1
|
Horn M, Bieliková L, Vostoupalová A, Švéda J, Mareš M. An update on proteases and protease inhibitors from trematodes. ADVANCES IN PARASITOLOGY 2024; 126:97-176. [PMID: 39448195 DOI: 10.1016/bs.apar.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Trematodes, a class of parasitic flatworms, are responsible for a variety of devastating diseases in humans and animals, with schistosomiasis and fascioliasis being prominent examples. Trematode proteolytic systems involved in the host-parasite interaction have emerged as key contributors to the success of trematodes in establishing and maintaining infections. This review concentrates on diverse proteases and protease inhibitors employed by trematodes and provides an update on recent advances in their molecular-level characterization, with a focus on function, structure, and therapeutic target potential.
Collapse
Affiliation(s)
- Martin Horn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucia Bieliková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Vostoupalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Švéda
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Vondráček O, Mikeš L, Talacko P, Leontovyč R, Bulantová J, Horák P. Differential proteomic analysis of laser-microdissected penetration glands of avian schistosome cercariae with a focus on proteins involved in host invasion. Int J Parasitol 2022; 52:343-358. [PMID: 35218763 DOI: 10.1016/j.ijpara.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Schistosome invasive stages, cercariae, leave intermediate snail hosts, penetrate the skin of definitive hosts, and transform to schistosomula which migrate to the final location. During invasion, cercariae employ histolytic and other bioactive products of specialized holocrine secretory cells - postacetabular (PA) and circumacetabular (CA) penetration glands. Although several studies attempted to characterize protein composition of the in vitro-induced gland secretions in Schistosoma mansoni and Schistosoma japonicum, the results were somewhat inconsistent and dependent on the method of sample collection and processing. Products of both gland types mixed during their secretion did not allow localization of identified proteins to a particular gland. Here we compared proteomes of separately isolated cercarial gland cells of the avian schistosome Trichobilharzia szidati, employing laser-assisted microdissection and shotgun LC-MS/MS, thus obtaining the largest dataset so far of the representation and localization of cercarial penetration gland proteins. We optimized the methods of sample processing with cercarial bodies (heads) first. Alizarin-pre-stained, chemically non-fixed samples provided optimal results of MS analyses, and enabled us to distinguish PA and CA glands for microdissection. Using 7.5 x 106 μm3 sample volume per gland replicate, we identified 3347 peptides assigned to 792 proteins, from which 461 occurred in at least two of three replicates in either gland type (PA = 455, 40 exclusive; CA = 421, six exclusive; 60 proteins differed significantly in their abundance between the glands). Peptidases of five catalytic types accounted for ca. 8% and 6% of reliably identified proteins in PA and CA glands, respectively. Invadolysin, nardilysin, cathepsins B2 and L3, and elastase 2b orthologs were the major gland endopeptidases. Two cystatins and a serpin were highly abundant peptidase inhibitors in the glands. While PA glands generally had rich enzymatic equipment, CA glands were conspicuously abundant in venom allergen-like proteins.
Collapse
Affiliation(s)
- Oldřich Vondráček
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia.
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV Průmyslová 595, Vestec, Czechia
| | - Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czechia
| |
Collapse
|
3
|
Zhu B, Luo F, Shen Y, Yang W, Sun C, Wang J, Li J, Mo X, Xu B, Zhang X, Li Y, Hu W. Schistosoma japonicum cathepsin B2 (SjCB2) facilitates parasite invasion through the skin. PLoS Negl Trop Dis 2020; 14:e0008810. [PMID: 33104723 PMCID: PMC7644097 DOI: 10.1371/journal.pntd.0008810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cercariae invasion of the human skin is the first step in schistosome infection. Proteases play key roles in this process. However, little is known about the related hydrolytic enzymes in Schistosoma japonicum. Here, we investigated the biochemical features, tissue distribution and biological roles of a cathepsin B cysteine protease, SjCB2, in the invasion process of S. japonicum cercariae. Enzyme activity analysis revealed that recombinant SjCB2 is a typical cysteine protease with optimum temperature and pH for activity at 37°C and 4.0, respectively, and can be totally inhibited by the cysteine protease inhibitor E-64. Immunoblotting showed that both the zymogen (50 kDa) and mature enzyme (30.5 kDa) forms of SjCB2 are expressed in the cercariae. It was observed that SjCB2 localized predominantly in the acetabular glands and their ducts of cercariae, suggesting that the protease could be released during the invasion process. The protease degraded collagen, elastin, keratin, fibronectin, immunoglobulin (A, G and M) and complement C3, protein components of the dermis and immune system. In addition, proteomic analysis demonstrated that SjCB2 can degrade the human epidermis. Furthermore, it was showed that anti-rSjCB2 IgG significantly reduced (22.94%) the ability of the cercariae to invade the skin. The cysteine protease, SjCB2, located in the acetabular glands and their ducts of S. japonicum cercariae. We propose that SjCB2 facilitates skin invasion by degrading the major proteins of the epidermis and dermis. However, this cysteine protease may play additional roles in host-parasite interaction by degrading immunoglobins and complement protein. Schistosomiasis is one of the most prevalent parasitic diseases in the world, with about 200 million humans infected in 74 tropical countries. The infection of schistosome is initiated when the larvae, cercariae, penetrate the human skin. Proteolytic enzymes are likely involved in the invasion process, but these have yet to be characterized for S. japonicum. Here, we have functionally expressed a recombinant form of the cathepsin B cysteine protease SjCB2 in the yeast Pichia pastoris. Our study showed that SjCB2 degraded a number of proteins associated with the skin and immune systems, and disrupted the structure of the human epidermis. The enzyme was located in the acetabular glands and their ducts in the cercariae, where it would be stored before released into the skin. Antibody-blocking studies revealed that SjCB2 had a 22.94% contribution during the cercariae invasion process. Taken together, our findings suggest that SjCB2 helped cercariae penetrating the skin barrier and evading the immune attack to allow successful infection in the mammalian host.
Collapse
Affiliation(s)
- Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yi Shen
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wenbin Yang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Jian Li
- Dermatology Department, Huashan Hospital of Fudan University, Shanghai, China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Xumin Zhang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry, Gannan Normal University, Ganzhou, China
- * E-mail: (YL); (WH)
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail: (YL); (WH)
| |
Collapse
|
4
|
Macháček T, Šmídová B, Pankrác J, Majer M, Bulantová J, Horák P. Nitric oxide debilitates the neuropathogenic schistosome Trichobilharzia regenti in mice, partly by inhibiting its vital peptidases. Parasit Vectors 2020; 13:426. [PMID: 32819437 PMCID: PMC7439556 DOI: 10.1186/s13071-020-04279-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Avian schistosomes, the causative agents of human cercarial dermatitis (or swimmer’s itch), die in mammals but the mechanisms responsible for parasite elimination are unknown. Here we examined the role of reactive nitrogen species, nitric oxide (NO) and peroxynitrite, in the immune response of mice experimentally infected with Trichobilharzia regenti, a model species of avian schistosomes remarkable for its neuropathogenicity. Methods Inducible NO synthase (iNOS) was localized by immunohistochemistry in the skin and the spinal cord of mice infected by T. regenti. The impact of iNOS inhibition by aminoguanidine on parasite burden and growth was then evaluated in vivo. The vulnerability of T. regenti schistosomula to NO and peroxynitrite was assessed in vitro by viability assays and electron microscopy. Additionally, the effect of NO on the activity of T. regenti peptidases was tested using a fluorogenic substrate. Results iNOS was detected around the parasites in the epidermis 8 h post-infection and also in the spinal cord 3 days post-infection (dpi). Inhibition of iNOS resulted in slower parasite growth 3 dpi, but the opposite effect was observed 7 dpi. At the latter time point, moderately increased parasite burden was also noticed in the spinal cord. In vitro, NO did not impair the parasites, but inhibited the activity of T. regenti cathepsins B1.1 and B2, the peptidases essential for parasite migration and digestion. Peroxynitrite severely damaged the surface tegument of the parasites and decreased their viability in vitro, but rather did not participate in parasite clearance in vivo. Conclusions Reactive nitrogen species, specifically NO, do not directly kill T. regenti in mice. NO promotes the parasite growth soon after penetration (3 dpi), but prevents it later (7 dpi) when also suspends the parasite migration in the CNS. NO-related disruption of the parasite proteolytic machinery is partly responsible for this effect. ![]()
Collapse
Affiliation(s)
- Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.
| | - Barbora Šmídová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Pankrác
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia.,Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
5
|
Majer M, Macháček T, Súkeníková L, Hrdý J, Horák P. The peripheral immune response of mice infected with a neuropathogenic schistosome. Parasite Immunol 2020; 42:e12710. [PMID: 32145079 DOI: 10.1111/pim.12710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Trichobilharzia regenti (Schistosomatidae) percutaneously infects birds and mammals and invades their central nervous system (CNS). Here, we characterized the peripheral immune response of infected mice and showed how it was influenced by the parasite-induced inflammation in the skin and the CNS. As revealed by flow cytometry, T cells expanded in the spleen and the CNS-draining lymph nodes 7-14 days post-infection. Both T-bet+ and GATA-3+ T cells were markedly elevated suggesting a mixed type 1/2 immune response. However, it dropped after 7 dpi most likely being unaffected by the neuroinflammation. Splenocytes from infected mice produced a high amount of IFN-γ and, to a lesser extent, IL-10, IL-4 and IL-17 after in vitro stimulation by cercarial homogenate. Nevertheless, it had only a limited capacity to alter the maturation status of bone marrow-derived dendritic cells (BMDCs), contrary to the recombinant T. regenti cathepsin B2, which also strongly augmented expression of Ccl5, Cxcl10, Il12a, Il33 and Il10 by BMDCs. Taken together, mice infected with T. regenti developed the mixed type 1/2 immune response, which was driven by the early skin inflammation rather than the late neuroinflammation. Parasite peptidases might play an active role in triggering the host immune response.
Collapse
Affiliation(s)
- Martin Majer
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Reamtong O, Simanon N, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, Anuntakarun S, Payungporn S, Phuphisut O, Adisakwattana P. Proteomic analysis of adult Schistosoma mekongi somatic and excretory-secretory proteins. Acta Trop 2020; 202:105247. [PMID: 31672487 DOI: 10.1016/j.actatropica.2019.105247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/30/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022]
Abstract
Schistosoma mekongi is a causative agent of human schistosomiasis. There is limited knowledge of the molecular biology of S. mekongi and very few studies have examined drug targets, vaccine candidates and diagnostic biomarkers for S. mekongi. To explore the biology of S. mekongi, computational as well as experimental approaches were performed on S. mekongi males and females to identify excretory-secretory (ES) proteins and proteins that are differentially expressed between genders. According to bioinformatic prediction, the S. mekongi ES product was approximately 4.7% of total annotated transcriptome sequences. The classical secretory pathway was the main process to secrete proteins. Mass spectrometry-based quantification of male and female adult S. mekongi proteins was performed. We identified 174 and 156 differential expression of proteins in male and female worms, respectively. The dominant male-biased proteins were involved in actin filament-based processes, microtubule-based processes, biosynthetic processes and homeostatic processes. The major female-biased proteins were related to biosynthetic processes, organelle organization and signal transduction. An experimental approach identified 88 proteins in the S. mekongi secretome. The S. mekongi ES proteins mainly contributed to nutrient uptake, essential substance supply and host immune evasion. This research identifies proteins in the S. mekongi secretome and provides information on ES proteins that are differentially expressed between S. mekongi genders. These findings will contribute to S. mekongi drug and vaccine development. In addition, the study enhances our understanding of basic S. mekongi biology.
Collapse
|
7
|
Molecular evidence for distinct modes of nutrient acquisition between visceral and neurotropic schistosomes of birds. Sci Rep 2019; 9:1347. [PMID: 30718911 PMCID: PMC6362228 DOI: 10.1038/s41598-018-37669-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Trichobilharzia species are parasitic flatworms (called schistosomes or flukes) that cause important diseases in birds and humans, but very little is known about their molecular biology. Here, using a transcriptomics-bioinformatics-based approach, we explored molecular aspects pertaining to the nutritional requirements of Trichobilharzia szidati (‘visceral fluke’) and T. regenti (‘neurotropic fluke’) in their avian host. We studied the larvae of each species before they enter (cercariae) and as they migrate (schistosomules) through distinct tissues in their avian (duck) host. Cercariae of both species were enriched for pathways or molecules associated predominantly with carbohydrate metabolism, oxidative phosphorylation and translation of proteins linked to ribosome biogenesis, exosome production and/or lipid biogenesis. Schistosomules of both species were enriched for pathways or molecules associated with processes including signal transduction, cell turnover and motility, DNA replication and repair, molecular transport and/or catabolism. Comparative informatic analyses identified molecular repertoires (within, e.g., peptidases and secretory proteins) in schistosomules that can broadly degrade macromolecules in both T. szidati and T. regenti, and others that are tailored to each species to selectively acquire nutrients from particular tissues through which it migrates. Thus, this study provides molecular evidence for distinct modes of nutrient acquisition between the visceral and neurotropic flukes of birds.
Collapse
|
8
|
Grote A, Caffrey CR, Rebello KM, Smith D, Dalton JP, Lustigman S. Cysteine proteases during larval migration and development of helminths in their final host. PLoS Negl Trop Dis 2018; 12:e0005919. [PMID: 30138448 PMCID: PMC6107106 DOI: 10.1371/journal.pntd.0005919] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neglected tropical diseases caused by metazoan parasites are major public health concerns, and therefore, new methods for their control and elimination are needed. Research over the last 25 years has revealed the vital contribution of cysteine proteases to invasion of and migration by (larval) helminth parasites through host tissues, in addition to their roles in embryogenesis, molting, egg hatching, and yolk degradation. Their central function to maintaining parasite survival in the host has made them prime intervention targets for novel drugs and vaccines. This review focuses on those helminth cysteine proteases that have been functionally characterized during the varied early stages of development in the human host and embryogenesis.
Collapse
Affiliation(s)
- Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Karina M. Rebello
- Laboratório de Toxinologia and Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David Smith
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
- Department of Microbiology and Immunology, School of Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sara Lustigman
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Jedličková L, Dvořáková H, Dvořák J, Kašný M, Ulrychová L, Vorel J, Žárský V, Mikeš L. Cysteine peptidases of Eudiplozoon nipponicum: a broad repertoire of structurally assorted cathepsins L in contrast to the scarcity of cathepsins B in an invasive species of haematophagous monogenean of common carp. Parasit Vectors 2018; 11:142. [PMID: 29510760 PMCID: PMC5840727 DOI: 10.1186/s13071-018-2666-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background Cysteine peptidases of clan CA, family C1 account for a major part of proteolytic activity in the haematophagous monogenean Eudiplozoon nipponicum. The full spectrum of cysteine cathepsins is, however, unknown and their particular biochemical properties, tissue localisation, and involvement in parasite-host relationships are yet to be explored. Methods Sequences of cathepsins L and B (EnCL and EnCB) were mined from E. nipponicum transcriptome and analysed bioinformatically. Genes encoding two EnCLs and one EnCB were cloned and recombinant proteins produced in vitro. The enzymes were purified by chromatography and their activity towards selected substrates was characterised. Antibodies and specific RNA probes were employed for localisation of the enzymes/transcripts in tissues of E. nipponicum adults. Results Transcriptomic analysis revealed a set of ten distinct transcripts that encode EnCLs. The enzymes are significantly variable in their active sites, specifically the S2 subsites responsible for interaction with substrates. Some of them display unusual structural features that resemble cathepsins B and S. Two recombinant EnCLs had different pH activity profiles against both synthetic and macromolecular substrates, and were able to hydrolyse blood proteins and collagen I. They were localised in the haematin cells of the worm’s digestive tract and in gut lumen. The EnCB showed similarity with cathepsin B2 of Schistosoma mansoni. It displays molecular features typical of cathepsins B, including an occluding loop responsible for its exopeptidase activity. Although the EnCB hydrolysed haemoglobin in vitro, it was localised in the vitelline cells of the parasite and not the digestive tract. Conclusions To our knowledge, this study represents the first complex bioinformatic and biochemical characterisation of cysteine peptidases in a monogenean. Eudiplozoon nipponicum adults express a variety of CLs, which are the most abundant peptidases in the worms. The properties and localisation of the two heterologously expressed EnCLs indicate a central role in the (partially extracellular?) digestion of host blood proteins. High variability of substrate-binding sites in the set of EnCLs suggests specific adaptation to a range of biological processes that require proteolysis. Surprisingly, a single cathepsin B is expressed by the parasite and it is not involved in digestion, but probably in vitellogenesis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2666-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Jedličková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| | - Hana Dvořáková
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Jan Dvořák
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.,Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague 6, Czech Republic
| | - Martin Kašný
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.,Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Lenka Ulrychová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jiří Vorel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, Průmyslová 595, Vestec, 25250, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| |
Collapse
|
10
|
Dvorak J, Horn M. Serine proteases in schistosomes and other trematodes. Int J Parasitol 2018; 48:333-344. [PMID: 29477711 DOI: 10.1016/j.ijpara.2018.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 02/04/2023]
Abstract
Trematodes, also known as flukes, are phylogenetically ancient parasitic organisms. Due to their importance as human and veterinary parasites, their proteins have been investigated extensively as drug and vaccine targets. Among those, proteases, as crucial enzymes for parasite survival, are considered candidate molecules for anti-parasitic interventions. Surprisingly however, trematode serine proteases, in comparison with other groups of proteases, are largely neglected. Genes encoding serine proteases have been identified in trematode genomes in significant abundance, but the biological roles and biochemical functions of these proteases are poorly understood. However, increasing volumes of genomic and proteomic studies, and accumulated experimental evidence, indicate that this class of proteases plays a substantial role in host-parasite interactions and parasite survival. Here, we discuss in detail serine proteases at genomic and protein levels, and their known or hypothetical functions.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Kamycka 129, Prague CZ 165 21, Czech Republic.
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague CZ 166 10, Czech Republic.
| |
Collapse
|
11
|
Řimnáčová J, Mikeš L, Turjanicová L, Bulantová J, Horák P. Changes in surface glycosylation and glycocalyx shedding in Trichobilharzia regenti (Schistosomatidae) during the transformation of cercaria to schistosomulum. PLoS One 2017; 12:e0173217. [PMID: 28296924 PMCID: PMC5351870 DOI: 10.1371/journal.pone.0173217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/17/2017] [Indexed: 11/25/2022] Open
Abstract
The invasive larvae (cercariae) of schistosomes penetrate the skin of their definitive hosts. During the invasion, they undergo dramatic ultrastructural and physiological transitions. These changes result in the development of the subsequent stage, schistosomulum, which migrates through host tissues in close contact with host's immune system. One of the striking changes in the transforming cercariae is the shedding of their thick tegumental glycocalyx, which represents an immunoattractive structure; therefore its removal helps cercariae to avoid immune attack. A set of commercial fluorescently labeled lectin probes, their saccharide inhibitors and monoclonal antibodies against the trisaccharide Lewis-X antigen (LeX, CD15) were used to characterize changes in the surface saccharide composition of the neuropathogenic avian schistosome Trichobilharzia regenti during the transformation of cercariae to schistosomula, both in vitro and in vivo. The effect of various lectins on glycocalyx shedding was evaluated microscopically. The involvement of peptidases and their inhibitors on the shedding of glycocalyx was investigated using T. regenti recombinant cathepsin B2 and a set of peptidase inhibitors. The surface glycocalyx of T. regenti cercariae was rich in fucose and mannose/glucose residues. After the transformation of cercariae in vitro or in vivo within their specific duck host, reduction and vanishing of these epitopes was observed, and galactose/N-acetylgalactosamine emerged. The presence of LeX was not observed on the cercariae, but the antigen was gradually expressed from the anterior part of the body in the developing schistosomula. Some lectins which bind to the cercarial surface also induced secretion from the acetabular penetration glands. Seven lectins induced the shedding of glycocalyx by cercariae, among which five bound strongly to cercarial surface; the effect could be blocked by saccharide inhibitors. Mannose-binding protein, part of the lectin pathway of the complement system, also bound to cercariae and schistosomula, but had little effect on glycocalyx shedding. Our study did not confirm the involvement of proteolysis in glycocalyx shedding.
Collapse
Affiliation(s)
- Jana Řimnáčová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Libuše Turjanicová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Jana Bulantová
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Viničná 7, Prague 2, Czech Republic
| |
Collapse
|
12
|
Grote A, Lustigman S, Ghedin E. Lessons from the genomes and transcriptomes of filarial nematodes. Mol Biochem Parasitol 2017; 215:23-29. [PMID: 28126543 DOI: 10.1016/j.molbiopara.2017.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/21/2017] [Indexed: 12/20/2022]
Abstract
Human filarial infections are a leading cause of morbidity in the developing world. While a small arsenal of drugs exists to treat these infections, there remains a tremendous need for the development of additional interventions. Recent genome sequences and transcriptome analyses of filarial nematodes have provided novel biological insight and allowed for the prediction of novel drug targets as well as potential vaccine candidates. In this review, we discuss the currently available data, insights gained into the metabolism of these organisms, and how the filaria field can move forward by leveraging these data.
Collapse
Affiliation(s)
- Alexandra Grote
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | | | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA.
| |
Collapse
|
13
|
Nitric oxide and cytokine production by glial cells exposed in vitro to neuropathogenic schistosome Trichobilharzia regenti. Parasit Vectors 2016; 9:579. [PMID: 27842570 PMCID: PMC5109812 DOI: 10.1186/s13071-016-1869-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/02/2016] [Indexed: 11/10/2022] Open
Abstract
Background Helminth neuroinfections represent a serious health problem, but host immune mechanisms in the nervous tissue often remain undiscovered. This study aims at in vitro characterization of the response of murine astrocytes and microglia exposed to Trichobilharzia regenti which is a neuropathogenic schistosome migrating through the central nervous system of vertebrate hosts. Trichobilharzia regenti infects birds and mammals in which it may cause severe neuromotor impairment. This study was focused on astrocytes and microglia as these are immunocompetent cells of the nervous tissue and their activation was recently observed in T. regenti-infected mice. Results Primary astrocytes and microglia were exposed to several stimulants of T. regenti origin. Living schistosomulum-like stages caused increased secretion of IL-6 in astrocyte cultures, but no changes in nitric oxide (NO) production were noticed. Nevertheless, elevated parasite mortality was observed in these cultures. Soluble fraction of the homogenate from schistosomulum-like stages stimulated NO production by both astrocytes and microglia, and IL-6 and TNF-α secretion in astrocyte cultures. Similarly, recombinant cathepsins B1.1 and B2 triggered IL-6 and TNF-α release in astrocyte and microglia cultures, and NO production in astrocyte cultures. Stimulants had no effect on production of anti-inflammatory cytokines IL-10 or TGF-β1. Conclusions Both astrocytes and microglia are capable of production of NO and proinflammatory cytokines IL-6 and TNF-α following in vitro exposure to various stimulants of T. regenti origin. Astrocytes might be involved in triggering the tissue inflammation in the early phase of T. regenti infection and are proposed to participate in destruction of migrating schistosomula. However, NO is not the major factor responsible for parasite damage. Both astrocytes and microglia can be responsible for the nervous tissue pathology and maintaining the ongoing inflammation since they are a source of NO and proinflammatory cytokines which are released after exposure to parasite antigens. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1869-7) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Leontovyč R, Young ND, Korhonen PK, Hall RS, Tan P, Mikeš L, Kašný M, Horák P, Gasser RB. Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host. PLoS Negl Trop Dis 2016; 10:e0004406. [PMID: 26863542 PMCID: PMC4749378 DOI: 10.1371/journal.pntd.0004406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023] Open
Abstract
To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts’ immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes. Despite the clinical importance of Trichobilharzia regenti in bird hosts and as a cause of cercarial dermatitis in humans, almost nothing is known about the molecular aspects of this fluke and its interactions with its hosts. Here, we sequenced, assembled and annotated the transcriptome representing two life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the bird host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for related flukes. Detailed analyses showed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during invasion and in growth and development, as well as cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during migration in neural tissues. These molecular insights into T. regenti biology should support future genomic and proteomic investigations of T. regenti, and comparative studies of flatworms.
Collapse
Affiliation(s)
- Roman Leontovyč
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Neil D. Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pasi K. Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ross S. Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick Tan
- Genome Institute of Singapore, Singapore, Republic of Singapore
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Republic of Singapore
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Martin Kašný
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Turjanicová L, Mikeš L, Pecková M, Horák P. Antibody response of definitive hosts against antigens of two life stages of the neuropathogenic schistosome Trichobilharzia regenti. Parasit Vectors 2015. [PMID: 26216102 PMCID: PMC4517386 DOI: 10.1186/s13071-015-1007-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nasal avian schistosome Trichobilharzia regenti spends part of its intravertebrate period of life within the central nervous system. Migration of the parasites can be accompanied by neuromotor disorders or paralysis in natural definitive hosts (ducks) and even in laboratory mammals. Cercariae are also able to penetrate human skin and induce cercarial dermatitis. While the cellular and antibody responses against cercariae and migrating schistosomula have been investigated in mice, little is known about immune reactions in birds. This study first describes the dynamics of antibody response in infected ducks and identifies frequently recognized antigens that may serve as diagnostic markers of infection by T. regenti. METHODS Groups of 35 domestic ducks and 10 mallards were exposed to different doses of T. regenti cercariae. Sera were collected at predefined time intervals and tested by ELISA for the presence of specific anti-cercarial IgY and IgM. Antigens recognized by the antibodies were identified on Western blots of cercariae and schistosomula. The applicability in immunodiagnostics was statistically evaluated by expression of specificity and sensitivity values for individual antigens. RESULTS In ELISA, the levels of anti-cercarial IgM peaked on day 15 pi. Increased production of IgY associated with the later phases of infection was observed in most individuals around 20 dpi and culminated 30 dpi. The time course of antibody response did not differ among experimental groups, variations were only observed in the levels of specific IgY which depended rather on the age of ducks at the time of infection than on the infectious dose. On Western blots, 40 cercarial and 7 schistosomular antigens were recognized by IgY from infected ducks. Among them, 4 cercarial antigens of 50, 47, 32 and 19 kDa provided the most sensitive and specific reactions. CONCLUSIONS Antigens of cercariae and schistosomula elicited distinct antibody response in ducks, which correlated positively with the age of animals at the time of infection. Several antigens originating in cercariae and fewer in schistosomula were recognized by IgY with diverse sensitivity and specificity; only a few seemed to be common to both stages. Four of them were considered as the most promising candidates for immunodiagnostics.
Collapse
Affiliation(s)
- Libuše Turjanicová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 12844, Prague 2, Czech Republic.
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 12844, Prague 2, Czech Republic.
| | - Monika Pecková
- Institute of Applied Mathematics and Information Technologies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43, Prague 2, Czech Republic.
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University in Prague, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
16
|
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev 2015; 28:165-90. [PMID: 25567226 PMCID: PMC4284296 DOI: 10.1128/cmr.00043-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Lichtenbergová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Skála
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Miroslava Soldánová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Sara Vanessa Brant
- Museum Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
17
|
Liu S, Cai P, Piao X, Hou N, Zhou X, Wu C, Wang H, Chen Q. Expression profile of the Schistosoma japonicum degradome reveals differential protease expression patterns and potential anti-schistosomal intervention targets. PLoS Comput Biol 2014; 10:e1003856. [PMID: 25275570 PMCID: PMC4183426 DOI: 10.1371/journal.pcbi.1003856] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/12/2014] [Indexed: 12/05/2022] Open
Abstract
Blood fluke proteases play pivotal roles in the processes of invasion, nutrition acquisition, immune evasion, and other host-parasite interactions. Hundreds of genes encoding putative proteases have been identified in the recently published schistosome genomes. However, the expression profiles of these proteases in Schistosoma species have not yet been systematically analyzed. We retrieved and culled the redundant protease sequences of Schistosoma japonicum, Schistosoma mansoni, Echinococcus multilocularis, and Clonorchis sinensis from public databases utilizing bioinformatic approaches. The degradomes of the four parasitic organisms and Homo sapiens were then comparatively analyzed. A total of 262 S. japonicum protease sequences were obtained and the expression profiles generated using whole-genome microarray. Four main clusters of protease genes with different expression patterns were identified: proteases up-regulated in hepatic schistosomula and adult worms, egg-specific or predominantly expressed proteases, cercaria-specific or predominantly expressed proteases, and constantly expressed proteases. A subset of protease genes with different expression patterns were further validated using real-time quantitative PCR. The present study represents the most comprehensive analysis of a degradome in Schistosoma species to date. These results provide a firm foundation for future research on the specific function(s) of individual proteases and may help to refine anti-proteolytic strategies in blood flukes. Parasite proteases play critical roles in host-parasite interactions and thus are considered to be potential anti-schistosomal targets. Although numerous schistosome proteases have been predicted based on recently published genomes, no systematic analysis of their expression in Schistosoma species has been performed. Thus, we comparatively analyzed the degradomes of four parasitic organisms and human host, and performed whole-genome microarray analysis to analyze the expression profile of the Schistosoma japonicum degradome at four developmental stages. The expression profile generated for the S. japonicum degradome was divided into four main clusters with different expression patterns, and a subset of selected proteases were further validated using real-time quantitative PCR. Our work is the most comprehensive analysis of a degradome in Schistosoma species to date. Many protease genes were first characterized in blood flukes, and some could be treated as potential anti-schistosomal targets for intensive research in the future. The results provide a firm foundation for deep study on the specific function(s) of individual proteases or protease families in schistosomes.
Collapse
Affiliation(s)
- Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaosu Zhou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuang Wu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Wang
- Department of Microbiology and Parasitology, Institute of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Zoonosis, Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
18
|
Kolářová L, Horák P, Skírnisson K, Marečková H, Doenhoff M. Cercarial dermatitis, a neglected allergic disease. Clin Rev Allergy Immunol 2014; 45:63-74. [PMID: 22915284 DOI: 10.1007/s12016-012-8334-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cercarial dermatitis (swimmer's itch) is a common non-communicable water-borne disease. It is caused by penetration of the skin by larvae (cercariae) of schistosomatid flukes and develops as a maculopapular skin eruption after repeated contacts with the parasites. The number of outbreaks of the disease is increasing, and cercarial dermatitis can therefore be considered as an emerging problem. Swimmer's itch is mostly associated with larvae of the bird schistosomes of Trichobilharzia spp. Recent results have shown that mammalian infections (including man) manifest themselves as an allergic reaction which is able to trap and eliminate parasites in the skin. Studies on mammals experimentally infected by bird schistosome cercariae revealed, however, that during primary infection, parasites are able to escape from the skin to the lungs or central nervous system. This review covers basic information on detection of the infectious agents in the field and the clinical course of the disease, including other pathologies which may develop after infection by cercariae, and diagnosis of the disease.
Collapse
Affiliation(s)
- Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Studničkova 7, 128 00, Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
19
|
Pathogenicity of Trichobilharzia spp. for Vertebrates. J Parasitol Res 2012; 2012:761968. [PMID: 23125918 PMCID: PMC3480016 DOI: 10.1155/2012/761968] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/13/2012] [Indexed: 12/05/2022] Open
Abstract
Bird schistosomes, besides being responsible for bird schistosomiasis, are known as causative agents of cercarial dermatitis. Cercarial dermatitis develops after repeated contact with cercariae, mainly of the genus Trichobilharzia, and was described as a type I, immediate hypersensitivity response, followed by a late phase reaction. The immune response is Th2 polarized. Primary infection leads to an inflammatory reaction that is insufficient to eliminate the schistosomes and schistosomula may continue its migration through the body of avian as well as mammalian hosts. However, reinfections of experimental mice revealed an immune reaction leading to destruction of the majority of schistosomula in the skin. Infection with the nasal schistosome Trichobilharzia regenti probably represents a higher health risk than infections with visceral schistosomes. After the skin penetration by the cercariae, parasites migrate via the peripheral nerves, spinal cord to the brain, and terminate their life cycle in the nasal mucosa of waterfowl where they lay eggs. T. regenti can also get over skin barrier and migrate to CNS of experimental mice. During heavy infections, neuroinfections of both birds and mammals lead to the development of a cellular immune response and axonal damage in the vicinity of the schistosomulum. Such infections are manifest by neuromotor disorders.
Collapse
|
20
|
Ingram JR, Rafi SB, Eroy-Reveles AA, Ray M, Lambeth L, Hsieh I, Ruelas D, Lim KC, Sakanari J, Craik CS, Jacobson MP, McKerrow JH. Investigation of the proteolytic functions of an expanded cercarial elastase gene family in Schistosoma mansoni. PLoS Negl Trop Dis 2012; 6:e1589. [PMID: 22509414 PMCID: PMC3317910 DOI: 10.1371/journal.pntd.0001589] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
Background Cercarial elastase is the major invasive larval protease in Schistosoma mansoni, a parasitic blood fluke, and is essential for host skin invasion. Genome sequence analysis reveals a greatly expanded family of cercarial elastase gene isoforms in Schistosoma mansoni. This expansion appears to be unique to S. mansoni, and it is unknown whether gene duplication has led to divergent protease function. Methods Profiling of transcript and protein expression patterns reveals that cercarial elastase isoforms are similarly expressed throughout the S. mansoni life cycle. Computational modeling predicts key differences in the substrate-binding pockets of various cercarial elastase isoforms, suggesting a diversification of substrate preferences compared with the ancestral gene of the family. In addition, active site labeling of SmCE reveals that it is activated prior to exit of the parasite from its intermediate snail host. Conclusions The expansion of the cercarial gene family in S. mansoni is likely to be an example of gene dosage. In addition to its critical role in human skin penetration, data presented here suggests a novel role for the protease in egress from the intermediate snail host. This study demonstrates how enzyme activity-based analysis complements genomic and proteomic studies, and is key in elucidating proteolytic function. Schistosome parasites are a major cause of disease in the developing world. The larval stage of the parasite transitions between an intermediate snail host and a definitive human host in a dramatic fashion, burrowing out of the snail and subsequently penetrating human skin. This process is facilitated by secreted proteases. In Schistosoma mansoni, cercarial elastase is the predominant secreted protease and essential for host skin invasion. Genomic analysis reveals a greatly expanded cercarial elastase gene family in S. mansoni. Despite sequence divergence, SmCE isoforms show similar expression profiles throughout the S. mansoni life cycle and have largely similar substrate specificities, suggesting that the majority of protease isoforms are functionally redundant and therefore their expansion is an example of gene dosage. However, activity-based profiling also indicates that a subset of SmCE isoforms are activated prior to the parasite's exit from its intermediate snail host, suggesting that the protease may also have a role in this process.
Collapse
Affiliation(s)
- Jessica R. Ingram
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Salma B. Rafi
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - A. Alegra Eroy-Reveles
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Manisha Ray
- Tetrad Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Laura Lambeth
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ivy Hsieh
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Debbie Ruelas
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - K. C. Lim
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Judy Sakanari
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Sandler Center for Drug Discovery, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Proteomic analysis of human skin treated with larval schistosome peptidases reveals distinct invasion strategies among species of blood flukes. PLoS Negl Trop Dis 2011; 5:e1337. [PMID: 21980548 PMCID: PMC3181243 DOI: 10.1371/journal.pntd.0001337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/11/2011] [Indexed: 11/26/2022] Open
Abstract
Background Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts. Methods Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays. Conclusions This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts. Schistosome parasites are a major cause of disease in the developing world, but the mechanism by which these parasites first infect their host has been studied at the molecular level only for S. mansoni. In this paper, we have mined recent genome annotations of S. mansoni and S. japonicum, a zoonotic schistosome species, to identify differential expansion of peptidase gene families that may be involved in parasite invasion and subsequent migration through skin. Having identified a serine peptidase gene family in S. mansoni and a cysteine peptidase gene family in S. japonicum, we then used a comparative proteomic approach to identify potential substrates of representative members of both classes of enzymes from S. mansoni in human skin. The results of this study suggest that while these species evolved to use different classes of peptidases in host invasion, both are capable of cleaving components of the epidermis and dermal extracellular matrix, as well as proteins involved in the host immune response against the migrating parasite.
Collapse
|
22
|
Ligasová A, Bulantová J, Sebesta O, Kašný M, Koberna K, Mikeš L. Secretory glands in cercaria of the neuropathogenic schistosome Trichobilharzia regenti - ultrastructural characterization, 3-D modelling, volume and pH estimations. Parasit Vectors 2011; 4:162. [PMID: 21854564 PMCID: PMC3171358 DOI: 10.1186/1756-3305-4-162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 08/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cercariae of schistosomes employ bioactive molecules for penetration into their hosts. These are released from specialized unicellular glands upon stimuli from host skin. The glands were previously well-described in the human pathogen Schistosoma mansoni. As bird schistosomes can also penetrate human skin and cause cercarial dermatitis, our aim was to characterize the architecture and ultrastructure of glands in the neurotropic bird schistosome Trichobilharzia regenti and compare it with S. mansoni. In the context of different histolytic enzymes used by these two species, we focused also on the estimations of gland volumes and pH in T. regenti. RESULTS The architecture and 3-D models of two types of acetabular penetration glands, their ducts and of the head gland are shown here. We characterized secretory vesicles in all three gland types by means of TEM and confirmed accuracy of the models obtained by confocal microscopy. The results of two independent approaches showed that the glands occupy ca. one third of cercarial body volume (postacetabular glands ca. 15%, circumacetabular 12% and head gland 6%). The inner environment within the two types of acetabular glands differed significantly as evidenced by dissimilar ability to bind fluorescent markers and by pH value which was higher in circumacetabular (7.44) than in postacetabular (7.08) glands. CONCLUSIONS As far as we know, this is the first presentation of a 3-D model of cercarial glands and the first exact estimation of the volumes of the three gland types in schistosomes. Our comparisons between T. regenti and S. mansoni implied that the architecture and ultrastructure of the glands is most likely conserved within the family. Only minor variations were found between the two species. It seems that the differences in molecular composition have no effect on general appearance of the secretory cells in TEM. Fluorescent markers employed in this study, distinguishing between secretory vesicles and gland types, can be useful in further studies of mechanisms used by cercariae for host invasion. Results of the first attempts to estimate pH within schistosome glands may help further understanding of regulation of enzymatic activities present within the glands.
Collapse
Affiliation(s)
- Anna Ligasová
- Department of Parasitology, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
23
|
Han YP, Li ZY, Li BC, Sun X, Zhu CC, Ling XT, Zheng HQ, Wu ZD, Lv ZY. Molecular cloning and characterization of a cathepsin B from Angiostrongylus cantonensis. Parasitol Res 2011; 109:369-78. [PMID: 21344211 DOI: 10.1007/s00436-011-2264-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 01/18/2011] [Indexed: 02/04/2023]
Abstract
Cysteine proteases, a superfamily of hydrolytic enzymes, have numerous functions in parasites. Here, we reported the cloning and characterization of a cDNA encoding a cathepsin B (AcCPB) from Angiostrongylus cantonensis fourth-stage larvae cDNA library. The deduced amino acid sequence analysis indicated AcCPB is related to other cathepsin B family members with an overall conserved architecture. AcCPB is evolutionarily more close to other parasitic nematode cathepsin B than the ones from hosts, sharing 43-53% similarities to the homologues from other organisms. Real-time quantitative PCR analysis revealed that AcCPB was expressed significantly higher in the fourth-stage larvae (L4) and the fifth-stage larvae (L5) than that in the third-stage larvae (L3) and adult worms (Aw). Unexpectedly, AcCPB was expressed at a higher level in L4 and L5 derived from mice than the larvae at the same stages derived from rats. The protease activity of recombinant AcCPB (rAcCPB) expressed in Escherichia coli showed high thermostability and acidic pH optima. The role in ovalbumin digestion and enzyme activity of rAcCPB could be evidently inhibited by cystatin from A.cantonensis. Furthermore, we found rAcCPB increased the expression levels of CD40, MHC II, and CD80 on LPS-stimulated dendritic cells (DCs). In this study, we provided the first experimental evidence for the expression of cathepsin B in A.cantonensis. Besides its highly specific expression in the stages of L4 and L5 when the worms cause dysfunction of the blood-brain barrier of hosts, AcCPB displayed different expression profiles in non-permissive host- and permissive host-derived larval stages and was involved in the maturation of DCs, suggesting a potential role in the central nervous system invasion and the immunoregulation during parasite-host interactions.
Collapse
Affiliation(s)
- Yan-ping Han
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cathepsins B1 and B2 of Trichobilharzia SPP., bird schistosomes causing cercarial dermatitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:136-54. [PMID: 21660663 DOI: 10.1007/978-1-4419-8414-2_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trichobilharzia regenti and T. szidati are schistosomes that infect birds. although T. regenti/T. szidati can only complete their life cycle in specific bird hosts (waterfowl), their larvae-cercariae are able to penetrate, transform and then migrate as schistosomula in nonspecific hosts (e.g., mouse, man). Peptidases are among the key molecules produced by these schistosomes that enable parasite invasion and survival within the host and include cysteine peptidases such as cathepsins B1 and B2. These enzymes are indispensable bio-catalysts in a number of basal biological processes and host-parasite interactions, e.g., tissue invasion/migration, nutrition and immune evasion. Similar biochemical and functional characteristics were observed for cathepsins B1 and B2 in bird schistosomes (T. regenti, T. szidati) and also for their homologs in human schistosomes (Schistosoma mansoni, S. japonicum). Therefore, data obtained in the research of bird schistosomes can also be exploited for the control of human schistosomes such as the search for targets of novel chemotherapeutic drugs and vaccines.
Collapse
|
25
|
Smooker PM, Jayaraj R, Pike RN, Spithill TW. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol 2010; 26:506-14. [PMID: 20580610 DOI: 10.1016/j.pt.2010.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 01/22/2023]
Abstract
Cysteine proteases are important virulence factors for parasites. This review will focus on the cathepsin B proteases of trematodes (also known as flukes) which are abundant in juvenile and immature flukes. Recent research, primarily in Fasciola, using inhibitors, RNA interference (RNAi) and vaccination studies indicates that cathepsin Bs play a key role in the biology of trematodes. As these proteases are largely expressed by infective parasite stages, their inactivation by chemotherapy or vaccination will greatly reduce the damage wrought by flukes as they invade host tissues. This validates cathepsin Bs as key strategic targets for fluke control.
Collapse
|
26
|
Dolecková K, Albrecht T, Mikes L, Horák P. Cathepsins B1 and B2 in the neuropathogenic schistosome Trichobilharzia regenti: distinct gene expression profiles and presumptive roles throughout the life cycle. Parasitol Res 2010; 107:751-5. [PMID: 20556428 DOI: 10.1007/s00436-010-1943-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/01/2010] [Indexed: 11/24/2022]
Abstract
The neurotropic bird schistosome Trichobilharzia regenti possesses papain-like cysteine peptidases which have also been shown to be crucial enzymes in various developmental stages of the related human parasites Schistosoma spp. In this paper, we present data obtained by real-time polymerase chain reaction on the temporal distribution of transcripts of two cathepsins in different developmental stages of T. regenti: cathepsin B1 originally described from the gut lumen of schistosomula with presumptive role in nutrient digestion and cathepsin B2 originally found in penetration glands of cercariae with probable involvement in invasion of the final host. In spite of their mutual resemblance at the sequence level, the mRNA expression profiles clearly show distinct expression of cathepsins B1 and B2 during the development from eggs to cercariae. In the case of both cathepsins, the highest level of transcription was detected in intravertebrate stages. Putative functions of cathepsins B1 and B2 in schistosome developmental stages are discussed.
Collapse
Affiliation(s)
- Katerina Dolecková
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicná 7, Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
27
|
Kašný M, Mikeš L, Hampl V, Dvořák J, Caffrey CR, Dalton JP, Horák P. Chapter 4 Peptidases of Trematodes. ADVANCES IN PARASITOLOGY 2009; 69:205-97. [DOI: 10.1016/s0065-308x(09)69004-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Lichtenbergová L, Kolbeková P, Kourilová P, Kasný M, Mikes L, Haas H, Schramm G, Horák P, Kolárová L, Mountford AP. Antibody responses induced by Trichobilharzia regenti antigens in murine and human hosts exhibiting cercarial dermatitis. Parasite Immunol 2008; 30:585-95. [PMID: 19067839 PMCID: PMC2680328 DOI: 10.1111/j.1365-3024.2008.01059.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 07/22/2008] [Indexed: 12/02/2022]
Abstract
Cercariae of bird schistosomes (genus Trichobilharzia) are able to penetrate the skin of mammals (noncompatible hosts), including humans, and cause a Th2-associated inflammatory cutaneous reaction termed cercarial dermatitis. The present study measured the antibody reactivity and antigen specificity of sera obtained after experimental infection of mice and natural infection of humans. Sera from mice re-infected with T. regenti showed a bias towards the development of antigen-specific IgM and IgG1 antibodies and elevated levels of total serum IgE, indicative of a Th2 polarized immune response. We also demonstrate that cercariae are a source of antigens triggering IL-4 release from basophils collected from healthy human volunteers. Analysis of sera from patients with a history of cercarial dermatitis revealed elevated levels of cercarial-specific IgG, particularly for samples collected from adults (> 14 years old) compared with children (8-14 years old), although elevated levels of antigen-specific IgE were not detected. In terms of antigen recognition, IgG and IgE antibodies in the sera of both mice and humans preferentially bound an antigen of 34 kDa. The 34 kDa molecule was present in both homogenate of cercariae, as well as cercarial excretory/secretory products, and we speculate it may represent a major immunogen initiating the Th2-immune response associated with cercarial dermatitis.
Collapse
Affiliation(s)
- L Lichtenbergová
- Department of Microbiology, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|