1
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
2
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
3
|
Chekli Y, Stevick RJ, Kornobis E, Briolat V, Ghigo JM, Beloin C. Escherichia coli Aggregates Mediated by Native or Synthetic Adhesins Exhibit Both Core and Adhesin-Specific Transcriptional Responses. Microbiol Spectr 2023; 11:e0069023. [PMID: 37039668 PMCID: PMC10269875 DOI: 10.1128/spectrum.00690-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Bacteria can rapidly tune their physiology and metabolism to adapt to environmental fluctuations. In particular, they can adapt their lifestyle to the close proximity of other bacteria or the presence of different surfaces. However, whether these interactions trigger transcriptomic responses is poorly understood. We used a specific setup of E. coli strains expressing native or synthetic adhesins mediating bacterial aggregation to study the transcriptomic changes of aggregated compared to nonaggregated bacteria. Our results show that, following aggregation, bacteria exhibit a core response independent of the adhesin type, with differential expression of 56.9% of the coding genome, including genes involved in stress response and anaerobic lifestyle. Moreover, when aggregates were formed via a naturally expressed E. coli adhesin (antigen 43), the transcriptomic response of the bacteria was more exaggerated than that of aggregates formed via a synthetic adhesin. This suggests that the response to aggregation induced by native E. coli adhesins could have been finely tuned during bacterial evolution. Our study therefore provides insights into the effect of self-interaction in bacteria and allows a better understanding of why bacterial aggregates exhibit increased stress tolerance. IMPORTANCE The formation of bacterial aggregates has an important role in both clinical and ecological contexts. Although these structures have been previously shown to be more resistant to stressful conditions, the genetic basis of this stress tolerance associated with the aggregate lifestyle is poorly understood. Surface sensing mediated by different adhesins can result in various changes in bacterial physiology. However, whether adhesin-adhesin interactions, as well as the type of adhesin mediating aggregation, affect bacterial cell physiology is unknown. By sequencing the transcriptomes of aggregated and nonaggregated cells expressing native or synthetic adhesins, we characterized the effects of aggregation and adhesin type on E. coli physiology.
Collapse
Affiliation(s)
- Yankel Chekli
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Rebecca J. Stevick
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Valérie Briolat
- Hub de Bioinformatique et Biostatistique-Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Genetics of Biofilms Laboratory, Paris, France
| |
Collapse
|
4
|
Ageorges V, Wawrzyniak I, Ruiz P, Bicep C, Zorgani MA, Paxman JJ, Heras B, Henderson IR, Leroy S, Bailly X, Sapountzis P, Peyretaillade E, Desvaux M. Genome-Wide Analysis of Antigen 43 (Ag43) Variants: New Insights in Their Diversity, Distribution and Prevalence in Bacteria. Int J Mol Sci 2023; 24:5500. [PMID: 36982580 PMCID: PMC10058404 DOI: 10.3390/ijms24065500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Antigen 43 (Ag43) expression induces aggregation and biofilm formation that has consequences for bacterial colonisation and infection. Ag43 is secreted through the Type 5 subtype "a" secretion system (T5aSS) and is a prototypical member of the family of self-associating autotransporters (SAATs). As a T5aSS protein, Ag43 has a modular architecture comprised of (i) a signal peptide, (ii) a passenger domain that can be subdivided into three subdomains (SL, EJ, and BL), (iii) an autochaperone (AC) domain, and (iv) an outer membrane translocator. The cell-surface SL subdomain is directly involved in the "Velcro-handshake" mechanism resulting in bacterial autoaggregation. Ag43 is considered to have a ubiquitous distribution in E. coli genomes and many strains harbour multiple agn43 genes. However, recent phylogenetic analyses indicated the existence of four distinct Ag43 classes exhibiting different propensities for autoaggregation and interactions. Given the knowledge of the diversity and distribution of Ag43 in E. coli genomes is incomplete, we have performed a thorough in silico investigation across bacterial genomes. Our comprehensive analyses indicate that Ag43 passenger domains cluster in six phylogenetic classes associated with different SL subdomains. The diversity of Ag43 passenger domains is a result of the association of the SL subtypes with two different EJ-BL-AC modules. We reveal that agn43 is almost exclusively present among bacterial species of the Enterobacteriaceae family and essentially in the Escherichia genus (99.6%) but that it is not ubiquitous in E. coli. The gene is typically present as a single copy but up to five copies of agn43 with different combinations of classes can be observed. The presence of agn43 as well as its different classes appeared to differ between Escherichia phylogroups. Strikingly, agn43 is present in 90% of E. coli from E phylogroup. Our results shed light on Ag43 diversity and provide a rational framework for investigating its role in E. coli ecophysiology and physiopathology.
Collapse
Affiliation(s)
| | | | - Philippe Ruiz
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | - Cédric Bicep
- UCA, CNRS, UMR6023 LMGE, 63000 Clermont-Ferrand, France
| | | | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ian R. Henderson
- Institute for Molecular Biosciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Sabine Leroy
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | - Xavier Bailly
- INRAE, UCA, VetAgro Sup, UMR0346 EPIA, 63122 Saint Genes Champanelle, France
| | | | | | | |
Collapse
|
5
|
Clarke KR, Hor L, Pilapitiya A, Luirink J, Paxman JJ, Heras B. Phylogenetic Classification and Functional Review of Autotransporters. Front Immunol 2022; 13:921272. [PMID: 35860281 PMCID: PMC9289746 DOI: 10.3389/fimmu.2022.921272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Autotransporters are the core component of a molecular nano-machine that delivers cargo proteins across the outer membrane of Gram-negative bacteria. Part of the type V secretion system, this large family of proteins play a central role in controlling bacterial interactions with their environment by promoting adhesion to surfaces, biofilm formation, host colonization and invasion as well as cytotoxicity and immunomodulation. As such, autotransporters are key facilitators of fitness and pathogenesis and enable co-operation or competition with other bacteria. Recent years have witnessed a dramatic increase in the number of autotransporter sequences reported and a steady rise in functional studies, which further link these proteins to multiple virulence phenotypes. In this review we provide an overview of our current knowledge on classical autotransporter proteins, the archetype of this protein superfamily. We also carry out a phylogenetic analysis of their functional domains and present a new classification system for this exquisitely diverse group of bacterial proteins. The sixteen phylogenetic divisions identified establish sensible relationships between well characterized autotransporters and inform structural and functional predictions of uncharacterized proteins, which may guide future research aimed at addressing multiple unanswered aspects in this group of therapeutically important bacterial factors.
Collapse
Affiliation(s)
- Kaitlin R. Clarke
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Akila Pilapitiya
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joen Luirink
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- *Correspondence: Begoña Heras, ; Jason J. Paxman,
| |
Collapse
|
6
|
Vo JL, Ortiz GCM, Totsika M, Lo AW, Hancock SJ, Whitten AE, Hor L, Peters KM, Ageorges V, Caccia N, Desvaux M, Schembri MA, Paxman JJ, Heras B. Variation of Antigen 43 self-association modulates bacterial compacting within aggregates and biofilms. NPJ Biofilms Microbiomes 2022; 8:20. [PMID: 35396507 PMCID: PMC8993888 DOI: 10.1038/s41522-022-00284-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
The formation of aggregates and biofilms enhances bacterial colonisation and infection progression by affording protection from antibiotics and host immune factors. Despite these advantages there is a trade-off, whereby bacterial dissemination is reduced. As such, biofilm development needs to be controlled to suit adaptation to different environments. Here we investigate members from one of largest groups of bacterial adhesins, the autotransporters, for their critical role in the assembly of bacterial aggregates and biofilms. We describe the structural and functional characterisation of autotransporter Ag43 variants from different Escherichia coli pathotypes. We show that specific interactions between amino acids on the contacting interfaces of adjacent Ag43 proteins drives a common mode of trans-association that leads to cell clumping. Furthermore, subtle variation of these interactions alters aggregation kinetics and the degree of compacting within cell clusters. Together, our structure–function investigation reveals an underlying molecular basis for variations in the density of bacterial communities.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Gabriela C Martínez Ortiz
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Herston, QLD, 4006, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Steven J Hancock
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Valentin Ageorges
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Nelly Caccia
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, UMR454 MEDiS, 63000, Clermont-Ferrand, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jason J Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
7
|
Nwoko ESQA, Okeke IN. Bacteria autoaggregation: how and why bacteria stick together. Biochem Soc Trans 2021; 49:1147-1157. [PMID: 34110370 PMCID: PMC8286834 DOI: 10.1042/bst20200718] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Autoaggregation, adherence between identical bacterial cells, is important for colonization, kin and kind recognition, and survival of bacteria. It is directly mediated by specific interactions between proteins or organelles on the surfaces of interacting cells or indirectly by the presence of secreted macromolecules such as eDNA and exopolysaccharides. Some autoaggregation effectors are self-associating and present interesting paradigms for protein interaction. Autoaggregation can be beneficial or deleterious at specific times and niches. It is, therefore, typically regulated through transcriptional or post-transcriptional mechanisms or epigenetically by phase variation. Autoaggregation can contribute to bacterial adherence, biofilm formation or other higher-level functions. However, autoaggregation is only required for these phenotypes in some bacteria. Thus, autoaggregation should be detected, studied and measured independently using both qualitative and quantitative in vitro and ex vivo methods. If better understood, autoaggregation holds the potential for the discovery of new therapeutic targets that could be cost-effectively exploited.
Collapse
Affiliation(s)
- El-shama Q. A. Nwoko
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
8
|
Roumia AF, Tsirigos KD, Theodoropoulou MC, Tamposis IA, Hamodrakas SJ, Bagos PG. OMPdb: A Global Hub of Beta-Barrel Outer Membrane Proteins. FRONTIERS IN BIOINFORMATICS 2021; 1:646581. [PMID: 36303794 PMCID: PMC9581022 DOI: 10.3389/fbinf.2021.646581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/14/2022] Open
Abstract
OMPdb (www.ompdb.org) was introduced as a database for β-barrel outer membrane proteins from Gram-negative bacteria in 2011 and then included 69,354 entries classified into 85 families. The database has been updated continuously using a collection of characteristic profile Hidden Markov Models able to discriminate between the different families of prokaryotic transmembrane β-barrels. The number of families has increased ultimately to a total of 129 families in the current, second major version of OMPdb. New additions have been made in parallel with efforts to update existing families and add novel families. Here, we present the upgrade of OMPdb, which from now on aims to become a global repository for all transmembrane β-barrel proteins, both eukaryotic and bacterial.
Collapse
Affiliation(s)
- Ahmed F. Roumia
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | | | | | - Ioannis A. Tamposis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Stavros J. Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- *Correspondence: Pantelis G. Bagos
| |
Collapse
|
9
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Butt J, Jenab M, Werner J, Fedirko V, Weiderpass E, Dahm CC, Tjønneland A, Olsen A, Boutron-Ruault MC, Rothwell JA, Severi G, Kaaks R, Turzanski-Fortner R, Aleksandrova K, Schulze M, Palli D, Pala V, Panico S, Tumino R, Sacerdote C, Bueno-de-Mesquita B, Van Gils CH, Gram IT, Lukic M, Sala N, Sánchez Pérez MJ, Ardanaz E, Chirlaque MD, Palmquist R, Löwenmark T, Travis RC, Heath A, Cross AJ, Freisling H, Zouiouich S, Aglago E, Waterboer T, Hughes DJ. Association of Pre-diagnostic Antibody Responses to Escherichia coli and Bacteroides fragilis Toxin Proteins with Colorectal Cancer in a European Cohort. Gut Microbes 2021; 13:1-14. [PMID: 33874856 PMCID: PMC8078709 DOI: 10.1080/19490976.2021.1903825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Experimental evidence has implicated genotoxic Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF) in the development of colorectal cancer (CRC). However, evidence from epidemiological studies is sparse. We therefore assessed the association of serological markers of E. coli and ETBF exposure with odds of developing CRC in the European Prospective Investigation into Nutrition and Cancer (EPIC) study.Serum samples of incident CRC cases and matched controls (n = 442 pairs) were analyzed for immunoglobulin (Ig) A and G antibody responses to seven E. coli proteins and two isoforms of the ETBF toxin via multiplex serology. Multivariable-adjusted conditional logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association of sero-positivity to E. coli and ETBF with CRC.The IgA-positivity of any of the tested E. coli antigens was associated with higher odds of developing CRC (OR: 1.42; 95% CI: 1.05-1.91). Dual-positivity for both IgA and IgG to E. coli and ETBF was associated with >1.7-fold higher odds of developing CRC, with a significant association only for IgG (OR: 1.75; 95% CI: 1.04, 2.94). This association was more pronounced when restricted to the proximal colon cancers (OR: 2.62; 95% CI: 1.09, 6.29) compared to those of the distal colon (OR: 1.24; 95% CI: 0.51, 3.00) (pheterogeneity = 0.095). Sero-positivity to E. coli and ETBF was associated with CRC development, suggesting that co-infection of these bacterial species may contribute to colorectal carcinogenesis. These findings warrant further exploration in larger prospective studies and within different population groups.
Collapse
Affiliation(s)
- Julia Butt
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Jill Werner
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Christina C. Dahm
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne Tjønneland
- Exposome and Heredity Team, CESP (Centre de Recherche en Epidemiologie et Santé des Populations), Diet, Genes and Environment, Nutrition and Biomarkers (NAB), Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Denmark
| | - Anja Olsen
- Exposome and Heredity Team, CESP (Centre de Recherche en Epidemiologie et Santé des Populations), Diet, Genes and Environment, Nutrition and Biomarkers (NAB), Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Aarhus, Denmark
| | | | - Joseph A. Rothwell
- Cesp (Umr1018), Médecine Université Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France
| | - Gianluca Severi
- Cesp (Umr1018), Médecine Université Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France
- Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Krasimira Aleksandrova
- Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Matthias Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Provincial Health Authority (ASP 7), Ragusa, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città Della Salute E Della Scienza University-Hospital, Turin, Italy
| | - Bas Bueno-de-Mesquita
- Former Senior Scientist, Dept. For Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Former Associate Professor, Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Former Visiting Professor, Dept. Of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK
- Former Academic Icon/visiting Professor, Dept. Of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Carla H. Van Gils
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inger Torhild Gram
- Department of Community Medicine, University of Tromsø, the Arctic University of Norway, Tromsø, Norway
| | - Marko Lukic
- Department of Community Medicine, UiT, The Arctic University of Norway, Tromsø, Norway
| | - Núria Sala
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory, Catalan Institute of Oncology (ICO), Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - María José Sánchez Pérez
- Escuela Andaluza De Salud Pública (EASP), Granada, Spain
- Instituto De Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro De Investigación Biomédica En Red De Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER Epidemiology and Public Health CIBERESP, Madrid, Spain
| | - María-Dolores Chirlaque
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia University, Murcia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Richard Palmquist
- Department of Medical Biosciences, Pathology, Umeå University, Ireland
| | - Thyra Löwenmark
- Department of Medical Biosciences, Pathology, Umeå University, Ireland
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alicia Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Heinz Freisling
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Semi Zouiouich
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Elom Aglago
- International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - Tim Waterboer
- Infections and Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J. Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
Autotransporters Drive Biofilm Formation and Autoaggregation in the Diderm Firmicute Veillonella parvula. J Bacteriol 2020; 202:JB.00461-20. [PMID: 32817093 PMCID: PMC7549365 DOI: 10.1128/jb.00461-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Veillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract. The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments. IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.
Collapse
|
12
|
Khalil HS, Øgaard J, Leo JC. Coaggregation properties of trimeric autotransporter adhesins. Microbiologyopen 2020; 9:e1109. [PMID: 32864901 PMCID: PMC7568254 DOI: 10.1002/mbo3.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Trimeric autotransporter adhesins (TAAs) comprise a group of virulence‐related proteins in Gram‐negative bacteria. Members of this family bind to extracellular matrix components such as collagen and fibronectin, but also they exhibit several other functions, such as conferring serum resistance and autoaggregation. Autoaggregation promoted by TAAs is homotypic and mediated by the sticky, globular head domains of these lollipop‐like molecules. However, whether TAAs mediate heterotypic interactions (i.e., coaggregation) has not been studied. To address this question, we investigated the coaggregation of two model TAA groups: YadA from the enteropathogenic Yersiniae and the immunoglobulin‐binding Eib proteins from Escherichia coli. To study TAA coaggregation, we coexpressed a fluorescent label together with a particular TAA and followed the aggregative interactions using fluorescence microscopy and quantified the interactions using a novel script implemented in Fiji. Our results show that there is coaggregation between some populations expressing different TAAs, which can be explained by relatively high sequence similarity between the interacting TAAs. Generally, the level of coaggregation correlated with the sequence similarity. However, some TAAs did not interact despite high sequence similarity, showing exclusion of bacteria producing a noncompatible TAA. These data demonstrate that TAAs can mediate bacterial coaggregation, but in some cases prevent coaggregation of bacteria with disparate TAAs. Our results have implications for the ecology of TAA‐producing bacteria, where coaggregation may promote co‐operation whereas exclusion might be an indication of competition.
Collapse
Affiliation(s)
- Hawzeen S Khalil
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jack C Leo
- Section for Evolution and Genetics, Department of Biosciences, University of Oslo, Oslo, Norway.,Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
13
|
Habouria H, Pokharel P, Maris S, Garénaux A, Bessaiah H, Houle S, Veyrier FJ, Guyomard-Rabenirina S, Talarmin A, Dozois CM. Three new serine-protease autotransporters of Enterobacteriaceae (SPATEs) from extra-intestinal pathogenic Escherichia coli and combined role of SPATEs for cytotoxicity and colonization of the mouse kidney. Virulence 2020; 10:568-587. [PMID: 31198092 PMCID: PMC6592367 DOI: 10.1080/21505594.2019.1624102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.
Collapse
Affiliation(s)
- Hajer Habouria
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Pravil Pokharel
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Segolène Maris
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Amélie Garénaux
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Hicham Bessaiah
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Sébastien Houle
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Frédéric J Veyrier
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,c Institut Pasteur International Network
| | - Stéphanie Guyomard-Rabenirina
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Antoine Talarmin
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Charles M Dozois
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA).,c Institut Pasteur International Network
| |
Collapse
|
14
|
Evolutionary Perspectives on the Moonlighting Functions of Bacterial Factors That Support Actin-Based Motility. mBio 2019; 10:mBio.01520-19. [PMID: 31455648 PMCID: PMC6712393 DOI: 10.1128/mbio.01520-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display “moonlighting” adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.
Collapse
|
15
|
Differential homotypic and heterotypic interactions of antigen 43 (Ag43) variants in autotransporter-mediated bacterial autoaggregation. Sci Rep 2019; 9:11100. [PMID: 31367003 PMCID: PMC6668479 DOI: 10.1038/s41598-019-47608-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Antigen 43 (Ag43) is a cell-surface exposed protein of Escherichia coli secreted by the Type V, subtype a, secretion system (T5aSS) and belonging to the family of self-associating autotransporters (SAATs). These modular proteins, comprising a cleavable N-terminal signal peptide, a surface-exposed central passenger and an outer membrane C-terminal translocator, self-recognise in a Velcro-like handshake mechanism. A phylogenetic network analysis focusing on the passenger revealed for the first time that they actually distribute into four distinct classes, namely C1, C2, C3 and C4. Structural alignment and modelling analyses demonstrated these classes arose from shuffling of two different subdomains within the Ag43 passengers. Functional analyses revealed that homotypic interactions occur for all Ag43 classes but significant differences in the sedimentation kinetics and aggregation state were present when Ag43C3 was expressed. In contrast, heterotypic interaction occurred in a very limited number of cases. Single cell-force spectroscopy demonstrated the importance of specific as well as nonspecific interactions in mediating Ag43-Ag43 recognition. We propose that structural differences in the subdomains of the Ag43 classes account for different autoaggregation dynamics and propensities to co-interact.
Collapse
|
16
|
The Autotransporter IcsA Promotes Shigella flexneri Biofilm Formation in the Presence of Bile Salts. Infect Immun 2019; 87:IAI.00861-18. [PMID: 30988059 DOI: 10.1128/iai.00861-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
Shigella flexneri is an intracellular bacterial pathogen that invades epithelial cells in the colonic mucosa, leading to bloody diarrhea. A previous study showed that S. flexneri forms biofilms in the presence of bile salts, through an unknown mechanism. Here, we investigated the potential role of adhesin-like autotransporter proteins in S. flexneri biofilm formation. BLAST search analysis revealed that the S. flexneri 2457T genome harbors 4 genes, S1242, S1289, S2406, and icsA, encoding adhesin-like autotransporter proteins. Deletion mutants of the S1242, S1289, S2406 and icsA genes were generated and tested for biofilm formation. Phenotypic analysis of the mutant strains revealed that disruption of icsA abolished bile salt-induced biofilm formation. IcsA is an outer membrane protein secreted at the bacterial pole that is required for S. flexneri actin-based motility during intracellular infection. In extracellular biofilms, IcsA was also secreted at the bacterial pole and mediated bacterial cell-cell contacts and aggregative growth in the presence of bile salts. Dissecting individual roles of bile salts showed that deoxycholate is a robust biofilm inducer compared to cholate. The release of the extracellular domain of IcsA through IcsP-mediated cleavage was greater in the presence of cholate, suggesting that the robustness of biofilm formation was inversely correlated with IcsA processing. Accordingly, deletion of icsP abrogated IcsA processing in biofilms and enhanced biofilm formation.
Collapse
|
17
|
Paxman JJ, Lo AW, Sullivan MJ, Panjikar S, Kuiper M, Whitten AE, Wang G, Luan CH, Moriel DG, Tan L, Peters KM, Phan MD, Gee CL, Ulett GC, Schembri MA, Heras B. Unique structural features of a bacterial autotransporter adhesin suggest mechanisms for interaction with host macromolecules. Nat Commun 2019; 10:1967. [PMID: 31036849 PMCID: PMC6488583 DOI: 10.1038/s41467-019-09814-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022] Open
Abstract
Autotransporters are the largest family of outer membrane and secreted proteins in Gram-negative bacteria. Most autotransporters are localised to the bacterial surface where they promote colonisation of host epithelial surfaces. Here we present the crystal structure of UpaB, an autotransporter that is known to contribute to uropathogenic E. coli (UPEC) colonisation of the urinary tract. We provide evidence that UpaB can interact with glycosaminoglycans and host fibronectin. Unique modifications to its core β-helical structure create a groove on one side of the protein for interaction with glycosaminoglycans, while the opposite face can bind fibronectin. Our findings reveal far greater diversity in the autotransporter β-helix than previously thought, and suggest that this domain can interact with host macromolecules. The relevance of these interactions during infection remains unclear.
Collapse
Affiliation(s)
- Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Santosh Panjikar
- Macromolecular Crystallography, Australian Synchrotron, Clayton, 3168, VIC, Australia
- Department of Molecular Biology and Biochemistry, Monash University, Melbourne, 3800, VIC, Australia
| | - Michael Kuiper
- Molecular & Materials Modelling group Data61, CSIRO, Docklands, Melbourne, 8012, VIC, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Lucas Heights, 2234, NSW, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Chicago, 60208, IL, USA
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Christine L Gee
- Macromolecular Crystallography, Australian Synchrotron, Clayton, 3168, VIC, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, 4222, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, 4072, QLD, Australia.
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, VIC, Australia.
| |
Collapse
|
18
|
Truhlar AM, Denes TG, Cantilina KK, Leung SK, Walter MT, Hay AG. Absence of genetic selection in a pathogenic Escherichia coli strain exposed to the manure-amended soil environment. PLoS One 2018; 13:e0208346. [PMID: 30532241 PMCID: PMC6286177 DOI: 10.1371/journal.pone.0208346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/15/2018] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli that express curli are more common in subsurface soil drainage when manure is surface applied. However, it is unknown whether this arises from mutations in individual strains leading to curli expression or by selection for individuals already expressing higher levels of curli. To test this, we examined curli production in pathogenic E. coli O157:H7 EDL933 as a function of manure management. Five treatments were investigated: (1) soil only, (2) soil with surface-applied E. coli O157:H7 EDL933 Δstx1-2 (EcO157), (3) soil with incorporated EcO157, (4) soil with surface-applied EcO157-inoculated manure, and (5) soil with incorporated EcO157-inoculated manure. EcO157 was reisolated from soils immediately after application and weekly thereafter for 8 weeks. EcO157 in the surface-applied treatments died faster than their incorporated treatment counterparts. Phenotypic assays revealed differences between treatments as well. Half of surface-applied manure reisolates from week 6 developed a mixed red and white colony morphology on Congo Red plates, indicating changes in curli production that were not seen in other treatments or times. In 37°C growth tests, week 6 reisolates from all treatments except soil surface-applied EcO157 left the lag phase at a significantly greater rate than week 0 isolates. We applied whole genome sequencing technology to interrogate the genetic underpinnings of these phenotypes. Surprisingly, we only found single-nucleotide polymorphisms in two of the 94 resequenced isolates from the different treatments, neither of which correlated with curli phenotype. Likewise, we found no differences in other genomic characteristics that might account for phenotypic differences including the count of gaps and the origin of discarded reads that failed to map to the parental strain. These results suggest there were no systematic genomic differences (i.e. individual-level selection) that correlated with time or treatment. We recommend future research focus on population-level selection of E. coli strains in the manure-amended soil environment.
Collapse
Affiliation(s)
- Allison M. Truhlar
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Thomas G. Denes
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Keiran K. Cantilina
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Selene K. Leung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - M. Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
19
|
Matta LL, Alocilja EC. Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk. J Food Prot 2018; 81:1941-1949. [PMID: 30452292 DOI: 10.4315/0362-028x.jfp-18-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rapid detection of bacterial contamination in the food supply chain is critically important for food safety monitoring. Reliable extraction and concentration of bacteria from complex matrices is required to achieve high detection sensitivity, especially in situations of low contamination and infective dose. Carbohydrate ligands that attach to microbial cell-surface epitopes are promising economical and biocompatible substitutes for cell-targeting ligands and antibodies. Two different carbohydrate ligands immobilized onto magnetic nanoparticles (MNPs) were easily suspended in liquid food (milk) and allowed expedient extraction of microbes within minutes, without the need for centrifugation or loss in capture capacity. In this pilot study, 25-mL samples of undiluted milk were spiked with 5 mg of MNPs and artificially contaminated with bacteria at 3 to 5 log CFU/mL. MNPs and bacteria formed MNP-cell complexes, which were rapidly separated from the milk matrix with a simple magnet to allow supernatant removal. MNP-cell complexes were then concentrated by resuspension in 1 mL of fresh milk and plated per Bacteriological Analytical Manual procedures. Capture was carried out in vitamin D, 2% reduced fat, and fat-free milk spiked with Salmonella Enteritidis, Escherichia coli O157:H7, and Bacillus cereus for a combined total of 18 experiments (three replicates each). An additional eight experiments were conducted to investigate the effect of competitive bacteria on capture. All experiments were carried out over several months to account for environmental variations. Capture efficiency, on a log basis, for all combinations of milk and bacteria was 73 to 90%. Long-term exposure of the MNPs to milk did not markedly affect capture efficiency. These carbohydrate-functionalized MNPs have potential as nonspecific receptors for rapid extraction of bacteria from complex liquids, opening the door to discovery of biocompatible ligands that can reliably target pathogens in our food.
Collapse
Affiliation(s)
- Leann Lerie Matta
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: http://orcid.org/0000-0003-1020-0543 [L.L.M.])
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824, USA (ORCID: http://orcid.org/0000-0003-1020-0543 [L.L.M.])
| |
Collapse
|
20
|
Planktonic Interference and Biofilm Alliance between Aggregation Substance and Endocarditis- and Biofilm-Associated Pili in Enterococcus faecalis. J Bacteriol 2018; 200:JB.00361-18. [PMID: 30249706 PMCID: PMC6256026 DOI: 10.1128/jb.00361-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Most bacteria express multiple adhesins that contribute to surface attachment and colonization. However, the network and relationships between the various adhesins of a single bacterial species are less well understood. Here, we examined two well-characterized adhesins in Enterococcus faecalis, aggregation substance and endocarditis- and biofilm-associated pili, and found that they exhibit distinct functional contributions depending on the growth stage of the bacterial community. Pili interfere with aggregation substance-mediated clumping and plasmid transfer under planktonic conditions, whereas the two adhesins structurally complement one another during biofilm development. This study advances our understanding of how E. faecalis, a ubiquitous member of the human gut microbiome and an opportunistic pathogen, uses multiple surface structures to evolve and thrive. Like many bacteria, Enterococcus faecalis encodes a number of adhesins involved in colonization or infection of different niches. Two well-studied E. faecalis adhesins, aggregation substance (AS) and endocarditis- and biofilm-associated pili (Ebp), both contribute to biofilm formation on abiotic surfaces and in endocarditis, suggesting that they may be expressed at the same time. Because different regulatory pathways have been reported for AS and Ebp, here, we examined if they are coexpressed on the same cells and what is the functional impact of coexpression on individual cells and within a population. We found that while Ebp are only expressed on a subset of cells, when Ebp and AS are expressed on the same cells, pili interfere with AS-mediated clumping and impede AS-mediated conjugative plasmid transfer during planktonic growth. However, when the population density increases, horizontal gene transfer rates normalize and are no longer affected by pilus expression. Instead, at higher cell densities during biofilm formation, Ebp and AS differentially contribute to biofilm development and structure, synergizing to promote maximal biofilm formation. IMPORTANCE Most bacteria express multiple adhesins that contribute to surface attachment and colonization. However, the network and relationships between the various adhesins of a single bacterial species are less well understood. Here, we examined two well-characterized adhesins in Enterococcus faecalis, aggregation substance and endocarditis- and biofilm-associated pili, and found that they exhibit distinct functional contributions depending on the growth stage of the bacterial community. Pili interfere with aggregation substance-mediated clumping and plasmid transfer under planktonic conditions, whereas the two adhesins structurally complement one another during biofilm development. This study advances our understanding of how E. faecalis, a ubiquitous member of the human gut microbiome and an opportunistic pathogen, uses multiple surface structures to evolve and thrive.
Collapse
|
21
|
Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors. mSphere 2018; 3:mSphere00078-18. [PMID: 29577084 PMCID: PMC5863034 DOI: 10.1128/msphere.00078-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 11/20/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers. Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers that are associated with diarrhea. The genome of EAEC strain 042, a diarrheal pathogen validated in a human challenge study, encodes multiple colonization factors. Notable among them are aggregative adherence fimbriae (AAF/II) and a secreted antiaggregation protein (Aap). Deletion of aap is known to increase adherence, autoaggregation, and biofilm formation, so it was proposed that Aap counteracts AAF/II-mediated interactions. We hypothesized that Aap sterically masks heat-resistant agglutinin 1 (Hra1), an integral outer membrane protein recently identified as an accessory colonization factor. We propose that this masking accounts for reduced in vivo colonization upon hra1 deletion and yet no colonization-associated phenotypes when hra1 is deleted in vitro. Using single and double mutants of hra1, aap, and the AAF/II structural protein gene aafA, we demonstrated that increased adherence in aap mutants occurs even when AAF/II proteins are genetically or chemically removed. Deletion of hra1 together with aap abolishes the hyperadherence phenotype, demonstrating that Aap indeed masks Hra1. The presence of all three colonization factors, however, is necessary for optimal colonization and for rapidly building stacked-brick patterns on slides and cultured monolayers, the signature EAEC phenotype. Altogether, our data demonstrate that Aap serves to mask nonstructural adhesins such as Hra1 and that optimal colonization by EAEC is mediated through interactions among multiple surface factors. IMPORTANCE Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal E. coli. EAEC bacteria attach via multiple proteins and structures, including long appendages produced by assembling molecules of AafA and a short surface protein called Hra1. EAEC also secretes an antiadherence protein (Aap; also known as dispersin) which remains loosely attached to the cell surface. This report shows that dispersin covers Hra1 such that the adhesive properties of EAEC seen in the laboratory are largely produced by AafA structures. When the bacteria colonize worms, dispersin is sloughed off, or otherwise removed, such that Hra1-mediated adherence occurs. All three factors are required for optimal colonization, as well as to produce the signature EAEC stacked-brick adherence pattern. Interplay among multiple colonization factors may be an essential feature of exceptional colonizers.
Collapse
|
22
|
Abstract
Many bacteria, both environmental and pathogenic, exhibit the property of autoaggregation. In autoaggregation (sometimes also called autoagglutination or flocculation), bacteria of the same type form multicellular clumps that eventually settle at the bottom of culture tubes. Autoaggregation is generally mediated by self-recognising surface structures, such as proteins and exopolysaccharides, which we term collectively as autoagglutinins. Although a widespread phenomenon, in most cases the function of autoaggregation is poorly understood, though there is evidence to show that aggregating bacteria are protected from environmental stresses or host responses. Autoaggregation is also often among the first steps in forming biofilms. Here, we review the current knowledge on autoaggregation, the role of autoaggregation in biofilm formation and pathogenesis, and molecular mechanisms leading to aggregation using specific examples.
Collapse
Affiliation(s)
- Thomas Trunk
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hawzeen S Khalil
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Osman KL, Jefferies JM, Woelk CH, Cleary DW, Clarke SC. The adhesins of non-typeable Haemophilus influenzae. Expert Rev Anti Infect Ther 2018; 16:187-196. [PMID: 29415569 DOI: 10.1080/14787210.2018.1438263] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen of the respiratory tract and the greatest contributor to invasive Haemophilus disease. Additionally, in children, NTHi is responsible for the majority of otitis media (OM) which can lead to chronic infection and hearing loss. In adults, NTHi infection in the lungs is responsible for the onset of acute exacerbations in chronic obstructive pulmonary disease (COPD). Unfortunately, there is currently no vaccine available to protect against NTHi infections. Areas covered: NTHi uses an arsenal of adhesins to colonise the respiratory epithelium. The adhesins also have secondary roles that aid in the virulence of NTHi, including mechanisms that avoid immune clearance, adjust pore size to avoid antimicrobial destruction, form micro-colonies and invoke phase variation for protein mediation. Bacterial adhesins can also be ideal antigens for subunit vaccine design due to surface exposure and immunogenic capabilities. Expert commentary: The host-pathogen interactions of the NTHi adhesins are not fully investigated. The relationship between adhesins and the extracellular matrix (ECM) play a part in the success of NTHi colonisation and virulence by immune evasion, migration and biofilm development. Further research into these immunogenic proteins would further our understanding and enable a basis for better combatting NTHi disease.
Collapse
Affiliation(s)
- Karen L Osman
- a Faulty of Medicine , University of Southampton , Southampton , UK
| | | | - Christopher H Woelk
- a Faulty of Medicine , University of Southampton , Southampton , UK.,b Merck Exploratory Science Center , Merck Research Laboratories , Cambridge , MA , USA
| | - David W Cleary
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK
| | - Stuart C Clarke
- a Faulty of Medicine , University of Southampton , Southampton , UK.,c Faculty of Medicine and Institute for Life Sciences , University of Southampton , Southampton SO17 1BJ , UK.,d NIHR Southampton Biomedical Research Centre , University Hospital Southampton Foundation NHS Trust , Southampton SO16 6YD , UK.,e Global Health Research Institute , University of Southampton , Southampton SO17 1BJ , UK
| |
Collapse
|
24
|
Abstract
Pasteurella multocida is an important multihost animal and zoonotic pathogen that is capable of causing respiratory and multisystemic diseases, bacteremia, and bite wound infections. The glycosaminoglycan capsule of P. multocida is an essential virulence factor that protects the bacterium from host defenses. However, chronic infections (such as swine atrophic rhinitis and the carrier state in birds and other animals) may be associated with biofilm formation, which has not been characterized in P. multocida. Biofilm formation by clinical isolates was inversely related to capsule production and was confirmed with capsule-deficient mutants of highly encapsulated strains. Capsule-deficient mutants formed biofilms with a larger biomass that was thicker and smoother than the biofilm of encapsulated strains. Passage of a highly encapsulated, poor-biofilm-forming strain under conditions that favored biofilm formation resulted in the production of less capsular polysaccharide and a more robust biofilm, as did addition of hyaluronidase to the growth medium of all of the strains tested. The matrix material of the biofilm was composed predominately of a glycogen exopolysaccharide (EPS), as determined by gas chromatography-mass spectrometry, nuclear magnetic resonance, and enzymatic digestion. However, a putative glycogen synthesis locus was not differentially regulated when the bacteria were grown as a biofilm or planktonically, as determined by quantitative reverse transcriptase PCR. Therefore, the negatively charged capsule may interfere with biofilm formation by blocking adherence to a surface or by preventing the EPS matrix from encasing large numbers of bacterial cells. This is the first detailed description of biofilm formation and a glycogen EPS by P. multocida. Pasteurella multocida is an important pathogen responsible for severe infections in food animals, domestic and wild birds, pet animals, and humans. P. multocida was first isolated by Louis Pasteur in 1880 and has been studied for over 130 years. However, aspects of its lifecycle have remained unknown. Although formation of a biofilm by P. multocida has been proposed, this report is the first to characterize biofilm formation by P. multocida. Of particular interest is that the biofilm matrix material contained a newly reported amylose-like glycogen as the exopolysaccharide component and that production of capsular polysaccharide (CPS) was inversely related to biofilm formation. However, even highly mucoid, poor-biofilm-forming strains could form abundant biofilms by loss of CPS or following in vitro passage under biofilm growth conditions. Therefore, the carrier state or subclinical chronic infections with P. multocida may result from CPS downregulation with concomitant enhanced biofilm formation.
Collapse
|
25
|
Zeng L, Zhang L, Wang P, Meng G. Structural basis of host recognition and biofilm formation by Salmonella Saf pili. eLife 2017; 6:28619. [PMID: 29125121 PMCID: PMC5700814 DOI: 10.7554/elife.28619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Pili are critical in host recognition, colonization and biofilm formation during bacterial infection. Here, we report the crystal structures of SafD-dsc and SafD-SafA-SafA (SafDAA-dsc) in Saf pili. Cell adherence assays show that SafD and SafA are both required for host recognition, suggesting a poly-adhesive mechanism for Saf pili. Moreover, the SafDAA-dsc structure, as well as SAXS characterization, reveals an unexpected inter-molecular oligomerization, prompting the investigation of Saf-driven self-association in biofilm formation. The bead/cell aggregation and biofilm formation assays are used to demonstrate the novel function of Saf pili. Structure-based mutants targeting the inter-molecular hydrogen bonds and complementary architecture/surfaces in SafDAA-dsc dimers significantly impaired the Saf self-association activity and biofilm formation. In summary, our results identify two novel functions of Saf pili: the poly-adhesive and self-associating activities. More importantly, Saf-Saf structures and functional characterizations help to define a pili-mediated inter-cellular oligomerizaiton mechanism for bacterial aggregation, colonization and ultimate biofilm formation.
Collapse
Affiliation(s)
- Longhui Zeng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Pengran Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai JiaoTong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
26
|
Vo JL, Martínez Ortiz GC, Subedi P, Keerthikumar S, Mathivanan S, Paxman JJ, Heras B. Autotransporter Adhesins in Escherichia coli Pathogenesis. Proteomics 2017; 17. [PMID: 28665015 DOI: 10.1002/pmic.201600431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/21/2017] [Indexed: 12/14/2022]
Abstract
Most bacteria produce adhesion molecules to facilitate the interaction with host cells and establish successful infections. An important group of bacterial adhesins belong to the autotransporter (AT) superfamily, the largest group of secreted and outer membrane proteins in Gram-negative bacteria. AT adhesins possess diverse functions that facilitate bacterial colonisation, survival and persistence, and as such are often associated with increased bacterial fitness and pathogenic potential. In this review, we will describe AIDA-I type AT adhesins, which comprise the biggest and most diverse group in the AT family. We will focus on Escherichia coli proteins and define general aspects of their biogenesis, distribution, structural properties and key roles in infection.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Gabriela Constanza Martínez Ortiz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Martinez-Gil M, Goh KGK, Rackaityte E, Sakamoto C, Audrain B, Moriel DG, Totsika M, Ghigo JM, Schembri MA, Beloin C. YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation. Sci Rep 2017; 7:11326. [PMID: 28900103 PMCID: PMC5595812 DOI: 10.1038/s41598-017-10902-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli is a commensal or pathogenic bacterium that can survive in diverse environments. Adhesion to surfaces is essential for E. coli colonization, and thus it is important to understand the molecular mechanisms that promote this process in different niches. Autotransporter proteins are a class of cell-surface factor used by E. coli for adherence. Here we characterized the regulation and function of YeeJ, a poorly studied but widespread representative from an emerging class of autotransporter proteins, the inverse autotransporters (IAT). We showed that the yeeJ gene is present in ~40% of 96 completely sequenced E. coli genomes and that YeeJ exists as two length variants, albeit with no detectable functional differences. We demonstrated that YeeJ promotes biofilm formation in different settings through exposition at the cell-surface. We also showed that YeeJ contains a LysM domain that interacts with peptidoglycan and thus assists its localization into the outer membrane. Additionally, we identified the Polynucleotide Phosphorylase PNPase as a repressor of yeeJ transcription. Overall, our work provides new insight into YeeJ as a member of the recently defined IAT class, and contributes to our understanding of how commensal and pathogenic E. coli colonise their environments.
Collapse
Affiliation(s)
- Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias. Universidad de Málaga, Málaga, Spain
| | - Kelvin G K Goh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elze Rackaityte
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- University of California San Francisco, Department of Medicine, San Francisco, CA, USA
| | - Chizuko Sakamoto
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Bianca Audrain
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- GSK Vaccines Institute for Global Health S.r.l., 53100, Siena, Italy
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France.
| |
Collapse
|
28
|
Monteiro R, Ageorges V, Rojas-Lopez M, Schmidt H, Weiss A, Bertin Y, Forano E, Jubelin G, Henderson IR, Livrelli V, Gobert AP, Rosini R, Soriani M, Desvaux M. A secretome view of colonisation factors in Shiga toxin-encodingEscherichia coli(STEC): from enterohaemorrhagicE. coli(EHEC) to related enteropathotypes. FEMS Microbiol Lett 2016; 363:fnw179. [DOI: 10.1093/femsle/fnw179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
|
29
|
Glaubman J, Hofmann J, Bonney ME, Park S, Thomas JM, Kokona B, Ramos Falcón LI, Chung YK, Fairman R, Okeke IN. Self-association motifs in the enteroaggregative Escherichia coli heat-resistant agglutinin 1. MICROBIOLOGY-SGM 2016; 162:1091-1102. [PMID: 27166217 DOI: 10.1099/mic.0.000303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The heat-resistant agglutinin 1 (Hra1) is an integral outer membrane protein found in strains of Escherichia coli that are exceptional colonizers. Hra1 from enteroaggregative E. coli strain 042 is sufficient to confer adherence to human epithelial cells and to cause bacterial autoaggregation. Hra1 is closely related to the Tia invasin, which also confers adherence, but not autoaggregation. Here, we have demonstrated that Hra1 mediates autoaggregation by self-association and we hypothesize that at least some surface-exposed amino acid sequences that are present in Hra1, but absent in Tia, represent autoaggregation motifs. We inserted FLAG tags along the length of Hra1 and used immune-dot blots to verify that four in silico-predicted outer loops were indeed surface exposed. In Hra1 we swapped nine candidate motifs in three of these loops, ranging from one to ten amino acids in length, to the corresponding sequences in Tia. Three of the motifs were required for Hra1-mediated autoaggregation. The database was searched for other surface proteins containing these motifs; the GGXWRDDXK motif was also present in a surface-exposed region of Rck, a Salmonella enterica serotype Typhimurium complement resistance protein. Cloning and site-specific mutagenesis demonstrated that Rck can confer weak, GGXWRDDXK-dependent autoaggregation by self-association. Hra1 and Rck appear to form heterologous associations and GGXWRDDXK is required on both molecules for Hra1-Rck association. However, a GGYWRDDLKE peptide was not sufficient to interfere with Hra1-mediated autoaggregation. In the present study, three autoaggregation motifs in an integral outer membrane protein have been identified and it was demonstrated that at least one of them works in the context of a different cell surface.
Collapse
Affiliation(s)
| | | | - Megan E Bonney
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Sumin Park
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Bashkim Kokona
- Department of Biology, Haverford College, Haverford, PA, USA
| | | | - Yoonjie K Chung
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, PA, USA
| | - Iruka N Okeke
- Department of Biology, Haverford College, Haverford, PA, USA
| |
Collapse
|
30
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
31
|
Abstract
The autotransporter and two-partner secretion (TPS) pathways are used by E. coli and many other Gram-negative bacteria to delivervirulence factors into the extracellular milieu.Autotransporters arecomprised of an N-terminal extracellular ("passenger") domain and a C-terminal β barrel domain ("β domain") that anchors the protein to the outer membrane and facilitates passenger domain secretion. In the TPS pathway, a secreted polypeptide ("exoprotein") is coordinately expressed with an outer membrane protein that serves as a dedicated transporter. Bothpathways are often grouped together under the heading "type V secretion" because they have many features in common and are used for the secretion of structurally related polypeptides, but it is likely that theyhave distinct evolutionary origins. Although it was proposed many years ago that autotransporterpassenger domains are transported across the outer membrane through a channel formed by the covalently linked β domain, there is increasing evidence that additional factors are involved in the translocation reaction. Furthermore, details of the mechanism of protein secretion through the TPS pathway are only beginning to emerge. In this chapter I discussour current understanding ofboth early and late steps in the biogenesis of polypeptides secreted through type V pathways and current modelsofthe mechanism of secretion.
Collapse
|
32
|
Boysen A, Borch J, Krogh TJ, Hjernø K, Møller-Jensen J. SILAC-based comparative analysis of pathogenic Escherichia coli secretomes. J Microbiol Methods 2015; 116:66-79. [DOI: 10.1016/j.mimet.2015.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/26/2015] [Accepted: 06/26/2015] [Indexed: 01/08/2023]
|
33
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions.
Collapse
|
35
|
Jacquot A, Sakamoto C, Razafitianamarahavo A, Caillet C, Merlin J, Fahs A, Ghigo JM, Duval JFL, Beloin C, Francius G. The dynamics and pH-dependence of Ag43 adhesins' self-association probed by atomic force spectroscopy. NANOSCALE 2014; 6:12665-12681. [PMID: 25208582 DOI: 10.1039/c4nr03312d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-associating auto-transporter (SAAT) adhesins are two-domain cell surface proteins involved in bacteria auto-aggregation and biofilm formation. Antigen 43 (Ag43) is a SAAT adhesin commonly found in Escherichia coli whose variant Ag43a has been shown to promote persistence of uropathogenic E. coli within the bladder. The recent resolution of the tri-dimensional structure of the 499 amino-acids' β-domain in Ag43a has shed light on the possible mechanism governing the self-recognition of SAAT adhesins, in particular the importance of trans-interactions between the L shaped β-helical scaffold of two α-domains of neighboring adhesins. In this study, we use single-molecule force spectroscopy (SMFS) and dynamic force spectroscopy (DFS) to unravel the dynamics of Ag43-self association under various pH and molecular elongation rate conditions that mimic the situations encountered by E. coli in its natural environment. Results evidenced an important stretchability of Ag43α with unfolding of sub-domains leading to molecular extension as long as 150 nm. Nanomechanical analysis of molecular stretching data suggested that self-association of Ag43 can lead to the formation of dimers and tetramers driven by rapid and weak cis- as well as slow but strong trans-interaction forces with a magnitude as large as 100-250 pN. The dynamics of cis- and trans-interactions were demonstrated to be strongly influenced by pH and applied shear force, thus suggesting that environmental conditions can modulate Ag43-mediated aggregation of bacteria at the molecular level.
Collapse
Affiliation(s)
- Adrien Jacquot
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, Villers-lès-Nancy, F-54601, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Arenas J, Cano S, Nijland R, van Dongen V, Rutten L, van der Ende A, Tommassen J. The meningococcal autotransporter AutA is implicated in autoaggregation and biofilm formation. Environ Microbiol 2014; 17:1321-37. [PMID: 25059714 DOI: 10.1111/1462-2920.12581] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/22/2014] [Indexed: 11/29/2022]
Abstract
Autotransporters (ATs) are proteins secreted by Gram-negative bacteria that often play a role in virulence. Eight different ATs have been identified in Neisseria meningitidis, but only six of them have been characterized. AutA is one of the remaining ATs. Its expression remains controversial. Here, we show that the autA gene is present in many neisserial species, but its expression is often disrupted by various genetic features; however, it is expressed in certain strains of N. meningitidis. By sequencing the autA gene in large panels of disease isolates and Western blot analysis, we demonstrated that AutA expression is prone to phase variation at AAGC nucleotide repeats located within the DNA encoding the signal sequence. AutA is not secreted into the extracellular medium, but remains associated with the bacterial cell surface. We further demonstrate that AutA expression induces autoaggregation in a process that, dependent on the particular strain, may require extracellular DNA (eDNA). This property influences the organization of bacterial communities like lattices and biofilms. In vitro assays evidenced that AutA is a self-associating AT that binds DNA. We suggest that AutA-mediated autoaggregation might be particularly important for colonization and persistence of the pathogen in the nasopharynx of the host.
Collapse
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Paudalaan 8, Utrecht, 3584 CH, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
37
|
van Ulsen P, Rahman SU, Jong WS, Daleke-Schermerhorn MH, Luirink J. Type V secretion: From biogenesis to biotechnology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1592-611. [DOI: 10.1016/j.bbamcr.2013.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/01/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
|
38
|
Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 2014; 77:380-439. [PMID: 24006470 DOI: 10.1128/mmbr.00064-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses.
Collapse
|
39
|
The Haemophilus cryptic genospecies Cha adhesin has at least two variants that differ in host cell binding, bacterial aggregation, and biofilm formation properties. J Bacteriol 2014; 196:1780-8. [PMID: 24584499 DOI: 10.1128/jb.01409-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Haemophilus cryptic genospecies (HCG) causes genital tract infections in pregnant and postpartum women and respiratory infections in neonates. The major surface adhesin in HCG is called Cha, which mediates bacterial adherence to cultured human epithelial cells. In this study, we report that there are two antigenically distinct variants of Cha, dubbed Cha1 and Cha2. These variants are encoded by the same genetic locus in diverse strains and have nearly identical N-terminal export and C-terminal surface anchoring domains but significantly different internal adhesive domains. Based on the comparison of derivatives of a laboratory strain of Haemophilus influenzae expressing either surface-associated Cha1 or surface-associated Cha2, Cha1 mediates a higher level of adherence to cultured human epithelial cells and Cha2 mediates a higher level of adherence to abiotic surfaces. We hypothesize that variation in the Cha1 and Cha2 internal region results in changes in binding specificity or binding affinity and may be associated with adaptation to different host environments during colonization and disease.
Collapse
|
40
|
The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl Environ Microbiol 2013; 80:1441-54. [PMID: 24334670 DOI: 10.1128/aem.03254-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although only partially understood, multicellular behavior is relatively common in bacterial pathogens. Bacterial aggregates can resist various host defenses and colonize their environment more efficiently than planktonic cells. For the waterborne pathogen Legionella pneumophila, little is known about the roles of autoaggregation or the parameters which allow cell-cell interactions to occur. Here, we determined the endogenous and exogenous factors sufficient to allow autoaggregation to take place in L. pneumophila. We show that isolates from Legionella species which do not produce the Legionella collagen-like protein (Lcl) are deficient in autoaggregation. Targeted deletion of the Lcl-encoding gene (lpg2644) and the addition of Lcl ligands impair the autoaggregation of L. pneumophila. In addition, Lcl-induced autoaggregation requires divalent cations. Escherichia coli producing surface-exposed Lcl is able to autoaggregate and shows increased biofilm production. We also demonstrate that L. pneumophila infection of Acanthamoeba castellanii and Hartmanella vermiformis is potentiated under conditions which promote Lcl dependent autoaggregation. Overall, this study shows that L. pneumophila is capable of autoaggregating in a process that is mediated by Lcl in a divalent-cation-dependent manner. It also reveals that Lcl potentiates the ability of L. pneumophila to come in contact, attach, and infect amoebae.
Collapse
|
41
|
Côté JP, Charbonneau MÈ, Mourez M. Glycosylation of the Escherichia coli TibA self-associating autotransporter influences the conformation and the functionality of the protein. PLoS One 2013; 8:e80739. [PMID: 24278316 PMCID: PMC3835316 DOI: 10.1371/journal.pone.0080739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022] Open
Abstract
The self-associating autotransporters (SAATs) are multifunctional secreted proteins of Escherichia coli, comprising the AIDA-I, TibA and Ag43 proteins. One of their characteristics is that they can be glycosylated. Glycosylation of AIDA-I and Ag43 have been investigated, but not that of TibA. It is still not clear whether glycosylation of the SAATs affect their structure or their functionality. Therefore, we have looked at the effects of glycosylation on the TibA adhesin/invasin. TibA is glycosylated by TibC, a specific glycosyltransferase, and the two genes are encoded in an operon. In this study, we have found that the glycosylation of TibA is not limited to the extracellular functional domain, as previously observed with AIDA-I and Ag43. We have determined that unglycosylated TibA is not able to promote the adhesion of bacteria on cultured epithelial cell, even though it is still able to promote invasion, biofilm formation and autoaggregation of bacteria. We have purified the glycosylated and unglycosylated forms of TibA, and determined that TibA is less stable when not glycosylated. We finally observed that glycosylation affects the oligomerisation of TibA and that unglycosylated TibA is locked in a conformation that is not suited for adhesion. Our results suggest that the effect of glycosylation on the functionality of TibA is indirect.
Collapse
Affiliation(s)
- Jean-Philippe Côté
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
- * E-mail:
| | - Marie-Ève Charbonneau
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Michael Mourez
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
42
|
Chagnot C, Zorgani MA, Astruc T, Desvaux M. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 2013; 4:303. [PMID: 24133488 PMCID: PMC3796261 DOI: 10.3389/fmicb.2013.00303] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/22/2013] [Indexed: 01/30/2023] Open
Abstract
Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field.
Collapse
Affiliation(s)
- Caroline Chagnot
- UR454 Microbiologie, INRA Saint-Genès Champanelle, France ; UR370 Qualité des Produits Animaux, INRA Saint-Genès Champanelle, France
| | | | | | | |
Collapse
|
43
|
Chauhan A, Sakamoto C, Ghigo JM, Beloin C. Did I pick the right colony? Pitfalls in the study of regulation of the phase variable antigen 43 adhesin. PLoS One 2013; 8:e73568. [PMID: 24039985 PMCID: PMC3764049 DOI: 10.1371/journal.pone.0073568] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/21/2013] [Indexed: 11/27/2022] Open
Abstract
Ag43 is an abundant outer membrane autotransporter adhesin present in most commensal and pathogenic Escherichia coli. Expression of the agn43 gene is characterized by a regulated reversible switch or phase variation between the agn43 ON and agn43 OFF states. Although the agn43 regulatory switch leads to a heterogeneous population of ON and OFF bacteria, studies of Ag43 seldom consider potential biases associated with phase variation. We monitored agn43 ON/OFF phase-variation status genetically and phenotypically and we show that the use of populations with random agn43 ON or OFF status could result in misleading conclusions about Ag43 function or regulation. In particular, we demonstrate that Lrp and MqsR, previously identified as agn43 regulators, do not regulate agn43 expression or ON/OFF switch frequency. We also show that biofilm formation in dynamic flow conditions does not influence agn43 ON/OFF switching but physically selects aggregating agn43 ON cells. This indicates that misinterpretation is possible when studying gene expression within biofilms. Finally, we provide evidence that ignoring the initial agn43 ON/OFF status of the E. coli populations studied is likely to bias analyses of phenotypes associated with other E. coli adhesins. This study therefore emphasizes the importance of monitoring Ag43 phase variation and indicates that caution is required when interpreting experiments using strains that are neither deleted for agn43 nor carefully assessed for agn43 ON/OFF status.
Collapse
Affiliation(s)
- Ashwini Chauhan
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Chizuko Sakamoto
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, cellule Pasteur, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, Département de Microbiologie, Paris, France
| |
Collapse
|
44
|
Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis. J Bacteriol 2013; 195:4425-35. [PMID: 23893116 DOI: 10.1128/jb.00625-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) of Gram-negative bacteria receive increasing attention because of various biological functions and their use as vaccines. However, the mechanisms of OMV release and selective sorting of proteins into OMVs remain unclear. Comprehensive quantitative proteome comparisons between spontaneous OMVs (SOMVs) and the outer membrane (OM) have not been conducted so far. Here, we established a protocol for metabolic labeling of neisserial proteins with (15)N. SOMV and OM proteins labeled with (15)N were used as an internal standard for proteomic comparison of the SOMVs and OMs of two different strains. This labeling approach, coupled with high-sensitivity mass spectrometry, allowed us to comprehensively unravel the proteome of the SOMVs and OMs. We quantified the relative distribution of 155 proteins between SOMVs and the OM. Complement regulatory proteins, autotransporters, proteins involved in iron and zinc acquisition, and a two-partner secretion system were enriched in SOMVs. The highly abundant porins PorA and PorB and proteins connecting the OM with peptidoglycan or the inner membrane, such as RmpM, MtrE, and PilQ, were depleted in SOMVs. Furthermore, the three lytic transglycosylases MltA, MltB, and Slt were less abundant in SOMVs. In conclusion, SOMVs are likely to be released from surface areas with a low local abundance of membrane-anchoring proteins and lytic transglycosylases. The enrichment of complement regulatory proteins, autotransporters, and trace metal binding and transport proteins needs to be explored in the context of the pathogenesis of meningococcal disease.
Collapse
|
45
|
Ruiz-Perez F, Nataro JP. Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol Life Sci 2013; 71:745-70. [PMID: 23689588 DOI: 10.1007/s00018-013-1355-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 01/07/2023]
Abstract
Serine proteases exist in eukaryotic and prokaryotic organisms and have emerged during evolution as the most abundant and functionally diverse group. In Gram-negative bacteria, there is a growing family of high molecular weight serine proteases secreted to the external milieu by a fascinating and widely employed bacterial secretion mechanism, known as the autotransporter pathway. They were initially found in Neisseria, Shigella, and pathogenic Escherichia coli, but have now also been identified in Citrobacter rodentium, Salmonella, and Edwardsiella species. Here, we focus on proteins belonging to the serine protease autotransporter of Enterobacteriaceae (SPATEs) family. Recent findings regarding the predilection of serine proteases to host intracellular or extracellular protein-substrates involved in numerous biological functions, such as those implicated in cytoskeleton stability, autophagy or innate and adaptive immunity, have helped provide a better understanding of SPATEs' contributions in pathogenesis. Here, we discuss their classification, substrate specificity, and potential roles in pathogenesis.
Collapse
Affiliation(s)
- Fernando Ruiz-Perez
- Department of Pediatrics, School of Medicine, University of Virginia, P.O.Box 800326, MR4 Room 4012C, 409 Lane Road, Charlottesville, VA, 22908, USA,
| | | |
Collapse
|
46
|
Grijpstra J, Arenas J, Rutten L, Tommassen J. Autotransporter secretion: varying on a theme. Res Microbiol 2013; 164:562-82. [PMID: 23567321 DOI: 10.1016/j.resmic.2013.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Autotransporters are widely distributed among Gram-negative bacteria. They can have a large variety of functions and many of them have a role in virulence. They are synthesized as large precursors with an N-terminal signal sequence that mediates transport across the inner membrane via the Sec machinery and a translocator domain that mediates the transport of the connected passenger domain across the outer membrane to the bacterial cell surface. Like integral outer membrane proteins, the translocator domain folds in a β-barrel structure and requires the Bam machinery for its insertion into the outer membrane. After transport across the outer membrane, the passenger may stay connected via the translocator domain to the bacterial cell surface or it is proteolytically released into the extracellular milieu. Based on the size of the translocator domain and its position relative to the passenger in the precursor, autotransporters are divided into four sub-categories. We review here the current knowledge of the biogenesis, structure and function of various autotransporters.
Collapse
Affiliation(s)
- Jan Grijpstra
- Section Molecular Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Teh MY, Morona R. Identification of Shigella flexneri IcsA residues affecting interaction with N-WASP, and evidence for IcsA-IcsA co-operative interaction. PLoS One 2013; 8:e55152. [PMID: 23405119 PMCID: PMC3566212 DOI: 10.1371/journal.pone.0055152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/21/2012] [Indexed: 12/17/2022] Open
Abstract
The Shigella flexneri IcsA (VirG) protein is a polarly distributed outer membrane protein that is a fundamental virulence factor which interacts with neural Wiskott-Aldrich syndrome protein (N-WASP). The activated N-WASP then activates the Arp2/3 complex which initiates de novo actin nucleation and polymerisation to form F-actin comet tails and allows bacterial cell-to-cell spreading. In a previous study, IcsA was found to have three N-WASP interacting regions (IRs): IR I (aa 185-312), IR II (aa 330-382) and IR III (aa 508-730). The aim of this study was to more clearly define N-WASP interacting regions II and III by site-directed mutagenesis of specific amino acids. Mutant IcsA proteins were expressed in both smooth lipopolysaccharide (S-LPS) and rough LPS (R-LPS) S. flexneri strains and characterised for IcsA production level, N-WASP recruitment and F-actin comet tail formation. We have successfully identified new amino acids involved in N-WASP recruitment within different N-WASP interacting regions, and report for the first time using co-expression of mutant IcsA proteins, that N-WASP activation involves interactions with different regions on different IcsA molecules as shown by Arp3 recruitment. In addition, our findings suggest that autochaperone (AC) mutant protein production was not rescued by another AC region provided in trans, differing to that reported for two other autotransporters, PrtS and BrkA autotransporters.
Collapse
Affiliation(s)
- Min Yan Teh
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Renato Morona
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
48
|
Arenas J, Nijland R, Rodriguez FJ, Bosma TNP, Tommassen J. Involvement of three meningococcal surface-exposed proteins, the heparin-binding protein NhbA, the α-peptide of IgA protease and the autotransporter protease NalP, in initiation of biofilm formation. Mol Microbiol 2012; 87:254-68. [DOI: 10.1111/mmi.12097] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; Padualaan 8; 3584 CH; Utrecht; the Netherlands
| | - Reindert Nijland
- Department of Medical Microbiology,; University Medical Center Utrecht; Heidelberglaan 100, G04.614; 3584 CX; Utrecht; the Netherlands
| | - Francisco J. Rodriguez
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; Padualaan 8; 3584 CH; Utrecht; the Netherlands
| | - Tom N. P. Bosma
- Department of Earth Sciences; Utrecht University; 3584 CD; Utrecht; the Netherlands
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes; Utrecht University; Padualaan 8; 3584 CH; Utrecht; the Netherlands
| |
Collapse
|
49
|
Garnett JA, Matthews S. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci 2012; 13:739-55. [PMID: 23305361 PMCID: PMC3601411 DOI: 10.2174/138920312804871166] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 11/24/2022]
Abstract
A community-based life style is the normal mode of growth and survival for many bacterial species. These cellular accretions or biofilms are initiated upon recognition of solid phases by cell surface exposed adhesive moieties. Further cell-cell interactions, cell signalling and bacterial replication leads to the establishment of dense populations encapsulated in a mainly self-produced extracellular matrix; this comprises a complex mixture of macromolecules. These fascinating architectures protect the inhabitants from radiation damage, dehydration, pH fluctuations and antimicrobial compounds. As such they can cause bacterial persistence in disease and problems in industrial applications. In this review we discuss the current understandings of these initial biofilm-forming processes based on structural data. We also briefly describe latter biofilm maturation and dispersal events, which although lack high-resolution insights, are the present focus for many structural biologists working in this field. Finally we give an overview of modern techniques aimed at preventing and disrupting problem biofilms.
Collapse
Affiliation(s)
| | - Steve Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
50
|
Niu C, Robbins CM, Pittman KJ, Osborn JL, Stubblefield BA, Simmons RB, Gilbert ES. LuxS influences Escherichia coli biofilm formation through autoinducer-2-dependent and autoinducer-2-independent modalities. FEMS Microbiol Ecol 2012; 83:778-91. [PMID: 23078586 DOI: 10.1111/1574-6941.12034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 12/17/2022] Open
Abstract
Escherichia coli produces biofilms in response to the small molecule autoinducer-2 (AI-2), a product of the LuxS enzyme. LuxS is part of the activated methyl cycle and could also affect biofilm development by AI-2-independent effects on metabolism. A luxS deletion mutant of E. coli W3110 and an inducible plasmid-luxS-complemented strain were used to identify AI-2-independent phenotypes. Differential interference contrast microscopy revealed distinct surface colonization patterns. Confocal microscopy followed by quantitative image analysis determined differences in biofilm topography correlating with luxS expression; deletion mutant biofilms had a 'spreading' phenotype, whereas the complement had a 'climbing' phenotype. Addition of exogenous 4,5-dihydroxy-2,3-pentanedione (DPD), an AI-2 precursor, to the deletion mutant increased biofilm height and biomass, whereas addition of the methyl donor S-adenosyl methionine or aspartate prevented the luxS-complemented strain from producing a thick biofilm. The luxS-complemented strain autoaggregated, indicating that fimbriae production was inhibited, which was confirmed by transmission electron microscopy. DPD could not induce autoaggregation in the deletion mutant, demonstrating that fimbriation was an AI-2-independent phenotype. Carbon utilization was affected by LuxS, potentially contributing to the observed phenotypic differences. Overall, the work demonstrated that LuxS affected E. coli biofilm formation independently of AI-2 and could assist in adapting to diverse conditions.
Collapse
Affiliation(s)
- Chen Niu
- Key Laboratory of Medical Molecular Virology, Institute of Medical Microbiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|