H Sowlat
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
48
|
Early Proteome Shift and Serum Bioactivity Precede Diesel Exhaust-induced Impairment of Cardiovascular Recovery in Spontaneously Hypertensive Rats. Sci Rep 2019; 9:6885. [PMID: 31053794 PMCID: PMC6499793 DOI: 10.1038/s41598-019-43339-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Single circulating factors are often investigated to explain air pollution-induced cardiovascular dysfunction, yet broader examinations of the identity and bioactivity of the entire circulating milieu remain understudied. The purpose of this study was to determine if exposure-induced cardiovascular dysfunction can be coupled with alterations in both serum bioactivity and the circulating proteome. Two cohorts of Spontaneously Hypertensive Rats (SHRs) were exposed to 150 or 500 μg/m3 diesel exhaust (DE) or filtered air (FA). In Cohort 1, we collected serum 1 hour after exposure for proteomics analysis and bioactivity measurements in rat aortic endothelial cells (RAECs). In Cohort 2, we assessed left ventricular pressure (LVP) during stimulation and recovery from the sympathomimetic dobutamine HCl, one day after exposure. Serum from DE-exposed rats had significant changes in 66 serum proteins and caused decreased NOS activity and increased VCAM-1 expression in RAECs. While rats exposed to DE demonstrated increased heart rate at the start of LVP assessments, heart rate, systolic pressure, and double product fell below baseline in DE-exposed rats compared to FA during recovery from dobutamine, indicating dysregulation of post-exertional cardiovascular function. Taken together, a complex and bioactive circulating milieu may underlie air pollution-induced cardiovascular dysfunction.
Collapse
|
49
|
Narda M, Bauza G, Valderas P, Granger C. Protective effects of a novel facial cream against environmental pollution: in vivo and in vitro assessment. Clin Cosmet Investig Dermatol 2018; 11:571-578. [PMID: 30519068 PMCID: PMC6237134 DOI: 10.2147/ccid.s180575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The effects of pollution on health have received increasing attention in recent years. Extrinsic skin aging occurs via multiple processes, and pollution is now recognized as a major component, causing increased pigmentation and wrinkles via oxidative mechanisms. We tested the antipollution efficacy of a cosmetic facial cream (FC) by assessing its effects on carbon particle adhesion to skin and on oxidative and inflammatory pathways in the skin. Methods In an in vivo study, FC was applied once to the forearms of healthy subjects. Carbon E153 powder was applied, and the skin was washed under standardized conditions. Images were taken using a dermoscope to determine the area of particle adherence. Each participant served as their own control, with the contralateral forearm being untreated with the FC but otherwise following the same protocol. In a 5-day ex vivo study, skin explants were treated with the FC daily and exposed to vaporized pollutants on day 2 and day 4 via a closed system. Explants were sampled at baseline and day 5 and culture media on day 5. The parameters evaluated were cellular viability on microscopy, Nrf2 immunostaining, malondialdehyde (MDA) levels in culture, melanin levels, and gene expression profile (TYR, IL6, and CYP1A1). Results In the in vivo adhesion study, after standardized washing, carbon particle deposition on skin treated with the FC was significantly lower than that on untreated skin. In the ex vivo study, samples treated with the FC had reduced Nrf2 staining and MDA levels vs polluted controls. Melanin did not change significantly. The FC modulated pollution-induced increases in CYP1A1, IL-6, and TYR. Conclusion This FC reduces particle adhesion to skin after a single application and protects against pollution-induced oxidative and inflammatory pathways in the skin.
Collapse
Affiliation(s)
| | - Gabriel Bauza
- Innovation and Development, ISDIN SA, Barcelona, Spain,
| | | | | |
Collapse
|
50
|
Corlin L, Ball S, Woodin M, Patton AP, Lane K, Durant JL, Brugge D. Relationship of Time-Activity-Adjusted Particle Number Concentration with Blood Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15092036. [PMID: 30231494 PMCID: PMC6165221 DOI: 10.3390/ijerph15092036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 11/24/2022]
Abstract
Emerging evidence suggests long-term exposure to ultrafine particulate matter (UFP, aerodynamic diameter < 0.1 µm) is associated with adverse cardiovascular outcomes. We investigated whether annual average UFP exposure was associated with measured systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure (PP), and hypertension prevalence among 409 adults participating in the cross-sectional Community Assessment of Freeway Exposure and Health (CAFEH) study. We used measurements of particle number concentration (PNC, a proxy for UFP) obtained from mobile monitoring campaigns in three near-highway and three urban background areas in and near Boston, Massachusetts to develop PNC regression models (20-m spatial and hourly temporal resolution). Individual modeled estimates were adjusted for time spent in different micro-environments (time-activity-adjusted PNC, TAA-PNC). Mean TAA-PNC was 22,000 particles/cm3 (sd = 6500). In linear models (logistic for hypertension) adjusted for the minimally sufficient set of covariates indicated by a directed acyclic graph (DAG), we found positive, non-significant associations between natural log-transformed TAA-PNC and SBP (β = 5.23, 95%CI: −0.68, 11.14 mmHg), PP (β = 4.27, 95%CI: −0.79, 9.32 mmHg), and hypertension (OR = 1.81, 95%CI: 0.94, 3.48), but not DBP (β = 0.96, 95%CI: −2.08, 4.00 mmHg). Associations were stronger among non-Hispanic white participants and among diabetics in analyses stratified by race/ethnicity and, separately, by health status.
Collapse
Affiliation(s)
- Laura Corlin
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA.
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, 801 Massachusetts Avenue, Suite 470, Boston, MA 02118, USA.
| | - Shannon Ball
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA.
- Department of Public Health and Community Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Mark Woodin
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA.
- Department of Public Health and Community Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Allison P Patton
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA.
- Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110, USA.
| | - Kevin Lane
- Department of Environmental Health, Boston University School of Public Health, 715 Albany St, Boston, MA 02118, USA.
| | - John L Durant
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA.
| | - Doug Brugge
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, 200 College Ave, Medford, MA 02155, USA.
- Department of Public Health and Community Medicine, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
- Tufts University Jonathan M. Tisch College of Civic Life, 35 Professors Row, Medford, MA 02155, USA.
| |
Collapse
|