1
|
Haynesworth K, Kemp TJ, Loftus SA, Metz J, Castro NC, Bullock J, Fetterer D, Pinto LA. Analytical measuring interval, linearity, and precision of serology assays for detection of SARS-CoV-2 antibodies according to CLSI guidelines. mSphere 2024; 9:e0039324. [PMID: 39480103 PMCID: PMC11580426 DOI: 10.1128/msphere.00393-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Serology testing is commonly used to evaluate the immunogenicity of COVID-19 vaccines and measure antibodies as a marker of previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, four laboratory-developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike and anti-Nucleocapsid immunoglobin G [IgG] and immunoglobin M [IgM]) calibrated to the WHO International Standard 20/136 were validated via analytical measuring interval (limit of blank [LOB], limit of detection [LOD], and limit of quantification [LOQ]), linearity, and precision according to the Clinical and Laboratory Standards Institute (CLSI) guidelines EP17-A2, EP06 2nd Edition, and EP05-A3. For Spike IgG, LOB was 3.0 binding antibody units per milliliter (BAU/mL), LOD was 4.1 BAU/mL, and LOQ was 27.1 BAU/mL. For Nucleocapsid IgG, LOB was 1.9 BAU/mL, LOD was 3.2 BAU/mL, and LOQ was 24.6 BAU/mL. For Spike IgM, LOB was 57.1 BAU/mL, LOD was 69.0 BAU/mL, and LOQ was 113.5 BAU/mL. For Nucleocapsid IgM, LOD was 242.2 BAU/mL, LOD was 289.9 BAU/mL, and LOQ was 572.4 BAU/mL. Each assay displayed good linearity (max % deviation from linearity (≥LOQ) = 10.7%). The result of within-run repeatability evaluation for medium positive samples was 7.7% for Spike IgG, 4.6% for Nucleocapsid IgG, 7.5% for Spike IgM, and 10.1% for Nucleocapsid IgM. The total precision, including medium positive sample variability across 20 days, three reagent kits, and two operators, was 13.5% for Spike IgG, 14.5% for Nucleocapsid IgG, 17.6% for Spike IgM, and 16.2% for Nucleocapsid IgM. The assays were successfully validated following the applicable CLSI guidelines. All assays met the ±20% deviation from linearity and the ±20% coefficient of variation specification for precision and repeatability. IMPORTANCE Reliable and validated serology assays are of increasing importance as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus continues to evolve and cause outbreaks. Validation of serology assays along with calibration to the International and National Standards (such as anti-SARS-CoV-2 Immunoglobulin WHO International Standard 20/136 or Frederick National Laboratory for Cancer Research's National Serology Standard COVID-NS01097) is critical to ensuring that results from clinical studies are reliable and comparable among various assays and laboratories. We describe the design and execution of a comprehensive study that established the analytical measuring intervals, linearity, precision, and repeatability of four in-house developed serology enzyme-linked immunosorbent assays (SARS-CoV-2 anti-Spike immunoglobin G [IgG] and immunoglobin M [IgM] and anti-Nucleocapsid IgG and IgM) following applicable Clinical and Laboratory Standards Institute (CLSI) guidelines. Overall, this study provides practical guidance on experimental design strategies and data analysis techniques, pertaining to the validation of COVID-19 serology assays according to CLSI guidelines, for use in clinical research studies.
Collapse
Affiliation(s)
- Katarzyna Haynesworth
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Troy J. Kemp
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Sarah A Loftus
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jordan Metz
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Nicholas C. Castro
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Jimmie Bullock
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - David Fetterer
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Ligia A. Pinto
- Vaccine, Immunity, and Cancer Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| |
Collapse
|
2
|
Franco C, Cornejo A, Rodríguez M, García A, Belisario I, Mayora S, Garzaro DJ, Jaspe RC, Hidalgo M, Parra N, Liprandi F, Zambrano JL, Rangel HR, Pujol FH. Sputnik V-Induced Antibodies against SARS-CoV-2 Variants during the Dissemination of the Gamma Variant in Venezuela. Viruses 2024; 16:1480. [PMID: 39339956 PMCID: PMC11437404 DOI: 10.3390/v16091480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The COVID-19 pandemic was characterized by the emergence and succession of SARS-CoV-2 variants able to evade the antibody response induced by natural infection and vaccination. To evaluate the IgG reactivity and neutralizing capacity of the serum of individuals vaccinated with Sputnik V (105 volunteers vaccinated) against different viral variants. IgG reactivity to the Spike protein (S) was evaluated by ELISA. A plaque reduction neutralization test was performed using different viral variant isolates. At 42 days post-vaccination, the frequency of recognition and reactivity to the S protein of the Omicron variant was lower compared to that of the other variants. In general, a higher average neutralization titer was seen against the ancestral variant compared to the variants, especially Omicron. However, some sera exhibited a higher neutralization titer to the Gamma variant compared to the ancestral variant, suggesting unapparent exposure during the clinical trial. Antibodies induced by Sputnik V can recognize, persist, and neutralize SARS-CoV-2 variants, with Omicron being the one that best evades this response. These results represent a unique report on the humoral response induced by a globally lesser-studied vaccine in terms of efficacy and immune escape, offering insights into developing vaccines targeting unknown coronaviruses.
Collapse
Affiliation(s)
- Christopher Franco
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Alejandro Cornejo
- Laboratorio de Bioquímica Celular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Mariajosé Rodríguez
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Alexis García
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1020, Venezuela
| | - Inirida Belisario
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1020, Venezuela
| | - Soriuska Mayora
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1020, Venezuela
| | - Domingo José Garzaro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Mariana Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Nereida Parra
- Laboratorio de Fisiología de Parásitos, Centro Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - José Luis Zambrano
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Héctor Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020, Venezuela
| |
Collapse
|
3
|
Cornejo A, Franco C, Rodriguez-Nuñez M, García A, Belisario I, Mayora S, Garzaro DJ, Zambrano JL, Jaspe RC, Hidalgo M, Parra-Giménez N, Claro FE, Liprandi F, de Waard JH, Rangel HR, Pujol FH. Humoral Immunity across the SARS-CoV-2 Spike after Sputnik V (Gam-COVID-Vac) Vaccination. Antibodies (Basel) 2024; 13:41. [PMID: 38804309 PMCID: PMC11130906 DOI: 10.3390/antib13020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
SARS-CoV-2 vaccines have contributed to attenuating the burden of the COVID-19 pandemic by promoting the development of effective immune responses, thus reducing the spread and severity of the pandemic. A clinical trial with the Sputnik-V vaccine was conducted in Venezuela from December 2020 to July 2021. The aim of this study was to explore the antibody reactivity of vaccinated individuals towards different regions of the spike protein (S). Neutralizing antibody (NAb) activity was assessed using a commercial surrogate assay, detecting NAbs against the receptor-binding domain (RBD), and a plaque reduction neutralization test. NAb levels were correlated with the reactivity of the antibodies to the spike regions over time. The presence of Abs against nucleoprotein was also determined to rule out the effect of exposure to the virus during the clinical trial in the serological response. A high serological reactivity was observed to S and specifically to S1 and the RBD. S2, although recognized with lower intensity by vaccinated individuals, was the subunit exhibiting the highest cross-reactivity in prepandemic sera. This study is in agreement with the high efficacy reported for the Sputnik V vaccine and shows that this vaccine is able to induce an immunity lasting for at least 180 days. The dissection of the Ab reactivity to different regions of S allowed us to identify the relevance of epitopes outside the RBD that are able to induce NAbs. This research may contribute to the understanding of vaccine immunity against SARS-CoV-2, which could contribute to the design of future vaccine strategies.
Collapse
Affiliation(s)
- Alejandro Cornejo
- Laboratorio de Bioquímica Celular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela;
| | - Christopher Franco
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (C.F.); (J.L.Z.)
| | - Mariajose Rodriguez-Nuñez
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - Alexis García
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1040A, Venezuela; (A.G.); (I.B.); (S.M.)
| | - Inirida Belisario
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1040A, Venezuela; (A.G.); (I.B.); (S.M.)
| | - Soriuska Mayora
- Instituto de Inmunología, Universidad Central de Venezuela (UCV), Caracas 1040A, Venezuela; (A.G.); (I.B.); (S.M.)
| | - Domingo José Garzaro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - José Luis Zambrano
- Laboratorio de Virología Celular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (C.F.); (J.L.Z.)
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - Mariana Hidalgo
- Laboratorio de Inmunoparasitología, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela;
| | - Nereida Parra-Giménez
- Laboratorio de Fisiología de Parásitos, Centro Biofísica y Bioquímica, IVIC, Caracas 1020A, Venezuela;
| | - Franklin Ennodio Claro
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina “Dr. Jacinto Convit”, UCV, Caracas 1010A, Venezuela; (F.E.C.); (J.H.d.W.)
| | - Ferdinando Liprandi
- Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela;
| | - Jacobus Henri de Waard
- Departamento de Tuberculosis, Servicio Autónomo Instituto de Biomedicina “Dr. Jacinto Convit”, UCV, Caracas 1010A, Venezuela; (F.E.C.); (J.H.d.W.)
- Laboratorios de Investigación, Facultad de Ciencias de Salud, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Héctor Rafael Rangel
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, IVIC, Caracas 1020A, Venezuela; (M.R.-N.); (D.J.G.); (R.C.J.); (H.R.R.)
| |
Collapse
|
4
|
Tang R, Wang L, Zhang J, Fei W, Zhang R, Liu J, Lv M, Wang M, Lv R, Nan H, Tao R, Chen Y, Chen Y, Jiang Y, Zhang H. Boosting the immunogenicity of the CoronaVac SARS-CoV-2 inactivated vaccine with Huoxiang Suling Shuanghua Decoction: a randomized, double-blind, placebo-controlled study. Front Immunol 2024; 15:1298471. [PMID: 38633263 PMCID: PMC11021573 DOI: 10.3389/fimmu.2024.1298471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction In light of the public health burden of the COVID-19 pandemic, boosting the safety and immunogenicity of COVID-19 vaccines is of great concern. Numerous Traditional Chinese medicine (TCM) preparations have shown to beneficially modulate immunity. Based on pilot experiments in mice that showed that supplementation with Huoxiang Suling Shuanghua Decoction (HSSD) significantly enhances serum anti-RBD IgG titers after inoculation with recombinant SARS-CoV-2 S-RBD protein, we conducted this randomized, double-blind, placebo-controlled clinical trial aimed to evaluate the potential immunogenicity boosting effect of oral HSSD after a third homologous immunization with Sinovac's CoronaVac SARS-CoV-2 (CVS) inactivated vaccine. Methods A total of 70 participants were randomly assigned (1:1 ratio) to receive a third dose of CVS vaccination and either oral placebo or oral HSSD for 7 days. Safety aspects were assessed by recording local and systemic adverse events, and by blood and urine biochemistry and liver and kidney function tests. Main outcomes evaluated included serum anti-RBD IgG titer, T lymphocyte subsets, serum IgG and IgM levels, complement components (C3 and C4), and serum cytokines (IL-6 and IFN-γ). In addition, metabolomics technology was used to analyze differential metabolite expression after supplementation with HSSD. Results Following a third CVS vaccination, significantly increased serum anti-RBD IgG titer, reduced serum IL-6 levels, increased serum IgG, IgM, and C3 and C4 levels, and improved cellular immunity, evidenced by reduce balance deviations in the distribution of lymphocyte subsets, was observed in the HSSD group compared with the placebo group. No serious adverse events were recorded in either group. Serum metabolomics results suggested that the mechanisms by which HSSD boosted the immunogenicity of the CVS vaccine are related to differential regulation of purine metabolism, vitamin B6 metabolism, folate biosynthesis, arginine and proline metabolism, and steroid hormone biosynthesis. Conclusion Oral HSSD boosts the immunogenicity of the CVS vaccine in young and adult individuals. This trial provides clinical reference for evaluation of TCM immunomodulators to improve the immune response to COVID-19 vaccines.
Collapse
Affiliation(s)
- Ruying Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linyuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jianjun Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Fei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlian Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Meiyu Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mengyao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruilin Lv
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haipeng Nan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ran Tao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxin Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Samanta S, Banerjee J, Das A, Das S, Ahmed R, Das S, Pal A, Ali KM, Mukhopadhyay R, Giri B, Dash SK. Enhancing Immunological Memory: Unveiling Booster Doses to Bolster Vaccine Efficacy Against Evolving SARS-CoV-2 Mutant Variants. Curr Microbiol 2024; 81:91. [PMID: 38311669 DOI: 10.1007/s00284-023-03597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024]
Abstract
A growing number of re-infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in previously immunized individuals has sparked discussions about the potential need for a booster vaccine dosage to counteract declining antibody levels and new strains. The protective immunity produced by vaccinations, and past illnesses relies on immunological memory. CD4 + T cells, CD8 + T cells, B cells, and long-lasting antibody responses are all components of the adaptive immune system that can generate and maintain this immunological memory. Since novel mutant variants have emerged one after the other, the world has been hit by repeated waves. Various vaccine formulations against SARS-CoV-2 have been administered across the globe. Thus, estimating the efficacy of those vaccines against gradually developed mutant stains is the essential parameter regarding the fate of those vaccine formulations and the necessity of booster doses and their frequency. In this review, focus has also been given to how vaccination stacks up against moderate and severe acute infections in terms of the longevity of the immune cells, neutralizing antibody responses, etc. However, hybrid immunity shows a greater accuracy of re-infection of variants of concern (VOCs) of SARS-CoV-2 than infection and immunization. The review conveys knowledge of detailed information about several marketed vaccines and the status of their efficacy against specific mutant strains of SARS-CoV-2. Furthermore, this review discusses the status of immunological memory after infection, mixed infection, and vaccination.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Aparna Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sourav Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Swarnali Das
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Amitava Pal
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Kazi Monjur Ali
- Department of Nutrition, Maharajadhiraj Uday Chand Women's College, B.C. Road, Bardhaman, 713104, West Bengal, India
| | - Rupanjan Mukhopadhyay
- Department of Physiology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
6
|
Boyko AA, Ustiuzhanina MO, Vavilova JD, Streltsova MA, Kust SA, Siniavin AE, Astrakhantseva IV, Drutskaya MS, Kovalenko EI. Phenotypic Changes in T and NK Cells Induced by Sputnik V Vaccination. Vaccines (Basel) 2023; 11:1047. [PMID: 37376436 DOI: 10.3390/vaccines11061047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
A highly effective humoral immune response induced by the Sputnik V vaccine was demonstrated in independent studies, as well as in large-scale post-vaccination follow-up studies. However, the shifts in the cell-mediated immunity induced by Sputnik V vaccination are still under investigation. This study was aimed at estimating the impact of Sputnik V on activating and inhibitory receptors, activation and proliferative senescence markers in NK and T lymphocytes. The effects of Sputnik V were evaluated by the comparison of PBMC samples prior to vaccination, and then three days and three weeks following the second (boost) dose. The prime-boost format of Sputnik V vaccination induced a contraction in the T cell fraction of senescent CD57+ cells and a decrease in HLA-DR-expressing T cells. The proportion of NKG2A+ T cells was down-regulated after vaccination, whereas the PD-1 level was not affected significantly. A temporal increase in activation levels of NK cells and NKT-like cells was recorded, dependent on whether the individuals had COVID-19 prior to vaccination. A short-term elevation of the activating NKG2D and CD16 was observed in NK cells. Overall, the findings of the study are in favor of the Sputnik V vaccine not provoking a dramatic phenotypic rearrangement in T and NK cells, although it induces their slight temporal non-specific activation.
Collapse
Affiliation(s)
- Anna A Boyko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria O Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Julia D Vavilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria A Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sofya A Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrei E Siniavin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Irina V Astrakhantseva
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Federal Territory Sirius, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena I Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
7
|
Laham G, Martínez AP, Rojas Gimenez W, Amaya L, Abib A, Echegoyen N, Díaz C, Lucero A, Martelli A, Videla C, Neukam K, Di Lello FA. Assessment of the humoral response to the homologous Gam-COVID-Vac (Sputnik V) or heterologous Sputnik V/mRNA-1273 (Moderna) vaccination against SARS-CoV-2 in dialysis patients. J Nephrol 2023; 36:861-872. [PMID: 36152219 PMCID: PMC9510528 DOI: 10.1007/s40620-022-01446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIM Dialysis patients are a high-risk population and have a reduced immune response to vaccination against SARS-CoV-2. The aim of this study was to assess the humoral response to homologous Gam-COVID-Vac (Sputnik V) and heterologous Sputnik V/mRNA-1273 (Moderna) vaccination in dialysis patients. The vaccination scheme depended on dose availability and the prioritization of risk populations as established by the Argentine Ministry of Health. METHODS Previous COVID-19 infection was determined in symptomatic patients. Binding IgG antibodies against the spike (S) receptor-binding domain (RBD) of SARS-CoV-2 (anti-S-RBD) concentration was assessed between 3 and 16 weeks after the boost dose. Anti-S-RBD antibodies were quantified using the Abbott Diagnostics SARS-CoV-2 IgG II Quant chemiluminescent microparticle immunoassay (CMIA) on an Architect i2000 SR and an Alinity I analyzer (Abbott Diagnostics, Abbott Park, Illinois, USA). To standardize the results to WHO binding antibody units (BAU), a correction factor for Abbott arbitrary units (AU) was applied where 1 BAU/mL equals 0.142 AU, as previously established by Abbott with the WHO international standard NIBSC 20-136. Following the manufacturer's recommendations, samples were considered reactive for anti-S-RBD when titers were above 50 AU/mL (7.2 BAU/mL). An 80% protective effect (PROT-80) against symptomatic SARS-CoV-2 infection was assumed when anti-S-RBD titers were 506 BAU/ml or higher. Charlson Comorbidity Index (CCI) score was classified as mild = 1-2, moderate = 3-4, and severe ≥ 5. Side effects were evaluated until day 7 by patients´ self-reported questionnaire. RESULTS One hundred seven participants were enrolled [n = 84 homologous (SpV/SpV), nn 23 heterologous (SpV/Mod)]. Median (IQR) age was 64 (50-75) years old and 79 (73.8%) were male. Additionally, 19 (22.6%) of the SpV/SpV and 4 (17.4%) of the SpV/Mod group had a prior confirmed SARS-CoV-2 infection (p = 0.589). In the overall population, 103 patients reached seroconversion (96.3%). Anti-S-RBD IgG median titers (IQR) were higher in the heterologous [1222 (288-5680) BAU/mL] than in the homologous scheme [447 (100-1551) BAU/mL], p = 0.022. In a linear model adjusted for age, gender, days from first vaccination to boost dose and days from the boost dose to the anti-S-RBD IgG determination, previous SARS-COV-2 infection (B: 2062.2; CI95: 1231.8-2892.6; p < 0.001), and SpV/Mod vaccination scheme (B: 1294.6; CI95: 435.58-2147.6; p = 0.003) were independently associated with anti-S-RBD levels. Finally, a higher frequency of adverse effects was associated with the heterologous scheme, although they were well tolerated by all individuals. CONCLUSIONS The present study provides evidence that the homologous SpV/SpV and heterologous SpV/Mod schemes showed good efficacy and safety in patients on chronic dialysis. These results could be useful for designing future vaccination strategies, especially aimed at this risk group.
Collapse
Affiliation(s)
- Gustavo Laham
- Neprhology Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Alfredo P Martínez
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Wanda Rojas Gimenez
- Neprhology Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Lucas Amaya
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Anabel Abib
- Neprhology Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Natalia Echegoyen
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Carlos Díaz
- Neprhology Section, Department of Medicine, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Alicia Lucero
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Antonella Martelli
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Cristina Videla
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno "CEMIC", Buenos Aires, Argentina
| | - Karin Neukam
- Servicio de Enfermedades Infecciosas, UCEIMP, Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013, Seville, Spain.
- Instituto de Biomedicina de Sevilla/CSIC/Universidad de Sevilla, Seville, Spain.
| | - Federico Alejandro Di Lello
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Junín 956, 4º piso, (1113), Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Fernandes-Matano L, Salas-Lais AG, Grajales-Muñiz C, Hernández-Ávila M, Garfias-Becerra YO, Rodríguez-Sepúlveda MC, Segura-Sánchez C, Montes-Herrera D, Mendoza-Sánchez D, Angeles-Martínez J, Santos Coy-Arechavaleta A, Alvarado-Yaah JE, Santacruz-Tinoco CE, Ramón-Gallegos E, Muñoz-Medina JE. Longevity and Neutralizing Capacity of IgG Antibodies against SARS-CoV-2 Generated by the Application of BNT162b2, AZD1222, Convidecia, Sputnik V, and CoronaVac Vaccines: a Cohort Study in the Mexican Population. Microbiol Spectr 2023; 11:e0237622. [PMID: 36602375 PMCID: PMC9927513 DOI: 10.1128/spectrum.02376-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The WHO has approved the use of several vaccines during the COVID-19 pandemic; experience over the last 2 years has indicated that dose demand can only be covered using more than one design. Therefore, having scientific evidence of the performance of the different vaccines applied in a country is highly relevant. In Mexico, 5 vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were used, allowing a cohort study to analyze the generation of anti-S1/S2 IgG antibodies and anti-RBD antibodies with neutralizing activity at 0, 21, 90, and 180 days after vaccination. Five groups of participants were formed on the basis of the type of vaccine received and were divided on the basis of whether they previously had or did not have COVID-19. After completing the vaccination schedule, the seroprevalence was 95.5, 97.5, 81.0, 95.2, and 90.0% (BNT162b2, AZD1222, Convidecia, Sputnik V, and CoronaVac, respectively). Among the participants without COVID-19 prior to vaccination, the largest amount of antibodies in the 90-day period was observed in the BNT162b2 group, and the amount of antibodies in the Sputnik V group decreased the least over time. Even though the percentages of seroconversion obtained in this study were lower than those currently reported in other parts of the world, the tested vaccines are able, in most cases, to induce a good production of IgG antibodies anti-S1/S2 and neutralizing capacity. The fact that there are people who have not produced antibodies during the study leaves open some questions that must be investigated to avoid the appearance of serious cases of COVID-19. IMPORTANCE Since the start of the vaccination programs against COVID-19 in 2020, it was evident that due to global shortages, the demand for the dose required in Mexico could only be covered by acquiring different vaccines. Therefore, determining the effectiveness of these and the longevity of acquired immunity is extremely important in a scenario where SARS-CoV-2 circulation becomes endemic and booster doses are required periodically. Our data reveal significant differences both in the generation of antibodies as well as in their longevity for the vaccines applied in the country but suggest that, in general, the Mexican population can reach a high capacity to neutralize the virus, therefore, regarding less the variant for which they were designed.
Collapse
Affiliation(s)
- Larissa Fernandes-Matano
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instuto Mexicano del Seguro Social, Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Programa de Doctorado en Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Mauricio Hernández-Ávila
- Dirección de Prestaciones Economicas y Sociales, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Yonathan Omar Garfias-Becerra
- Research Unit, Institute of Ophthalmology, Conde De Valenciana Foundation, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México (National Autonomous University of Mexico), Mexico City, Mexico
| | | | - Carlos Segura-Sánchez
- Dirección de Prestaciones Economicas y Sociales, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Daniel Montes-Herrera
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Denisse Mendoza-Sánchez
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Javier Angeles-Martínez
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | - Eva Ramón-Gallegos
- Escuela Nacional de Ciencias Biológicas, Programa de Doctorado en Biomedicina y Biotecnología Molecular, Instituto Politécnico Nacional, Mexico City, Mexico
| | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instuto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
9
|
Devi MJ, Gaffar S, Hartati YW. A review post-vaccination SARS-CoV-2 serological test: Method and antibody titer response. Anal Biochem 2022; 658:114902. [PMID: 36122603 PMCID: PMC9481475 DOI: 10.1016/j.ab.2022.114902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
The development of the Coronavirus disease 2019 (COVID-19) vaccine is one of the most important efforts in controlling the pandemic. Serological tests are used to identify highly reactive human donors for convalescent plasma therapy, measuring vaccine efficacy and durability. This review article presents a review of serology tests and how antibody titers in response to vaccines have been developed. Some of the serological test methods discussed are Plaque Reduction Neutralization Test (PRNT), Enzyme-Linked Immunosorbent Assay (ELISA), Lateral flow immunoassay (LFIA), chemiluminescent immunoassay (CLIA), and Chemiluminescent Micro-particle Immunoassay (CMIA). This review can provide an understanding of the application of the body's immune response to vaccines to get some new strategies for vaccines.
Collapse
Affiliation(s)
- Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia.
| |
Collapse
|
10
|
Zare H, Rezapour H, Fereidouni A, Nikpour S, Mahmoudzadeh S, Royce SG, Fereidouni M. Analysis and comparison of anti-RBD neutralizing antibodies from AZD-1222, Sputnik V, Sinopharm and Covaxin vaccines and its relationship with gender among health care workers. Immun Ageing 2022; 19:47. [PMID: 36273175 PMCID: PMC9587595 DOI: 10.1186/s12979-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
Background Vaccine efficiency has a significant role in the public perception of vaccination. The current study was designed to evaluate the efficacy of COVID-19 vaccines (AZD-1222, Sputnik-V, Sinopharm, and Covaxin) and the effect of gender on vaccine efficacy. We evaluated the efficacy of these vaccines among 214 health care employees in Iran. Blood samples were taken from all participants on day 0 and 14 days after the second dose. Humoral responses were evaluated by the PT-SARS-CoV-2-Neutralizing-Ab-96. Results The frequency of immunized individuals in the Sputnik V and AZD-1222 groups was 91% and 86%, respectively. This rate was 61% and 67% for Sinopharm and Covaxin vaccines. A comparison of the results obtained from the effectiveness of the vaccines between female and male groups did not demonstrate a significant difference. Conclusion According to the results, Sputnik V and AZD-1222 vaccines were more effective than Sinopharm and Covaxin vaccines. Moreover, the effectiveness of these vaccines is not related to gender. Supplementary Information The online version contains supplementary material available at 10.1186/s12979-022-00303-x.
Collapse
Affiliation(s)
- Hamed Zare
- grid.412105.30000 0001 2092 9755Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadis Rezapour
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Fereidouni
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Saboura Nikpour
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Sara Mahmoudzadeh
- grid.411701.20000 0004 0417 4622Student Research Committee , Birjand University of Medical Sciences, Birjand, Iran
| | - Simon G Royce
- grid.1002.30000 0004 1936 7857Department of Pharmacology, Monash University, Clayton, Australia
| | - Mohammad Fereidouni
- grid.411701.20000 0004 0417 4622Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
11
|
Humoral immunoresponse elicited against an adenoviral-based SARS-CoV-2 coronavirus vaccine in elderly patients. Aging (Albany NY) 2022; 14:7193-7205. [PMID: 36152043 PMCID: PMC9550251 DOI: 10.18632/aging.204299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
The early sequencing of the SARS-CoV-2 viral genome allowed for a speedy development of effective vaccines against the virus. Nevertheless, age-related immunosenescence, the inability to mount strong immune responses, still represents a major obstacle. Here, in a group of 149 elderly volunteers (70-96 years old), evolution of the humoral immune response over time to Gam-COVID-Vac (Sputnik V), a vaccine based on heterologous recombinant adenovirus-26 (Ad26) and adenovirus-5 (Ad5) carrying the Spike genome, was analyzed by an anti-RBD ELISA. At 28 days post vaccination (dpv), a seroconversion rate of 91% was achieved, showing the importance of administering at least two doses of Gam-COVID-Vac to elicit a robust immune response, especially in elderly individuals without previous SARS-CoV-2 infection. Interestingly, IgG specific antibodies that reached their highest titers around 28 dpv (median = 740), persisted without significant decrease after 60 dpv (median = 650). After 90 dpv, IgG titers began to drop, and at 180 dpv only 44.7% of the elderly individuals remained with detectable anti-RBD IgG antibodies. No significant differences were observed in specific humoral immune responses between genders at early times point. However, at 60 dpv anti-RBD titers were more persistent in elderly females, and only dropped at 90 dpv (p < 0.0001). As expected, the highest antibodies titers were elicited in the youngest subgroup (70-74 years). Our results show that Gam-COVID-Vac was able to deal with the ageing of the immune system, eliciting a robust immune response in an elderly cohort, which lasted approximately 90 dpv at high levels, and protected against COVID-19.
Collapse
|
12
|
Claro F, Silva D, Pérez Bogado JA, Rangel HR, de Waard JH. Lasting SARS-CoV-2 specific IgG Antibody response in health care workers from Venezuela, 6 months after vaccination with Sputnik V. Int J Infect Dis 2022; 122:850-854. [PMID: 35690364 PMCID: PMC9176181 DOI: 10.1016/j.ijid.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Scarce information is available regarding the long-term immunogenicity of the Sputnik V vaccine. Here Sputnik V vaccinated subjects were evaluated 6 months after receiving the 2-dose prime-boost schedule. METHODS Eighty-six hospital workers from Venezuela, 32 with a previous COVID-19 infection and 54 SARS-CoV-2 naïve subjects, were enrolled. IgG antibodies levels against the wild-type Receptor Binding Domain (RBD) were measured in an ELISA and with an in vitro ACE2-surrogate RBD binding inhibition assay at day 42 and day 180 after receiving the second dose. IgG levels were expressed in BAU/ml. Binding inhibition antibodies were expressed in IU/ml. RESULTS On average, RBD-IgG levels decreased by approximately 50% between the two time-points in the COVID-19 naïve cohort (geometric mean concentration (GMC) 675 BAU/mL vs. 327 BAU/ml) and decreased by approximately 25% in the previously infected cohort (GMC 1209 BAU/mL vs 910 BAU/ml). Within our cohort, 94% showed a "good to excellent" neutralizing activity measured with the in vitro test 6 months after vaccination. CONCLUSIONS The Sputnik V vaccine provided long-term and durable humoral immunity in our cohort specially if a person has been both vaccinated and had a previous infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Franklin Claro
- Servicio Autónomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela,Servicio Autónomo Instituto de Biomedicina, Ministerio del Poder Popular para la Salud, Venezuela
| | - Douglas Silva
- Servicio Autónomo Instituto de Biomedicina, Ministerio del Poder Popular para la Salud, Venezuela
| | - Jesús A. Pérez Bogado
- Servicio Autónomo Instituto de Biomedicina, Ministerio del Poder Popular para la Salud, Venezuela
| | - Hector Rafael Rangel
- Instituto Venezolano de Investigaciones Científicas (IVIC), Altos de Pipe, Miranda, Venezuela
| | - Jacobus H. de Waard
- Servicio Autónomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela,One Health Research Group, Universidad de Las Américas (UDLA), Quito, Ecuador,Corresponding author
| |
Collapse
|
13
|
Khoshnood S, Ghanavati R, Shirani M, Ghahramanpour H, Sholeh M, Shariati A, Sadeghifard N, Heidary M. Viral vector and nucleic acid vaccines against COVID-19: A narrative review. Front Microbiol 2022; 13:984536. [PMID: 36118203 PMCID: PMC9470835 DOI: 10.3389/fmicb.2022.984536] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
After about 2 years since the first detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in Wuhan, China, in December 2019 that resulted in a worldwide pandemic, 6.2 million deaths have been recorded. As a result, there is an urgent need for the development of a safe and effective vaccine for coronavirus disease 2019 (COVID-19). Endeavors for the production of effective vaccines inexhaustibly are continuing. At present according to the World Health Organization (WHO) COVID-19 vaccine tracker and landscape, 153 vaccine candidates are developing in the clinical phase all over the world. Some new and exciting platforms are nucleic acid-based vaccines such as Pfizer Biontech and Moderna vaccines consisting of a messenger RNA (mRNA) encoding a viral spike protein in host cells. Another novel vaccine platform is viral vector vaccine candidates that could be replicating or nonreplicating. These types of vaccines that have a harmless viral vector like adenovirus contain a genome encoding the spike protein of SARS-CoV-2, which induces significant immune responses. This technology of vaccine manufacturing has previously been used in many human clinical trials conducted for adenoviral vector-based vaccines against different infectious agents, including Ebola virus, Zika virus, HIV, and malaria. In this paper, we have a review of nucleic acid-based vaccines that are passing their phase 3 and 4 clinical trials and discuss their efficiency and adverse effects.
Collapse
Affiliation(s)
- Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ghahramanpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
- *Correspondence: Mohsen Heidary,
| |
Collapse
|
14
|
Yegorov S, Kadyrova I, Negmetzhanov B, Kolesnikova Y, Kolesnichenko S, Korshukov I, Baiken Y, Matkarimov B, Miller MS, Hortelano GH, Babenko D. Sputnik-V reactogenicity and immunogenicity in the blood and mucosa: a prospective cohort study. Sci Rep 2022; 12:13207. [PMID: 35915123 PMCID: PMC9342835 DOI: 10.1038/s41598-022-17514-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Sputnik-V (Gam-COVID-Vac) is a heterologous, recombinant adenoviral (rAdv) vector-based, COVID-19 vaccine now used in > 70 countries. Yet there is a shortage of data on this vaccine's performance in diverse populations. Here, we performed a prospective cohort study to assess the reactogenicity and immunologic outcomes of Sputnik-V vaccination in Kazakhstan. COVID-19-free participants (n = 82 at baseline) were followed at day 21 after Sputnik-V dose 1 (rAd5) and dose 2 (rAd26). Self-reported local and systemic adverse events were captured using questionnaires. Blood and nasopharyngeal swabs were collected to perform SARS-CoV-2 diagnostic and immunologic assays. We observed that most of the reported adverse events were mild-to-moderate injection site or systemic reactions, no severe or potentially life-threatening conditions were reported, and dose 1 appeared to be more reactogenic than dose 2. The seroconversion rate was 97% post-dose 1, remaining the same post-dose 2. The proportion of participants with detectable virus neutralization was 83% post-dose 1, increasing to 98% post-dose 2, with the largest relative increase observed in participants without prior COVID-19 exposure. Dose 1 boosted nasal S-IgG and S-IgA, while the boosting effect of dose 2 on mucosal S-IgG, but not S-IgA, was only observed in subjects without prior COVID-19. Systemically, vaccination reduced serum levels of growth regulated oncogene (GRO), which correlated with an elevation in blood platelet count. Overall, Sputnik-V dose 1 elicited both blood and mucosal SARS-CoV-2 immunity, while the immune boosting effect of dose 2 was minimal. Thus, adjustments to the current vaccine dosing regimen are necessary to optimize immunization efficacy and cost-effectiveness. While Sputnik-V reactogenicity is similar to that of other COVID-19 vaccines, the induced alterations to the GRO/platelet axis warrant investigation of the vaccine's effects on systemic immunology.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.
| | - Irina Kadyrova
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan.
| | - Baurzhan Negmetzhanov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Ilya Korshukov
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| | - Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gonzalo H Hortelano
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dmitriy Babenko
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
15
|
Heterologous gam-covid-vac (sputnik V) / mRNA-1273 (moderna) vaccination induces a stronger humoral response than homologous sputnik V in a real-world data analysis. Clin Microbiol Infect 2022; 28:1382-1388. [PMID: 35595128 PMCID: PMC9112602 DOI: 10.1016/j.cmi.2022.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To compare the homologous prime-boost vaccination scheme of Gam-COVID-Vac (Sputnik V, SpV) to its heterologous combination with mRNA-1273 (Moderna, Mod) vaccine. METHODS SARS-CoV-2 anti-spike (S)-receptor binding domain (RBD) IgG concentration was assessed three to seven weeks after complete vaccination. Reactogenicity was evaluated by declared side events and medical assistance required until day 7 post-boost. RESULTS Of 190 participants enrolled, 105 received homologous SpV/SpV and the remaining heterologous SpV/Mod vaccination scheme, respectively. Median (interquartile range, IQR) age was 54 (37-63) years, 132 out of 190 (69.5%) were female and 46 out of 190 (24.2%) individuals had a prior confirmed COVID-19. Anti-S-RBD IgG median (IQR) titers were significantly higher for SpV/Mod [2511 (1476-3992) BAU/mL] than for SpV/SpV [582 (209-1609) BAU/mL, p<0.001] vaccination scheme. In a linear model adjusted for age, gender, time to the serological assay and time between doses, SpV/Mod [4.154 (6.585-615.554), p<0.001] and prior COVID [3.732 (8.641-202.010), p<0.001] were independently associated with higher anti-S-RBD IgG values. A higher frequency of mild and moderate adverse effects was associated with the heterologous scheme [20 of 85 (23.5%) vs 13 of 105 (12,4%), p=0.043) and 27 of 85 (31,8%) vs 14 of 105 (13,3%), p=0.002], respectively, although it was well tolerated by all individuals and no medical assistance was required, although it was well tolerated by all individuals and no medical assistance was required. CONCLUSION The heterologous SpV/Mod combination against SARS-CoV-2 is well tolerated and significantly increases humoral immune response as compared to the homologous SpV/SpV immunization.
Collapse
|
16
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Cho K, Park S, Kim EY, Koyanagi A, Jacob L, Yon DK, Lee SW, Kim MS, Radua J, Elena D, Il Shin J, Smith L. Immunogenicity of COVID-19 Vaccines in Patients with Diverse Health Conditions: a Comprehensive Systematic Review. J Med Virol 2022; 94:4144-4155. [PMID: 35567325 PMCID: PMC9347877 DOI: 10.1002/jmv.27828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
It remains unclear how effective COVID-19 vaccinations will be in patients with weakened immunity due to diseases, transplantation, and dialysis. We conducted a systematic review comparing the efficacy of COVID-19 vaccination in patients with solid tumor, hematologic malignancy, autoimmune disease, inflammatory bowel disease, and patients who received transplantation or dialysis. A literature search was conducted twice using the Medline/PubMed database. As a result, 21 papers were included in the review, and seropositivity rate was summarized by specific type of disease, transplantation, and dialysis. When different papers studied the same type of patient group, a study with a higher number of participants was selected. Most of the solid tumor patients showed a seropositivity rate of more than 80% after the second inoculation, but a low seropositivity was found in certain tumors such as breast cancer. Research in patients with certain types of hematological malignancy and autoimmune diseases has also reported low seropositivity, and this may have been affected by the immunosuppressive treatment these patients receive. Research in patients receiving dialysis or transplantation has reported lower seropositivity rates than the general population, while all patients with inflammatory bowel disease have converted to be seropositive. Meta-analysis validating these results will be needed, and studies will also be needed on methods to protect patients with reduced immunity from COVID-19. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyuyeon Cho
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Eun-Young Kim
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Ai Koyanagi
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.,Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830, Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830, Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78180, Montigny-le-Bretonneux, France
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Joaquim Radua
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AB, UK.,Mental Health Networking Biomedical Research Centre (CIBERSAM), 08036, Barcelona, Spain.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, 11330, Stockholm, Sweden.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Dragioti Elena
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
18
|
Kaznadzey A, Tutukina M, Bessonova T, Kireeva M, Mazo I. BNT162b2, mRNA-1273, and Sputnik V Vaccines Induce Comparable Immune Responses on a Par With Severe Course of COVID-19. Front Immunol 2022; 13:797918. [PMID: 35493476 PMCID: PMC9044856 DOI: 10.3389/fimmu.2022.797918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines against the severe acute respiratory syndrome coronavirus 2, which have been in urgent need and development since the beginning of 2020, are aimed to induce a prominent immune system response capable of recognizing and fighting future infection. Here we analyzed the levels of IgG antibodies against the receptor-binding domain (RBD) of the viral spike protein after the administration of three types of popular vaccines, BNT162b2, mRNA-1273, or Sputnik V, using the same ELISA assay to compare their effects. An efficient immune response was observed in the majority of cases. The obtained ranges of signal values were wide, presumably reflecting specific features of the immune system of individuals. At the same time, these ranges were comparable among the three studied vaccines. The anti-RBD IgG levels after vaccination were also similar to those in the patients with moderate/severe course of the COVID-19, and significantly higher than in the individuals with asymptomatic or light symptomatic courses of the disease. No significant correlation was observed between the levels of anti-RBD IgG and sex or age of the vaccinated individuals. The signals measured at different time points for several individuals after full Sputnik V vaccination did not have a significant tendency to lower within many weeks. The rate of neutralization of the interaction of the RBD with the ACE2 receptor after vaccination with Sputnik V was on average slightly higher than in patients with a moderate/severe course of COVID-19. The importance of the second dose administration of the two-dose Sputnik V vaccine was confirmed: while several individuals had not developed detectable levels of the anti-RBD IgG antibodies after the first dose of Sputnik V, after the second dose the antibody signal became positive for all tested individuals and raised on average 5.4 fold. Finally, we showed that people previously infected with SARS-CoV-2 developed high levels of antibodies, efficiently neutralizing interaction of RBD with ACE2 after the first dose of Sputnik V, with almost no change after the second dose.
Collapse
Affiliation(s)
- Anna Kaznadzey
- VirIntel, LLC, Gaithersburg, MD, United States.,Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Maria Tutukina
- Institute for Information Transmission Problems, Russian Academy of Sciences (RAS), Moscow, Russia.,Department of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Cell Biophysics, Russian Academy of Sciences (RAS), Federal Research Center, Puschino Scientific Center for Biological Research of the Russian Academy of Sciences (FRC PSCBR RAS), Pushchino, Russia
| | - Tatiana Bessonova
- Institute of Cell Biophysics, Russian Academy of Sciences (RAS), Federal Research Center, Puschino Scientific Center for Biological Research of the Russian Academy of Sciences (FRC PSCBR RAS), Pushchino, Russia
| | | | - Ilya Mazo
- VirIntel, LLC, Gaithersburg, MD, United States.,Argentys Informatics, LLC, Gaithersburg, MD, United States
| |
Collapse
|
19
|
Wei J, Pouwels KB, Stoesser N, Matthews PC, Diamond I, Studley R, Rourke E, Cook D, Bell JI, Newton JN, Farrar J, Howarth A, Marsden BD, Hoosdally S, Jones EY, Stuart DI, Crook DW, Peto TEA, Walker AS, Eyre DW. Antibody responses and correlates of protection in the general population after two doses of the ChAdOx1 or BNT162b2 vaccines. Nat Med 2022; 28:1072-1082. [PMID: 35165453 PMCID: PMC9117148 DOI: 10.1038/s41591-022-01721-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022]
Abstract
Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2-3 months after two ChAdOx1 doses, for 5-8 months after two BNT162b2 doses in those without prior infection and for 1-2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable.
Collapse
Affiliation(s)
- Jia Wei
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Koen B Pouwels
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | - John I Bell
- Office of the Regius Professor of Medicine, University of Oxford, Oxford, UK
| | - John N Newton
- Health Improvement Directorate, Public Health England, London, UK
| | | | - Alison Howarth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Brian D Marsden
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Hoosdally
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - E Yvonne Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David I Stuart
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Tim E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK
- MRC Clinical Trials Unit at UCL, University College London, London, UK
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- The National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance at the University of Oxford, Oxford, UK.
- The National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
20
|
Chahla RE, Tomas-Grau RH, Cazorla SI, Ploper D, Vera Pingitore E, López MA, Aznar P, Alcorta ME, Vélez EMDM, Stagnetto A, Ávila CL, Maldonado-Galdeano C, Socias SB, Heinze D, Navarro SA, Llapur CJ, Costa D, Flores I, Edelstein A, Kowdle S, Perandones C, Lee B, Apfelbaum G, Mostoslavsky R, Mostoslavsky G, Perdigón G, Chehín RN. Long-term analysis of antibodies elicited by SPUTNIK V: A prospective cohort study in Tucumán, Argentina. LANCET REGIONAL HEALTH. AMERICAS 2022; 6:100123. [PMID: 34841388 PMCID: PMC8604626 DOI: 10.1016/j.lana.2021.100123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gam-COVID-Vac (SPUTNIK V) has been granted emergency use authorization in 70 nations and has been administered to millions worldwide. However, there are very few peer-reviewed studies describing its effects. Independent reports regarding safety and effectiveness could accelerate the final approval by the WHO. We aimed to study the long-term humoral immune response in naïve and previously infected volunteers who received SPUTNIK V. METHODS Humoral immune responses, assayed by anti-SARS-CoV-2-spike-RBD IgG ELISA and neutralization assays, were measured in 602 healthcare workers at 0, 14, 28, 60 and 180 days after receiving SPUTNIK V between December 2020 and July 2021 in Tucumán, Argentina. FINDINGS Seroconversion was detected in 97% of individuals after 28 days post-vaccination (dpv) (N = 405). Anti-RBD titers began to decrease after 60 dpv (N = 328), but remained detectable in 94% at 90 dpv (N = 224). At 180 dpv, anti-RDB titers persisted in 31% (N = 146). Previous infection triggered an increased immune response to the first dose and increased neutralization activity against variants of concern (VOC). Second doses in previously infected individuals further increased titers, even 90 dpv (N = 75). Basal antibody titers had more influence on post-vaccination anti-RBD responses than the time elapsed between diagnosis and vaccination (N = 274). INTERPRETATION Data presented herein provides essential knowledge regarding the kinetics of antibodies induced by SPUTNIK V up to six months after immunization, and suggests that when considering one-dose vaccination policies for individuals with previous SARS-CoV-2 infection, serological studies to determine basal titers may be important, independent of when diagnosis occurred. FUNDING Tucumán Public Health System (SIPROSA), Argentinean National Research Council (CONICET), National University of Tucumán (UNT).
Collapse
Affiliation(s)
| | - Rodrigo Hernán Tomas-Grau
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | | | - Diego Ploper
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | - Esteban Vera Pingitore
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | | | - Patricia Aznar
- Laboratorio de Salud Pública (LSP-SIPROSA). Tucumán, Argentina
| | | | | | - Agustín Stagnetto
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | - César Luís Ávila
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | | | - Sergio Benjamín Socias
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | - Dar Heinze
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine (CReM), Boston University School of Medicine. Boston, MA, United States
| | - Silvia Adriana Navarro
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| | | | - Dardo Costa
- Laboratorio de Salud Pública (LSP-SIPROSA). Tucumán, Argentina
| | - Isolina Flores
- Laboratorio de Salud Pública (LSP-SIPROSA). Tucumán, Argentina
| | - Alexis Edelstein
- Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Dr. Carlos G. Malbrán. Buenos Aires, Argentina
| | - Shreyas Kowdle
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai. New York, NY, United States
| | - Claudia Perandones
- Administración Nacional de Laboratorios e Institutos de Salud (ANLIS), Dr. Carlos G. Malbrán. Buenos Aires, Argentina
| | - Benhur Lee
- Department of Microbiology at the Icahn School of Medicine at Mount Sinai. New York, NY, United States
| | - Gabriela Apfelbaum
- Facultad de Medicina, Universidad Nacional de Tucumán (UNT). Tucumán, Argentina
| | - Raúl Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School. Boston, MA, United States
| | - Gustavo Mostoslavsky
- Department of Medicine, Section of Gastroenterology, Center for Regenerative Medicine (CReM), Boston University School of Medicine. Boston, MA, United States
| | - Gabriela Perdigón
- Centro de Referencia para Lactobacilos-CERELA (CONICET). Tucumán, Argentina
| | - Rosana Nieves Chehín
- Instituto de Investigación en Medicina Molecular y Celular Aplicada IMMCA (UNT-CONICET-SIPROSA). Tucumán, Argentina
| |
Collapse
|
21
|
McIntyre PB, Aggarwal R, Jani I, Jawad J, Kochhar S, MacDonald N, Madhi SA, Mohsni E, Mulholland K, Neuzil KM, Nohynek H, Olayinka F, Pitisuttithum P, Pollard AJ, Cravioto A. COVID-19 vaccine strategies must focus on severe disease and global equity. Lancet 2022; 399:406-410. [PMID: 34922639 PMCID: PMC8676417 DOI: 10.1016/s0140-6736(21)02835-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 02/04/2023]
Affiliation(s)
- Peter B McIntyre
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.
| | - Rakesh Aggarwal
- Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ilesh Jani
- Instituto Nacional de Saúde, Marracuene, Mozambique
| | | | - Sonali Kochhar
- Department of Global Health, School of Public Health and Community Medicine, University of Washington, Seattle, WA, USA
| | - Noni MacDonald
- Dalhousie Medical School, Dalhousie University, Halifax, NS, Canada
| | - Shabir A Madhi
- South African Medical Research Council Vaccine and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Kim Mulholland
- Department of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Hanna Nohynek
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Folake Olayinka
- STAR Fellows Department, Public Health Institute, Washington DC, USA
| | - Punnee Pitisuttithum
- Department of Clinical Tropical Medicine and the Vaccine Trial Centre, Mahidol University, Nakhon Pathom, Bangkok
| | | | - Alejandro Cravioto
- Department of Public Health, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
22
|
Long Term Immune Response Produced by the SputnikV Vaccine. Int J Mol Sci 2021; 22:ijms222011211. [PMID: 34681885 PMCID: PMC8537212 DOI: 10.3390/ijms222011211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023] Open
Abstract
SputnikV is a vaccine against SARS-CoV-2 developed by the Gamaleya National Research Centre for Epidemiology and Microbiology. The vaccine has been shown to induce both humoral and cellular immune responses, yet the mechanisms remain largely unknown. Forty SputnikV vaccinated individuals were included in this study which aimed to demonstrate the location of immunogenic domains of the SARS-CoV-2 S protein using an overlapping peptide library. Additionally, cytokines in the serum of vaccinated and convalescent COVID-19 patients were analyzed. We have found antibodies from both vaccinated and convalescent sera bind to immunogenic regions located in multiple domains of SARS-CoV-2 S protein, including Receptor Binding Domain (RBD), N-terminal Domain (NTD), Fusion Protein (FP) and Heptad Repeats (HRs). Interestingly, many peptides were recognized by immunized and convalescent serum antibodies and correspond to conserved regions in circulating variants of SARS-CoV-2. This breadth of reactivity was still evident 90 days after the first dose of the vaccine, showing that the vaccine has induced a prolonged response. As evidenced by the activation of T cells, cellular immunity strongly suggests the high potency of the SputnikV vaccine against SARS-CoV-2 infection.
Collapse
|
23
|
Daian e Silva DSDO, da Fonseca FG. The Rise of Vectored Vaccines: A Legacy of the COVID-19 Global Crisis. Vaccines (Basel) 2021; 9:1101. [PMID: 34696209 PMCID: PMC8538930 DOI: 10.3390/vaccines9101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic represents a milestone in vaccine research and development in a global context. A worldwide effort, as never seen before, involved scientists from all over the world in favor of the fast, accurate and precise construction and testing of immunogens against the new coronavirus, SARS-CoV-2. Among all the vaccine strategies put into play for study and validation, those based on recombinant viral vectors gained special attention due to their effectiveness, ease of production and the amplitude of the triggered immune responses. Some of these new vaccines have already been approved for emergency/full use, while others are still in pre- and clinical trials. In this article we will highlight what is behind adeno-associated vectors, such as those presented by the immunogens ChaAdOx1, Sputnik, Convidecia (CanSino, Tianjin, China), and Janssen (Johnson & Johnson, New Jersey, EUA), in addition to other promising platforms such as Vaccinia virus MVA, influenza virus, and measles virus, among others.
Collapse
Affiliation(s)
- Danielle Soares de Oliveira Daian e Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- CT Vacinas, BH-TEC Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil
| |
Collapse
|