1
|
Almeida-Santos AC, Novais C, Peixe L, Freitas AR. Vancomycin-resistant Enterococcus faecium: A current perspective on resilience, adaptation, and the urgent need for novel strategies. J Glob Antimicrob Resist 2025; 41:233-252. [PMID: 39880121 DOI: 10.1016/j.jgar.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Vancomycin-resistant Enterococcus faecium (VREfm) has become a critical opportunistic pathogen, urgently requiring new antimicrobial strategies due to its rising prevalence and significant impact on patient safety and healthcare costs. VREfm continues to evolve through mutations and the acquisition of new genes via horizontal gene transfer, contributing to resistance against several last-resort antibiotics. Although primarily hospital-associated, VREfm are also detected in the community, food chain, livestock, and environmental sources like wastewater, indicating diverse transmission pathways and the need for a One Health approach. Advances in genomics have shed light on VREfm's persistence in hospital settings, particularly its adaptation to the gastrointestinal tract of hospitalized patients, recent clonal shifts, and the dominance of specific clonal lineages. Despite extensive research, significant gaps remain in understanding the molecular mechanisms behind VREfm's unique adaptation to clinical environments. In this review, we aim to present an overview of VREfm current prevalence, mechanisms of resistance, and unveil the adaptive traits that have facilitated VREfm's rise and global success. A particular focus is given to key plasmids, namely linear plasmids, virulence factors, and bacteriocins as potential drivers in the global emergence of the ST78 clonal lineage. We also address diagnostic challenges and the limited treatment options available for VREfm, as well as emerging antibiotic alternatives aimed at restoring gut microbiota balance and curbing VREfm proliferation. A multifaceted approach combining research, clinical practices, and public health policies is crucial to mitigate the impact of this superbug and preserve antimicrobial effectiveness for future generations.
Collapse
Affiliation(s)
- Ana C Almeida-Santos
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Laboratório Associado i4HB, Instituto para a Saúde e a Bioeconomia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; UCIBIO, Unidade de Ciências Biomoleculares Aplicadas, Instituto Universitário de Ciências da Saúde (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal.
| |
Collapse
|
2
|
Dang X, Jiang J, Chen S, Huang W, Jiao Y, Wang S, Zou Z, An Q, Song Y, Wang L, Fan R, Liu D, Schwarz S, Shen J, Xia Z, Wang Y, Lyu Y, Ma S. Prevalence and Risk Factors of Multidrug-Resistant Enterococcal Infection in Clinical Dogs and Cats - China, 2018-2021. China CDC Wkly 2025; 7:77-83. [PMID: 39867817 PMCID: PMC11757906 DOI: 10.46234/ccdcw2025.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025] Open
Abstract
What is already known about this topic? Enterococcus spp., while naturally occurring as commensal bacteria in the gastrointestinal tract of animals and humans, have emerged as significant opportunistic pathogens in healthcare settings. What is added by this report? A comprehensive surveillance study revealed enterococci in 14.39% of clinical samples from dogs and cats across China during 2018-2021. Multidrug-resistant enterococcal infections showed significant correlation with urinary tract catheterization and extended hospitalization periods. Notably, pet-derived Enterococcus faecalis isolates demonstrated high genetic similarity with strains isolated from humans, farm animals, and environmental sources. What are the implications for public health practice? These findings underscore the critical need for enhanced surveillance of enterococcal infections and implementation of stringent aseptic protocols in veterinary clinical settings. Particular attention should be directed toward linezolid-resistant Enterococcus faecalis infections due to their demonstrated potential for transmission between pets and humans.
Collapse
Affiliation(s)
- Xukun Dang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junyao Jiang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya City, Hainan Province, China
| | - Siyu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing, China
| | - Wei Huang
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing, China
| | - Ying Jiao
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing, China
| | - Siying Wang
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing, China
| | - Zhiyu Zou
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qi An
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Run Fan
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dejun Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Stefan Schwarz
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jianzhong Shen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaofei Xia
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing, China
| | - Yang Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanli Lyu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Beijing Zhongnongda Veterinary Hospital Co., Ltd., Beijing, China
| | - Shizhen Ma
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Wei Y, Palacios Araya D, Palmer KL. Enterococcus faecium: evolution, adaptation, pathogenesis and emerging therapeutics. Nat Rev Microbiol 2024; 22:705-721. [PMID: 38890478 DOI: 10.1038/s41579-024-01058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/20/2024]
Abstract
The opportunistic pathogen Enterococcus faecium colonizes humans and a wide range of animals, endures numerous stresses, resists antibiotic treatment and stubbornly persists in clinical environments. The widespread application of antibiotics in hospitals and agriculture has contributed to the emergence of vancomycin-resistant E. faecium, which causes many hospital-acquired infections. In this Review, we explore recent discoveries about the evolutionary history, the environmental adaptation and the colonization and dissemination mechanisms of E. faecium and vancomycin-resistant E. faecium. These studies provide critical insights necessary for developing novel preventive and therapeutic approaches against vancomycin-resistant E. faecium and also reveal the intricate interrelationships between the environment, the microorganism and the host, providing knowledge that is broadly relevant to how antibiotic-resistant pathogens emerge and endure.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Dennise Palacios Araya
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
4
|
Haque MA, Nath ND, Johnston TV, Haruna S, Ahn J, Ovissipour R, Ku S. Harnessing biotechnology for penicillin production: Opportunities and environmental considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174236. [PMID: 38942308 DOI: 10.1016/j.scitotenv.2024.174236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Since the discovery of antibiotics, penicillin has remained the top choice in clinical medicine. With continuous advancements in biotechnology, penicillin production has become cost-effective and efficient. Genetic engineering techniques have been employed to enhance biosynthetic pathways, leading to the production of new penicillin derivatives with improved properties and increased efficacy against antibiotic-resistant pathogens. Advances in bioreactor design, media formulation, and process optimization have contributed to higher yields, reduced production costs, and increased penicillin accessibility. While biotechnological advances have clearly benefited the global production of this life-saving drug, they have also created challenges in terms of waste management. Production fermentation broths from industries contain residual antibiotics, by-products, and other contaminants that pose direct environmental threats, while increased global consumption intensifies the risk of antimicrobial resistance in both the environment and living organisms. The current geographical and spatial distribution of antibiotic and penicillin consumption dramatically reveals a worldwide threat. These challenges are being addressed through the development of novel waste management techniques. Efforts are aimed at both upstream and downstream processing of antibiotic and penicillin production to minimize costs and improve yield efficiency while lowering the overall environmental impact. Yield optimization using artificial intelligence (AI), along with biological and chemical treatment of waste, is also being explored to reduce adverse impacts. The implementation of strict regulatory frameworks and guidelines is also essential to ensure proper management and disposal of penicillin production waste. This review is novel because it explores the key remaining challenges in antibiotic development, the scope of machine learning tools such as Quantitative Structure-Activity Relationship (QSAR) in modern biotechnology-driven production, improved waste management for antibiotics, discovering alternative path to reducing antibiotic use in agriculture through alternative meat production, addressing current practices, and offering effective recommendations.
Collapse
Affiliation(s)
- Md Ariful Haque
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Nirmalendu Deb Nath
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA.
| | - Tony Vaughn Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Samuel Haruna
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, USA.
| | - Jaehyun Ahn
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Reza Ovissipour
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| | - Seockmo Ku
- Department of Food Science and Technology, Texas A&M University, College Station, USA.
| |
Collapse
|
5
|
Dahl AL, Friis MB, Hallberg HW, Kristiansen GQ, Holzknecht BJ. Rapid detection of vanB vancomycin-resistant enterococci by laboratory-developed PCR on enrichment broth. Diagn Microbiol Infect Dis 2024; 109:116233. [PMID: 38547798 DOI: 10.1016/j.diagmicrobio.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 04/30/2024]
Abstract
Diagnostic accuracy of laboratory-developed PCR after overnight enrichment for the detection of vanB vancomycin-resistant enterococci was evaluated on 537 rectal swabs. Defining Ct-values of 27-34 (40 samples, 7 % inconclusive), we found an excellent sensitivity of 98,3 % and specificity of 99,7 % for the remaining 497 samples.
Collapse
Affiliation(s)
- Anja Lindis Dahl
- Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.
| | - Martin Barfred Friis
- Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Hanne Wiese Hallberg
- Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
| | - Gitte Qvist Kristiansen
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Barbara Juliane Holzknecht
- Department of Clinical Microbiology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Wiśniewski P, Zakrzewski A, Chajęcka-Wierzchowska W, Zadernowska A. Possibility of transfer and activation of 'silent' tetracycline resistance genes among Enterococcus faecalis under high-pressure processing. Food Microbiol 2024; 120:104481. [PMID: 38431327 DOI: 10.1016/j.fm.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland.
| | - Arkadiusz Zakrzewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| | - Anna Zadernowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-718, Olsztyn, Poland
| |
Collapse
|
7
|
Zelaya C, Arriagada G, Galarce N, Sanchez F, Escobar B, Miranda M, Vilches R, Varela C, Ríos MP, Matus S, Sáenz L, Cornejo J, Lapierre L. A preliminary report on critical antimicrobial resistance in Escherichia coli, Enterococcus faecalis, and Enterococcus faecium strains isolated from healthy dogs in Chile during 2021-2022. Prev Vet Med 2024; 224:106139. [PMID: 38341943 DOI: 10.1016/j.prevetmed.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Antimicrobial Resistance (AMR) represents one of the main current threats to global public health; where production animals, companion animals, humans, and the environment play a significant role in its dissemination. However, little attention has been given to companion animals as reservoirs and disseminators of relevant antimicrobial resistant bacteria, especially in South American countries such as Chile. For this reason, this research aimed to estimate the prevalence of AMR to different critical antibiotics at a screening level in commensal bacteria such as E. coli and Enterococcus spp., isolated from healthy pet dogs in the Metropolitan Region of Chile, studying their geographical distribution and evaluating associations of phenotypic resistance to different antibiotics. Thus, in E. coli we detected AMR to all critical drugs assessed, including 34.1% to amoxicillin, 20.1% to colistin, 15.7% to enrofloxacin, and 9.2% to cefotaxime. On the other hand, AMR prevalence in E. faecalis was 8.1% for ampicillin and 3.4% for vancomycin; while for E. faecium the AMR prevalence was 19.1% for ampicillin and 10.2% for vancomycin. Additionally, significant differences in prevalence of the different possible AMR were detected according to their geographical distribution, suggesting the existence of various risk factors and stressing the need to establish mitigation measures specific to the differences identified.
Collapse
Affiliation(s)
- Carlos Zelaya
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Gabriel Arriagada
- Institute of Agri-food, Animal and Environmental Sciences, Universidad de O'Higgins, Chile
| | - Nicolás Galarce
- School of Veterinary Medicine, Faculty of Life Sciences, Andrés Bello University, Chile
| | - Fernando Sanchez
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Beatriz Escobar
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Mauricio Miranda
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Rocío Vilches
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Camila Varela
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - María Paz Ríos
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Sofia Matus
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Leonardo Sáenz
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Javiera Cornejo
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile.
| | - Lisette Lapierre
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile.
| |
Collapse
|
8
|
Tenderenda A, Łysakowska ME, Gawron-Skarbek A. The Prevalence of Alert Pathogens and Microbial Resistance Mechanisms: A Three-Year Retrospective Study in a General Hospital in Poland. Pathogens 2023; 12:1401. [PMID: 38133286 PMCID: PMC10746124 DOI: 10.3390/pathogens12121401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The development of antibiotic resistance mechanisms hinders the treatment process. So far, there is limited data on the problem of bacterial resistance in hospitals in Central and Eastern Europe. Therefore, this study aimed to assess the prevalence of resistance mechanisms and alert pathogens based on reports regarding cultures of samples collected from general hospital patients in Poland in the period 2019-2021. This study examined the prevalence of resistance mechanisms and alert pathogens and the structure of microorganisms, including the type of diagnostic material in the hospital department. The frequency of occurrence and the trends were analysed based on Cochran's Q-test, relative change and the average annual rate of change (AARC). Of all 14,471 cultures, 3875 were positive for bacteria, and 737 were characterised by resistance mechanisms (19.0%). Alert pathogens were identified in 983 cases (24.6%), including pathogens isolated from blood samples. The most commonlyisolated bacteria were Escherichia coli (>20% of positive cultures), Enterococcus faecalis (7%), and Klebsiella pneumoniae (6%) increasing over time; Staphylococcus aureus (13%) was also found, but its proportion was decreasing over time. Extended-spectrum β-lactamase (ESBL) was the most frequent resistance mechanism in Internal Medicine (IM) (p < 0.001) and the Intensive Care Unit (ICU) (p < 0.01), as well as in ICU-COVID; this increased over the study period (AARC ↑34.9%). Methicillin-resistant Staphylococcus aureus (MRSA) (AARC ↓50.82%) and AmpC beta-lactamase (AARC ↓24.77%) prevalence fell over time. Also, the number of alert pathogens was dominant in the IM (p < 0.01) and ICU (p < 0.001). The most common alert pathogen was ESBL-positive E. coli. Gram-negative rods constitute a significant epidemiological problem in hospitals, especially the growing trend of ESBL in IM and ICU, which calls for increased control of sanitary procedures.
Collapse
Affiliation(s)
- Anna Tenderenda
- Department of Geriatrics, Medical University of Lodz, 90-647 Lodz, Poland;
| | - Monika Eliza Łysakowska
- Department of Microbiology and Medical Laboratory Immunology, Medical University of Lodz, 90-213 Lodz, Poland
| | | |
Collapse
|
9
|
Dey P, Ray Chaudhuri S. The opportunistic nature of gut commensal microbiota. Crit Rev Microbiol 2023; 49:739-763. [PMID: 36256871 DOI: 10.1080/1040841x.2022.2133987] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/30/2022] [Accepted: 10/05/2022] [Indexed: 11/03/2022]
Abstract
The abundance of gut commensals has historically been associated with health-promoting effects despite the fact that the definition of good or bad microbiota remains condition-specific. The beneficial or pathogenic nature of microbiota is generally dictated by the dimensions of host-microbiota and microbe-microbe interactions. With the increasing popularity of gut microbiota in human health and disease, emerging evidence suggests opportunistic infections promoted by those gut bacteria that are generally considered beneficial. Therefore, the current review deals with the opportunistic nature of the gut commensals and aims to summarise the concepts behind the occasional commensal-to-pathogenic transformation of the gut microbes. Specifically, relevant clinical and experimental studies have been discussed on the overgrowth and bacteraemia caused by commensals. Three key processes and their underlying mechanisms have been summarised to be responsible for the opportunistic nature of commensals, viz. improved colonisation fitness that is dictated by commensal-pathogen interactions and availability of preferred nutrients; pathoadaptive mutations that can trigger the commensal-to-pathogen transformation; and evasion of host immune response as a survival and proliferation strategy of the microbes. Collectively, this review provides an updated concept summary on the underlying mechanisms of disease causative events driven by gut commensal bacteria.
Collapse
Affiliation(s)
- Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Saumya Ray Chaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
10
|
Wardal E, Żabicka D, Skalski T, Kubiak-Pulkowska J, Hryniewicz W, Sadowy E. Characterization of a Tigecycline-, Linezolid- and Vancomycin-Resistant Clinical Enteroccoccus faecium Isolate, Carrying vanA and vanB Genes. Infect Dis Ther 2023; 12:2545-2565. [PMID: 37821741 PMCID: PMC10651664 DOI: 10.1007/s40121-023-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/22/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION Increasing incidence of Enterococcus faecium resistant to key antimicrobials used in therapy of hospitalized patients is a worrisome phenomenon observed worldwide. Our aim was to characterize a tigecycline-, linezolid- and vancomycin-resistant E. faecium isolate with the vanA and vanB genes, originating from a hematoma of a patient hospitalized in an intensive care unit in Poland. METHODS Antimicrobial susceptibility (a broad panel) was tested using gradient tests with predefined antibiotic concentrations. The complete genome sequence was obtained from a mixed assembly of Illumina MiSeq and Oxford Nanopore's MinION reads. The genome was analyzed with appropriate tools available at the Center for Genomic Epidemiology, PubMLST and GenBank. Transferability of oxazolidinone, tigecycline and vancomycin resistance genes was investigated by conjugation, followed by PCR screen of transconjugants for antimicrobial resistance genes and plasmid rep genes characteristic for the donor and genomic sequencing of selected transconjugants. RESULTS The isolate was resistant to most antimicrobials tested; susceptibility to daptomycin, erythromycin and chloramphenicol was significantly reduced, and only oritavancin retained the full activity. The isolate represented sequence type 18 (ST18) and carried vanA, vanB, poxtA, fexB, tet(L), tet(M), aac(6')-aph(2''), ant(6)-Ia and ant(6')-Ii. The vanA, poxtA and tet(M) genes located on ~ 40-kb plasmids were transferable by conjugation yielding transconjugants resistant to vancomycin, linezolid and tigecycline. The substitutions in LiaS, putative histidine kinase, SulP, putative sulfate transporter, RpoB and RpoC were potential determinants of an elevated daptomycin MIC. Comparative analyses of the studied isolate with E. faecium isolates from other countries revealed its similarity to ST18 isolates from Ireland and Uganda from human infections. CONCLUSIONS We provide the detailed characteristics of the genomic determinants of antimicrobial resistance of a clinical E. faecium demonstrating the concomitant presence of both vanA and vanB and resistance to vancomycin, linezolid, tigecycline and several other compounds and decreased daptomycin susceptibility. This isolate is a striking example of an accumulation of resistance determinants involving various mechanisms by a single hospital strain.
Collapse
Affiliation(s)
- Ewa Wardal
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Dorota Żabicka
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Tomasz Skalski
- Department of Clinical Microbiology and Molecular Diagnostics, University Hospital No 2, ul. Ujejskiego 75, Bydgoszcz, Poland
| | - Joanna Kubiak-Pulkowska
- Department of Clinical Microbiology and Molecular Diagnostics, University Hospital No 2, ul. Ujejskiego 75, Bydgoszcz, Poland
| | - Waleria Hryniewicz
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul. Chełmska 30/34, 00-725, Warsaw, Poland.
| |
Collapse
|
11
|
Matle I, Atanda AC, Pierneef R, Magwedere K, Mafuna T. Resistome, mobilome, virulome analysis and phylogenomics of Enterococcus faecalis isolated from raw muscle foods of beef origin in Gauteng, South Africa. Genomics 2023; 115:110742. [PMID: 37967685 DOI: 10.1016/j.ygeno.2023.110742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/18/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Enterococcus faecalis is a ubiquitous bacterium found in various environments, including processed beef meat, and is known for its importance in both food safety and public health. This pivotal significance stems not solely from its virulence but also from its adeptness in eliciting multidrug-resistant infections in humans. The aim of this study was to investigate the population structure, resistome, mobilome, and virulome of E. faecalis obtained from processed beef meat sources in South Africa. A total of eight genomes sequenced in this study were examined, alongside 78 publicly available, high-quality genomes of E. faecalis, with a comprehensive analysis conducted to identify antimicrobial resistance (AMR) determinants, virulence factors, and mobile genetic elements (MGE). Six distinct sequence types (STs) (ST79, ST860, ST40, ST238, ST21, and ST700) and 41 core virulence factors were found across all the genomes. The virulence factors included genes encoding adherence (ace, asa1, Ef0485, ebpA, ebpB, ebpC, srtC); exoenzyme (Ef3023, Ef0818, gelE, sprE); immunomodulation (cpsA, cpsB, cpsC, cpsD, cpsE, cpsF, cpsG, cpsH, cpsI, cpsK), and biofilm formation (bopD, fsrA, fsrB, fsrC). In addition, AMR genes were identified across all genomes, which include aminoglycoside resistance (ant(6)-Ia), trimethoprim resistance (dfrA), drug and biocide resistance (efrA and efrB), multidrug efflux pump (emeA), clindamycin quinupristin-dalfopristin, dalfopristin resistance (lsaA), and tetracycline resistance (tetM). The genomes of E. faecalis sequenced here contained a variety of MGEs, including Insertion Sequences (ISs), transposons, prophages, and plasmids, which may have facilitated genetic exchange within and between these species. The results highlight that beef meat products act as a reservoir for virulent E. faecalis strains possessing antibiotic-resistance traits. This study provides insight into the genomic characteristics, antimicrobial resistance genes, virulence factors, and genetic mobile elements associated with eight E. faecalis isolates from processed beef meat in the Gauteng province of South Africa.
Collapse
Affiliation(s)
- Itumeleng Matle
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa
| | - Abimbola Comfort Atanda
- Bacteriology Division, Agricultural Research Council, Onderstepoort Veterinary Research, Onderstepoort, South Africa; Department of Life Sciences, University of South Africa, Florida Campus, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa; Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa; Microbiome@UP, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Kudakwashe Magwedere
- Directorate of Veterinary Public Health, Department of Agriculture, Land Reform and Rural Development, Pretoria, South Africa
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
12
|
Yang J, Chen Y, Dong Z, Zhang W, Liu L, Meng W, Li Q, Fu K, Zhou Z, Liu H, Zhong Z, Xiao X, Zhu J, Peng G. Distribution and association of antimicrobial resistance and virulence characteristics in Enterococcus spp. isolates from captive Asian elephants in China. Front Microbiol 2023; 14:1277221. [PMID: 37954234 PMCID: PMC10635408 DOI: 10.3389/fmicb.2023.1277221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Enterococcus spp., as an opportunistic pathogen, are widely distributed in the environment and the gastrointestinal tracts of both humans and animals. Captive Asian elephants, popular animals at tourist attractions, have frequent contact with humans. However, there is limited information on whether captive Asian elephants can serve as a reservoir of antimicrobial resistance (AMR). The aim of this study was to characterize AMR, antibiotic resistance genes (ARGs), virulence-associated genes (VAGs), gelatinase activity, hemolysis activity, and biofilm formation of Enterococcus spp. isolated from captive Asian elephants, and to analyze the potential correlations among these factors. A total of 62 Enterococcus spp. strains were isolated from fecal samples of captive Asian elephants, comprising 17 Enterococcus hirae (27.4%), 12 Enterococcus faecalis (19.4%), 8 Enterococcus faecium (12.9%), 7 Enterococcus avium (11.3%), 7 Enterococcus mundtii (11.3%), and 11 other Enterococcus spp. (17.7%). Isolates exhibited high resistance to rifampin (51.6%) and streptomycin (37.1%). 50% of Enterococcus spp. isolates exhibited multidrug resistance (MDR), with all E. faecium strains demonstrating MDR. Additionally, nine ARGs were identified, with tet(M) (51.6%), erm(B) (24.2%), and cfr (21.0%) showing relatively higher detection rates. Biofilm formation, gelatinase activity, and α-hemolysin activity were observed in 79.0, 24.2, and 14.5% of the isolates, respectively. A total of 18 VAGs were detected, with gelE being the most prevalent (69.4%). Correlation analysis revealed 229 significant positive correlations and 12 significant negative correlations. The strongest intra-group correlations were observed among VAGs. Notably, we found that vancomycin resistance showed a significant positive correlation with ciprofloxacin resistance, cfr, and gelatinase activity, respectively. In conclusion, captive Asian elephants could serve as significant reservoirs for the dissemination of AMR to humans.
Collapse
Affiliation(s)
- Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanshan Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenqing Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wanyu Meng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jieyao Zhu
- Xishuangbanna Vocational and Technical College, Yunnan, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Đorđević J, Ledina T, Golob M, Mohar Lorbeg P, Čanžek Majhenič A, Bogovič Matijašić B, Bulajić S. Safety evaluation of enterococci isolated from raw milk and artisanal cheeses made in Slovenia and Serbia. FOOD SCI TECHNOL INT 2023; 29:765-775. [PMID: 35912485 DOI: 10.1177/10820132221117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enterococci represent a significant part of the non-starter LAB microbiota of artisanal cheeses produced mainly from raw milk. Common approaches to safety evaluation of enterococci isolates include assessment of antimicrobial resistance and virulence potential. Hence, a collection of 47 (n = 22, Serbia; n = 25, Slovenia) dairy enterococcal isolates, of which E. faecalis (n = 28), E. faecium (n = 11), E. durans (n = 5), E. casseliflavus (n = 2), and E. gallinarum (n = 1), was analyzed. The susceptibility to 12 antimicrobials was tested using a broth microdilution method, and the presence of the selected antimicrobial resistance and virulence genes was investigated using PCR. Isolates were resistant to tetracycline (TET) (25.5%), erythromycin (ERY) (17.0%), gentamycin and chloramphenicol (CHL) (∼6%). No resistance to ampicillin (AMP), ciprofloxacin (CIP), daptomycin (DAP), linezolid (LZD), teicoplanin (TEI), tigecycline (TGC) and vancomycin (VAN) was detected. Among all the resistance determinants analyzed, ermB gene was detected most frequently. All 10 virulence genes analyzed were detected with a distribution of cpd (72.3%), cob and ccf (70.2%), gelE (68.1%), hyl (59.6%), agg (53.2%) and esp (46.8%). The genes encoding cytolysin (cylA, cylM and cylB) were amplified to a lesser extent (21.3%, 21.3% and 12.8%, respectively). However, due to the limited number of enterococci isolates analyzed in the present study, further studies are still required in order to better document the safety status of dairy enterococci.
Collapse
Affiliation(s)
- Jasna Đorđević
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Tijana Ledina
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Majda Golob
- Veterinary Faculty, Institute of Microbiology and Parasitology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Mohar Lorbeg
- Biotechnical Faculty, Institute of Dairy Science and Probiotics, Ljubljana, Slovenia
| | | | | | - Snežana Bulajić
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Cimen C, Berends MS, Bathoorn E, Lokate M, Voss A, Friedrich AW, Glasner C, Hamprecht A. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: a scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob Resist Infect Control 2023; 12:78. [PMID: 37568229 PMCID: PMC10422769 DOI: 10.1186/s13756-023-01278-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
The rising prevalence of vancomycin-resistant enterococci (VRE) is a matter of concern in hospital settings across Europe without a distinct geographical pattern. In this scoping review, we compared the epidemiology of vancomycin-resistant Enterococcus spp. in hospitals in the Netherlands and Germany, between 1991 and 2022. We searched PubMed and summarized the national antibiotic resistance surveillance data of the two countries. We included 46 studies and summarized national surveillance data from the NethMap in the Netherlands, the National Antimicrobial Resistance Surveillance database in Germany, and the EARS-Net data. In total, 12 studies were conducted in hospitals in the Netherlands, 32 were conducted in German hospitals, and an additional two studies were conducted in a cross-border setting. The most significant difference between the two countries was that studies in Germany showed an increasing trend in the prevalence of VRE in hospitals, and no such trend was observed in studies in the Netherlands. Furthermore, in both Dutch and German hospitals, it has been revealed that the molecular epidemiology of VREfm has shifted from a predominance of vanA towards vanB over the years. According to national surveillance reports, vancomycin resistance in Enterococcus faecium clinical isolates fluctuates below 1% in Dutch hospitals, whereas it follows an increasing trend in German hospitals (above 20%), as supported by individual studies. This review demonstrates that VRE is more frequently encountered in German than in Dutch hospitals and discusses the underlying factors for the difference in VRE occurrence in these two neighboring countries by comparing differences in healthcare systems, infection prevention control (IPC) guidelines, and antibiotic use in the Netherlands and Germany.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Matthijs S Berends
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medical Epidemiology, Certe Medical Diagnostics and Advice Foundation, Groningen, The Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Voss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Corinna Glasner
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
15
|
Rozman V, Mohar Lorbeg P, Treven P, Accetto T, Janežič S, Rupnik M, Bogovič Matijašić B. Genomic insights into antibiotic resistance and mobilome of lactic acid bacteria and bifidobacteria. Life Sci Alliance 2023; 6:e202201637. [PMID: 36781180 PMCID: PMC9930590 DOI: 10.26508/lsa.202201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria) can carry antimicrobial resistance genes (ARGs), yet data on resistance mechanisms in these bacteria are limited. The aim of our study was to identify the underlying genetic mechanisms of phenotypic resistance in 103 LAB and bifidobacteria using whole-genome sequencing. Sequencing data not only confirmed the presence of 36 acquired ARGs in genomes of 18 strains, but also revealed wide dissemination of intrinsic ARGs. The presence of acquired ARGs on known and novel mobile genetic elements raises the possibility of their horizontal spread. In addition, our data suggest that mutations may be a common mechanism of resistance. Several novel candidate resistance mechanisms were uncovered, providing a basis for further in vitro studies. Overall, 1,314 minimum inhibitory concentrations matched with genotypes in 92.4% of the cases; however, prediction of phenotype based on genotypic data was only partially efficient, especially with respect to aminoglycosides and chloramphenicol. Our study sheds light on resistance mechanisms and their transferability potential in LAB and bifidobacteria, which will be useful for risk assessment analysis.
Collapse
Affiliation(s)
- Vita Rozman
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Petra Mohar Lorbeg
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Primož Treven
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, Ljubljana, Slovenia
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Bojana Bogovič Matijašić
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| |
Collapse
|
16
|
In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci. Antibiotics (Basel) 2023; 12:antibiotics12030468. [PMID: 36978334 PMCID: PMC10044209 DOI: 10.3390/antibiotics12030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Periodontal disease is a relevant oral disease in dogs and nisin–biogel has been previously proposed to be used in its control. Enterococci, as inhabitants of the oral cavity with a high genetic versatility, are a reliable bacterial model for antimicrobial studies. Our goal was to evaluate the in vivo influence of the long-term dental application of the nisin–biogel on the virulence and antimicrobial signatures of canine oral enterococci. Twenty dogs were randomly allocated to one of two groups (treatment group—TG with nisin–biogel dental application, or control group—CG without treatment) and submitted to dental plaque sampling at day 0 and after 90 days (T90). Samples were processed for Enterococcus spp. isolation, quantification, identification, molecular typing and antimicrobial and virulence characterization. From a total of 140 enterococci, molecular typing allowed us to obtain 70 representative isolates, mostly identified as E. faecalis and E. faecium. No significant differences (p > 0.05) were observed in the virulence index of the isolates obtained from samples collected from the TG and CG at T90. At T90, a statistically significant difference (p = 0.0008) was observed in the antimicrobial resistance index between the isolates from the TC and CG. Oral enterococci were revealed to be reservoirs of high resistant and virulent phenotypes.
Collapse
|
17
|
Quintela-Baluja M, Jobling K, Graham DW, Tabraiz S, Shamurad B, Alnakip M, Böhme K, Barros-Velázquez J, Carrera M, Calo-Mata P. Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs. Int J Mol Sci 2022; 23:ijms232213830. [PMID: 36430310 PMCID: PMC9697693 DOI: 10.3390/ijms232213830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Enterococcus belongs to a group of microorganisms known as lactic acid bacteria (LAB), which constitute a broad heterogeneous group of generally food-grade microorganisms historically used in food preservation. Enterococci live as commensals of the gastrointestinal tract of warm-blooded animals, although they also are present in food of animal origin (milk, cheese, fermented sausages), vegetables, and plant materials because of their ability to survive heat treatments and adverse environmental conditions. The biotechnological traits of enterococci can be applied in the food industry; however, the emergence of enterococci as a cause of nosocomial infections makes their food status uncertain. Recent advances in high-throughput sequencing allow the subtyping of bacterial pathogens, but it cannot reflect the temporal dynamics and functional activities of microbiomes or bacterial isolates. Moreover, genetic analysis is based on sequence homologies, inferring functions from databases. Here, we used an end-to-end proteomic workflow to rapidly characterize two bacteriocin-producing Enterococcus faecium (Efm) strains. The proteome analysis was performed with liquid chromatography coupled to a trapped ion mobility spectrometry-time-of-flight mass spectrometry instrument (TimsTOF) for high-throughput and high-resolution characterization of bacterial proteins. Thus, we identified almost half of the proteins predicted in the bacterial genomes (>1100 unique proteins per isolate), including quantifying proteins conferring resistance to antibiotics, heavy metals, virulence factors, and bacteriocins. The obtained proteomes were annotated according to function, resulting in 22 complete KEGG metabolic pathway modules for both strains. The workflow used here successfully characterized these bacterial isolates and showed great promise for determining and optimizing the bioengineering and biotechnology properties of other LAB strains in the food industry.
Collapse
Affiliation(s)
- Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
- Correspondence:
| | - Kelly Jobling
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David W. Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shamas Tabraiz
- School of Natural and Applied Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | | | - Mohamed Alnakip
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| |
Collapse
|
18
|
Rosenbergová Z, Oftedal TF, Ovchinnikov KV, Thiyagarajah T, Rebroš M, Diep DB. Identification of a Novel Two-Peptide Lantibiotic from Vagococcus fluvialis. Microbiol Spectr 2022; 10:e0095422. [PMID: 35730941 PMCID: PMC9431498 DOI: 10.1128/spectrum.00954-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
Infections caused by multiresistant pathogens have become a major problem in both human and veterinary medicine. Due to the declining efficacy of many antibiotics, new antimicrobials are needed. Promising alternatives or additions to antibiotics are bacteriocins, antimicrobial peptides of bacterial origin with activity against many pathogens, including antibiotic-resistant strains. From a sample of fermented maize, we isolated a Vagococcus fluvialis strain producing a bacteriocin with antimicrobial activity against multiresistant Enterococcus faecium. Whole-genome sequencing revealed the genes for a novel two-peptide lantibiotic. The production of the lantibiotic by the isolate was confirmed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which revealed distinct peaks at 4,009.4 m/z and 3,181.7 m/z in separate fractions from reversed-phase chromatography. The combination of the two peptides resulted in a 1,200-fold increase in potency, confirming the two-peptide nature of the bacteriocin, named vagococcin T. The bacteriocin was demonstrated to kill sensitive cells by the formation of pores in the cell membrane, and its inhibition spectrum covers most Gram-positive bacteria, including multiresistant pathogens. To our knowledge, this is the first bacteriocin characterized from Vagococcus. IMPORTANCE Enterococci are common commensals in the intestines of humans and animals, but in recent years, they have been identified as one of the major causes of hospital-acquired infections due to their ability to quickly acquire virulence and antibiotic resistance determinants. Many hospital isolates are multiresistant, thereby making current therapeutic options critically limited. Novel antimicrobials or alternative therapeutic approaches are needed to overcome this global problem. Bacteriocins, natural ribosomally synthesized peptides produced by bacteria to eliminate other bacterial species living in a competitive environment, provide such an alternative. In this work, we purified and characterized a novel two-peptide lantibiotic produced by Vagococcus fluvialis LMGT 4216 isolated from fermented maize. The novel lantibiotic showed a broad spectrum of inhibition of Gram-positive strains, including vancomycin-resistant Enterococcus faecium, demonstrating its therapeutic potential.
Collapse
Affiliation(s)
- Zuzana Rosenbergová
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Thomas F. Oftedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kirill V. Ovchinnikov
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Thasanth Thiyagarajah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Dzung B. Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Kulkarni AV, Premkumar M, Arab JP, Kumar K, Sharma M, Reddy ND, Padaki NR, Reddy RK. Early Diagnosis and Prevention of Infections in Cirrhosis. Semin Liver Dis 2022; 42:293-312. [PMID: 35672014 DOI: 10.1055/a-1869-7607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strategies to prevent infection and improve outcomes in patients with cirrhosis. HAV, hepatitis A virus; HBV, hepatitis B virus; COVID-19, novel coronavirus disease 2019; NSBB, nonselective β-blocker; PPI, proton pump inhibitors.Cirrhosis is a risk factor for infections. Majority of hospital admissions in patients with cirrhosis are due to infections. Sepsis is an immunological response to an infectious process that leads to end-organ dysfunction and death. Preventing infections may avoid the downstream complications, and early diagnosis of infections may improve the outcomes. In this review, we discuss the pathogenesis, diagnosis, and biomarkers of infection; the incremental preventive strategies for infections and sepsi; and the consequent organ failures in cirrhosis. Strategies for primary prevention include reducing gut translocation by selective intestinal decontamination, avoiding unnecessary proton pump inhibitors' use, appropriate use of β-blockers, and vaccinations for viral diseases including novel coronavirus disease 2019. Secondary prevention includes early diagnosis and a timely and judicious use of antibiotics to prevent organ dysfunction. Organ failure support constitutes tertiary intervention in cirrhosis. In conclusion, infections in cirrhosis are potentially preventable with appropriate care strategies to then enable improved outcomes.
Collapse
Affiliation(s)
- Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Juan P Arab
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Karan Kumar
- Department of Hepatology, Mahatma Gandhi Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nageshwar D Reddy
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Nagaraja R Padaki
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Rajender K Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Grispoldi L, Karama M, El-Ashram S, Saraiva C, García-Díez J, Chalias A, Cenci-Goga BT. Evolution and antimicrobial resistance of enterococci isolated from Pecorino and goat cheese manufactured on-farm in an area facing constraints as per EU Regulation 1305/2013 in Umbria, Italy. Ital J Food Saf 2022; 11:10070. [PMID: 35832036 PMCID: PMC9272083 DOI: 10.4081/ijfs.2022.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 04/04/2022] [Indexed: 12/04/2022] Open
Abstract
The latest EU regulation on geographical indications (EU Regulation No. 1151/2012) has introduced a set of new tools for the protection and enhancement of food products in rural areas, under the group name of optional quality term (OQT). The Commission Delegated EU Regulation, No. 665/2014, regulated the conditions for the use of the optional quality term mountain product (MP), to support the implementation of a mountain value chain. This new tool is aimed at promoting local development, maintaining the economic activities in mountain areas, and redistributing wealth, whilst, at the same time, promoting the territory. Pecorino and goat cheeses are typical Italian cheeses made usually with whole raw ewe’s or raw goat’s milk, without starter culture addition. In an attempt to characterize these productions, the aim of this study was to investigate the evolution of enterococci during the production and ripening of Pecorino cheese made in three different farms, located in Umbria, Italy in areas facing natural or other specific constraints as stipulated by Regulation 1305/2013 on support for rural development by the European Agricultural Fund for Rural Development (EAFRD). Enterococci are enteric organisms which are commonly isolated from ewe and goat’s milk production in Umbria, Italy. Counts of enterococci in raw milk ranged from 1.75 for ovine milk to 3.62 for ewe milk and a marked reduction was observed after thermization especially in ovine milk. Out of 100 isolates, 69 were E. faecium, 23 E. durans, 8 E. faecalis and 2 E. casseliflavus and the distribution of species between farms and between samples showed a prevalence of E. faecium in ovine farms and E. durans in ewes farms, with an equal dis-tribution between samples. High percentages of susceptible isolates were found for amoxicil-lin/clavulanic acid, ampicillin, chloramphenicol, sulphamethoxazole, sulphamethoxazole/ trimethoprim, ticarcillin, vancomycin. A high prevalence of resistant strains (>30%) was ob-served for amikacin, ciprofloxacin, ceftriaxone, kanamycin, tetracycline. A comparison of this re-sults with those of previous works on similar dairy products revealed high levels of resistance to antimicrobials which needs to be addressed.
Collapse
|
21
|
Antimicrobial-Resistant Enterococcus spp. in Wild Avifauna from Central Italy. Antibiotics (Basel) 2022; 11:antibiotics11070852. [PMID: 35884106 PMCID: PMC9311988 DOI: 10.3390/antibiotics11070852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria of the genus Enterococcus are opportunistic pathogens, part of the normal intestinal microflora of animals, able to acquire and transfer antimicrobial resistance genes. The aim of this study was to evaluate the possible role of wild avifauna as a source of antimicrobial-resistant enterococci. To assess this purpose, 103 Enterococcus spp. strains were isolated from the feces of wild birds of different species; they were tested for antimicrobial resistance against 21 molecules, vancomycin resistance, and high-level aminoglycosides resistance (HLAR). Furthermore, genes responsible for vancomycin, tetracycline, and HLAR were searched. E. faecium was the most frequently detected species (60.20% of isolates), followed by E. faecalis (34.95% of isolates). Overall, 99.02% of the isolated enterococci were classified as multidrug-resistant, with 19.41% extensively drug-resistant, and 2.91% possible pan drug-resistant strains. Most of the isolates were susceptible to amoxicillin/clavulanic acid (77.67%) and ampicillin (75.73%), with only 5.83% of isolates showing an ampicillin MIC ≥ 64 mg/L. HLAR was detected in 35.92% of isolates, mainly associated with the genes ant(6)-Ia and aac(6′)-Ie-aph(2″)-Ia. Few strains (4.85%) were resistant to vancomycin, and the genes vanA and vanB were not detected. A percentage of 54.37% of isolates showed resistance to tetracycline; tet(M) was the most frequently detected gene in these strains. Wild birds may contribute to the spreading of antimicrobial-resistant enterococci, which can affect other animals and humans. Constant monitoring is essential to face up to the evolving antimicrobial resistance issue, and monitoring programs should include wild avifauna, too.
Collapse
|
22
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|
23
|
Jaroš P, Timkina E, Michailidu J, Maršík D, Kulišová M, Kolouchová I, Demnerová K. Boswellic Acids as Effective Antibacterial Antibiofilm Agents. Molecules 2022; 27:3795. [PMID: 35744925 PMCID: PMC9228269 DOI: 10.3390/molecules27123795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022] Open
Abstract
Boswellic acids are biologically active pentacyclic terpenoid compounds derived from Boswellia sp. plants. Extracts containing these acids have a number of positive effects on human health, especially in the treatment of inflammation, arthritis, or asthma. With increasing resistance to common antibiotics, boswellic acid-containing extracts could serve as an alternative or work in synergy with commonly available preparations. This study aims to determine the effect of boswellic acids on suspension cells and biofilms of Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. The antimicrobial and antibiofilm effect found was compared with commonly available antibiotics to control these undesirable microorganisms. The synergistic effect of boswellic acids and common antibiotics on the growth of these microorganisms was also determined. All tested microorganisms showed a positive additive effect of antibiotics and boswellic acid extract. The most significant effect was found in Enterococcus faecalis ATCC 29212 in a combination of 0.2 × MIC80 erythromycin (0.2 mg/L) and 0.8 × MIC80 boswellic acid extract (16 mg/L).
Collapse
Affiliation(s)
- Petr Jaroš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (P.J.); (K.D.)
| | - Elizaveta Timkina
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Jana Michailidu
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Dominik Maršík
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (J.M.); (D.M.); (M.K.); (I.K.)
| | - Kateřina Demnerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628 Prague, Czech Republic; (P.J.); (K.D.)
| |
Collapse
|
24
|
Two Screening Assays to Detect Vancomycin-Resistant Enterococcus spp. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enterococci have become major nosocomial pathogens. An increasing number of these infections are as a result of vancomycin-resistant enterococci. Accurate detection of vancomycin-resistant enterococci (VRE) is important, so that appropriate therapy and infection control measures may be instituted, including veterinary surveillance. Two screening assays to detect vancomycin resistance in enterococci are proposed. Barnes Basal Medium agar (Ba) and Brain Heart Infusion (BHI) broth (plus 1% TTC-2,3,5-triphenyltetrazolium chloride) with several concentrations of vancomycin were used in this work. Five Enterococcus casseliflavus strains with low-level resistance to vancomycin (4 µg/mL) were used. Both media were able to quickly detect the breakpoint of the vancomycin-resistant strains used in this work, and also provided insight into the dynamics of the antibiotic effect at a low concentration on the tested bacterial suspensions.
Collapse
|
25
|
Aouadi K, Hajlaoui H, Arraouadi S, Ghannay S, Snoussi M, Kadri A. Phytochemical Profiling, Antimicrobial and α-Glucosidase Inhibitory Potential of Phenolic-Enriched Extracts of the Aerial Parts from Echium humile Desf.: In Vitro Combined with In Silico Approach. PLANTS (BASEL, SWITZERLAND) 2022; 11:1131. [PMID: 35567133 PMCID: PMC9105953 DOI: 10.3390/plants11091131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The current study aimed to evaluate the naturally occurring antimicrobial and antidiabetic potential of various Echium humile (E. humile) solvent extracts (hexane, dichloromethane, ethyl acetate, methanol and aqueous). The bioactive compounds were identified using HPLC-MS, revealing the presence of sixteen phytochemical compounds, with the most abundant being p-coumaric acid, followed by 4,5-di-O-caffeoylquinic acid, trans-ferulic acid and acacetin. Furthermore, E. humile extracts showed marked antimicrobial properties against human pathogen strains, with MIC values for the most relevant extracts (methanol and ethyl acetate) ranging from 0.19 to 6.25 mg/mL and 0.39 to 12.50 mg/mL, respectively. Likewise, methanol was found to be bactericidal towards S. aureus, B. cereus and M. luteus, fungicidal against P. catenulatum and F. oxysporum and have a bacteriostatic/fungicidal effect for the other strains. In addition, the E. humile methanolic extract had the greatest α-glucosidase inhibitory effect (IC50 = 0.06 ± 0.29 mg/mL), which is higher than the standard drug, acarbose (IC50 = 0.80 ± 1.81 mg/mL) and the aqueous extract (IC50 = 0.70 ± 0.67 mg/mL). A correlation study between the major phytochemicals and the evaluated activities was investigated. Docking studies evidenced that most of the identified phenolic compounds showed strong interactions into the binding sites of S. aureus tyrosyl-tRNA synthetase and human lysosomal acid-α-glucosidase, confirming their suitable inhibitory effect. In summary, these results may provide rational support to explore the clinical efficacy of E. humile and its secondary metabolites in the treatment of dual diabetes and infections.
Collapse
Affiliation(s)
- Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Hafedh Hajlaoui
- Research Unit Valorization and Optimization of Resource Exploitation (UR16ES04), Faculty of Science and Technology of Sidi Bouzid, Campus University Agricultural City, University of Kairouan, Sidi Bouzid 9100, Tunisia;
| | - Soumaya Arraouadi
- Regional Center of Agricultural Research (CRRA) Sidi Bouzid, Gafsa Road Km 6, PB 357, Sidi Bouzid 9100, Tunisia;
- Research Laboratory, Valorization of Non-Conventional Waters, University of Carthage, Road Hedi EL Karray, El Menzah IV, PB 10, Ariana 2080, Tunisia
| | - Siwar Ghannay
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; (K.A.); (S.G.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, Hail University, Ha’il 2440, Saudi Arabia;
- Laboratory of Genetic, Biodiversity and Valorization of Bioressources, Higher Institute of Bio-Technology of Monastir, University of Monastir, Avenue Taher Hadded, B.P. 74, Monastir 5000, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science of Sfax, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
- Faculty of Science and Arts in Baljurashi, Albaha University, Albaha 65527, Saudi Arabia
| |
Collapse
|
26
|
Alharbi M, Alshammari A, Alasmari AF, Alharbi SM, Tahir ul Qamar M, Ullah A, Ahmad S, Irfan M, Khalil AAK. Designing of a Recombinant Multi-Epitopes Based Vaccine against Enterococcus mundtii Using Bioinformatics and Immunoinformatics Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3729. [PMID: 35329417 PMCID: PMC8949936 DOI: 10.3390/ijerph19063729] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Enterococcus species are an emerging group of bacterial pathogens that have a significant role in hospital-associated infections and are associated with higher mortality and morbidity rates. Among these pathogens, Enterococcus mundtii is one of the causative agents of multiple hospital associated infections. Currently, no commercially available licensed vaccine is present, and multi-drug resistant strains of the pathogen are prominent. Due to several limitations of experimental vaccinology, computational vaccine designing proved to be helpful in vaccine designing against several bacterial pathogens. Herein, we designed a multi-epitope-based vaccine against E. mundtii using in silico approaches. After an in-depth analysis of the core genome, three probable antigenic proteins (lytic polysaccharide monooxygenase, siderophore ABC transporter substrate-binding protein, and lytic polysaccharide monooxygenase) were shortlisted for epitope prediction. Among predicted epitopes, ten epitopes-GPADGRIAS, TTINHGGAQA, SERTALSVTT, GDGGNGGGEV, GIKEPDLEK, KQADDRIEA, QAIGGDTSN, EPLDEQTASR, AQWEPQSIEA, QPLKFSDFEL-were selected for multi-epitope vaccine construct designing. The screened B- and T-cell epitopes were joined with each other via specific linkers and linked to the cholera toxin B subunit as an adjuvant to enhance vaccine immune protection efficacy. The designed vaccine construct induced cellular and humoral immune responses. Blind docking with immune cell receptors, followed by molecular dynamic simulation results confirms the good binding potency and stability of the vaccine in providing protection against the pathogen.
Collapse
Affiliation(s)
- Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.); (A.F.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.); (A.F.A.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.); (A.A.); (A.F.A.)
| | | | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| |
Collapse
|
27
|
Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring (DARTE-QM): a method for detection of antimicrobial resistance in environmental samples. Commun Biol 2022; 5:216. [PMID: 35301418 PMCID: PMC8931014 DOI: 10.1038/s42003-022-03155-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/02/2022] [Indexed: 12/01/2022] Open
Abstract
Effective monitoring of antibiotic resistance genes and their dissemination in environmental ecosystems has been hindered by the cost and efficiency of methods available for the task. We developed the Diversity of Antibiotic Resistance genes and Transfer Elements-Quantitative Monitoring (DARTE-QM), a method implementing TruSeq high-throughput sequencing to simultaneously sequence thousands of antibiotic resistant gene targets representing a full-spectrum of antibiotic resistance classes common to environmental systems. In this study, we demonstrated DARTE-QM by screening 662 antibiotic resistance genes within complex environmental samples originated from manure, soil, and livestock feces, in addition to a mock-community reference to assess sensitivity and specificity. DARTE-QM offers a new approach to studying antibiotic resistance in environmental microbiomes, showing advantages in efficiency and the ability to scale for many samples. This method provides a means of data acquisition that will alleviate some of the obstacles that many researchers in this area currently face. Smith et al. present DARTE-QM, a highthroughput sequencing method for screening environmental DNA samples for antibiotic resistance genes on a broad scale. This method is demonstrated as effective on soil, manure and livestock fecal samples, as well as a synthetic mock-community reference.
Collapse
|
28
|
Antimicrobial Resistance, Biofilm Formation, and Virulence Genes in Enterococcus Species from Small Backyard Chicken Flocks. Antibiotics (Basel) 2022; 11:antibiotics11030380. [PMID: 35326843 PMCID: PMC8944505 DOI: 10.3390/antibiotics11030380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023] Open
Abstract
Backyard birds are small flocks that are more common in developing countries. They are used for poultry meat and egg production. However, they are also implicated in the maintenance and transmission of several zoonotic diseases, including multidrug-resistant bacteria. Enterococci are one of the most common zoonotic bacteria. They colonize numerous body sites and cause a wide range of serious nosocomial infections in humans. Therefore, the objective of the present study was to investigate the diversity in Enterococcus spp. in healthy birds and to determine the occurrence of multidrug resistance (MDR), multi-locus sequence types, and virulence genes and biofilm formation. From March 2019 to December 2020, cloacal swabs were collected from 15 healthy backyard broiler flocks. A total of 90 enterococci strains were recovered and classified according to the 16S rRNA sequence into Enterococcus faecalis (50%); Enterococcus faecium (33.33%), Enterococcus hirae (13.33%), and Enterococcus avium (3.33%). The isolates exhibited high resistance to tetracycline (55.6%), erythromycin (31.1%), and ampicillin (30%). However, all of the isolates were susceptible to linezolid. Multidrug resistance (MDR) was identified in 30 (33.3%) isolates. The enterococci AMR-associated genes ermB, ermA, tetM, tetL, vanA, cat, and pbp5 were identified in 24 (26.6%), 11 (12.2%), 39 (43.3%), 34 (37.7%), 1 (1.1%), 4 (4.4%), and 23 (25.5%) isolates, respectively. Of the 90 enterococci, 21 (23.3%), 27 (30%), and 36 (40%) isolates showed the presence of cylA, gelE, and agg virulence-associated genes, respectively. Seventy-three (81.1%) isolates exhibited biofilm formation. A statistically significant correlation was obtained for biofilm formation versus the MAR index and MDR. Multi-locus sequence typing (MLST) identified eleven and eight different STs for E. faecalis and E. faecium, respectively. Seven different rep-family plasmid genes (rep1–2, rep3, rep5–6, rep9, and rep11) were detected in the MDR enterococci. Two-thirds (20/30; 66.6%) of the enterococci were positive for one or two rep-families. In conclusion, the results show that healthy backyard chickens could act as a reservoir for MDR and virulent Enterococcus spp. Thus, an effective antimicrobial stewardship program and further studies using a One Health approach are required to investigate the role of backyard chickens as vectors for AMR transmission to humans.
Collapse
|
29
|
Rozman V, Mohar Lorbeg P, Treven P, Accetto T, Golob M, Zdovc I, Bogovič Matijašić B. Lactic acid bacteria and bifidobacteria deliberately introduced into the agro-food chain do not significantly increase the antimicrobial resistance gene pool. Gut Microbes 2022; 14:2127438. [PMID: 36170451 PMCID: PMC9542798 DOI: 10.1080/19490976.2022.2127438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid bacteria (LAB) and bifidobacteria may serve as reservoirs of antimicrobial resistance, but the risk posed by strains intentionally introduced into the agro-food chain has not yet been thoroughly investigated. The aim of our study was to evaluate whether probiotics, starter and protective cultures, and feed additives represent a risk to human health. In addition to commercial strains of LAB and bifidobacteria, isolates from human milk or colostrum, intestinal mucosa or feces, and fermented products were analyzed. Phenotypic susceptibility data of 474 strains showed that antimicrobial resistance was more common in intestinal isolates than in commercial strains. Antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) were characterized in the whole genome sequences of 1114 strains using comparative genomics. Intrinsic ARGs were abundant in enterococci, bifidobacteria, and lactococci but were considered non-risky due to the absence of MGEs. The results revealed that 13.8% of commercial strains contained acquired ARGs, most frequently for tetracycline. We associated 75.5% of the acquired ARGs with known or novel MGEs, and their potential for transmission was assessed by examining metagenomic sequences. We confirmed that ARGs and MGEs were not as abundant or diverse in commercial strains as in human intestinal isolates or isolates from human milk, suggesting that strains intentionally introduced into the agro-food chain do not pose a significant threat. However, attention should be paid especially to individual probiotic strains containing elements that have been shown to have high potential for transferability in the gut microbiota.Abbreviations: ARG, antimicrobial resistance gene; ICE, integrative and conjugative element; IME, integrative and mobilizable element; LAB, lactic acid bacteria; MDR, multidrug resistance; MIC, minimum inhibitory concentration; MGE, mobile genetic element; TRRPP, tetracycline-resistant ribosomal protection protein; WGS, whole genome sequences.
Collapse
Affiliation(s)
- Vita Rozman
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Petra Mohar Lorbeg
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Primož Treven
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, Ljubljana, Slovenia
| | - Majda Golob
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Irena Zdovc
- University of Ljubljana, Veterinary Faculty, Institute of Microbiology and Parasitology, Ljubljana, Slovenia
| | - Bojana Bogovič Matijašić
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| |
Collapse
|
30
|
Survey on phenotypic resistance in Enterococcus faecalis: comparison between the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells. Mol Biol Rep 2021; 49:971-979. [PMID: 34751916 DOI: 10.1007/s11033-021-06915-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Phenotypic resistance is considered as a serious therapeutic challenge for which a definitive remedy has not been discovered yet. Biofilm and persister cell formation are two well-studied phenotypic resistance phenomena, leading to the recalcitrance and relapse of different types of chronic infections. The presence of persister cells in biofilm structures seems to be one of the main factors contributing to the relapse of infections and treatment failure. Given the dormant and inert nature of persister cells, they can be easy targets for the immune system factors. Biofilm formation can be a survival strategy for the defenseless persister cells. Thus, this study was aimed to evaluate the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells. METHODS Vancomycin susceptibility and biofilm formation ability were investigated among 95 E. faecalis clinical isolates using microtiter broth dilution and microtiter plate assays, respectively. PCR was used to determine the presence of biofilm-related genes (gelE, esp, and agg) among the vancomycin-susceptible, biofilm producer E. faecalis isolates (91 isolates). Minimum bactericidal concentration for biofilms (MBCB) were determined for vancomycin using the MTP assay. Bacterial persister assay was performed using an enzymatic lysis assay. Finally, the expression of biofilm-related genes was compared between the persister and non-persister isolates of E. faecalis using real-time qPCR. RESULTS E. faecalis isolates showed a high level of susceptibility (95.8%) to vancomycin (MIC < 1 µg/mL). The gelE, esp, and agg genes were found in 91 (100%), 72 (79.12), and 74 (81.32) of the isolates, respectively. All the E. faecalis isolates were tolerant to vancomycin in the biofilm condition, showing a MBCB of > 2500 µg/mL. Based on the enzymatic lysis assay, only 3 isolates, out of the 91, had the ability to form persister cells. The expression of biofilm-associated genes was higher among the persister compared to non-persister E. faecalis isolates. CONCLUSIONS Biofilm-associated persister cells indicated a high vancomycin tolerance compared to non-persister cells. Moreover, persister isolates showed a higher tendency for biofilm formation and a higher expression level of the biofilm-associated genes, compared to non-persister isolates.
Collapse
|
31
|
Lisotto P, Couto N, Rosema S, Lokate M, Zhou X, Bathoorn E, Harmsen HJM, Friedrich AW, Rossen JWA, Chlebowicz-Fliss MA. Molecular Characterisation of Vancomycin-Resistant Enterococcus faecium Isolates Belonging to the Lineage ST117/CT24 Causing Hospital Outbreaks. Front Microbiol 2021; 12:728356. [PMID: 34646248 PMCID: PMC8503688 DOI: 10.3389/fmicb.2021.728356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm) is a successful nosocomial pathogen. The current molecular method recommended in the Netherlands for VREfm typing is based on core genome Multilocus sequence typing (cgMLST), however, the rapid emergence of specific VREfm lineages challenges distinguishing outbreak isolates solely based on their core genome. Here, we explored if a detailed molecular characterisation of mobile genetic elements (MGEs) and accessory genes could support and expand the current molecular typing of VREfm isolates sharing the same genetic background, enhancing the discriminatory power of the analysis. Materials/Methods: The genomes of 39 VREfm and three vancomycin-susceptible E. faecium (VSEfm) isolates belonging to ST117/CT24, as assessed by cgMLST, were retrospectively analysed. The isolates were collected from patients and environmental samples from 2011 to 2017, and their genomes were analysed using short-read sequencing. Pangenome analysis was performed on de novo assemblies, which were also screened for known predicted virulence factors, antimicrobial resistance genes, bacteriocins, and prophages. Two representative isolates were also sequenced using long-read sequencing, which allowed a detailed analysis of their plasmid content. Results: The cgMLST analysis showed that the isolates were closely related, with a minimal allelic difference of 10 between each cluster’s closest related isolates. The vanB-carrying transposon Tn1549 was present in all VREfm isolates. However, in our data, we observed independent acquisitions of this transposon. The pangenome analysis revealed differences in the accessory genes related to prophages and bacteriocins content, whilst a similar profile was observed for known predicted virulence and resistance genes. Conclusion: In the case of closely related isolates sharing a similar genetic background, a detailed analysis of MGEs and the integration point of the vanB-carrying transposon allow to increase the discriminatory power compared to the use of cgMLST alone. Thus, enabling the identification of epidemiological links amongst hospitalised patients.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.,IDbyDNA Inc., Salt Lake City, UT, United States
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Rebelo A, Mourão J, Freitas AR, Duarte B, Silveira E, Sanchez-Valenzuela A, Almeida A, Baquero F, Coque TM, Peixe L, Antunes P, Novais C. Diversity of metal and antibiotic resistance genes in Enterococcus spp. from the last century reflects multiple pollution and genetic exchange among phyla from overlapping ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147548. [PMID: 34000557 DOI: 10.1016/j.scitotenv.2021.147548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As), mercury (Hg), and copper (Cu) are among the major historical and contemporary metal pollutants linked to global anthropogenic activities. Enterococcus have been considered indicators of fecal pollution and antibiotic resistance for years, but its largely underexplored metallome precludes understanding their role as metal pollution bioindicators as well. Our goal was to determine the occurrence, diversity, and phenotypes associated with known acquired genes/operons conferring tolerance to As, Hg or Cu among Enterococcus and to identify their genetic context (381 field isolates from diverse epidemiological and genetic backgrounds; 3547 enterococcal genomes available in databases representing a time span during 1900-2019). Genes conferring tolerance to As (arsA), Hg (merA) or Cu (tcrB) were used as biomarkers of widespread metal tolerance operons. Different variants of metal tolerance (MeT) genes (13 arsA, 6 merA, 1 tcrB) were more commonly recovered from the food-chain (arsA, tcrB) or humans (merA), and were shared with 49 other bacterial taxa. Comparative genomics analysis revealed that MeT genes occurred in heterogeneous operons, at least since the 1900s, with an increasing accretion of antibiotic resistance genes since the 1960's, reflecting diverse antimicrobial pollution. Multiple MeT genes were co-located on the chromosome or conjugative plasmids flanked by elements with high potential for recombination, often along with antibiotic resistance genes. Phenotypic analysis of some isolates carrying MeT genes revealed up to 128× fold increase in the minimum inhibitory concentrations to metals. The main distribution of functional MeT genes among Enterococcus faecium and Enterococcus faecalis from different sources, time spans, and clonal lineages, and their ability to acquire diverse genes from multiple taxa bacterial communities places these species as good candidates to be used as model organisms in future projects aiming at the identification and quantification of bioindicators of metal polluted environments by anthropogenic activities.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal; Área Técnico-científica de Saúde Ambiental, Escola Superior de Saúde, Instituto Politécnico do Porto, Portugal
| | - Joana Mourão
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Portugal; Centro de Inovação em Biomedicina e Biotecnologia, Universidade de Coimbra, Portugal; Instituto de Investigação Interdisciplinar, Universidade de Coimbra, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Eduarda Silveira
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Centro de Investigação Vasco da Gama (CIVG), Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Coimbra, Portugal; Faculdade de Farmácia, Universidade de Coimbra, Portugal
| | - Antonio Sanchez-Valenzuela
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Fernando Baquero
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal
| | - Patrícia Antunes
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal; Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Portugal.
| |
Collapse
|
33
|
Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021; 10:foods10092092. [PMID: 34574202 PMCID: PMC8471122 DOI: 10.3390/foods10092092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.
Collapse
|
34
|
Halleran JL, Minch R, Slyvester HJ, Jacob ME, Prange T, Baynes R, Foster DM. Comparison of the Intestinal Pharmacokinetics of Two Different Florfenicol Dosing Regimens and Its Impact on the Prevalence and Phenotypic Resistance of E. coli and Enterococcus over Time. Microorganisms 2021; 9:microorganisms9091835. [PMID: 34576730 PMCID: PMC8468023 DOI: 10.3390/microorganisms9091835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
In order to mitigate the food animal sector's role in the growing threat of antimicrobial resistance (AMR), the World Health Organization (WHO) suggests the use of lower tier antimicrobials, such as florfenicol. Florfenicol has two dosing schemes used to treat primarily bovine respiratory disease. In this study, the objective was to characterize the plasma and gastrointestinal pharmacokinetics of each dosing regimen and assess the effect of these dosing regimens on the prevalence of resistant indicator bacteria over time. Twelve steers underwent abdominal surgery to facilitate the placement of ultrafiltration probes within the lumen of the ileum and colon, as well as placement of an interstitial probe. Following surgery, cattle were dosed with either 20 mg/kg IM every 48 h of florfenicol given twice (n = 6) or a single, subcutaneous dose (40 mg/kg, n = 6). Plasma, interstitial fluid, gastrointestinal ultrafiltrate, and feces were collected. Pharmacokinetic analysis demonstrated high penetration of florfenicol within the gastrointestinal tract for both the high and low dose group (300%, 97%, respectively). There was no significant difference noted between dosing groups in proportion or persistence of phenotypically resistant bacterial isolates; however, the percent of resistant isolates was high throughout the study period. The recommendation for the use of a lower tier antimicrobial, such as florfenicol, may allow for the persistence of co-resistance for antibiotics of high regulatory concern.
Collapse
Affiliation(s)
- Jennifer L. Halleran
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
- Correspondence:
| | - Ryker Minch
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Hannah J. Slyvester
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Timo Prange
- Department of Clinical Sciences, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA;
| | - Ronald Baynes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| | - Derek M. Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA; (R.M.); (H.J.S.); (M.E.J.); (R.B.); (D.M.F.)
| |
Collapse
|
35
|
Semedo-Lemsaddek T, Bettencourt Cota J, Ribeiro T, Pimentel A, Tavares L, Bernando F, Oliveira M. Resistance and virulence distribution in enterococci isolated from broilers reared in two farming systems. Ir Vet J 2021; 74:22. [PMID: 34416919 PMCID: PMC8379790 DOI: 10.1186/s13620-021-00201-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background The impact of enterococci in human health has been growing for the last decades, mainly due to their resistance to several antimicrobial agents. Human consumption of contaminated meat, especially poultry, has been identified as a possible route of transmission. The aim of the present study was to evaluate and compare the antimicrobial resistance profiles and virulence genes of enterococci isolated from Portuguese conventional and free-range broiler farms. Results Antibiotic susceptibility testing showed high frequencies of resistance to tetracycline in both farming systems. Resistance to erythromycin and gentamicin were detected in about half of the isolates. Resistance to penicillin was the less frequently observed and no vancomycin resistant isolates were identified. The majority of the enterococcal isolates, from either farming systems, were resistant to more than one antibiotic, and no statistical associations were found, except for penicillin resistance which associated with the genetic clusters. No differences were found between farming systems regarding the prevalence of tet(M), erm(B), aac (6′)-Ie-aph (2″)-Ia and pbp5 genes, nevertheless pbp5 prevalence was associated with the different genetic clusters. Hemolytic activity was identified in 26.47% of all isolates and gelatinase activity in 50%. The gelE gene was identified in the majority of the isolates, whereas esp and agg genes were rarely detected. The cylA determinant was not detected in any of the isolates. Conclusions Overall, results suggest that similar resistance patterns and virulence genes can be found in both farming systems, though enterococci in free-range conditions should be less prone to acquire further resistance genes.
Collapse
Affiliation(s)
- Teresa Semedo-Lemsaddek
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - João Bettencourt Cota
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Tânia Ribeiro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Amélia Pimentel
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Fernando Bernando
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| |
Collapse
|
36
|
Ivanovic M, Mirkovic N, Mirkovic M, Miocinovic J, Radulovic A, Solevic Knudsen T, Radulovic Z. Autochthonous Enterococcus durans PFMI565 and Lactococcus lactis subsp. lactis BGBU1-4 in Bio-Control of Listeria monocytogenes in Ultrafiltered Cheese. Foods 2021; 10:1448. [PMID: 34206521 PMCID: PMC8304694 DOI: 10.3390/foods10071448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Nowadays, consumers are interested in cheese produced without chemical additives or high-temperature treatments, among which, protective lactic acid bacteria (LAB) cultures could play a major role. In this study, the aims were to isolate, identify and characterize antilisterial LAB from traditionally produced cheese, and utilize suitable LAB in cheese production. Among 200 isolated LAB colonies, isolate PFMI565, with the strongest antilisterial activity, was identified as Enterococcus durans. E. durans PFMI565 was sensitive to clinically important antibiotics (erytromicin, tetracycline, kanamycin, penicillin, vancomycin) and had low acidifying activity in milk. E. durans PFMI565 and the previously isolated bacteriocin producer, Lactococcus lactis subsp. lactis BGBU1-4, were tested for their capability to control Listeria monocytogenes in experimentally contaminated ultrafiltered (UF) cheeses during 35 days of storage at 4 °C. The greatest reductions of L. monocytogenes numbers were achieved in UF cheese made with L. lactis subsp. lactis BGBU1-4 or with the combination of L. lactis subsp. lactis BGBU1-4 and E. durans PFMI565. This study underlines the potential application of E. durans PFMI565 and L. lactis subsp. lactis BGBU1-4 in bio-control of L. monocytogenes in UF cheese.
Collapse
Affiliation(s)
- Marina Ivanovic
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (M.I.); (M.M.); (J.M.); (A.R.); (Z.R.)
| | - Nemanja Mirkovic
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (M.I.); (M.M.); (J.M.); (A.R.); (Z.R.)
| | - Milica Mirkovic
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (M.I.); (M.M.); (J.M.); (A.R.); (Z.R.)
| | - Jelena Miocinovic
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (M.I.); (M.M.); (J.M.); (A.R.); (Z.R.)
| | - Ana Radulovic
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (M.I.); (M.M.); (J.M.); (A.R.); (Z.R.)
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Zorica Radulovic
- Faculty of Agriculture, University of Belgrade, 11080 Belgrade, Serbia; (M.I.); (M.M.); (J.M.); (A.R.); (Z.R.)
| |
Collapse
|
37
|
Van Puyvelde L, Aissa A, Panda SK, De Borggraeve WM, Mukazayire MJ, Luyten W. Bioassay-guided isolation of antibacterial compounds from the leaves of Tetradenia riparia with potential bactericidal effects on food-borne pathogens. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113956. [PMID: 33636319 DOI: 10.1016/j.jep.2021.113956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tetradenia riparia (commonly known as ginger bush) is frequently used in traditional African medicine to treat foodborne infections including diarrhoea, gastroenteritis, and stomach ache. AIM OF THE STUDY The present study aims to identify in Tetradenia riparia the compounds active against foodborne pathogens. MATERIALS AND METHODS Dried Tetradenia riparia leaf powder was consecutively extracted with hexane, ethyl acetate, methanol and water. The hexane extract was counter-extracted with methanol:water (9:1), and after evaporation of the methanol, this phase was extracted with dichloromethane. The water extract was counter-extracted with butanol. All these fractions were tested against a panel of foodborne bacterial pathogens. A bioassay-guided purification was performed to isolate antimicrobial compounds using Staphylococcus aureus as a target organism. Further, antibiofilm activity was evaluated on S. aureus USA 300. RESULTS The dichloromethane fraction and ethyl acetate extract were the most potent, and therefore subjected to silica gel chromatography. From the dichloromethane fraction, one active compound was crystalized and identified using NMR as 8(14),15-sandaracopimaradiene-7alpha, 18-diol (compound 1). Two active compounds were isolated from the ethyl acetate extract: deacetylumuravumbolide (compound 2) and umuravumbolide (compound 3). Using a microdilution method, their antimicrobial activity was tested against eight foodborne bacterial pathogens: Shigella sonnei, S. flexneri, Salmonella enterica subsp. enterica, Escherichia coli, Micrococcus luteus, S. aureus, Enterococcus faecalis, and Listeria innocua. Compound 1 had the strongest activity (IC50 ranging from 11.2 to 212.5 μg/mL), and compounds 2 and 3 showed moderate activity (IC50 from 212.9 to 637.7 μg/mL and from 176.1 to 521.4 μg/mL, respectively). Interestingly, 8(14),15-sandaracopimaradiene-7alpha, 18-diol is bactericidal, and also showed good antibiofilm activity with BIC50 (8.8 ± 1.5 μg/mL) slightly lower than for planktonic cells (11.4 ± 2.8 μg/mL). CONCLUSIONS These results support the traditional use of this plant to conserve foodstuffs and to treat gastrointestinal ailments, and open perspectives for its use in the prevention and treatment of foodborne diseases.
Collapse
Affiliation(s)
- Luc Van Puyvelde
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, 3000, Leuven, Belgium
| | - Abdallah Aissa
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, 3000, Leuven, Belgium; Centre de Recherche Scientifique et Technique en Analyses Physico-chimiques (CRAPC), BP384, Bou-Ismail, RP 42004, Tipaza, Algeria; Laboratoire Ethnobotanique et Substances Naturelles (ESN) Département des Sciences Naturelles, ENS Kouba, Alger, Algeria
| | - Sujogya Kumar Panda
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, 3000, Leuven, Belgium; Center of Environment, Climate Change and Public Health, Utkal University, Vani Vihar, Bhubaneswar, 751004, Odisha, India.
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven, Celestijnenlaan 200F, Box 2404, 3001, Leuven, Belgium
| | - Marie Jeanne Mukazayire
- College of Medicine and Health Science, School of Pharmacy and Medicine, University of Rwanda, Rwanda
| | - Walter Luyten
- Department of Biology, Animal Physiology and Neurobiology Section, KU Leuven, Naamsestraat 59, Box 2465, 3000, Leuven, Belgium
| |
Collapse
|
38
|
Bhat AH. Bacterial zoonoses transmitted by household pets and as reservoirs of antimicrobial resistant bacteria. Microb Pathog 2021; 155:104891. [PMID: 33878397 DOI: 10.1016/j.micpath.2021.104891] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Numerous individuals are committed to growing pet creatures like cats, dogs, and rats etc., pay care for them and as a result of this, there's a boost of their populace in advanced culture. The close interaction between family pets and individuals offers ideal conditions for bacterial transmission. Distinctive sorts of antimicrobial agents are exploited for animal husbandry and studies have revealed that many bacteria have attained confrontation against them viz., Staphylococcus intermedius, Escherichia coli, methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci and multidrug-resistant Salmonella typhi etc. and a few of these are a prospective for zoonotic transmission. In the current review, the attention has been paid on how household pets, especially dogs disperse the antimicrobial resistance in contrast to that of food animals. A lot of evidences are accessible on food animals and nation-wide scrutiny programmes solely hub on food animals; therefore, for steerage antimicrobial use policy in small animal veterinary exercise as well as for gauging the chance of transmission of antimicrobial resistance to humans' statistics on pet animals are sincerely needed. Transmission of such organisms, especially pathogenic staphylococci, occurs between pets, owners, and veterinary staff, and pets can act as reservoirs of such bacteria; this may additionally have an impact on the use of antimicrobials in human medicine. There is a need to generate statistics concerning each the levels of carriage of such microorganism in pets and the risk factors associated with the switch of the microorganism to human beings who have contact with infected pets, as nicely as to improve hygiene measures in veterinary practice.
Collapse
Affiliation(s)
- Aashaq Hussain Bhat
- Department of Zoology, Government Degree College, Billawar, 184204, Kathua, Jammu and Kashmir, India.
| |
Collapse
|
39
|
Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles. Foods 2021; 10:foods10040821. [PMID: 33920106 PMCID: PMC8070337 DOI: 10.3390/foods10040821] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, and rheological properties, thus contributing to the development of its typical sensorial properties. Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autolysis of other lactic acid bacteria (LAB), control pathogens and deterioration microorganisms, and may offer beneficial effects to the health of their hosts. They could in principle be employed as adjunct/protective/probiotic cultures; however, due to their propensity to acquire genetic determinants of virulence and antibiotic resistance, together with the opportunistic character of some of its members, this genus does not possess Qualified Presumption of Safety (QPS) status. It is, however, noteworthy that some putative virulence factors described in foodborne enterococci may simply reflect adaptation to the food environment and to the human host as commensal. Further research is needed to help distinguish friend from foe among enterococci, eventually enabling exploitation of the beneficial aspects of specific cheese-associated strains. This review aims at discussing both beneficial and deleterious roles played by enterococci in artisanal cheeses, while highlighting the need for further research on such a remarkably hardy genus.
Collapse
|
40
|
Trościańczyk A, Nowakiewicz A, Gnat S, Łagowski D, Osińska M, Chudzik-Rząd B. Comparative study of multidrug-resistant Enterococcus faecium obtained from different hosts. J Med Microbiol 2021; 70. [PMID: 33750516 DOI: 10.1099/jmm.0.001340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The possible transfer of antimicrobial resistance genes between Enterococcus faecium isolates from humans and different animal species, including those not covered by monitoring programs (e.g. pet and wildlife), poses a serious threat to public health.Hypothesis/Gap Statement. Little is known about occurrence and mechanisms of phenomenon of multidrug resistance of E. faecium isolated from various host species in Poland.Aim. The aim of the study was to characterize multidrug-resistant E. faecium isolated from humans and animals (livestock, pets and wildlife) in terms of the occurrence of genetic markers determining resistance.Methodology. Bacterial isolates were tested for phenotypic resistance and the presence of genes encoding resistance to macrolides, tetracycline, aminoglycosides, aminocyclitols and phenicols as well as efflux pump (emeA), resolvase (tndX) and integrase (Int-Tn) genes. The quinolone resistance-determining regions of gyrA and parC were sequenced.Results. Human isolates of E. faecium were characterized by high-level resistance to: ciprofloxacin, enrofloxacin, erythromycin (100 %), as well, as aminoglycosides resistance (kanamycin - 100%, streptomycin - 78 %, gentamicin - 78%). Regardless of the animal species, high level of resistance of E. faecium to tetracycline (from 88-100 %), erythromycin (from 82-94 %) and kanamycin (from 36-100 %) was observed. All E. faecium isolates from wildlife were resistant to fluoroquinolones. However, full susceptibility to vancomycin was observed in all isolates tested. Phenotypic antimicrobial resistance of E. faecium was identified in the presence of the following resistance genes: erm(B) (70%), msr(A) (50 %), tet(L) (35 %), tet(K) (34 %), tet(M) (76 %), aac(6')-Ie-aph(2″)-Ia (25%), ant(6)-Ia (31%), aph(3)-IIIa (68 %), (tndX) (23 %), and integrase gene (Int-Tn) (34 %). A correlation between an amino acid substitution at positions 83 and 87 of gyrA and position 80 of parC and the high-level fluoroquinolone resistance in E. faecium has been observed as well.Conclusion. The level and range of antimicrobial resistance and the panel of resistance determinants is comparable between E. faecium isolates, despite host species.
Collapse
Affiliation(s)
- Aleksandra Trościańczyk
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Sebastian Gnat
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Marcelina Osińska
- Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, Sub-Department of Veterinary Microbiology, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Beata Chudzik-Rząd
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| |
Collapse
|
41
|
Enterococci isolated from plant-derived food - Analysis of antibiotic resistance and the occurrence of resistance genes. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Nowakiewicz A, Zięba P, Gnat S, Osińska M, Łagowski D, Kosior-Korzecka U, Puzio I, Król J. Analysis of the occurrence and molecular characteristics of drug-resistant strains of Enterococcus faecalis isolated from the gastrointestinal tract of insectivorous bat species in Poland: A possible essential impact on the spread of drug resistance? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116099. [PMID: 33272805 DOI: 10.1016/j.envpol.2020.116099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/22/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Bats are poorly understood as a reservoir of multidrug-resistant strains; therefore, the aim of this study was to determine molecular characterization of multidrug-resistant Enterococcus strains isolated from bat species from Poland. A multi-stage analysis based on targeted isolation of drug-resistant strains (selective media with tetracycline, chloramphenicol, gentamicin, streptomycin, and vancomycin), determination of the phenotypic profile of drug-susceptibility using the disc diffusion method, and amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) was used for the isolation and differentiation of strains. The applied strategy finally allowed identification of E. faecalis resistant to at least one antimicrobial in 47.2% of the single-animal group and in 46.9% of the pooled samples of bat's guano. Out of the 36 distinct isolates, 69% met the criteria of multi-drug resistance, with a dominant combination of resistance to tetracycline, erythromycin, and rifampicin. Simultaneously, 41.6% of the strains were high-level aminoglycoside resistant (HLAR). In most strains, phenotypic resistance was reflected in the presence of at least one gene encoding resistance to a given drug. Moreover, our research results show that some genes were detected simultaneously in the same strain statistically significantly more frequently. This may confirm that the spread of some genes (tetM and ermB or aph (3')-IIIa as well as gelE and aac (6')-Ie-aph (2″)-Ia or ant (6)-Ia) is associated with their common occurrence on the same mobile genetic element. To our knowledge, this is the first analysis of multidrug-resistance among E. faecalis isolated from bats. Our research demonstrates that the One Health concept is not associated exclusively with food-producing animals and humans, but other species of wildlife animals should be covered by monitoring programs as well. We confirmed for the first time that bats are an important reservoir of multi-resistant E. faecalis strains and could have a great impact on environmental resistance.
Collapse
Affiliation(s)
- Aneta Nowakiewicz
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland.
| | - Przemysław Zięba
- State Veterinary Laboratory, Droga Męczenników Majdanka 50, 20-325, Lublin, Poland
| | - Sebastian Gnat
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Dominik Łagowski
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Veterinary Microbiology, Akademicka 12, 20-033, Lublin, Poland
| | - Urszula Kosior-Korzecka
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Preclinical Veterinary Sciences, Sub-Department of Pathophysiology, Akademicka 12, 20-033, Lublin, Poland
| | - Iwona Puzio
- University of Life Sciences, Faculty of Veterinary Medicine, Department of Animal Physiology, Akademicka 12, 20-033, Lublin, Poland
| | - Jarosław Król
- Wrocław University of Environmental and Life Sciences, Faculty of Veterinary Medicine, Department of Pathology, Division of Microbiology, C. K. Norwida 31, 50-375, Wrocław, Poland
| |
Collapse
|
43
|
Oguttu JW, Qekwana DN, Odoi A. Prevalence and Predictors of Antimicrobial Resistance Among Enterococcus spp. From Dogs Presented at a Veterinary Teaching Hospital, South Africa. Front Vet Sci 2021; 7:589439. [PMID: 33490130 PMCID: PMC7817767 DOI: 10.3389/fvets.2020.589439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background: While surveillance of antimicrobial drug resistance is ongoing in human medicine in South Africa, there is no such activity being performed in veterinary medicine. As a result, there is a need to investigate antimicrobial resistance among enterococci isolated from dogs in South Africa to improve understanding of the status of antimicrobial drug resistance given its public and veterinary public health importance. This study investigated antimicrobial resistance and factors associated with resistance profiles of enterococci isolated from dogs presented for veterinary care at a veterinary teaching hospital in South Africa. Methods: In total 102 Enterococcus isolated between 2007 and 2011 by a bacteriology laboratory at a teaching hospital were included in this study. Antimicrobial susceptibility of the isolates was determined against a panel of 18 antimicrobials using the Kirby Bauer disc diffusion technique. Univariate analysis was used to assess simple associations between year, season, breed group, age group, sex, and specimen as covariates and extensive drug resistance (XDR) as the outcome. Variables that were significant in the univariate analysis at a generous p-value ≤ 0.2 were included in the multivariable logistic models to investigate predictors of XDR. Results: All the Enterococcus isolates were resistant to at least one antimicrobial. High proportions of isolates were resistant against lincomycin (93%), kanamycin (87%), orbifloxacin (85%), and aminogycoside-lincosamide (77%). Ninety three percent (93%), 35.3, and 8.8% of the isolates exhibited multi-drug, extensive-drug and pan-drug resistance, respectively. Only year was significantly (p = 0.019) associated with extensive-drug resistance. Conclusion: Given the zoonotic potential of Enterococcus spp., the high antimicrobial resistance and multi-drug resistance observed in this study are a public health concern from one health perspective. The identified resistance to various antimicrobials may be useful in guiding clinicians especially in resource scarce settings where it is not always possible to perform AST when making treatment decisions.
Collapse
Affiliation(s)
- James Wabwire Oguttu
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| | - Daniel Nenene Qekwana
- Section Veterinary Public Health, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Agricola Odoi
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
44
|
Chen X, Tang R, Wang Y, Yuan S, Wang W, Ali IM, Hu ZH. Effect of ultrasonic and ozone pretreatment on the fate of enteric indicator bacteria and antibiotic resistance genes, and anaerobic digestion of dairy wastewater. BIORESOURCE TECHNOLOGY 2021; 320:124356. [PMID: 33186838 DOI: 10.1016/j.biortech.2020.124356] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
In this study, the effect of ultrasound (US), ozone and US combined with ozone (US/ozone) pretreatments on the fate of enteric indicator bacteria and antibiotic resistance genes (ARGs), and anaerobic digestion (AD) of dairy wastewater was investigated. The pretreatment conditions included US power 200 W, ozone concentration 4.2 mg O3/L, and pretreatment time 0-30 min. The results showed that US/ozone pretreatment was effective in the inactivation of enteric indicator bacteria. Total coliforms and enterococci were reduced by 99% and 92% after 30 min US/ozone pretreatment. Pretreatments could not decrease ARGs in absolute concentration, but could decrease ARGs in relative abundance. In the subsequent AD process, methane production increased more than 10% with 20 min ozone or 20 min US/ozone pretreatments. Pretreatment-AD together obviously inhibited the enrichment of ARGs in relative abundance. This study provided a pretreatment way to enhance methane production and to prevent the enrichment of ARGs.
Collapse
Affiliation(s)
- Xiaojuan Chen
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ibrahim Mohamed Ali
- Department of Soil and Water, Faculty of Agriculture, Benha University, Egypt
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
45
|
Cunha E, Janela R, Costa M, Tavares L, Veiga AS, Oliveira M. Nisin Influence on the Antimicrobial Resistance Ability of Canine Oral Enterococci. Antibiotics (Basel) 2020; 9:antibiotics9120890. [PMID: 33321973 PMCID: PMC7763880 DOI: 10.3390/antibiotics9120890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Periodontal disease (PD) is one of the most common diseases in dogs. Although previous studies have shown the potential of the antimicrobial peptide nisin for PD control, there is no information regarding its influence in the development of antimicrobial resistance or horizontal gene transfer (HGT). Nisin's mutant prevention concentration (MPC) and selection window (MSW) were determined for a collection of canine oral enterococci. Isolates recovered after the determination of the MPC values were characterized for their antimicrobial profile and its nisin minimum inhibitory and bactericidal concentrations. The potential of vanA HGT between Enterococcus faecium CCGU36804 and nine clinical canine staphylococci and enterococci was evaluated. Nisin MPC values ranged from 400 to more than 600 μg/mL. In comparison with the original enterococci collection, the isolates recovered after the determination of the nisin MPC showed increased resistance towards amoxicillin/clavulanate (5%), vancomycin (5%), enrofloxacin (10%), gentamicin (10%) and imipenem (15%). The HGT of vanA gene was not observed. This work showed that nisin selective pressure may induce changes in the bacteria's antimicrobial resistance profile but does not influence horizontal transfer of vanA gene. To our knowledge, this is the first report of nisin's MPC and MSW determination regarding canine enterococci.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Rita Janela
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Margarida Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisboa, Portugal; (E.C.); (R.J.); (M.C.); (L.T.)
- Correspondence: ; Tel.: +351-213652800
| |
Collapse
|
46
|
Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis. Microb Pathog 2020; 152:104632. [PMID: 33242645 DOI: 10.1016/j.micpath.2020.104632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023]
Abstract
Pterostilbene (PTE) is a naturally occurring compound originally isolated from Pterocarpus spp. It has been widely used in traditional Indian medicine and later discovered to have various beneficial pharmacological effects such as antioxidant properties, hypoglycaemic or antitumor, and antimicrobial activity. This work is focused on demonstrating PTE synergistic effect with erythromycin and tetracycline to reduce their needed effective concentration for suppression of Staphylococcus epidermidis planktonic cells growth and biofilm formation. The secondary aim is to find these combinations effect on the production of its virulence factors. PTE was found to be effective in inhibition of its planktonic cells with MIC80 values 25-37.5 mg l-1. Simultaneously, it decreased the metabolic activity of biofilm cells and was especially effective on a clinical isolate (MBIC80 = 35 mg l-1) in contrast to the conventional antibiotics. In combination, PTE helped the antibiotics to overcome the tolerance of S. epidermidis biofilm cells (5 mg l-1 of each antibiotic with 49 mg l-1 PTE caused more than 85% inhibition of metabolic activity). It permeabilized cytoplasmic membrane of S. epidermidis cells and altered their surface hydrophobicity. Therefore, PTE has a great potential to enhance antibiotics action in the treatment of infections caused by this pathogen.
Collapse
|
47
|
Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK. Thirty years of VRE in Germany - "expect the unexpected": The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updat 2020; 53:100732. [PMID: 33189998 DOI: 10.1016/j.drup.2020.100732] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Enterococci are commensals of the intestinal tract of many animals and humans. Of the various known and still unnamed new enterococcal species, only isolates of Enterococcus faecium and Enterococcus faecalis have received increased medical and public health attention. According to textbook knowledge, the majority of infections are caused by E. faecalis. In recent decades, the number of enterococcal infections has increased, with the increase being exclusively associated with a rising number of nosocomial E. faecium infections. This increase has been accompanied by the dissemination of certain hospital-acquired strain variants and an alarming progress in the development of antibiotic resistance namely vancomycin resistance. With this review we focus on a description of the specific situation of vancomycin resistance among clinical E. faecium isolates in Germany over the past 30 years. The present review describes three VRE episodes in Germany, each of which is framed by the beginning and end of the respective decade. The first episode is specified by the first appearance of VRE in 1990 and a country-wide spread of specific vanA-type VRE strains (ST117/CT24) until the late 1990s. The second decade was initially marked by regional clusters and VRE outbreaks in hospitals in South-Western Germany in 2004 and 2005, mainly caused by vanA-type VRE of ST203. Against the background of a certain "basic level" of VRE prevalence throughout Germany, an early shift from the vanA genotype to the vanB genotype in clinical isolates already occurred at the end of the 2000s without much notice. With the beginning of the third decade in 2010, VRE rates in Germany have permanently increased, first in some federal states and soon after country-wide. Besides an increase in VRE prevalence, this decade was marked by a sharp increase in vanB-type resistance and a dominance of a few, novel strain variants like ST192 and later on ST117 (CT71, CT469) and ST80 (CT1065). The largest VRE outbreak, which involved about 2,900 patients and lasted over three years, was caused by a novel and until that time, unknown strain type of ST80/CT1013 (vanB). Across all periods, VRE outbreaks were mainly oligoclonal and strain types varied over space (hospital wards) and time. The spread of VRE strains obviously respects political borders; for instance, both vancomycin-variable enterococci which were highly prevalent in Denmark and ST796 VRE which successfully disseminated in Australia and Switzerland, were still completely absent among German hospital patients, until to date.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany.
| | - Bernd Neumann
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | - Robert E Weber
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | | | | | - Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| |
Collapse
|
48
|
Neher TP, Ma L, Moorman TB, Howe A, Soupir ML. Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140224. [PMID: 32806354 DOI: 10.1016/j.scitotenv.2020.140224] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters.
Collapse
Affiliation(s)
- Timothy P Neher
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| | - Lanying Ma
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Thomas B Moorman
- National Laboratory for Agriculture and the Environment, USDA-ARS, IA, United States
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Michelle L Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
49
|
Antimicrobial Resistance Gene Detection and Plasmid Typing Among Multidrug Resistant Enterococci Isolated from Freshwater Environment. Microorganisms 2020; 8:microorganisms8091338. [PMID: 32887339 PMCID: PMC7563215 DOI: 10.3390/microorganisms8091338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
In this study, mechanisms of antimicrobial resistance (AR) as well as the abundance and diversity of plasmids were determined among multidrug resistant (MDR) enterococci from surface water in GA, USA. A total of 51 enterococci isolates were screened for the presence of 27 AR genes conferring resistance to ciprofloxacin, erythromycin, tylosin, kanamycin, streptomycin, lincomycin, Quinupristin/Dalfopristin (Q/D), and tetracycline. A plasmid classification system based on replication genes was used to detect 19 defined Gram-positive plasmid replicon families. Twelve genes were identified as conferring resistance to erythromycin and tylosin (erm(B) and erm(C)), kanamycin (aph(3′)-IIIa), streptomycin (ant(6)-Ia), lincomycin (lnu(B)), Q/D (vat(E)), ciprofloxacin (qnrE. faecalis), and tetracycline (tet(K), tet(L), tet(M), tet(O) and tet(S)). Twelve different rep-families were identified in two-thirds of the isolates. While AR genes commonly found in human and animals were detected in this study among environmental enterococci, resistance genes could not be determined for many of the isolates, which indicates that diverse AR mechanisms exist among enterococci, and the understanding of AR mechanisms for environmental enterococci is limited. Diverse rep-families were identified among the enterococci recovered from the aquatic environment, and these rep-families appear to be quite different from those recovered from other sources. This work expands knowledge of AR gene reservoirs and enterococcal plasmids across a wider range of environments.
Collapse
|
50
|
Comerlato CB, Ritter AC, Miyamoto KN, Brandelli A. Proteomic study of Enterococcus durans LAB18S growing on prebiotic oligosaccharides. Food Microbiol 2020; 89:103430. [DOI: 10.1016/j.fm.2020.103430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
|