1
|
Verçosa BLA, Muniz-Junqueira MI, Mineiro ALBB, Melo MN, Vasconcelos AC. Enhanced apoptosis and inflammation allied with autophagic and apoptotic Leishmania amastigotes in the seemingly undamaged ear skin of clinically affected dogs with canine visceral Leishmaniasis. Cell Immunol 2025; 408:104909. [PMID: 39701006 DOI: 10.1016/j.cellimm.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Programmed cell death plays a relevant role in the pathogenesis of visceral Leishmaniasis. Apoptosis selects suitable parasites, regulating parasite density, whereas autophagy eliminates pathogens. This study aimed to assess the inflammation and apoptosis in inflammatory cells and presents a unique description of the presence of autophagic and apoptotic Leishmania amastigotes in naturally Leishmania-infected dogs. Fragments from seemingly undamaged ear skin of sixteen Leishmania-infected dogs and seven uninfected dogs were evaluated through histomorphometry, ultrastructural, immunohistochemical and transmission electron microscopy (TEM) analyses. Leishmania amastigotes were present on seemingly undamaged ear skin only in clinically affected dogs. Parasite load, morphometrical parameters of inflammation and apoptotic index of inflammatory cells were higher in clinically affected animals and were related to clinical manifestations. Apoptotic index and morphometric parameters of the inflammatory infiltrate in undamaged ear skin were positively correlated with parasite load. Apoptotic and non-apoptotic Leishmania amastigotes were observed within neutrophils and macrophages. Leishmania amastigotes were positive for Bax, a marker for apoptosis, by immunohistochemistry. Morphological characteristics of apoptosis and autophagy in Leishmania amastigotes were observed only in phagocytes of clinically affected dogs. Positive correlations were found between histomorphometry and clinical manifestations. Our results showed that apoptosis and autophagy in Leishmania amastigotes may be related to both the increase in parasite load and apoptotic index in inflammatory cells, and with the intensity of the inflammatory response in clinically affected dogs. Thus, our study suggests that apoptotic and autophagy Leishmania within phagocytes may have facilitate the survival of the parasite and it appears to play an important role in the process of Leishmania infection.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil; Faculdade de Ciências da Saúde Pitágoras, Campus Codó, Codó, Maranhão, Brazil.
| | | | - Ana Lys Bezerra Barradas Mineiro
- Departamento de Clínica e Cirurgia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Onwah SS, Uzonna JE, Ghavami S. Assessment of Autophagy in Leishmania Parasites. Methods Mol Biol 2025; 2879:207-217. [PMID: 38441724 DOI: 10.1007/7651_2024_517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada.
- Academy of Silesia, Faculty of Medicine, Katowice, Poland.
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Dong G, Douanne N, Fernandez-Prada C, Olivier M. Unique Leishmania mexicana clones secrete populations of extracellular vesicles with unique protein profile and variable infectious capability. Front Cell Infect Microbiol 2024; 14:1443262. [PMID: 39703372 PMCID: PMC11655471 DOI: 10.3389/fcimb.2024.1443262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
The study of extracellular vesicles has become an incredibly important field of study, but the inherent heterogeneity of these vesicles continues to make their study challenging. The genetic variability and well-documented protocols for the growth and vesicle isolation from Leishmania parasites provide a unique opportunity to compare the heterogeneity of different populations secreted by Leishmania clones. Leishmania mexicana was cultured on solid SDM agar plates and 8 clonal colonies were selected. The EVs collected from the liquid cultures of these 8 clones were assessed by NTA, TEM, and proteomic analysis. We found that all 8 clonal L. mexicana cultures were visually indistinguishable from each other and had similar growth rate, and these physical similarities extended to their EVs. However, proteomic analysis reveals that the EVs collected have unique protein profiles compared to each other and EVs isolated from a heterogeneous liquid culture of L. mexicana. We selected 3 clonal EVs for further mouse infection experiments and found that EVs from CL7 L. mexicana consistently caused reduced footpad swelling in C57BL6 mice footpads compared to EVs from CL1, CL8, and heterogenous L. mexicana. This trend was not observed when infecting Balb/C mice and C57BL6 with the parasites alone, with only CL1 L. mexicana causing significantly increased infection in Balb/c mice. Our results together show that EVs isolated from different clonal colonies of L. mexicana have distinct differences in protein cargo which can lead to varying outcomes on Leishmania infection. Further evaluation will be needed to determine the underlying mechanisms behind this and verify that differences observed in infectivity are directly caused by variations between our L. mexicana clones, especially genetic sequencing and immunoblotting to validate our results.
Collapse
Affiliation(s)
- George Dong
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - Noélie Douanne
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Christopher Fernandez-Prada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Martin Olivier
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| |
Collapse
|
4
|
Deepachandi B, Weerasinghe S, Gunathileka H, Soysa P, Siriwardana Y. In vitro growth of Leishmania parasites from biopsy samples of suspected cutaneous and visceral leishmaniasis cases in Sri Lanka: An observational study. Exp Parasitol 2024; 259:108710. [PMID: 38350521 DOI: 10.1016/j.exppara.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Sri Lanka reports a large focus of Leishmania donovani caused cutaneous leishmaniasis (CL). Subsequent emergence of visceral leishmaniasis (VL) was also reported recently. Expansion of the on-going disease outbreak and many complexities indicate urgent need to enhance early case detection methods. In vitro cultivation (IVC) of parasites causing visceral leishmaniasis (VL) is important for disease confirmation and to obtain sufficient quantities of parasites required in many scientific studies. IVC is carried out as a useful second line investigation for direct microscopy negative patients with CL in this setting. Along with the emergence of VL, current study was carried out to evaluate in vitro growth of local VL parasites and to identify their differences associated with in vitro growth characteristics. Routine parasitological diagnostic methods, i.e., light microscopy (LM), polymerase chain reaction (PCR) were used for confirmation of suspected cases. Lesion samples from 125 suspected CL cases and bone marrow or splenic aspirations from 125 suspected VL patients were used to inoculate IVCs. Media M199 (about 70 μl) supplemented with 15-20% of heat inactivated fetal bovine serum was used for initial culturing procedures in capillaries. Capillary cultures were monitored daily. Total of 44 different compositions/conditions were used for evaluating in vitro growth of VL causing parasite. Daily records on parasite counts, morphological appearance (size, shape, and wriggly movements) were maintained. In vitro transformation of Leishmania promastigotes to amastigotes and outcome of the attempts on recovery of live Leishmania from culture stabilates was also compared between CL and VL parasites. Proportion of cultures showing a transformation of promastigotes were 40/45 (88.9%) and 4/10 (40.0%) for CL and VL respectively. In the transformed cultures, parasites showing typical shape, size and movement patterns were less in VL (1/4, 25.0%) compared to CL (28/40, 70.0%). CL cultures showed a growth up to mass culturing level with mean duration of two weeks while it was about five weeks for VL cultures. Proportion of cultures that reached a parasite density of 1 × 106 cells/ml (proceeded to mass cultures) was significantly low in VL (4/10, 40%) as compared to CL (28/40, 70.0%). None of media compositions/conditions were successful for mass culturing of VL parasites while all of them were shown to be useful for growing CL strains. Also in vitro transformation to amastigote form and recovering of culture stabilates were not successful compared to CL. There were clear differences between in vitro growth of Leishmania parasites causing local CL and VL. Further studies are recommended for optimization of in vitro culturing of VL parasite which will be invaluable to enhance case detection in future.
Collapse
Affiliation(s)
- Bhagya Deepachandi
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka; Department of Biomedical Science, Faculty of Science, NSBM Green University, Homagama, 10206, Sri Lanka
| | - Sudath Weerasinghe
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Himali Gunathileka
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka
| | - Preethi Soysa
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 00800, Sri Lanka
| | - Yamuna Siriwardana
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, 00800, Sri Lanka.
| |
Collapse
|
5
|
Lourenço EMG, da Silva F, das Neves AR, Bonfá IS, Ferreira AMT, Menezes ACG, da Silva MEC, Dos Santos JT, Martines MAU, Perdomo RT, Toffoli-Kadri MC, G Barbosa E, Saba S, Beatriz A, Rafique J, de Arruda CCP, de Lima DP. Investigation of the Potential Targets behind the Promising and Highly Selective Antileishmanial Action of Synthetic Flavonoid Derivatives. ACS Infect Dis 2023; 9:2048-2061. [PMID: 37772925 DOI: 10.1021/acsinfecdis.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Leishmaniases are among the neglected tropical diseases that still cause devastating health, social, and economic consequences to more than 350 million people worldwide. Despite efforts to combat these vector-borne diseases, their incidence does not decrease. Meanwhile, current antileishmanial drugs are old and highly toxic, and safer presentations are unaffordable to the most severely affected human populations. In a previous study by our research group, we synthesized 17 flavonoid derivatives that demonstrated impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y. These cysteine proteases are highly expressed in the amastigote stage, the target form of the parasite. However, although these compounds have been already described in the literature, until now, the amastigote effect of any of these molecules has not been proven. In this work, we aimed to deeply analyze the antileishmanial action of this set of synthetic flavonoid derivatives by correlating their ability to inhibit cysteine proteases with the action against the parasite. Among all the synthesized flavonoid derivatives, 11 of them showed high activity against amastigotes of Leishmania amazonensis, also providing safety to mammalian host cells. Furthermore, the high production of nitric oxide by infected cells treated with the most active cysteine protease B (CPB) inhibitors confirms a potential immunomodulatory response of macrophages. Besides, considering flavonoids as multitarget drugs, we also investigated other potential antileishmanial mechanisms. The most active compounds were selected to investigate another potential biological pathway behind their antileishmanial action using flow cytometry analysis. The results confirmed an oxidative stress after 48 h of treatment. These data represent an important step toward the validation of CPB as an antileishmanial target, as well as aiding in new drug discovery studies based on this protease.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Fernanda da Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Amarith R das Neves
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Iluska S Bonfá
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Alda Maria T Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Adriana C G Menezes
- Biotério Central, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Maria E C da Silva
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jéssica T Dos Santos
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Marco A U Martines
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Renata T Perdomo
- Laboratório de Biologia Molecular e Cultura de Células, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, 59012-570, RN, Brazil
| | - Sumbal Saba
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Adilson Beatriz
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jamal Rafique
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Carla C P de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| |
Collapse
|
6
|
Oliveira AS, Aredes-Riguetti LM, Pereira BAS, Alves CR, Souza-Silva F. Degron Pathways and Leishmaniasis: Debating Potential Roles of Leishmania spp. Proteases Activity on Guiding Hosts Immune Response and Their Relevance to the Development of Vaccines. Vaccines (Basel) 2023; 11:1015. [PMID: 37376405 DOI: 10.3390/vaccines11061015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/29/2023] Open
Abstract
Degrons are short peptide sequences that signalize target sites for protein degradation by proteases. Herein, we bring forth the discussion on degrons present in proteins related to the immune system of Mus musculus that are potential targets for cysteine and serine proteases of Leishmania spp. and their possible roles on host immune regulation by parasites. The Merops database was used to identify protease substrates and proteases sequence motifs, while MAST/MEME Suite was applied to find degron motifs in murine cytokines (IFN-y, IL-4, IL-5, IL-13, IL-17) and transcription factors (NF-kappaB, STAT-1, AP-1, CREB, and BACH2). STRING tool was used to construct an interaction network for the immune factors and SWISS-MODEL server to generate three-dimensional models of proteins. In silico assays confirm the occurrence of degrons in the selected immune response factors. Further analyses were conducted only in those with resolved three-dimensional structures. The predicted interaction network of degron-containing M. musculus proteins shows the possibility that the specific activity of parasite proteases could interfere with the trend of Th1/Th2 immune responses. Data suggest that degrons may play a role in the immune responses in leishmaniases as targets for parasite proteases activity, directing the degradation of specific immune-related factors.
Collapse
Affiliation(s)
- Adriane Silva Oliveira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Lara Mata Aredes-Riguetti
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | | | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil
- Faculdade de Ciências Biológicas e da Saúde, Universidade Iguaçu, Avenida Abílio Augusto Távora, 2134, Dom Rodrigo, Nova Iguaçu 26260-100, RJ, Brazil
| |
Collapse
|
7
|
Guhe V, Ingale P, Tambekar A, Singh S. Systems biology of autophagy in leishmanial infection and its diverse role in precision medicine. Front Mol Biosci 2023; 10:1113249. [PMID: 37152895 PMCID: PMC10160387 DOI: 10.3389/fmolb.2023.1113249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023] Open
Abstract
Autophagy is a contentious issue in leishmaniasis and is emerging as a promising therapeutic regimen. Published research on the impact of autophagic regulation on Leishmania survival is inconclusive, despite numerous pieces of evidence that Leishmania spp. triggers autophagy in a variety of cell types. The mechanistic approach is poorly understood in the Leishmania parasite as autophagy is significant in both Leishmania and the host. Herein, this review discusses the autophagy proteins that are being investigated as potential therapeutic targets, the connection between autophagy and lipid metabolism, and microRNAs that regulate autophagy and lipid metabolism. It also highlights the use of systems biology to develop novel autophagy-dependent therapeutics for leishmaniasis by utilizing artificial intelligence (AI), machine learning (ML), mathematical modeling, network analysis, and other computational methods. Additionally, we have shown many databases for autophagy and metabolism in Leishmania parasites that suggest potential therapeutic targets for intricate signaling in the autophagy system. In a nutshell, the detailed understanding of the dynamics of autophagy in conjunction with lipids and miRNAs unfolds larger dimensions for future research.
Collapse
|
8
|
Scariot DB, Staneviciute A, Zhu J, Li X, Scott EA, Engman DM. Leishmaniasis and Chagas disease: Is there hope in nanotechnology to fight neglected tropical diseases? Front Cell Infect Microbiol 2022; 12:1000972. [PMID: 36189341 PMCID: PMC9523166 DOI: 10.3389/fcimb.2022.1000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is revolutionizing many sectors of science, from food preservation to healthcare to energy applications. Since 1995, when the first nanomedicines started being commercialized, drug developers have relied on nanotechnology to improve the pharmacokinetic properties of bioactive molecules. The development of advanced nanomaterials has greatly enhanced drug discovery through improved pharmacotherapeutic effects and reduction of toxicity and side effects. Therefore, highly toxic treatments such as cancer chemotherapy, have benefited from nanotechnology. Considering the toxicity of the few therapeutic options to treat neglected tropical diseases, such as leishmaniasis and Chagas disease, nanotechnology has also been explored as a potential innovation to treat these diseases. However, despite the significant research progress over the years, the benefits of nanotechnology for both diseases are still limited to preliminary animal studies, raising the question about the clinical utility of nanomedicines in this field. From this perspective, this review aims to discuss recent nanotechnological developments, the advantages of nanoformulations over current leishmanicidal and trypanocidal drugs, limitations of nano-based drugs, and research gaps that still must be filled to make these novel drug delivery systems a reality for leishmaniasis and Chagas disease treatment.
Collapse
Affiliation(s)
- Debora B. Scariot
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Jennifer Zhu
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - Xiaomo Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Pathology, Northwestern University, Chicago, IL, United States
| | - Evan A. Scott
- Department of Biomedical Engineering, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, Evanston and Chicago, IL, United States
| | - David M. Engman
- Department of Pathology, Northwestern University, Chicago, IL, United States
| |
Collapse
|
9
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
10
|
Shokouhy M, Sarvnaz H, Taslimi Y, Lajevardi MS, Habibzadeh S, Mizbani A, Shekari F, Behbahani M, Torrecilhas AC, Rafati S. Isolation, characterization, and functional study of extracellular vesicles derived from Leishmania tarentolae. Front Cell Infect Microbiol 2022; 12:921410. [PMID: 35992172 PMCID: PMC9381964 DOI: 10.3389/fcimb.2022.921410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmania (L.) species are protozoan parasites with a complex life cycle consisting of a number of developmental forms that alternate between the sand fly vector and their host. The non-pathogenic species L. tarentolae is not able to induce an active infection in a human host. It has been observed that, in pathogenic species, extracellular vesicles (EVs) could exacerbate the infection. However, so far, there is no report on the identification, isolation, and characterization of L. tarentolae EVs. In this study, we have isolated and characterized EVs from L. tarentolaeGFP+ (tEVs) along with L. majorGFP+ as a reference and positive control. The EVs secreted by these two species demonstrated similar particle size distribution (approximately 200 nm) in scanning electron microscopy and nanoparticle tracking analysis. Moreover, the said EVs showed similar protein content, and GFP and GP63 proteins were detected in both using dot blot analysis. Furthermore, we could detect Leishmania-derived GP63 protein in THP-1 cells treated with tEVs. Interestingly, we observed a significant increase in the production of IFN-γ, TNF-α, and IL-1β, while there were no significant differences in IL-6 levels in THP-1 cells treated with tEVs following an infection with L. major compared with another group of macrophages that were treated with L. major EVs prior to the infection. Another exciting observation of this study was a significant decrease in parasite load in tEV-treated Leishmania-infected macrophages. In addition, in comparison with another group of Leishmania-infected macrophages which was not exposed to any EVs, tEV managed to increase IFN-γ and decrease IL-6 and the parasite burden. In conclusion, we report for the first time that L. tarentolae can release EVs and provide evidence that tEVs are able to control the infection in human macrophages, making them a great potential platform for drug delivery, at least for parasitic infections.
Collapse
Affiliation(s)
- Mehrdad Shokouhy
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Hamzeh Sarvnaz
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Yasaman Taslimi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahya Sadat Lajevardi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Habibzadeh
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Mizbani
- Department of Health Science and Technology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology Cell Science, Research Center, Royan Institute for Stem Cell Biology and Technology, Academic center tor Education, Culture and Research (ACECR), Tehran, Iran
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
- *Correspondence: Ana Claudia Torrecilhas, ; Sima Rafati, ;
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Ana Claudia Torrecilhas, ; Sima Rafati, ;
| |
Collapse
|
11
|
New Vistas in the Biology of the Flagellum—Leishmania Parasites. Pathogens 2022; 11:pathogens11040447. [PMID: 35456123 PMCID: PMC9024700 DOI: 10.3390/pathogens11040447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
Like other kinetoplastid protozoa, the flagellum in Leishmania parasites plays central roles throughout the life cycle. Discoveries over the past decade have begun to elucidate flagellar functions at the molecular level in both the insect vector stage promastigotes and intra-macrophage amastigotes. This focused review will highlight recent advances that contribute to understanding flagellar function in the various biological contexts encountered by Leishmania parasites.
Collapse
|
12
|
Functional characterization of the LdNAGD gene in Leishmania donovani. Microbiol Res 2021; 251:126830. [PMID: 34385082 DOI: 10.1016/j.micres.2021.126830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/22/2022]
Abstract
The N-acetyl glucosamine catabolic pathway has been well established as a critically essential pathway for the survival and pathogenesis of several intracellular pathogens. The intracellular form of Leishmania donovani resides inside the parasitophorous vacuole of macrophages. Recent studies have shown that amino sugars, such as N-acetyl glucosamine, are released from the turnover of host macromolecules, such as glycosaminoglycans, glycoproteins, and proteoglycans, inside the parasitophorous vacuole. Three enzymes, hexokinase (Hxk), N-acetyl glucosamine-6-phosphate deacetylase (NAGD) and glucosamine-6-phosphate deaminase (GND), are sequentially involved in the catabolism of GlcNAc. The Leishmania donovani genome encodes all enzymes of the GlcNAc catabolic pathway. Here, we investigated the role of the GlcNAc catabolic pathway in the proliferation and survival of L. donovani by characterizing the NAGD gene of this pathway. Recombinant LdNAGD displayed deacetylation activity and was localized inside the glycosomes. LdNAGD gene deletion impaired GlcNAc catabolism and was indispensable for the viability of L. donovani in media containing GlcNAc as the sole carbon source. Furthermore, these Δnagd cells showed attenuated virulence in THP-1 cells and a significantly reduced proliferation rate compared to wild type (WT) cells inside THP-1 cells. Our data suggested that LdNAGD is important for the intracellular proliferation of L. donovani and may represent a potential drug target.
Collapse
|
13
|
Bel Hadj Ali I, Chouaieb H, Saadi Ben Aoun Y, Harigua-Souiai E, Souguir H, Yaacoub A, El Dbouni O, Harrat Z, Mukhtar MM, Ben Said M, Haddad N, Fathallah-Mili A, Guizani I. Dipeptidyl peptidase III as a DNA marker to investigate epidemiology and taxonomy of Old World Leishmania species. PLoS Negl Trop Dis 2021; 15:e0009530. [PMID: 34310607 PMCID: PMC8341715 DOI: 10.1371/journal.pntd.0009530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/05/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites' growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species. METHODOLOGY Orthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples. FINDINGS Sequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex. A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples. CONCLUSION The study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.
Collapse
Affiliation(s)
- Insaf Bel Hadj Ali
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Hamed Chouaieb
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Yusr Saadi Ben Aoun
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Hejer Souguir
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Alia Yaacoub
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Oussaïma El Dbouni
- Department of Infectious Diseases, Rafik Hariri Hospital, Beirut, Lebanon
| | - Zoubir Harrat
- Laboratoire d’Eco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d’Algérie, Algiers, Algeria
| | | | - Moncef Ben Said
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Nabil Haddad
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health Lebanese University, Hadath, Lebanon
| | - Akila Fathallah-Mili
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| |
Collapse
|
14
|
Tirado TC, Bavia L, Ambrosio AR, Campos MP, de Almeida Santiago M, Messias-Reason IJ, Figueiredo FB. A comparative approach on the activation of the three complement system pathways in different hosts of Visceral Leishmaniasis after stimulation with Leishmania infantum. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:104061. [PMID: 33667529 DOI: 10.1016/j.dci.2021.104061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Visceral Leishmaniasis is an infectious disease that affects mainly humans and dogs, with the latter being important reservoirs of the parasite. Conversely, cats are naturally resistant. The immune system can offer important explanation to this problematic as there is no evidence on the role that the complement system plays in cats. In this context, effect of the complement system from human, dog and cat sera on Leishmania infantum was evaluated. Activation of the classical, alternative and lectin pathways was assessed through hemolytic and ELISA assays. Lytic activity of the complement on the parasite's viability was investigated by Transmission Electron Microscopy and Flow Cytometry. Complement proteins were more consumed in dog serum on the classical and alternative pathways, leading to less hemolytic activity, and only in cat serum they were consumed on the lectin pathway when incubated with L. infantum. Lytic activity on the parasite's surface was more accentuated in human serum, and varied throughout the parasite's developmental stages.
Collapse
Affiliation(s)
- Thais Cristina Tirado
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCruz), Curitiba, Paraná, Brazil.
| | - Lorena Bavia
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Altair Rogerio Ambrosio
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Monique Paiva Campos
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCruz), Curitiba, Paraná, Brazil
| | | | - Iara Jose Messias-Reason
- Laboratório de Imunopatologia Molecular, Departamento de Patologia Médica, Universidade Federal Do Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Fabiano Borges Figueiredo
- Laboratório de Biologia Celular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCruz), Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
17-AAG-Induced Activation of the Autophagic Pathway in Leishmania Is Associated with Parasite Death. Microorganisms 2021; 9:microorganisms9051089. [PMID: 34069389 PMCID: PMC8158731 DOI: 10.3390/microorganisms9051089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
The heat shock protein 90 (Hsp90) is thought to be an excellent drug target against parasitic diseases. The leishmanicidal effect of an Hsp90 inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG), was previously demonstrated in both in vitro and in vivo models of cutaneous leishmaniasis. Parasite death was shown to occur in association with severe ultrastructural alterations in Leishmania, suggestive of autophagic activation. We hypothesized that 17-AAG treatment results in the abnormal activation of the autophagic pathway, leading to parasite death. To elucidate this process, experiments were performed using transgenic parasites with GFP-ATG8-labelled autophagosomes. Mutant parasites treated with 17-AAG exhibited autophagosomes that did not entrap cargo, such as glycosomes, or fuse with lysosomes. ATG5-knockout (Δatg5) parasites, which are incapable of forming autophagosomes, demonstrated lower sensitivity to 17-AAG-induced cell death when compared to wild-type (WT) Leishmania, further supporting the role of autophagy in 17-AAG-induced cell death. In addition, Hsp90 inhibition resulted in greater accumulation of ubiquitylated proteins in both WT- and Δatg5-treated parasites compared to controls, in the absence of proteasome overload. In conjunction with previously described ultrastructural alterations, herein we present evidence that treatment with 17-AAG causes abnormal activation of the autophagic pathway, resulting in the formation of immature autophagosomes and, consequently, incidental parasite death.
Collapse
|
16
|
The Autophagy Machinery in Human-Parasitic Protists; Diverse Functions for Universally Conserved Proteins. Cells 2021; 10:cells10051258. [PMID: 34069694 PMCID: PMC8161075 DOI: 10.3390/cells10051258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a eukaryotic cellular machinery that is able to degrade large intracellular components, including organelles, and plays a pivotal role in cellular homeostasis. Target materials are enclosed by a double membrane vesicle called autophagosome, whose formation is coordinated by autophagy-related proteins (ATGs). Studies of yeast and Metazoa have identified approximately 40 ATGs. Genome projects for unicellular eukaryotes revealed that some ATGs are conserved in all eukaryotic supergroups but others have arisen or were lost during evolution in some specific lineages. In spite of an apparent reduction in the ATG molecular machinery found in parasitic protists, it has become clear that ATGs play an important role in stage differentiation or organelle maintenance, sometimes with an original function that is unrelated to canonical degradative autophagy. In this review, we aim to briefly summarize the current state of knowledge in parasitic protists, in the light of the latest important findings from more canonical model organisms. Determining the roles of ATGs and the diversity of their functions in various lineages is an important challenge for understanding the evolutionary background of autophagy.
Collapse
|
17
|
Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, Larson TR, Plevin MJ, Cruz AK, Walrad PB. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res 2020; 48:5511-5526. [PMID: 32365184 PMCID: PMC7261171 DOI: 10.1093/nar/gkaa211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.
Collapse
Affiliation(s)
- Tiago R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Adam A Dowle
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Ewan Parry
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Karen Hogg
- Imaging and Cytometry Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Foteini Kolokousi
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Michael J Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Angela K Cruz
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
18
|
Damianou A, Burge RJ, Catta-Preta CMC, Geoghegan V, Nievas YR, Newling K, Brown E, Burchmore R, Rodenko B, Mottram JC. Essential roles for deubiquitination in Leishmania life cycle progression. PLoS Pathog 2020; 16:e1008455. [PMID: 32544189 PMCID: PMC7319358 DOI: 10.1371/journal.ppat.1008455] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/26/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.
Collapse
Affiliation(s)
- Andreas Damianou
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rebecca J. Burge
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | | | - Vincent Geoghegan
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Y. Romina Nievas
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Katherine Newling
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Elaine Brown
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| | - Richard Burchmore
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Boris Rodenko
- UbiQ Bio BV, Amsterdam Science Park, The Netherlands
| | - Jeremy C. Mottram
- York Biomedical Research Institute and Department of Biology, University of York, United Kingdom
| |
Collapse
|
19
|
Cabello-Donayre M, Orrego LM, Herráez E, Vargas P, Martínez-García M, Campos-Salinas J, Pérez-Victoria I, Vicente B, Marín JJG, Pérez-Victoria JM. Leishmania heme uptake involves LmFLVCRb, a novel porphyrin transporter essential for the parasite. Cell Mol Life Sci 2020; 77:1827-1845. [PMID: 31372684 PMCID: PMC11104922 DOI: 10.1007/s00018-019-03258-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/05/2023]
Abstract
Leishmaniasis comprises a group of neglected diseases caused by the protozoan parasite Leishmania spp. As is the case for other trypanosomatid parasites, Leishmania is auxotrophic for heme and must scavenge this essential compound from its human host. In mammals, the SLC transporter FLVCR2 mediates heme import across the plasma membrane. Herein we identify and characterize Leishmania major FLVCRb (LmFLVCRb), the first member of the FLVCR family studied in a non-metazoan organism. This protein localizes to the plasma membrane of the parasite and is able to bind heme. LmFLVCRb levels in Leishmania, which are modulated by overexpression thereof or the abrogation of an LmFLVCRb allele, correlate with the ability of the parasite to take up porphyrins. Moreover, injection of LmFLVCRb cRNA to Xenopus laevis oocytes provides these cells with the ability to take up heme. This process is temperature dependent, requires monovalent ions and is inhibited at basic pH, characteristics shared by the uptake of heme by Leishmania parasites. Interestingly, LmFLVCRb is essential as CRISPR/Cas9-mediated knockout parasites were only obtained in the presence of an episomal copy of the gene. In addition, deletion of just one of the alleles of the LmFLVCRb gene markedly impairs parasite replication as intracellular amastigotes as well as its virulence in an in vivo model of cutaneous leishmaniasis. Collectively, these results show that Leishmania parasites can rescue heme through plasma membrane transporter LFLVCRb, which could constitute a novel target for therapeutic intervention against Leishmania and probably other trypanosomatid parasites in which FLVCR genes are also present.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Elisa Herráez
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Paola Vargas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, PTS Granada, Granada, Spain
| | - Belén Vicente
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - José J G Marín
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Granada, Spain.
| |
Collapse
|
20
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
21
|
Fernandes ACS, Soares DC, Neves RFC, Koeller CM, Heise N, Adade CM, Frases S, Meyer-Fernandes JR, Saraiva EM, Souto-Padrón T. Endocytosis and Exocytosis in Leishmania amazonensis Are Modulated by Bromoenol Lactone. Front Cell Infect Microbiol 2020; 10:39. [PMID: 32117812 PMCID: PMC7020749 DOI: 10.3389/fcimb.2020.00039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
In the protozoan pathogen Leishmania, endocytosis, and exocytosis occur mainly in the small area of the flagellar pocket membrane, which makes this parasite an interesting model of strikingly polarized internalization and secretion. Moreover, little is known about vesicle recognition and fusion mechanisms, which are essential for both endo/exocytosis in this parasite. In other cell types, vesicle fusion events require the activity of phospholipase A2 (PLA2), including Ca2+-independent iPLA2 and soluble, Ca2+-dependent sPLA2. Here, we studied the role of bromoenol lactone (BEL) inhibition of endo/exocytosis in promastigotes of Leishmania amazonensis. PLA2 activities were assayed in intact parasites, in whole conditioned media, and in soluble and extracellular vesicles (EVs) conditioned media fractions. BEL did not affect the viability of promastigotes, but reduced the differentiation into metacyclic forms. Intact parasites and EVs had BEL-sensitive iPLA2 activity. BEL treatment reduced total EVs secretion, as evidenced by reduced total protein concentration, as well as its size distribution and vesicles in the flagellar pocket of treated parasites as observed by TEM. Membrane proteins, such as acid phosphatases and GP63, became concentrated in the cytoplasm, mainly in multivesicular tubules of the endocytic pathway. BEL also prevented the endocytosis of BSA, transferrin and ConA, with the accumulation of these markers in the flagellar pocket. These results suggested that the activity inhibited by BEL, which is one of the irreversible inhibitors of iPLA2, is required for both endocytosis and exocytosis in promastigotes of L. amazonensis.
Collapse
Affiliation(s)
- Anne C S Fernandes
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid C Soares
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberta F C Neves
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M Koeller
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila M Adade
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Meyer-Fernandes
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elvira M Saraiva
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaïs Souto-Padrón
- Centro de Ciências da Saúde, Instituto de Microbiologia Paulo de Góes, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Wang Z, Wheeler RJ, Sunter JD. Lysosome assembly and disassembly changes endocytosis rate through the Leishmania cell cycle. Microbiologyopen 2019; 9:e969. [PMID: 31743959 PMCID: PMC7002101 DOI: 10.1002/mbo3.969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/03/2023] Open
Abstract
The Leishmania lysosome has an atypical structure, consisting of an elongated vesicle‐filled tubule running along the anterior–posterior axis of the cell, which is termed the multivesicular tubule (MVT) lysosome. Alongside, the MVT lysosome is one or more microtubules, the lysosomal microtubule(s). Previous work indicated there were cell cycle‐related changes in MVT lysosome organization; however, these only provided snapshots and did not connect the changes in the lysosomal microtubule(s) or lysosomal function. Using mNeonGreen tagged cysteine peptidase A and SPEF1 as markers of the MVT lysosome and lysosomal microtubule(s), we examined the dynamics of these structures through the cell cycle. Both the MVT lysosome and lysosomal microtubule(s) elongated at the beginning of the cell cycle before plateauing and then disassembling in late G2 before cytokinesis. Moreover, the endocytic rate in cells where the MVT lysosome and lysosomal microtubule(s) had disassembled was extremely low. The dynamic nature of the MVT lysosome and lysosomal microtubule(s) parallels that of the Trypanosoma cruzi cytostome/cytopharynx, which also has a similar membrane tubule structure with associated microtubules. As the cytostome/cytopharynx is an ancestral feature of the kinetoplastids, this suggests that the Leishmania MVT lysosome and lysosomal microtubule(s) are a reduced cytostome/cytopharynx‐like feature.
Collapse
Affiliation(s)
- Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Richard J Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Jack D Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
23
|
Grewal JS, Catta-Preta CM, Brown E, Anand J, Mottram JC. Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets. Biochimie 2019; 166:150-160. [DOI: 10.1016/j.biochi.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
24
|
Giri S, Shaha C. Leishmania donovani parasite requires Atg8 protein for infectivity and survival under stress. Cell Death Dis 2019; 10:808. [PMID: 31649242 PMCID: PMC6813314 DOI: 10.1038/s41419-019-2038-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
The importance of autophagy in parasites with a digenetic life cycle like Leishmania spp. is significant. The parasite survives as promastigotes in the insect gut and as immotile amastigotes in mammals. This study demonstrates increased autophagy in Leishmania parasite during progression of in vitro life cycle and upon exposure to stress stimuli like starvation, oxidative stress, and drugs. Autophagy inhibition during stress exposure increased cell death, indicating the importance of autophagy in cellular defense against adverse conditions. Atg8 protein, a homolog of mammalian autophagy protein LC3 is expressed in Leishmania parasite but its function remains unknown. Overexpression of Atg8 (Atg8-OE) rendered the parasites resistant to stress and capable of infecting macrophages in substantial numbers; however, disruption of the Atg8 gene (ΔAtg8) resulting in suppression of Atg8 protein expression, increased susceptibility to stress and reduced the capability to cause infection. A critical event in the Leishmania parasite lifecycle is the differentiation of promastigote forms to the disease causing amastigote forms. The failure of ΔAtg8 parasites lacking Atg8 protein to differentiate into amastigotes, unlike the Atg8-OE and vector-transfected parasites, clearly indicated Atg8 involvement in a crucial event. The inability of ΔAtg8 parasites to infect macrophages in vitro was verified in an in vivo mouse model of leishmaniases where infection could not be induced by the ΔAtg8 parasites. Autophagy is known to be involved in the remodeling of damaged organelles. The accumulation of Atg8 around damaged mitochondria suggested increase of autophagy in the vicinity of the organelle. This buildup was prevented when mitochondria generated reactive oxygen species that were quenched, suggesting them as possible signaling molecules for sensing mitochondrial instability. In summary, our study provides new evidences for a crucial role of Atg8 protein in sustaining Leishmania parasite survival during life cycle and stress exposure, differentiation to amastigotes, and their infective abilities.
Collapse
Affiliation(s)
- Sagnik Giri
- Cell Death and Differentiation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Chandrima Shaha
- Cell Death and Differentiation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
25
|
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13:e0007424. [PMID: 31344033 PMCID: PMC6657821 DOI: 10.1371/journal.pntd.0007424] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Dmitri A. Maslov
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| |
Collapse
|
26
|
Vandana, Dixit R, Tiwari R, Katyal A, Pandey KC. Metacaspases: Potential Drug Target Against Protozoan Parasites. Front Pharmacol 2019; 10:790. [PMID: 31379569 PMCID: PMC6657590 DOI: 10.3389/fphar.2019.00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Among the numerous strategies/targets for controlling infectious diseases, parasites-derived proteases receive prime attention due to their essential contribution to parasite growth and development. Parasites produce a broad array of proteases, which are required for parasite entry/invasion, modification/degradation of host proteins for their nourishment, and activation of inflammation that ensures their survival to maintain infection. Presently, extensive research is focused on unique proteases termed as "metacaspases" (MCAs) in relation to their versatile functions in plants and non-metazoans. Such unique MCAs proteases could be considered as a potential drug target against parasites due to their absence in the human host. MCAs are cysteine proteases, having Cys-His catalytic dyad present in fungi, protozoa, and plants. Studies so far indicated that MCAs are broadly associated with apoptosis-like cell death, growth, and stress regulation in different protozoa. The present review comprises the important research outcomes from our group and published literature, showing the variable properties and function of MCAs for therapeutic purpose against infectious diseases.
Collapse
Affiliation(s)
- Vandana
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Rajnikant Dixit
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
| | - Rajnarayan Tiwari
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anju Katyal
- Dr Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| | - Kailash C. Pandey
- Host-Parasite Interaction Biology Group, ICMR-National Institute of Malaria Research, New Delhi, India
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
27
|
Basmaciyan L, Azas N, Casanova M. A potential acetyltransferase involved in Leishmania major metacaspase-dependent cell death. Parasit Vectors 2019; 12:266. [PMID: 31133064 PMCID: PMC6537415 DOI: 10.1186/s13071-019-3526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Currently, there is no satisfactory treatment for leishmaniases, owing to the cost, mode of administration, side effects and to the increasing emergence of drug resistance. As a consequence, the proteins involved in Leishmania apoptosis seem a target of choice for the development of new therapeutic tools against these neglected tropical diseases. Indeed, Leishmania cell death, while phenotypically similar to mammalian apoptosis, is very peculiar, involving no homologue of the key mammalian apoptotic proteins such as caspases and death receptors. Furthermore, very few proteins involved in Leishmania apoptosis have been identified. RESULTS We identified a protein involved in Leishmania apoptosis from a library of genes overexpressed during Leishmania differentiation during which autophagy occurs. Indeed, the gene was overexpressed when L. major cell death was induced by curcumin or miltefosine. Furthermore, its overexpression increased L. major curcumin- and miltefosine-induced apoptosis. This gene, named LmjF.22.0600, whose expression is dependent on the expression of the metacaspase, another apoptotic protein, encodes a putative acetyltransferase. CONCLUSIONS This new protein, identified as being involved in Leishmania apoptosis, will contribute to a better understanding of Leishmania death, which is needed owing to the absence of a satisfactory treatment against leishmaniases. It will also allow a better understanding of the original apoptotic pathways of eukaryotes in general, while evidence of the existence of such pathways is accumulating.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
28
|
Banu SS, Meyer W, Ferreira-Paim K, Wang Q, Kuhls K, Cupolillo E, Schönian G, Lee R. A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. Int J Parasitol 2019; 49:555-567. [PMID: 31108098 DOI: 10.1016/j.ijpara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 01/29/2023]
Abstract
In the Indian subcontinent, infection with Leishmania donovani can cause fatal visceral leishmaniasis. Genetic variation in L. donovani is believed to occur rapidly from environmental changes and through selective drug pressures, thereby allowing continued disease occurrence in this region. All previous molecular markers that are commonly in use multilocus microsatellite typing and multilocus sequence typing, were monomorphic in L. donovani originating from the Indian subcontinent (with only a few exceptions) and hence are not suitable for this region. An multilocus sequence typing scheme consisting of a new set of seven housekeeping genes was developed in this study, based on recent findings from whole genome sequencing data. This new scheme was used to assess the genetic diversity amongst 22 autochthonous L. donovani isolates from Bangladesh. Nineteen additional isolates of the L. donovani complex (including sequences of L. donovani reference strain BPK282A1) from other countries were included for comparison. By using restriction fragment length polymorphism of the internal transcribed spacer 1 region (ITS1-RFLP) and ITS1 sequencing, all Bangladeshi isolates were confirmed to be L. donovani. Population genetic analyses of 41 isolates using the seven new MLST loci clearly separated L. donovani from Leishmania infantum. With this multilocus sequence typing scheme, seven genotypes were identified amongst Bangladeshi L. donovani isolates, and these isolates were found to be phylogenetically different compared with those from India, Nepal, Iraq and Africa. This novel multilocus sequence typing approach can detect intra- and inter-species variations within the L. donovani complex, but most importantly these molecular markers can be applied to resolve the phylogenetically very homogeneous L. donovani strains from the Indian subcontinent. Four of these markers were found suitable to differentiate strains originating from Bangladesh, with marker A2P being the most discriminative one.
Collapse
Affiliation(s)
- Sultana Shahana Banu
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Qinning Wang
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Elisa Cupolillo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute - Fiocruz, Rio de Janeiro, Brazil
| | - Gabriele Schönian
- Institute for Microbiology and Hygiene CC05, Charité University Medicine Berlin, Berlin, Germany
| | - Rogan Lee
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Hakimi Parizi M, Pardakhty A, sharifi I, Farajzadeh S, Daie Parizi MH, Sharifi H, Keyhani AR, Mostafavi M, Bamorovat M, Ghaffari D. Antileishmanial activity and immune modulatory effects of benzoxonium chloride and its entrapped forms in niosome on Leishmania tropica. J Parasit Dis 2019; 43:406-415. [PMID: 31406406 PMCID: PMC6667517 DOI: 10.1007/s12639-019-01105-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Benzoxonium chloride is an anti-infective agent that is used as anti-septic drugs for disinfection of the mucus membrane, skin surface and anti-bacterial, and it is also found to be effective against cutaneous leishmaniasis. The present study aims to evaluate the leishmanicidal activity of benzoxonium chloride and niosomal forms against Leishmania tropica stages. Benzoxonium chloride niosomes were prepared by the thin film hydration method and evaluated for morphology, particle size and release study and encapsulation efficiency. This study measured the cytotoxicity, leishmanicidal activity against promastigote and intra macrophage amastigote, apoptosis, and mRNA transcripts by quantitative real time PCR (qPCR) of free solution and niosomal-encapsulated benzoxonium chloride. Span/Tween 60 niosomal formulation of benzoxonium chloride showed superior physical stability and high encapsulation efficiency (96%) than the other forms. Release from the formulations showed that the Span/Tween 60 containing drug had a milder gradient so that 10% of the drug was not released after 4 h. The benzoxonium chloride and niosomal forms inhibited the in vitro growth of promastigote and amastigote forms of L. tropica after 48 h of incubation and represented IC50 values of 90.7 ± 2.7 and 25.4 ± 0.6 μg/ mL, respectively. The rate of apoptosis in niosomal formulations was approximately equal to the positive control (meglumine antimoniate) at the same concentration. Also, an increase in the concentration of this drug reduced the expression of IL-10, but increased the expression of IL-12. The niosomal formulations provided improved anti-leishmanial activities of benzoxonium chloride and played an immunomodulatory role as the mode of action in the treatment of anthroponotic CL.
Collapse
Affiliation(s)
- Maryam Hakimi Parizi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, PO Box 76175-493, Kerman, Iran
| | - Iraj sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeedeh Farajzadeh
- Department of Pediatric Dermatology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hamid Sharifi
- HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Reza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahshid Mostafavi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Daryoush Ghaffari
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Ruy PDC, Monteiro-Teles NM, Miserani Magalhães RD, Freitas-Castro F, Dias L, Aquino Defina TP, Rosas De Vasconcelos EJ, Myler PJ, Kaysel Cruz A. Comparative transcriptomics in Leishmania braziliensis: disclosing differential gene expression of coding and putative noncoding RNAs across developmental stages. RNA Biol 2019; 16:639-660. [PMID: 30689499 DOI: 10.1080/15476286.2019.1574161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is a worldwide public health problem caused by protozoan parasites of the genus Leishmania. Leishmania braziliensis is the most important species responsible for tegumentary leishmaniases in Brazil. An understanding of the molecular mechanisms underlying the success of this parasite is urgently needed. An in-depth study on the modulation of gene expression across the life cycle stages of L. braziliensis covering coding and noncoding RNAs (ncRNAs) was missing and is presented herein. Analyses of differentially expressed (DE) genes revealed that most prominent differences were observed between the transcriptomes of insect and mammalian proliferative forms (6,576 genes). Gene ontology (GO) analysis indicated stage-specific enriched biological processes. A computational pipeline and 5 ncRNA predictors allowed the identification of 11,372 putative ncRNAs. Most of the DE ncRNAs were found between the transcriptomes of insect and mammalian proliferative stages (38%). Of the DE ncRNAs, 295 were DE in all three stages and displayed a wide range of lengths, chromosomal distributions and locations; many of them had a distinct expression profile compared to that of their protein-coding neighbors. Thirty-five putative ncRNAs were submitted to northern blotting analysis, and one or more hybridization-positive signals were observed in 22 of these ncRNAs. This work presents an overview of the L. braziliensis transcriptome and its adjustments throughout development. In addition to determining the general features of the transcriptome at each life stage and the profile of protein-coding transcripts, we identified and characterized a variety of noncoding transcripts. The novel putative ncRNAs uncovered in L. braziliensis might be regulatory elements to be further investigated.
Collapse
Affiliation(s)
- Patrícia De Cássia Ruy
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Natália Melquie Monteiro-Teles
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Rubens Daniel Miserani Magalhães
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Felipe Freitas-Castro
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Leandro Dias
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | - Tania Paula Aquino Defina
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| | | | - Peter J Myler
- b Center for Infectious Disease Research , Seattle, Washington , USA
| | - Angela Kaysel Cruz
- a Cell and Molecular Biology Department, Ribeirão Preto Medical School , University of São Paulo, Ribeirão Preto , São Paulo , Brazil
| |
Collapse
|
31
|
Shadab M, Das S, Banerjee A, Sinha R, Asad M, Kamran M, Maji M, Jha B, Deepthi M, Kumar M, Tripathi A, Kumar B, Chakrabarti S, Ali N. RNA-Seq Revealed Expression of Many Novel Genes Associated With Leishmania donovani Persistence and Clearance in the Host Macrophage. Front Cell Infect Microbiol 2019; 9:17. [PMID: 30805314 PMCID: PMC6370631 DOI: 10.3389/fcimb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Host- as well as parasite-specific factors are equally crucial in allowing either the Leishmania parasites to dominate, or host macrophages to resist infection. To identify such factors, we infected murine peritoneal macrophages with either the virulent (vAG83) or the non-virulent (nvAG83) parasites of L. donovani. Then, through dual RNA-seq, we simultaneously elucidated the transcriptomic changes occurring both in the host and the parasites. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed (DE) genes, we showed that the vAG83-infected macrophages exhibit biased anti-inflammatory responses compared to the macrophages infected with the nvAG83. Moreover, the vAG83-infected macrophages displayed suppression of many important cellular processes, including protein synthesis. Further, through protein-protein interaction study, we showed significant downregulation in the expression of many hubs and hub-bottleneck genes in macrophages infected with vAG83 as compared to nvAG83. Cell signaling study showed that these two parasites activated the MAPK and PI3K-AKT signaling pathways differentially in the host cells. Through gene ontology analyses of the parasite-specific genes, we discovered that the genes for virulent factors and parasite survival were significantly upregulated in the intracellular amastigotes of vAG83. In contrast, genes involved in the immune stimulations, and those involved in negative regulation of the cell cycle and transcriptional regulation, were upregulated in the nvAG83. Collectively, these results depicted a differential regulation in the host and the parasite-specific molecules during in vitro persistence and clearance of the parasites.
Collapse
Affiliation(s)
- Mohammad Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Anindyajit Banerjee
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Roma Sinha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mithun Maji
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Bipin Kumar
- Nucleome Informatics Pvt. Ltd., Hyderabad, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
32
|
Hernández-García MS, Miranda-Ozuna JFT, Salazar-Villatoro L, Vázquez-Calzada C, Ávila-González L, González-Robles A, Ortega-López J, Arroyo R. Biogenesis of Autophagosome in Trichomonas vaginalis during Macroautophagy Induced by Rapamycin-treatment and Iron or Glucose Starvation Conditions. J Eukaryot Microbiol 2019; 66:654-669. [PMID: 30620421 DOI: 10.1111/jeu.12712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Autophagy is an adaptive response for cell survival in which cytoplasmic components and organelles are degraded in bulk under normal and stress conditions. Trichomonas vaginalis is a parasite highly adaptable to stress conditions such as iron (IR) and glucose restriction (GR). Autophagy can be traced by detecting a key autophagy protein (Atg8) anchored to the autophagosome membrane by a lipid moiety. Our goal was to perform a morphological and cellular study of autophagy in T. vaginalis under GR, IR, and Rapamycin (Rapa) treatment using TvAtg8 as a putative autophagy marker. We cloned tvatg8a and tvatg8b and expressed and purified rTvAtg8a and rTvAtg8b to produce specific polyclonal antibodies. Autophagy vesicles were detected by indirect immunofluorescence assays and confirmed by ultrastructural analysis. The biogenesis of autophagosomes was detected, showing intact cytosolic cargo. TvAtg8 was detected as puncta signal with the anti-rTvAtg8b antibody that recognized soluble and lipid-associated TvAtg8b by Western blot assays in lysates from stress-inducing conditions. The TvAtg8b signal co-localized with the CytoID and lysotracker labeling (autolysosomes) that accumulated after E-64d treatment in GR parasites. Our data suggest that autophagy induced by starvation in T. vaginalis results in the formation of autophagosomes for which TvAtg8b could be a putative autophagy marker.
Collapse
Affiliation(s)
- Mar S Hernández-García
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Jesús F T Miranda-Ozuna
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Carlos Vázquez-Calzada
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Leticia Ávila-González
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, CINVESTAV-IPN, Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, Delg. Gustavo A. Madero, CP 07360, Ciudad de México, Mexico
| |
Collapse
|
33
|
Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Sci Rep 2018; 8:17336. [PMID: 30478412 PMCID: PMC6255768 DOI: 10.1038/s41598-018-35778-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022] Open
Abstract
The establishment of Leishmania infection in mammalian hosts and the subsequent manifestation of clinical symptoms require internalization into macrophages, immune evasion and parasite survival and replication. Although many of the genes involved in these processes have been described, the genetic and genomic variability associated to differences in virulence is largely unknown. Here we present the genomic variation of four Leishmania (Viannia) panamensis strains exhibiting different levels of virulence in BALB/c mice and its application to predict novel genes related to virulence. De novo DNA sequencing and assembly of the most virulent strain allowed comparative genomics analysis with sequenced L. (Viannia) panamensis and L. (Viannia) braziliensis strains, and showed important variations at intra and interspecific levels. Moreover, the mutation detection and a CNV search revealed both base and structural genomic variation within the species. Interestingly, we found differences in the copy number and protein diversity of some genes previously related to virulence. Several machine-learning approaches were applied to combine previous knowledge with features derived from genomic variation and predict a curated set of 66 novel genes related to virulence. These genes can be prioritized for validation experiments and could potentially become promising drug and immune targets for the development of novel prophylactic and therapeutic interventions.
Collapse
|
34
|
Marshall S, Kelly PH, Singh BK, Pope RM, Kim P, Zhanbolat B, Wilson ME, Yao C. Extracellular release of virulence factor major surface protease via exosomes in Leishmania infantum promastigotes. Parasit Vectors 2018; 11:355. [PMID: 29921321 PMCID: PMC6006689 DOI: 10.1186/s13071-018-2937-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Background The Leishmania spp. protozoa are introduced into humans through a sand fly blood meal, depositing the infectious metacyclic promastigote form of the parasite into human skin. Parasites enter a variety of host cells, although a majority are found in macrophages where they replicate intracellularly during chronic leishmaniasis. Symptomatic leishmaniasis causes considerable human morbidity in endemic regions. The Leishmania spp. evade host microbicidal mechanisms partially through virulence-associated proteins such as the major surface protease (MSP or GP63), to inactivate immune factors in the host environment. MSP is a metalloprotease encoded by a tandem array of genes belonging to three msp gene classes, whose mRNAs are differentially expressed in different life stages of the parasite. Like other cells, Leishmania spp. release small membrane-bound vesicles called exosomes into their environment. The purpose of this study was to detect MSP proteins in exosomal vesicles of Leishmania spp. protozoa. Methods Using mass spectrometry data we determined the profile of MSP class proteins released in L. infantum exosomes derived from promastigotes in their avirulent procyclic (logarithmic) stage and virulent stationary and metacyclic stages. MSP protein isoforms belonging to each of the three msp gene classes could be identified by unique peptides. Results Metacyclic promastigote exosomes contained the highest, and logarithmic exosomes had the lowest abundance of total MSP. Among the MSP classes, MSPC class had the greatest variety of isoforms, but was least abundant in all exosomes. Nonetheless, all MSP classes were present at higher levels in exosomes released from stationary or metacyclic promastigotes than logarithmic promastigotes. Conclusions The data suggest the efficiency of exosome release may be more important than the identity of MSP isoform in determining the MSP content of Leishmania spp. exosomes. Electronic supplementary material The online version of this article (10.1186/s13071-018-2937-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Skye Marshall
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts & Nevis, West Indies, USA
| | - Patrick H Kelly
- Department of Microbiology, University of Iowa, Iowa City, IA, USA
| | - Brajesh K Singh
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Present address: Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - R Marshall Pope
- The Proteomics Facility, University of Iowa, Iowa City, IA, USA
| | - Peter Kim
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Bayan Zhanbolat
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Mary E Wilson
- Department of Microbiology, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Epidemiology, University of Iowa, Iowa City, IA, USA.,Iowa City VA Medical Center, Iowa City, IA, USA
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St. Kitts & Nevis, West Indies, USA.
| |
Collapse
|
35
|
Saunders EC, Naderer T, Chambers J, Landfear SM, McConville MJ. Leishmania mexicana can utilize amino acids as major carbon sources in macrophages but not in animal models. Mol Microbiol 2018; 108:143-158. [PMID: 29411460 DOI: 10.1111/mmi.13923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1-3 mutant which lacks the major glucose transporters LmxGT1-3. We identified a novel suppressor line (Δlmxgt1-3s2 ) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1-3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non-essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia
| | - Jenny Chambers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
Dipeptidyl peptidase 3, a novel protease from Leishmania braziliensis. PLoS One 2018; 13:e0190618. [PMID: 29304092 PMCID: PMC5755878 DOI: 10.1371/journal.pone.0190618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
The increase of leishmaniasis cases worldwide and the emergence of Leishmania strains resistant to current treatments make necessary to find new therapeutic targets. Proteases are appealing drug targets because they play pivotal roles in facilitating parasite survival and promoting pathogenesis. Enzymes belonging to the dipeptidyl peptidase 3 (DPP3) group have been described in different organisms such as mammals, insects and yeast, in which these enzymes have been involved in both protein turnover and protection against oxidative damage. The aim of this work was to characterize the structure and function of the Leishmania braziliensis DPP3 (LbDPP3) protein as the first step to elucidate its suitability as a potential drug target. Sequence alignment showed 43% of identity between LbDPP3 and its human orthologous (hDPP3) enzyme. Although the modeled protein adopted a globally conserved three-dimensional (3D) structure, structural differences were found in the vicinity of the active site and the substrate binding-cleft. In addition, the Leishmania protein was expressed as a soluble recombinant protein and its kinetics parameters were determined using the z-Arginine-Arginine-AMC substrate. The LbDPP3 activity was maximal at pH values between 8.0–8.5. Interestingly, classical enzyme inhibitors such as the tynorphin and its derivative peptide IVYPW were found to actively inhibit the LbDPP3 activity. Moreover, these DPP3 inhibitors showed a detrimental effect upon parasite survival, decreasing the viability of promastigotes by up to 29%. Finally, it was observed that LbDPP3 was equally expressed along the in vitro differentiation from promastigotes to axenic amastigotes. In conclusion, these findings suggest that the L. brazileinsis DPP3 could be a promising drug target.
Collapse
|
37
|
Romero AH, López SE. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. J Mol Graph Model 2017; 76:313-329. [DOI: 10.1016/j.jmgm.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
|
38
|
Miranda N, Volpato H, da Silva Rodrigues JH, Caetano W, Ueda-Nakamura T, de Oliveira Silva S, Nakamura CV. The photodynamic action of pheophorbide a induces cell death through oxidative stress in Leishmania amazonensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:342-354. [PMID: 28821011 DOI: 10.1016/j.jphotobiol.2017.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Leishmaniasis is a disease caused by hemoflagellate protozoa, affecting millions of people worldwide. The difficulties of treating patients with this parasitosis include the limited efficacy and many side effects of the currently available drugs. Therefore, the search for new compounds with leishmanicidal action is necessary. Photodynamic therapy has been studied in the medical field because of its selectivity, utilizing a combination of visible light, a photosensitizer compound, and singlet oxygen to reach the area of treatment. The continued search for selective alternative treatments and effective targets that impact the parasite and not the host are fundamentally important for the development of new drugs. Pheophorbide a is a photosensitizer that may be promising for the treatment of leishmaniasis. The present study evaluated the in vitro biological effects of pheophorbide a and its possible mechanisms of action in causing cell death in L. amazonensis. Pheophorbide a was active against promastigote and amastigote forms of the parasite. After treatment, we observed ultrastructural alterations in this protozoan. We also observed changes in promastigote macromolecules and organelles, such as loss of mitochondrial membrane potential [∆Ψm], lipid peroxidation, an increase in lipid droplets, DNA fragmentation, phosphatidylserine exposure, an increase in caspase-like activity, oxidative imbalance, and a decrease in antioxidant defense systems. These findings suggest that cell death occurred through apoptosis. The mechanism of cell death in intracellular amastigotes appeared to involve autophagy, in which we clearly observed an increase in reactive oxygen species, a compromised ∆Ψm, and an increase in the number of autophagic vacuoles. The present study contributes to the development of new photosensitizers against L. amazonensis. We also elucidated the mechanism of action of pheophorbide a, mainly in intracellular amastigotes, which is the most clinically relevant form of this parasite.
Collapse
Affiliation(s)
- Nathielle Miranda
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Hélito Volpato
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Jean Henrique da Silva Rodrigues
- Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil.
| | - Tânia Ueda-Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Sueli de Oliveira Silva
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.
| | - Celso Vataru Nakamura
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil; Post-Graduate Program in Biological Sciences, Cellular and Molecular Biological Concentration Area, State University of Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
39
|
Skin parasite landscape determines host infectiousness in visceral leishmaniasis. Nat Commun 2017; 8:57. [PMID: 28680146 PMCID: PMC5498584 DOI: 10.1038/s41467-017-00103-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/31/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that the infectiousness of patients for the sand fly vector of visceral leishmaniasis is linked to parasites found in the skin. Using a murine model that supports extensive skin infection with Leishmania donovani, spatial analyses at macro-(quantitative PCR) and micro-(confocal microscopy) scales indicate that parasite distribution is markedly skewed. Mathematical models accounting for this heterogeneity demonstrate that while a patchy distribution reduces the expected number of sand flies acquiring parasites, it increases the infection load for sand flies feeding on a patch, increasing their potential for onward transmission. Models representing patchiness at both macro- and micro-scales provide the best fit with experimental sand fly feeding data, pointing to the importance of the skin parasite landscape as a predictor of host infectiousness. Our analysis highlights the skin as a critical site to consider when assessing treatment efficacy, transmission competence and the impact of visceral leishmaniasis elimination campaigns. Parasitemia has been considered the main determinant of visceral leishmaniasis transmission. By combining imaging, qPCR and experimental xenodiagnoses with mathematical models, Doehl et al. argue that the patchy landscape of parasites in the skin is necessary to explain infectiousness.
Collapse
|
40
|
Beyzay F, Zavaran Hosseini A, Soudi S. Alpha Alumina Nanoparticle Conjugation to Cysteine Peptidase A and B: An Efficient Method for Autophagy Induction. Avicenna J Med Biotechnol 2017; 9:71-81. [PMID: 28496946 PMCID: PMC5410132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Autophagy as a cellular pathway facilitates several immune responses against infection. It also eliminates invading pathogens through transferring content between the cytosol and the lysosomal vesicles and contributes to the cross-presentation of exogenous antigens to T lymphocytes via MHC class I pathway. Autophagy induction is one of the main targets for new drugs and future vaccine formulations. Nanoparticles are one of the candidates for autophagy induction. Cysteine Peptidase A (CPA) and Cysteine Peptidase B (CPB) are two members of papain family (Clan CA, family C1) enzyme that have been considered as a virulence factor of Leishmania (L.) major, making them suitable vaccine candidates. In this research, Leishmania major cysteine peptidase A and B (CPA and CPB) conjugation to alpha alumina nanoparticle was the main focus and their entrance efficacy to macrophages was assessed. METHODS For this purpose, CPA and CPB genes were cloned in expression vectors. Related proteins were extracted from transformed Escherichia coli (E. coli) and purified using Ni affinity column. Alpha alumina nanoparticles were conjugated to CPA/CPB proteins using Aldehyde/Hydrazine Reaction. Autophagy induction in macrophages was assessed using acridine orange staining. RESULTS CPA/CPB protein loading to nanoparticles was confirmed by Fourier Transform Infrared Spectroscopy. α-alumina conjugated CPA/CPB antigen uptake by macrophages at different concentrations was confirmed using fluorescence microscope and flowcytometry. Highly efficient CPA/CPB protein loading to α-alumina nanoparticles and rapid internalization to macrophages introduced these nanocarriers as a delivery tool. Acridine orange staining demonstrated higher autophagy induction in CPA/CPB protein conjugated with α-alumina nanoparticles. CONCLUSION α-alumina nanoparticles may be a promising adjuvant in the development of therapeutic leishmania vaccines through antigen delivery to intracellular compartments, induction of autophagy and cross presentation to CD8 lymphocytes.
Collapse
Affiliation(s)
| | - Ahmad Zavaran Hosseini
- Corresponding author: Ahmad Zavaran Hossein, Ph.D., Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran, Tel: +98 21 82883090, E-mail:
| | | |
Collapse
|
41
|
Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Curr Opin Microbiol 2016; 34:82-89. [PMID: 27565628 DOI: 10.1016/j.mib.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The successful progression of Leishmania spp. through their lifecycle entails a series of differentiation processes; the proliferative procyclic promastigote forms become quiescent, human-infective metacyclic promastigotes during metacyclogenesis in the sandfly vector, which then differentiate into amastigotes during amastigogenesis in the mammalian host. The progression to these infective forms requires two components: environmental cues and a coordinated cellular response. Recent studies have shown that the Leishmania cellular transformation into mammalian-infective stages is triggered by broad changes in the absolute and relative RNA and protein levels. In this review, we will discuss the implications of Leishmania transcriptomic and proteomic fluctuations, which adapt the parasitic cell for survival.
Collapse
|
42
|
Abdossamadi Z, Seyed N, Rafati S. Mammalian host defense peptides and their implication on combating Leishmania infection. Cell Immunol 2016; 309:23-31. [PMID: 27729107 DOI: 10.1016/j.cellimm.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/22/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022]
Abstract
Infection with parasites of the genus Leishmania is a health problem in many countries around the world. No effective vaccine is available against leishmaniasis, so chemotherapy is the only alternative for treatment of all forms of the disease. However, drawbacks including toxicity and severe adverse reactions restrain the use of currently available chemotherapeutics. Therefore development of new drugs and therapeutic approaches is highly demanded. Mammalian host defense peptides (mHDP) and/or mammalian antimicrobial peptides (mAMP) are among promising compounds considered effective to control the infectious diseases. These are potential multifunctional molecules that modulate the immune response besides direct killing of pathogens. Here we have reviewed the hallmark characteristics of the mHDPs in respect to the potential role they can play against leishmaniasis.
Collapse
Affiliation(s)
- Zahra Abdossamadi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
43
|
Paik D, Das P, Naskar K, Pramanik PK, Chakraborti T. Protective inflammatory response against visceral leishmaniasis with potato tuber extract: A new approach of successful therapy. Biomed Pharmacother 2016; 83:1295-1302. [PMID: 27567589 DOI: 10.1016/j.biopha.2016.08.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/18/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022] Open
Abstract
The increasing number of drug resistance issue of Leishmania donovani strain to common drugs compels to develop new therapeutics against leishmaniasis with minimal toxicity. In this regard, bioactive phytocomponents may lead to the discovery of new medicines with appropriate efficiency. The important roles of Leishmania proteases in the virulence of Leishmania parasite make them very hopeful targets for the improvement of current remedial of leishmaniasis. As part of a hunt for new drugs, we have evaluated in vivo anti-leishmanial activity of serine protease inhibitor rich fraction (PTEx), isolated by sodium bisulfite extraction from potato tuber. The amastigote load of 25mg/kg body weight/day treated BALB/c mice showed 86.9% decrease in liver and 88.7% in case of spleen. This anti-leishmanial effect was also supported by PTEx induced immunomodulatory activity like acute formation of ROS and prolonged NO generation. The Th1/Th2 cytokine balance in splenocytes of PTEx treated animals was estimated and evaluated by ELISA assay as well as by mRNA expression using RT-PCR. Furthermore, significant survival rate (80%) was observed in PTEx treated hamsters. Thus, from the present observations we could accentuate the potential of PTEx to be employed as a new therapeutics from natural source against L. donovani. This might also provide a novel perception of natural serine protease inhibitor from potato tuber as an alternate approach for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Dibyendu Paik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Partha Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Kshudiram Naskar
- Infectious Disease and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
44
|
Cull B, Prado Godinho JL, Fernandes Rodrigues JC, Frank B, Schurigt U, Williams RA, Coombs GH, Mottram JC. Glycosome turnover in Leishmania major is mediated by autophagy. Autophagy 2015; 10:2143-57. [PMID: 25484087 PMCID: PMC4502677 DOI: 10.4161/auto.36438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a central process behind the cellular remodeling that occurs during differentiation of Leishmania, yet the cargo of the protozoan parasite's autophagosome is unknown. We have identified glycosomes, peroxisome-like organelles that uniquely compartmentalize glycolytic and other metabolic enzymes in Leishmania and other kinetoplastid parasitic protozoa, as autophagosome cargo. It has been proposed that the number of glycosomes and their content change during the Leishmania life cycle as a key adaptation to the different environments encountered. Quantification of RFP-SQL-labeled glycosomes showed that promastigotes of L. major possess ~20 glycosomes per cell, whereas amastigotes contain ~10. Glycosome numbers were significantly greater in promastigotes and amastigotes of autophagy-defective L. major Δatg5 mutants, implicating autophagy in glycosome homeostasis and providing a partial explanation for the previously observed growth and virulence defects of these mutants. Use of GFP-ATG8 to label autophagosomes showed glycosomes to be cargo in ~15% of them; glycosome-containing autophagosomes were trafficked to the lysosome for degradation. The number of autophagosomes increased 10-fold during differentiation, yet the percentage of glycosome-containing autophagosomes remained constant. This indicates that increased turnover of glycosomes was due to an overall increase in autophagy, rather than an upregulation of autophagosomes containing this cargo. Mitophagy of the single mitochondrion was not observed in L. major during normal growth or differentiation; however, mitochondrial remnants resulting from stress-induced fragmentation colocalized with autophagosomes and lysosomes, indicating that autophagy is used to recycle these damaged organelles. These data show that autophagy in Leishmania has a central role not only in maintaining cellular homeostasis and recycling damaged organelles but crucially in the adaptation to environmental change through the turnover of glycosomes.
Collapse
Affiliation(s)
- Benjamin Cull
- a Wellcome Trust Center for Molecular Parasitology; Institute of Infection, Immunity and Inflammation; College of Medical, Veterinary and Life Sciences ; University of Glasgow ; Glasgow , UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Valdivia HO, Scholte LLS, Oliveira G, Gabaldón T, Bartholomeu DC. The Leishmania metaphylome: a comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genomics 2015; 16:887. [PMID: 26518129 PMCID: PMC4628237 DOI: 10.1186/s12864-015-2091-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/15/2015] [Indexed: 11/22/2022] Open
Abstract
Background Leishmaniasis is a neglected parasitic disease with diverse clinical manifestations and a complex epidemiology. It has been shown that its parasite-related traits vary between species and that they modulate infectivity, pathogenicity, and virulence. However, understanding of the species-specific adaptations responsible for these features and their evolutionary background is limited. To improve our knowledge regarding the parasite biology and adaptation mechanisms of different Leishmania species, we conducted a proteome-wide phylogenomic analysis to gain insights into Leishmania evolution. Results The analysis of the reconstructed phylomes (totaling 45,918 phylogenies) allowed us to detect genes that are shared in pathogenic Leishmania species, such as calpain-like cysteine peptidases and 3'a2rel-related proteins, or genes that could be associated with visceral or cutaneous development. This analysis also established the phylogenetic relationship of several hypothetical proteins whose roles remain to be characterized. Our findings demonstrated that gene duplication constitutes an important evolutionary force in Leishmania, acting on protein families that mediate host-parasite interactions, such as amastins, GP63 metallopeptidases, cathepsin L-like proteases, and our methods permitted a deeper analysis of their phylogenetic relationships. Conclusions Our results highlight the importance of proteome wide phylogenetic analyses to detect adaptation and evolutionary processes in different organisms and underscore the need to characterize the role of expanded and species-specific proteins in the context of Leishmania evolution by providing a framework for the phylogenetic relationships of Leishmania proteins. Phylogenomic data are publicly available for use through PhylomeDB (http://www.phylomedb.org). Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2091-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hugo O Valdivia
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Department of Parasitology, U.S. Naval Medical Research Unit No. 6, Lima, Peru. .,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Lima, Peru.
| | - Larissa L S Scholte
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil.
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Centro de Pesquisas René Rachou, Belo Horizonte, Brazil. .,Instituto Tecnológico Vale - ITV, Belém, Brazil.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Daniella C Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antonio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil. .,Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Lima, Peru.
| |
Collapse
|
46
|
Guedes CES, Lima JGB, Helfer E, Veras PST, Viallat A. Encapsulation of Living Leishmania Promastigotes in Artificial Lipid Vacuoles. PLoS One 2015; 10:e0134925. [PMID: 26241746 PMCID: PMC4524717 DOI: 10.1371/journal.pone.0134925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/16/2015] [Indexed: 11/19/2022] Open
Abstract
After phagocytosis by mammalian macrophages, promastigote forms of Leishmania parasites settle inside intracellular parasitophorous vacuoles (PVs) in which they transform into amastigote forms and replicate. Here, using a variant of the 'inverted emulsion' method, we succeeded in encapsulating living L. amazonensis parasites in giant artificial liposomes that serve as model PVs. We were able to control the size of liposomes, the pH and the composition of their internal volume, and the number of internalized parasites per liposome. L. amazonensis promastigotes encapsulated in liposomes filled with RPMI-Dextran solution at pH 7.5 or 6.5 survived up to 96 h at 24°C. At 37°C and pH 5.5, parasites survived 48h. This method paves the way to identifying certain effectors secreted by the parasite and to unraveling specific mechanisms of fusion between the PV and intracellular vesicles of the host cell. This method will also facilitate the study of the temporal evolution of biophysical properties of the PV during its maturation.
Collapse
Affiliation(s)
- Carlos E. S. Guedes
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Laboratório de Patologia e Biointervenção, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brazil
| | - Jose G. B. Lima
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Laboratório de Patologia e Biointervenção, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brazil
| | - Emmanuèle Helfer
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288, Marseille, France
| | - Patricia S. T. Veras
- Centro de Pesquisas Gonçalo Moniz, Fiocruz, Laboratório de Patologia e Biointervenção, Rua Waldemar Falcão, 121, Candeal, Salvador, Bahia, Brazil
- * E-mail: (PSTV); (AV)
| | - Annie Viallat
- Aix-Marseille Université, CNRS, CINaM UMR 7325, 13288, Marseille, France
- * E-mail: (PSTV); (AV)
| |
Collapse
|
47
|
Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol 2015; 10:111-29. [DOI: 10.2217/fmb.14.103] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Collapse
Affiliation(s)
- Maria Podinovskaia
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| |
Collapse
|
48
|
Characterization of the autophagy marker protein Atg8 reveals atypical features of autophagy in Plasmodium falciparum. PLoS One 2014; 9:e113220. [PMID: 25426852 PMCID: PMC4245143 DOI: 10.1371/journal.pone.0113220] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/21/2014] [Indexed: 02/07/2023] Open
Abstract
Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8) employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64) and aspartic (pepstatin) protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine), indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in apicoplast biogenesis. Collectively, our results reveal several atypical features of autophagy in malaria parasites, which may be largely associated with non-degradative processes.
Collapse
|
49
|
Paik D, Das P, De T, Chakraborti T. In vitro anti-leishmanial efficacy of potato tuber extract (PTEx): Leishmanial serine protease(s) as putative target. Exp Parasitol 2014; 146:11-9. [DOI: 10.1016/j.exppara.2014.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/29/2014] [Accepted: 08/05/2014] [Indexed: 12/01/2022]
|
50
|
Proteomic analysis of metacyclogenesis in Leishmania infantum wild-type and PTR1 null mutant. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|