1
|
Mola JM, Williams NM. Bumble bee movement ecology: foraging and dispersal across castes and life stages. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2025; 118:175-188. [PMID: 40415971 PMCID: PMC12095912 DOI: 10.1093/aesa/saaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 05/27/2025]
Abstract
Movement is a dynamic process that changes with ontogeny, physiological state, and ecological context. The results of organismal movement impact multiple dimensions of fitness, population dynamics, and functional interactions. As such, the study of movement is critical for understanding and conserving species. Bumble bees (Apidae: Bombus spp.) offer a powerful system to study multiple complexities of movement within a functionally important clade. Their life history includes distinct social and solitary phases, substantial intraspecific variation in body size, and multiple modes of movement behavior. These traits allow investigations of diverse concepts at multiple scales and during contrasting behavioral and motivational states-from individuals, to colonies, to populations, and among species. Despite extensive study as model organisms of fine-scale movements and optimal foraging theory, understanding of landscape-scale movements is more limited. This knowledge gap is especially troubling given global pollinator declines because such dispersive movements fundamentally affect how populations respond to landscape transformation, climate change, and restoration efforts. To build toward a refined understanding of the bumble bee movement, inform research, and assist conservation programs, we review foraging and dispersal movement across life stages and castes. Using an ontogenetic approach, we compare the movement motivation and capacity of individuals throughout colony development. Despite the growth in recent literature, much remains to be learned about the bumble bee movement, especially dispersive life stages. Focused effort on how movement varies with individual state such as nutrition and age, and comparative studies of species would all fill knowledge gaps with high potential to improve bee conservation and research.
Collapse
Affiliation(s)
- John M Mola
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Neal M Williams
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
- Graduate Group in Ecology, University of California Davis, Davis, CA, USA
| |
Collapse
|
2
|
Chen H, Bashir NH, Li Q, Liu C, Naeem M, Wang H, Gao W, Corlett RT, Liu C, Vidal MC. The Role of Pathogens in Bumblebee Decline: A Review. Pathogens 2025; 14:94. [PMID: 39861055 PMCID: PMC11768362 DOI: 10.3390/pathogens14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Bumblebees, the most important wild pollinators in both agricultural and natural ecosystems, are declining worldwide. The global decline of bumblebees may threaten biodiversity, pollination services, and, ultimately, agricultural productivity. Several factors, including pesticide usage, climate change, habitat loss, and species invasion, have been documented in the decline of bumblebee species, but recent studies have revealed the dominating role of pathogens and parasites over any of these causes. Unfortunately, there is a lack of a full understanding of the role of pathogens and parasites in the decline of bumblebee species. The current study provides a comprehensive review of how pathogens and parasites contribute to the decline of bumblebee species. The study also explores the prevalence of each pathogen and parasite within bumblebee populations. Furthermore, we address the synergistic effects of pathogens and other stressors, such as pesticides, climatic effects, and habitat loss, on bumblebee populations. To summarize, we propose possible conservation and management strategies to preserve the critical role of bumblebees in pollination services and thus to support ecosystem and agricultural health.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, Qujing Normal University, Qujing, 655011, China
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nawaz Haider Bashir
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Qiang Li
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, Qujing Normal University, Qujing, 655011, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Muhammad Naeem
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Haohan Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Wenrong Gao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA;
| |
Collapse
|
3
|
Bartolomé C, Dasilva-Martíns D, Valiñas R, Gabín-García LB, Nave A, García-Pérez AL, Monceau K, Thiéry D, Christie A, Choi MB, Sobrino B, Amigo J, Maside X. Prevalence and population genetic analyses of parasites in invasive Vespa velutina and native Hymenoptera. J Invertebr Pathol 2024; 207:108203. [PMID: 39313091 DOI: 10.1016/j.jip.2024.108203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Invasive species pose a threat to the ecological balance of the ecosystems they invade by altering local host-pathogen dynamics. To investigate these relationships and their potential consequences, we examined the prevalence and genetic diversity patterns of Trypanosomatidae, Lipotrophidae, and Nosematidae in a collection of sympatric isolates of the invasive hornet Vespa velutina and local Hymenoptera from two recently colonized areas: Europe and South Korea. Data were gathered through PCR amplification and massive parallel sequencing, and analyses were conducted using population genetics tools. Parasite prevalences showed substantial variation depending on (i) the parasite family (Trypanosomatidae and Nosematidae were the most and less prevalent, respectively), (ii) location (e.g. Galicia displayed the highest pooled values), (iii) the season (highest in spring for Trypanosomatidae and Lipotrophidae), and (iv) the host. V. velutina exhibited significantly lower parasite occurrence than native Hymenoptera across all parasite families (consistent with the enemy release hypothesis), although this difference was less pronounced during the periods of heightened predatory activity, suggestive of trophic transmission. Parasite species displayed significant genetic differentiation between European and South Korean isolates, yet no differentiation was observed across hosts, suggesting that all Hymenoptera are exposed to a common local pathogen population. There was no indication that V. velutina acted as a carrier of foreign parasites to the invaded territories.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Damian Dasilva-Martíns
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Rosa Valiñas
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain
| | - Luís B Gabín-García
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain
| | - Anabela Nave
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas, CITAB, Universidade de Trás-os-Montes e Alto Douro, UTAD, 5000-801 Vila Real, Portugal; Unidade Estratégica de Sistemas Agrários e Florestais e Sanidade Vegetal (UESAFSV) Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain.
| | - Karine Monceau
- UMR 7372, Centre d'Études Biologiques de Chizé, La Rochelle Université & CNRS, 79360 Villiers en Bois, France.
| | - Denis Thiéry
- INRAE, UMR1065 SAVE, 33140, Villenave d'Ornon, France.
| | - Alastair Christie
- Government of Jersey, Natural Environment, Route de la Trinité, Trinity, JE3 5JP Jersey, Channel Islands.
| | - Moon Bo Choi
- Institute of Agricultural Science and Technology, Kyungpook National University, 41566 Daegu, Republic of Korea.
| | - Beatriz Sobrino
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain; Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Jorge Amigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain; Fundación Pública Galega de Medicina Xenómica, Servizo Galego de Saúde (SERGAS), 15706 Santiago de Compostela, Galiza, Spain.
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain; Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Galiza, Spain.
| |
Collapse
|
4
|
Chen H, Zhang G, Ding G, Huang J, Zhang H, Vidal MC, Corlett RT, Liu C, An J. Interspecific Host Variation and Biotic Interactions Drive Pathogen Community Assembly in Chinese Bumblebees. INSECTS 2023; 14:887. [PMID: 37999086 PMCID: PMC10672019 DOI: 10.3390/insects14110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Bumblebees have been considered one of the most important pollinators on the planet. However, recent reports of bumblebee decline have raised concern about a significant threat to ecosystem stability. Infectious diseases caused by multiple pathogen infections have been increasingly recognized as an important mechanism behind this decline worldwide. Understanding the determining factors that influence the assembly and composition of pathogen communities among bumblebees can provide important implications for predicting infectious disease dynamics and making effective conservation policies. Here, we study the relative importance of biotic interactions versus interspecific host resistance in shaping the pathogen community composition of bumblebees in China. We first conducted a comprehensive survey of 13 pathogens from 22 bumblebee species across China. We then applied joint species distribution modeling to assess the determinants of pathogen community composition and examine the presence and strength of pathogen-pathogen associations. We found that host species explained most of the variations in pathogen occurrences and composition, suggesting that host specificity was the most important variable in predicting pathogen occurrences and community composition in bumblebees. Moreover, we detected both positive and negative associations among pathogens, indicating the role of competition and facilitation among pathogens in determining pathogen community assembly. Our research demonstrates the power of a pluralistic framework integrating field survey of bumblebee pathogens with community ecology frameworks to understand the underlying mechanisms of pathogen community assembly.
Collapse
Affiliation(s)
- Huanhuan Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Guangshuo Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Hong Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Jiandong An
- State Key Laboratory of Resource Insects, Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.C.); (G.Z.); (G.D.); (J.H.); (H.Z.)
| |
Collapse
|
5
|
Nekoei S, Rezvan M, Khamesipour F, Mayack C, Molento MB, Revainera PD. A systematic review of honey bee (Apis mellifera, Linnaeus, 1758) infections and available treatment options. Vet Med Sci 2023. [PMID: 37335585 PMCID: PMC10357250 DOI: 10.1002/vms3.1194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Honey bees and honeycomb bees are very valuable for wild flowering plants and economically important crops due to their role as pollinators. However, these insects confront many disease threats (viruses, parasites, bacteria and fungi) and large pesticide concentrations in the environment. Varroa destructor is the most prevalent disease that has had the most negative effects on the fitness and survival of different honey bees (Apis mellifera and A. cerana). Moreover, honey bees are social insects and this ectoparasite can be easily transmitted within and across bee colonies. OBJECTIVE This review aims to provide a survey of the diversity and distribution of important bee infections and possible management and treatment options, so that honey bee colony health can be maintained. METHODS We used PRISMA guidelines throughout article selection, published between January 1960 and December 2020. PubMed, Google Scholar, Scopus, Cochrane Library, Web of Science and Ovid databases were searched. RESULTS We have collected 132 articles and retained 106 articles for this study. The data obtained revealed that V. destructor and Nosema spp. were found to be the major pathogens of honey bees worldwide. The impact of these infections can result in the incapacity of forager bees to fly, disorientation, paralysis, and death of many individuals in the colony. We find that both hygienic and chemical pest management strategies must be implemented to prevent, reduce the parasite loads and transmission of pathogens. The use of an effective miticide (fluvalinate-tau, coumaphos and amitraz) now seems to be an essential and common practice required to minimise the impact of Varroa mites and other pathogens on bee colonies. New, alternative biofriendly control methods, are on the rise, and could be critical for maintaining honey bee hive health and improving honey productivity. CONCLUSIONS We suggest that critical health control methods be adopted globally and that an international monitoring system be implemented to determine honey bee colony safety, regularly identify parasite prevalence, as well as potential risk factors, so that the impact of pathogens on bee health can be recognised and quantified on a global scale.
Collapse
Affiliation(s)
- Shahin Nekoei
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Rezvan
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, Sabanci University, İstanbul, Turkey
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
- Microbiology, Parasitology, Pathology Program, Federal University of Parana, Curitiba, PR, Brazil
| | - Pablo Damián Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
6
|
Yanagisawa T, Kato Y, Inoue MN. Infection Prevalence of Microsporidia Vairimorpha ( Nosema) spp. in Japanese Bumblebees. INSECTS 2023; 14:340. [PMID: 37103155 PMCID: PMC10145284 DOI: 10.3390/insects14040340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Microsporidia are spore-forming intracellular parasites of various invertebrates and vertebrates. Vairimorpha bombi negatively affects the fitness of bumblebees and its prevalence correlates with declining bumblebee populations. The invasive alien species Bombus terrestris colonized Japan and possibly introduced new parasites. To assess the infection prevalence of V. bombi in Japanese bumblebees and B. terrestris, we investigated V. bombi infections using PCR and microscopy. The prevalence of sporulating V. bombi infections in three Bombus s. str. species/subspecies was low, whereas that of non/low-sporulating Vairimorpha sp. infections in three Diversobombus species/subspecies was high. Invasive B. terrestris showed low prevalence of non/low-sporulating V. bombi infections and shared the same V. bombi haplotype with B. hypocrita found in Hokkaido, where B. terrestris is present, and in Honshu, where B. terrestris is absent. Although V. bombi may have been introduced with B. terrestris colonies imported from Europe, it seems to be originally distributed in Japan. Furthermore, a new Vairimorpha sp. was found in Japanese bumblebee species. V. bombi and Vairimorpha sp. showed different organ and host specificities in bumblebees. There are no reports on the specific effects of other Vairimorpha spp. on bumblebees; further studies are needed to clarify the individual characteristics of Vairimorpha spp.
Collapse
|
7
|
Weng M, Zhang X, Xin Z, Xue S, Zhang Q, Li A, Zhang J. Intraspecific genetic diversity of the fish-infecting microsporidian parasite Pseudokabatana alburnus (Microsporidia). Front Microbiol 2023; 14:1129136. [PMID: 36970667 PMCID: PMC10034183 DOI: 10.3389/fmicb.2023.1129136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Pseudokabatana alburnus is a xenoma-forming fish microsporidium, firstly described from the liver of the Culter alburnus from Poyang Lake in China. In the present study, P. alburnus was firstly reported from the ovary of 6 other East Asian minnows, including Squaliobarbus curriculus, Hemiculter leucisculus, Cultrichthys erythropterus, Pseudolaubuca engraulis, Toxabramis swinhonis, and Elopichthys bambusa. Genetic analysis revealed high sequence diversity in the ribosomal internal transcribed spacer region (ITS) and the largest subunit of RNA polymerase II (Rpb1) loci of P. alburnus isolated from different hosts and locations. The variation of Rpb1 mainly occurred in the 1,477–1737 bp regions. The presence of a wide variety of Rpb1 haplotypes within a single fish host, together with evidence of genetic recombination suggested that P. alburnus may have the intergenomic variation and sexual reproduction might be present in other hosts (possibly freshwater shrimp). Phylogenetic analysis and population genetic analysis showed that there was no geographical population divergence for P. alburnus. Homogeneity and high variability of ITS sequences indicates that ITS may be a suitable molecular marker to distinguish different P. alburnus isolates. Our data confirm the broad geographical distribution and host range of P. alburnus in the middle and lower reaches of the Yangtze River. Additionally, we emendated the genus Pseudokabatana to exclude the infection site, liver as one of the taxonomic criteria, and proposed that fish ovary was be the general infection site of P. alburnus.
Collapse
Affiliation(s)
- Meiqi Weng
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xintong Zhang
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zhaozhe Xin
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Sijia Xue
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jinyong Zhang
- Laboratory of Aquatic Parasitology and Microbial Resources, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- *Correspondence: Jinyong Zhang,
| |
Collapse
|
8
|
Babin A, Schurr F, Rivière MP, Chauzat MP, Dubois E. Specific detection and quantification of three microsporidia infecting bees, Nosema apis, Nosema ceranae, and Nosema bombi, using probe-based real-time PCR. Eur J Protistol 2022; 86:125935. [DOI: 10.1016/j.ejop.2022.125935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/03/2022]
|
9
|
Bartolomé C, Buendía-Abad M, Ornosa C, De la Rúa P, Martín-Hernández R, Higes M, Maside X. Bee Trypanosomatids: First Steps in the Analysis of the Genetic Variation and Population Structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae. MICROBIAL ECOLOGY 2022; 84:856-867. [PMID: 34609533 PMCID: PMC9622509 DOI: 10.1007/s00248-021-01882-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that (1) they were subject to the action of purifying selection on nonsynonymous variants, (2) the levels of within species diversity were similar irrespective of the host, (3) there was evidence of recombination among haplotypes and (4) they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04 %) - and a mutation frequency distribution compatible with a population expansion after a bottleneck - that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areas.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Concepción Ornosa
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, 02006, Albacete, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
10
|
Weng M, Xie D, Zhang Q, Li A, Zhang J. First report of Ovipleistophora ovariae and O. diplostomuri in China provides new insights into the intraspecific genetic variation and extends their distribution. Parasitology 2022; 149:314-324. [PMID: 35264262 PMCID: PMC11010532 DOI: 10.1017/s0031182021001852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/07/2021] [Accepted: 10/17/2021] [Indexed: 11/07/2022]
Abstract
Microsporidia of the genus Ovipleistophora are generally parasites of fishes and aquatic crustaceans. In the current study, Ovipleistophora diplostomuri and O. ovariae were firstly reported from Culter alburnus and Xenocypris argentea and Parabramis pekinensis, respectively. Both of them exclusively infected fish ovary and were morphologically, ultrastructurally and genetically characterized. Sporogony occurred in direct contact with the host cell cytoplasm and sporophorous vesicles were not observed for the new isolates of these two Ovipleistophora species. Spores of O. ovariae were for the first time observed to be dimorphic. Genetic analysis indicated that the genetic variation in the ITS and LSU sequences was distinct among between-host O. diplostomuri isolates. High sequence variation in ITS sequence suggests that it can be a reliable molecular marker to explore the population genetics of O. diplostomuri. This is the first report of these two Ovipleistophora species in China which extends their host and geographical range.
Collapse
Affiliation(s)
- Meiqi Weng
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, 266237Qingdao, China
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing10049, China
| | - Derong Xie
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, 266237Qingdao, China
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing10049, China
| | - Qianqian Zhang
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Aihua Li
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan430072, China
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, 266237Qingdao, China
| |
Collapse
|
11
|
Gabín-García LB, Bartolomé C, Guerra-Tort C, Rojas-Nossa SV, Llovo J, Maside X. Identification of pathogens in the invasive hornet Vespa velutina and in native Hymenoptera (Apidae, Vespidae) from SW-Europe. Sci Rep 2021; 11:11233. [PMID: 34045562 PMCID: PMC8160249 DOI: 10.1038/s41598-021-90615-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022] Open
Abstract
Invasive species contribute to deteriorate the health of ecosystems due to their direct effects on native fauna and the local parasite-host dynamics. We studied the potential impact of the invasive hornet Vespa velutina on the European parasite-host system by comparing the patterns of diversity and abundance of pathogens (i.e. Microsporidia: Nosematidae; Euglenozoa: Trypanosomatidae and Apicomplexa: Lipotrophidae) in European V. velutina specimens with those in the native European hornet Vespa crabro, as well as other common Hymenoptera (genera Vespula, Polistes and Bombus). We show that (i) V. velutina harbours most common hymenopteran enteropathogens as well as several new parasitic taxa. (ii) Parasite diversity in V. velutina is most similar to that of V. crabro. (iii) No unambiguous evidence of pathogen release by V. velutina was detected. This evidence together with the extraordinary population densities that V. velutina reaches in Europe (around of 100,000 individuals per km2 per year), mean that this invasive species could severely alter the native pathogen-host dynamics either by actively contributing to the dispersal of the parasites and/or by directly interacting with them, which could have unexpected long-term harmful consequences on the native entomofauna.
Collapse
Affiliation(s)
- Luis B Gabín-García
- CiMUS P2D2, Universidade de Santiago de Compostela, Av. de Barcelona s/n, 15782, Santiago de Compostela, Galiza, Spain.,Instituto de Investigacións Sanitarias de Santiago (IDIS), 15706, Santiago de Compostela, Galiza, Spain
| | - Carolina Bartolomé
- CiMUS P2D2, Universidade de Santiago de Compostela, Av. de Barcelona s/n, 15782, Santiago de Compostela, Galiza, Spain.,Instituto de Investigacións Sanitarias de Santiago (IDIS), 15706, Santiago de Compostela, Galiza, Spain
| | - Carla Guerra-Tort
- CiMUS P2D2, Universidade de Santiago de Compostela, Av. de Barcelona s/n, 15782, Santiago de Compostela, Galiza, Spain
| | - Sandra V Rojas-Nossa
- Department of Ecology and Animal Biology, Faculty of Sciences, University of Vigo, 36310, Vigo, Galiza, Spain
| | - José Llovo
- Instituto de Investigacións Sanitarias de Santiago (IDIS), 15706, Santiago de Compostela, Galiza, Spain
| | - Xulio Maside
- CiMUS P2D2, Universidade de Santiago de Compostela, Av. de Barcelona s/n, 15782, Santiago de Compostela, Galiza, Spain. .,Instituto de Investigacións Sanitarias de Santiago (IDIS), 15706, Santiago de Compostela, Galiza, Spain.
| |
Collapse
|
12
|
Salvarrey S, Antúnez K, Arredondo D, Plischuk S, Revainera P, Maggi M, Invernizzi C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One 2021; 16:e0249842. [PMID: 33901226 PMCID: PMC8075198 DOI: 10.1371/journal.pone.0249842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Collapse
Affiliation(s)
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET- UNLP), La Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | |
Collapse
|
13
|
Gómez-Moracho T, Durand T, Pasquaretta C, Heeb P, Lihoreau M. Artificial Diets Modulate Infection Rates by Nosema ceranae in Bumblebees. Microorganisms 2021; 9:microorganisms9010158. [PMID: 33445614 PMCID: PMC7827189 DOI: 10.3390/microorganisms9010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/25/2022] Open
Abstract
Parasites alter the physiology and behaviour of their hosts. In domestic honey bees, the microsporidia Nosema ceranae induces energetic stress that impairs the behaviour of foragers, potentially leading to colony collapse. Whether this parasite similarly affects wild pollinators is little understood because of the low success rates of experimental infection protocols. Here, we present a new approach for infecting bumblebees (Bombus terrestris) with controlled amounts of N. ceranae by briefly exposing individual bumblebees to parasite spores before feeding them with artificial diets. We validated our protocol by testing the effect of two spore dosages and two diets varying in their protein to carbohydrate ratio on the prevalence of the parasite (proportion of PCR-positive bumblebees), the intensity of parasites (spore count in the gut and the faeces), and the survival of bumblebees. Overall, insects fed a low-protein, high-carbohydrate diet showed the highest parasite prevalence (up to 70%) but lived the longest, suggesting that immunity and survival are maximised at different protein to carbohydrate ratios. Spore dosage did not affect parasite infection rate and host survival. The identification of experimental conditions for successfully infecting bumblebees with N. ceranae in the lab will facilitate future investigations of the sub-lethal effects of this parasite on the behaviour and cognition of wild pollinators.
Collapse
Affiliation(s)
- Tamara Gómez-Moracho
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
- Correspondence:
| | - Tristan Durand
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Cristian Pasquaretta
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| | - Philipp Heeb
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, ENSFEA, 31062 Toulouse, France;
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), CNRS, University Paul Sabatier, 31062 Toulouse, France; (T.D.); (C.P.); (M.L.)
| |
Collapse
|
14
|
Singh G, Baig M, Bajpayi C. Recent trends in tasar silkworm Antheraea mylitta Drury disease management. J Microbiol Methods 2021. [DOI: 10.1016/bs.mim.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Bartolomé C, Jabal-Uriel C, Buendía-Abad M, Benito M, Ornosa C, De la Rúa P, Martín-Hernández R, Higes M, Maside X. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Environ Microbiol 2020; 23:478-483. [PMID: 33225560 DOI: 10.1111/1462-2920.15336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/19/2020] [Indexed: 12/28/2022]
Abstract
Assessing the extent of parasite diversity requires the application of appropriate molecular tools, especially given the growing evidence of multiple parasite co-occurrence. Here, we compared the performance of a next-generation sequencing technology (Ion PGM ™ System) in 12 Bombus terrestris specimens that were PCR-identified as positive for trypanosomatids (Leishmaniinae) in a previous study. These bumblebees were also screened for the occurrence of Nosematidae and Neogregarinorida parasites using both classical protocols (either specific PCR amplification or amplification with broad-range primers plus Sanger sequencing) and Ion PGM sequencing. The latter revealed higher parasite diversity within individuals, especially among Leishmaniinae (which were present as a combination of Lotmaria passim, Crithidia mellificae and Crithidia bombi), and the occurrence of taxa never reported in these hosts: Crithidia acanthocephali and a novel neogregarinorida species. Furthermore, the complementary results produced by the different sets of primers highlighted the convenience of using multiple markers to minimize the chance of some target organisms going unnoticed. Altogether, the deep sequencing methodology offered a more comprehensive way to investigate parasite diversity than the usual identification methods and provided new insights whose importance for bumblebee health should be further analysed.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, 15706, Spain
| | - Clara Jabal-Uriel
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - María Benito
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - Concepción Ornosa
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pilar De la Rúa
- Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, 30100, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, Albacete, 02006, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, 19180, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Galicia, 15782, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Galicia, 15706, Spain
| |
Collapse
|
16
|
Botías C, Jones JC, Pamminger T, Bartomeus I, Hughes WOH, Goulson D. Multiple stressors interact to impair the performance of bumblebee Bombus terrestris colonies. J Anim Ecol 2020; 90:415-431. [PMID: 33084067 DOI: 10.1111/1365-2656.13375] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
Bumblebees are constantly exposed to a wide range of biotic and abiotic stresses which they must defend themselves against to survive. Pathogens and pesticides represent important stressors that influence bumblebee health, both when acting alone or in combination. To better understand bumblebee health, we need to investigate how these factors interact, yet experimental studies to date generally focus on only one or two stressors. The aim of this study is to evaluate how combined effects of four important stressors (the gut parasite Nosema ceranae, the neonicotinoid insecticide thiamethoxam, the pyrethroid insecticide cypermethrin and the EBI fungicide tebuconazole) interact to affect bumblebees at the individual and colony levels. We established seven treatment groups of colonies that we pulse exposed to different combinations of these stressors for 2 weeks under laboratory conditions. Colonies were subsequently placed in the field for 7 weeks to evaluate the effect of treatments on the prevalence of N. ceranae in inoculated bumblebees, expression levels of immunity and detoxification-related genes, food collection, weight gain, worker and male numbers, and production of worker brood and reproductives. Exposure to pesticide mixtures reduced food collection by bumblebees. All immunity-related genes were upregulated in the bumblebees inoculated with N. ceranae when they had not been exposed to pesticide mixtures, and bumblebees exposed to the fungicide and the pyrethroid were less likely to have N. ceranae. Combined exposure to the three-pesticide mixture and N. ceranae reduced bumblebee colony growth, and all treatments had detrimental effects on brood production. The groups exposed to the neonicotinoid insecticide produced 40%-76% fewer queens than control colonies. Our findings show that exposure to combinations of stressors that bumblebees frequently come into contact with have detrimental effects on colony health and performance and could therefore have an impact at the population level. These results also have significant implications for current practices and policies for pesticide risk assessment and use as the combinations tested here are frequently applied simultaneously in the field. Understanding the interactions between different stressors will be crucial for improving our ability to manage bee populations and for ensuring pollination services into the future.
Collapse
Affiliation(s)
- Cristina Botías
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla La Mancha (IRIAF), CIAPA de Marchamalo, Guadalajara, Spain.,School of Life Sciences, University of Sussex, Brighton, UK
| | - Julia C Jones
- School of Life Sciences, University of Sussex, Brighton, UK.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Tobias Pamminger
- School of Life Sciences, University of Sussex, Brighton, UK.,BASF SE, APD/EE-Li 425, Limburgerhof, Germany
| | - Ignasi Bartomeus
- Estación Biológica de Doñana (EBD-CSIC), Dpto. Ecología Integrativa, Sevilla, Spain
| | | | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
17
|
Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Sci Rep 2020; 10:17021. [PMID: 33046792 PMCID: PMC7550335 DOI: 10.1038/s41598-020-74209-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
The microsporidian parasite Nosema ceranae and neonicotinoid insecticides affect the health of honey bees (Apis mellifera). However, there is limited information about the effect of these stressors on other pollinators such as stingless bees (Hymenoptera: Meliponini). We examined the separate and combined effects of N. ceranae and the neonicotinoid thiamethoxam at field-exposure levels on the survivorship and cellular immunity (hemocyte concentration) of the stingless bee Melipona colimana. Newly-emerged bees were subjected to four treatments provided in sucrose syrup: N. ceranae spores, thiamethoxam, thiamethoxam and N. ceranae, and control (bees receiving only syrup). N. ceranae developed infections of > 467,000 spores/bee in the group treated with spores only. However, in the bees subjected to both stressors, infections were < 143,000 spores/bee, likely due to an inhibitory effect of thiamethoxam on the microsporidium. N. ceranae infections did not affect bee survivorship, but thiamethoxam plus N. ceranae significantly increased mortality. Hemocyte counts were significantly lower in N. ceranae infected-bees than in the other treatments. These results suggest that N. ceranae may infect, proliferate and cause cellular immunosuppression in stingless bees, that exposure to sublethal thiamethoxam concentrations is toxic to M. colimana when infected with N. ceranae, and that thiamethoxam restrains N. ceranae proliferation. These findings have implications on pollinators' conservation.
Collapse
|
18
|
Graystock P, Ng WH, Parks K, Tripodi AD, Muñiz PA, Fersch AA, Myers CR, McFrederick QS, McArt SH. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat Ecol Evol 2020; 4:1358-1367. [PMID: 32690902 PMCID: PMC7529964 DOI: 10.1038/s41559-020-1247-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/15/2020] [Indexed: 12/30/2022]
Abstract
Pollinator reductions can leave communities less diverse and potentially at increased risk of infectious diseases. Species-rich plant and bee communities have high species turnover, making the study of disease dynamics challenging. To address how temporal dynamics shape parasite prevalence in plant and bee communities, we screened >5,000 bees and flowers over an entire growing season for five common bee microparasites (Nosema ceranae, Nosema bombi, Crithidia bombi, Crithidia expoeki and neogregarines). Over 110 bee species and 89 flower species were screened, revealing that 42% of bee species (12.2% individual bees) and 70% of flower species (8.7% individual flowers) had at least one parasite in or on them, respectively. Some common flowers (for example, Lychnis flos-cuculi) harboured multiple parasite species whilst others (for example, Lythrum salicaria) had few. Significant temporal variation of parasite prevalence in bees was linked to bee diversity, bee and flower abundance and community composition. Specifically, we found that bee communities had the highest prevalence late in the season, when social bees (Bombus spp. and Apis mellifera) were dominant and bee diversity was lowest. Conversely, prevalence on flowers was lowest late in the season when floral abundance was highest. Thus turnover in the bee community impacted community-wide prevalence, and turnover in the plant community impacted when parasite transmission was likely to occur at flowers. These results imply that efforts to improve bee health will benefit from the promotion of high floral numbers to reduce transmission risk, maintaining bee diversity to dilute parasites and monitoring the abundance of dominant competent hosts.
Collapse
Affiliation(s)
- Peter Graystock
- Department of Entomology, Cornell University, Ithaca, NY, USA.
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK.
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| | - Wee Hao Ng
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Kyle Parks
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Paige A Muñiz
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ashley A Fersch
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Christopher R Myers
- Center for Advanced Computing, and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Scott H McArt
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
Bartolomé C, Buendía-Abad M, Benito M, Sobrino B, Amigo J, Carracedo A, Martín-Hernández R, Higes M, Maside X. Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation. Sci Rep 2020; 10:10454. [PMID: 32591554 PMCID: PMC7319982 DOI: 10.1038/s41598-020-67183-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
To evaluate the influence that parasites have on the losses of Apis mellifera it is essential to monitor their presence in the colonies over time. Here we analysed the occurrence of nosematids, trypanosomatids and neogregarines in five homogeneous colonies for up to 21 months until they collapsed. The study, which combined the use of several molecular markers with the application of a massive parallel sequencing technology, provided valuable insights into the epidemiology of these parasites: (I) it enabled the detection of parasite species rarely reported in honeybees (Nosema thomsoni, Crithidia bombi, Crithidia acanthocephali) and the identification of two novel taxa; (II) it revealed the existence of a high rate of co-infections (80% of the samples harboured more than one parasite species); (III) it uncovered an identical pattern of seasonal variation for nosematids and trypanosomatids, that was different from that of neogregarines; (IV) it showed that there were no significant differences in the fraction of positive samples, nor in the levels of species diversity, between interior and exterior bees; and (V) it unveiled that the variation in the number of parasite species was not directly linked with the failure of the colonies.
Collapse
Affiliation(s)
- Carolina Bartolomé
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain. .,Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.
| | - María Buendía-Abad
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - María Benito
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Beatriz Sobrino
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), 15706, Santiago de Compostela, Spain
| | - Jorge Amigo
- Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), 15706, Santiago de Compostela, Spain
| | - Angel Carracedo
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), 15706, Santiago de Compostela, Spain.,Departamento de CC. Forenses, Anatomía Patolóxica, Xinecoloxía e Obstetricia, e Pediatría, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| | - Raquel Martín-Hernández
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología, Fundación Parque Científico Tecnológico de Albacete, 02006, Albacete, Spain
| | - Mariano Higes
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal (IRIAF), Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Xulio Maside
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain.,Instituto de Investigación Sanitaria de Santiago (IDIS), 15706, Santiago de Compostela, Galicia, Spain.,Departamento de CC. Forenses, Anatomía Patolóxica, Xinecoloxía e Obstetricia, e Pediatría, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
20
|
Rapid Gastrointestinal Passage May Protect Bombus terrestris from Becoming a True Host for Nosema ceranae. Appl Environ Microbiol 2020; 86:AEM.00629-20. [PMID: 32276975 DOI: 10.1128/aem.00629-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/06/2020] [Indexed: 01/23/2023] Open
Abstract
Pollination provided by managed honey bees as well as by all the wild bee species is a crucial ecosystem service contributing to the conservation of biodiversity and human food security. Therefore, it is not only the health status of honey bees but also the health status of wild bees that concerns us all. In this context, recent field studies suggesting interspecies transmission of the microsporidium parasite Nosema ceranae from honey bees (Apis mellifera) to bumblebees (Bombus spp.) were alarming. On the basis of these studies, N. ceranae was identified as an emerging infectious agent (EIA) of bumblebees, although knowledge of its impact on its new host was still elusive. In order to investigate the infectivity, virulence, and pathogenesis of N. ceranae infections in bumblebees, we performed controlled laboratory exposure bioassays with Bombus terrestris by orally inoculating the bees with infectious N. ceranae spores. We comprehensively analyzed the infection status of the bees via microscopic analysis of squash preparations, PCR-based detection of N. ceranae DNA, histology of Giemsa-stained tissue sections, and species-specific fluorescence in situ hybridization. We did not find any evidence for a true infection of bumblebees by N. ceranae Through a series of experiments, we ruled out the possibility that spore infectivity, spore dosage, incubation time, or age and source of the bumblebees caused these negative results. Instead, our results clearly demonstrate that no infection and production of new spores took place in bumblebees after they ingested N. ceranae spores in our experiments. Thus, our results question the classification of N. ceranae as an emerging infectious agent for bumblebees.IMPORTANCE Emerging infectious diseases (EIDs) pose a major health threat to both humans and animals. EIDs include, for instance, those that have spread into hitherto naive populations. Recently, the honey bee-specific microsporidium Nosema ceranae has been detected by molecular methods in field samples of bumblebees. This detection of N. ceranae DNA in bumblebees led to the assumption that N. ceranae infections represent an EID of bumblebees and resulted in speculations on the role of this pathogen in driving bumblebee declines. In order to address the issue of whether N. ceranae is an emerging infectious agent for bumblebees, we experimentally analyzed host susceptibility and pathogen reproduction in this new host-pathogen interaction. Surprisingly, we did not find any evidence for a true infection of Bombus terrestris by N. ceranae, questioning the classification of N. ceranae infections as EIDs of bumblebees and demonstrating that detection of microsporidian DNA does not equal detection of microsporidian infection.
Collapse
|
21
|
Grupe AC, Quandt CA. A growing pandemic: A review of Nosema parasites in globally distributed domesticated and native bees. PLoS Pathog 2020; 16:e1008580. [PMID: 32555676 PMCID: PMC7302437 DOI: 10.1371/journal.ppat.1008580] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Arthur C. Grupe
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - C. Alisha Quandt
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
22
|
Plischuk S, Fernández de Landa G, Revainera P, Quintana S, Pocco ME, Cigliano MM, Lange CE. Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae:Bombusspp.) from highlands in Bolivia and Peru. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2020. [DOI: 10.1080/01650521.2020.1743551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
| | - Gregorio Fernández de Landa
- Centro de Investigación en Abejas Sociales, Instituto de Investigaciones en Producción, Sanidad y Ambiente (CONICET-CIC-UNMdP), Mar del Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales, Instituto de Investigaciones en Producción, Sanidad y Ambiente (CONICET-CIC-UNMdP), Mar del Plata, Argentina
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales, Instituto de Investigaciones en Producción, Sanidad y Ambiente (CONICET-CIC-UNMdP), Mar del Plata, Argentina
| | - Martina E. Pocco
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - María M. Cigliano
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos E. Lange
- Centro de Estudios Parasitológicos y de Vectores (CONICET-UNLP), La Plata, Argentina
- Comisión de Investigaciones Científicas, Provincia de Buenos Aires (CICPBA), Argentina
| |
Collapse
|
23
|
Evolutionary Diversity in the Intracellular Microsporidian Parasite Nosema sp. Infecting Wild Silkworm Revealed by IGS Nucleotide Sequence Diversity. J Mol Evol 2020; 88:345-360. [PMID: 32166385 DOI: 10.1007/s00239-020-09936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Intracellular microsporidian Nosema mylitta infects Indian wild silkworm Antheraea mylitta causing pebrine disease. Genetic structure and phylogeny of N. mylitta are analysed using nucleotide variability in 5S ribosomal DNA and intergenic spacer (IGS) sequence from 20 isolates collected from Southern, Northern and Central regions of Jharkhand State. Nucleotide diversity (π) and genetic differentiation Gst were highest in the Central isolates whereas lowest in the North. Among the isolates, absence of nucleotides, transitions and transversions were observed. Haplotyping showed nucleotide variability at 83 positions in IGS and 13 positions in 5S rDNA. Haplotype-based genetic differentiation was 0.96 to 0.97 whereas nucleotide sequence-based genetic differentiation was higher (Ks = 22.29) between Southern and Central isolates. Bottleneck analysis showed negative value for Tajima's D and other summary statistics revealing induction of loss of rare alleles and population explosion. From IGS, 17 ancestral sequences were inferred by Network algorithm. Core of nine closely related nodes having ancient nucleotides and peripheral nodes with highly divergent nucleotides were derived. Most diverged peripheral haplotype was Bero (H11) from the Central region whereas Deoghar (H3) of the Northern region diverged early. Phylogeny of N. mylitta grouped Southern and Northern isolates together revealed weak phylogenetic signal for these locations. Phylogeny of N. mylitta with Nosema sp. infecting other lepidopterans clustered N. mylitta isolates with N. antheraea and N. philosamiae of China indicating genetic similarity whereas other species were dissimilar showing diversity irrespective of country of origin.
Collapse
|
24
|
Abstract
Bumble bees (Bombus) are unusually important pollinators, with approximately 260 wild species native to all biogeographic regions except sub-Saharan Africa, Australia, and New Zealand. As they are vitally important in natural ecosystems and to agricultural food production globally, the increase in reports of declining distribution and abundance over the past decade has led to an explosion of interest in bumble bee population decline. We summarize data on the threat status of wild bumble bee species across biogeographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, operating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality. We distinguish between correlational and causal results, underscoring the importance of expanding experimental research beyond the study of two commercially available species to identify causal factors affecting the diversity of wild species.
Collapse
Affiliation(s)
- Sydney A Cameron
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA;
| |
Collapse
|
25
|
Vanderplanck M, Roger N, Moerman R, Ghisbain G, Gérard M, Popowski D, Granica S, Fournier D, Meeus I, Piot N, Smagghe G, Terrana L, Michez D. Bumble bee parasite prevalence but not genetic diversity impacted by the invasive plant
Impatiens glandulifera. Ecosphere 2019. [DOI: 10.1002/ecs2.2804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Maryse Vanderplanck
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
- Evo‐Eco‐Paleo ‐ UMR 8198 CNRS Université de Lille Lille F‐59000 France
| | - Nathalie Roger
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Romain Moerman
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
- Evolutionary Biology and Ecology Université libre de Bruxelles Av. F.D. Roosevelt 50 Brussels B‐1000 Belgium
| | - Guillaume Ghisbain
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Maxence Gérard
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Dominik Popowski
- Department of Pharmacognosy and Molecular Basis of Phytotherapy Medical University of Warsaw Banacha 1 Warsaw 02‐097 Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy Medical University of Warsaw Banacha 1 Warsaw 02‐097 Poland
| | - Denis Fournier
- Evolutionary Biology and Ecology Université libre de Bruxelles Av. F.D. Roosevelt 50 Brussels B‐1000 Belgium
| | - Ivan Meeus
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Niels Piot
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Guy Smagghe
- Department of Crop Protection Faculty of Bioscience Engineering Laboratory of Agrozoology Ghent University Coupure Links 653 Ghent B‐9000 Belgium
| | - Lucas Terrana
- Research Institute for Biosciences Biology of Marine Organisms and Biomimetics University of Mons Place du Parc 20 Mons B‐7000 Belgium
| | - Denis Michez
- Research Institute for Biosciences Laboratory of Zoology University of Mons Place du Parc 20 Mons B‐7000 Belgium
| |
Collapse
|
26
|
Pereira KDS, Meeus I, Smagghe G. Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Sci Rep 2019; 9:4241. [PMID: 30862950 PMCID: PMC6414677 DOI: 10.1038/s41598-019-40804-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
The trade of bumble bees started in the early nineties for pollinator-dependent greenhouse plants. Nowadays, its rearing and transport have received public attention, since managed bees can transfer pathogens to wild bee populations. Therefore, guaranteeing pathogen-free bumble bees is fundamental. The major protein source used in rearing facilities is honey bee-collected pollen. This can carry pathogens, however to date, solid data on the risk of this food source to the health of bumble bees is lacking. Here we performed a large pathogen screening of non-irradiated honey bee-collected pollen to discover particles infective to Bombus terrestris. We identified seven parasites (Apicystis bombi, Ascosphaera apis, Crithidia mellificae, Nosema ceranae, Paenibacillus larvae and two parasites resembling Nosema thomsoni and Microsporidium sp. Oise) and four viruses (CBPV, DWV, IAPV and SBV) in 17 pollen batches from two major European pollen source regions (Spain and Romania). Ascosphaera apis was capable of infecting bumble bees; the larvae showed similar symptoms to chalkbrood disease reported in honey bees. Bumble bee breeding facilities need to be cautious about the potential presence of this disease, which was originally reported in honey bees. Thorough diagnostic and control methods are needed, as risk of spillover to wild bee species is possible.
Collapse
Affiliation(s)
- Kleber de Sousa Pereira
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Coupure Links 653, Ghent, B-9000, Belgium.
| | - Ivan Meeus
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Coupure Links 653, Ghent, B-9000, Belgium.
| | - Guy Smagghe
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Coupure Links 653, Ghent, B-9000, Belgium.
| |
Collapse
|
27
|
Sinpoo C, Disayathanoowat T, Williams PH, Chantawannakul P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS One 2019; 14:e0213171. [PMID: 30845178 PMCID: PMC6405097 DOI: 10.1371/journal.pone.0213171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/16/2019] [Indexed: 01/24/2023] Open
Abstract
Bumblebees (tribe Bombini, genus Bombus Latreille) play a pivotal role as pollinators in mountain regions for both native plants and for agricultural systems. In our survey of northern Thailand, four species of bumblebees (Bombus (Megabombus) montivagus Smith, B. (Alpigenobombus) breviceps Smith, B. (Orientalibombus) haemorrhoidalis Smith and B. (Melanobombus) eximius Smith), were present in 11 localities in 4 provinces (Chiang Mai, Mae Hong Son, Chiang Rai and Nan). We collected and screened 280 foraging worker bumblebees for microsporidia (Nosema spp.) and trypanosomes (Crithidia spp.). Our study is the first to demonstrate the parasite infection in bumblebees in northern Thailand. We found N. ceranae in B. montivagus (5.35%), B. haemorrhoidalis (4.76%), and B. breviceps (14.28%) and N. bombi in B. montivagus (14.28%), B. haemorrhoidalis (11.64%), and B. breviceps (28.257%).
Collapse
Affiliation(s)
- Chainarong Sinpoo
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Graduate School, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Paul H. Williams
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
28
|
Qiu L, Xia W, Li W, Ping J, Ding S, Liu H. The prevalence of microsporidia in China : A systematic review and meta-analysis. Sci Rep 2019; 9:3174. [PMID: 30816168 PMCID: PMC6395699 DOI: 10.1038/s41598-019-39290-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/21/2019] [Indexed: 01/11/2023] Open
Abstract
Microsporidia are a diverse parasite phylum infecting host from all major taxa in all global biomes. This research was conducted to conclude the prevalence of microsporidia in China. All published articles up to February 16, 2018 were considered, including descriptive, cross-sectional, case-control and epidemiology studies. A total of 1052 articles were separated after literature search. After a strict selection according to our criteria, 82 articles were included in qualitative synthesis and ultimately 52 studies were included in quantitative synthesis. Three species of microsporidia were confirmed to exist in China, including Enterocytozoon bieneusi (E. bieneusi), Nosema and Encephalitozoon cuniculi (E. cuniculi). The highest overall estimated prevalence of E. bieneusi in humans was 8.1%, which was observed in acquired immunodeficiency syndrome patients (AIDS). Moreover, the prevalence of E. bieneusi in animals including the cattle, dogs, pigs, deer, sheep and goats were analyszed in this study. The overall estimated prevalence of E. bieneusi acquired by using the random effects model in meta-analysis in cattle, dogs, pigs, sheep and goats and deer was 20.0% (95% confidence intervals: 0.133–0.266, I2 = 98.031%, p < 0.0001), 7.8% (95% CI: 0.050–0.106, I2 = 60.822%, p = 0.0537), 45.1% (95% CI: 0.227–0.674, I2 = 98.183%, p < 0.0001), 28.1% (95% CI: 0.146–0.415, I2 = 98.716%, p < 0.0001) and 19.3% (95% CI: 0.084–0.303, I2 = 96.995%, p < 0.0001) respectively. The overall detection rate of E. bieneusi in water acquired by using the random effects model in meta-analysis was 64.5% (95% CI: 0.433–0.857, I2 = 98.486%, p < 0.0001). Currently, 221 genotypes of E. bieneusi, 1 genotype of E. cuniculi and 6 Nosema were detected in China. The most prevalent genotype of E. bieneusi was genotype D, followed by BEB6 and EbpC.
Collapse
Affiliation(s)
- Luyao Qiu
- Department of Cell Biology and Genetics, Experimental Teaching Center, Chongqing Medical University, Chongqing, 400016, P.R. China.,College of Pediatrics, Chongqing Medical University, Chongqing, 401331, P.R. China
| | - Wanyuan Xia
- Department of Health Statistics, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wendao Li
- Department of Cell Biology and Genetics, Experimental Teaching Center, Chongqing Medical University, Chongqing, 400016, P.R. China.,College of Pediatrics, Chongqing Medical University, Chongqing, 401331, P.R. China
| | - Jing Ping
- Department of Cell Biology and Genetics, Experimental Teaching Center, Chongqing Medical University, Chongqing, 400016, P.R. China.,College of Pediatrics, Chongqing Medical University, Chongqing, 401331, P.R. China
| | - Songtao Ding
- Department of Cell Biology and Genetics, Experimental Teaching Center, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Handeng Liu
- Department of Cell Biology and Genetics, Experimental Teaching Center, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|
29
|
Martín-Hernández R, Bartolomé C, Chejanovsky N, Le Conte Y, Dalmon A, Dussaubat C, García-Palencia P, Meana A, Pinto MA, Soroker V, Higes M. Nosema ceranaeinApis mellifera: a 12 years postdetectionperspective. Environ Microbiol 2018; 20:1302-1329. [DOI: 10.1111/1462-2920.14103] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla - La Mancha; Spain
| | - Carolina Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela. Xenómica Comparada de Parásitos Humanos, IDIS, 15782 Santiago de Compostela; Galicia Spain
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | - Anne Dalmon
- INRA, UR 406 Abeilles et Environnement; F-84000 Avignon France
| | | | | | - Aranzazu Meana
- Facultad de Veterinaria, Universidad Complutense de Madrid; Spain
| | - M. Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança; 5300-253 Bragança Portugal
| | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center; Rishon LeZion Israel
| | - Mariano Higes
- Laboratorio de Patología Apícola. Centro de Investigación Apícola y Agroambiental de Marchamalo, (CIAPA-IRIAF), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha; Marchamalo Spain
| |
Collapse
|
30
|
Manlik O, Schmid-Hempel R, Schmid-Hempel P. Parasite infection of specific host genotypes relates to changes in prevalence in two natural populations of bumblebees. INFECTION GENETICS AND EVOLUTION 2017; 56:125-132. [PMID: 29155285 DOI: 10.1016/j.meegid.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/16/2017] [Accepted: 11/06/2017] [Indexed: 11/24/2022]
Abstract
The antagonistic relationship between parasites and their hosts is strongly influenced by genotype-by-genotype interactions. Defense against parasitism is commonly studied in the context of immune system-based mechanisms and, thus, the focus in the search for candidate genes in host-parasite interactions is often on immune genes. In this study, we investigated the association between prevalence of parasite infection and host mitochondrial DNA (mtDNA) haplotypes in two natural populations of bumblebees (Bombus terrestris). The two most common haplotypes of the host populations, termed A and B, differ by a single nonsynonymous nucleotide substitution within the coding region of cytochrome oxidase I, an important player in metabolic pathways. We screened infection by Nosema bombi, a common endoparasite of bumblebees, and the corresponding host mtDNA-haplotype frequencies in over 1400 bumblebees between 2000 and 2010. The island population of Gotland showed lower mtDNA diversity compared to the mainland population in Switzerland. Over time, we observed large fluctuations in infection prevalence, as well as variation in host haplotype frequencies in both populations. Our long-term observation revealed that N. bombi infection of specific host genotypes is transient: We found that with increasing infection prevalence, proportionally more individuals with haplotype B, but fewer individuals with haplotype A were infected. This suggests that the presence of N. bombi in specific host genotypes relates to infection prevalence. This may be a result of parasite competition, or differential resilience of host types to ward off infections. The findings highlight the important role of host mtDNA haplotypes in the interaction with parasites.
Collapse
Affiliation(s)
- Oliver Manlik
- ETH Zurich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092 Zurich, Switzerland.
| | - Regula Schmid-Hempel
- ETH Zurich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092 Zurich, Switzerland
| | - Paul Schmid-Hempel
- ETH Zurich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092 Zurich, Switzerland
| |
Collapse
|
31
|
Porrini MP, Porrini LP, Garrido PM, de Melo E Silva Neto C, Porrini DP, Muller F, Nuñez LA, Alvarez L, Iriarte PF, Eguaras MJ. Nosema ceranae in South American Native Stingless Bees and Social Wasp. MICROBIAL ECOLOGY 2017; 74:761-764. [PMID: 28389730 DOI: 10.1007/s00248-017-0975-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Besides the incipient research effort, the role of parasites as drivers of the reduction affecting pollinator populations is mostly unknown. Given the worldwide extension of the beekeeping practice and the diversity of pathogens affecting Apis mellifera populations, honey bee colonies are a certain source of parasite dispersion to other species. Here, we communicate the detection of the microsporidium Nosema ceranae, a relatively new parasite of honey bees, in stingless bees (Meliponini) and the social wasp Polybia scutellaris (Vespidae) samples from Argentina and Brazil by means of duplex PCR. Beyond the geographic location of the nests, N. ceranae was detected in seven from the eight Meliponini species analyzed, while Nosema apis, another common parasite of A. mellifera, was absent in all samples tested. Further research is necessary to determine if the presence of the parasite is also associated with established infection in host tissues. The obtained information enriches the current knowledge about pathologies that can infect or, at least, be vectored by native wild pollinators from South America.
Collapse
Affiliation(s)
- Martín Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| | - Leonardo Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Carlos de Melo E Silva Neto
- Instituto Federal de Educação, Ciência e Tecnólogia de Goiás, Quartel do XX, Praça Brasil Ramos Caiado, 76600.000, Goiás, Brazil
| | - Darío Pablo Porrini
- GENEBSO, INBIOTEC, UNMdP, CONICET, Funes 3350, 7600, Mar del Plata, Argentina
| | - Fernando Muller
- Centro de Cría y mejoramiento de abejas "Erich Karl Faltus", N° 111009, Calle J. M. Estrada N°210, N3233, Capioví, Argentina
| | - Laura Alejandra Nuñez
- Laboratorio de Industrias Alimenticias, Universidad Nacional del Chaco Austral, Cdte. Fernandez 755, 3700, Pres. R. Sáenz Peña, Argentina
| | - Leopoldo Alvarez
- División Entomología, Museo de La Plata, CONICET, Universidad Nacional de La Plata, Edificio Anexo Museo, Unidades de Investigación FCN yM, 122 y 60, 1900FWA, La Plata, Argentina
| | - Pedro Fernandez Iriarte
- Laboratorio de Genética, Dto. de Biología, CONICET, UNMdP, Funes 3350, 7600, Mar del Plata, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
32
|
Brown MJF. Microsporidia: An Emerging Threat to Bumblebees? Trends Parasitol 2017; 33:754-762. [PMID: 28663099 DOI: 10.1016/j.pt.2017.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 10/19/2022]
Abstract
Microsporidia may cause emerging infectious diseases (EIDs) in bumblebees. Two drivers - commercial bumblebees and managed honey bees - have been identified as possible sources of pathogen spillover. In addition, declines in bumblebee populations may have led to lower genetic diversity and subsequent higher susceptibility to infection, enabling microsporidia to increase in prevalence. There is strong evidence for relatively recent increases in the prevalence of Nosema bombi in North America. However, the lack of definitive data on spillover by microsporidia, in North America or elsewhere, makes it difficult to identify the causes of such increases. Phylogenomic studies are urgently needed to identify the global population structure of microsporidia in bumblebees, and thus identify the source of current and future epidemics.
Collapse
Affiliation(s)
- M J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
33
|
Kurze C, Routtu J, Moritz RF. Parasite resistance and tolerance in honeybees at the individual and social level. ZOOLOGY 2016; 119:290-7. [DOI: 10.1016/j.zool.2016.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/15/2016] [Accepted: 03/23/2016] [Indexed: 12/01/2022]
|
34
|
Cameron SA, Lim HC, Lozier JD, Duennes MA, Thorp R. Test of the invasive pathogen hypothesis of bumble bee decline in North America. Proc Natl Acad Sci U S A 2016; 113:4386-91. [PMID: 27044096 PMCID: PMC4843438 DOI: 10.1073/pnas.1525266113] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emergent fungal diseases are critical factors in global biodiversity declines. The fungal pathogenNosema bombiwas recently found to be widespread in declining species of North American bumble bees (Bombus), with circumstantial evidence suggesting an exotic introduction from Europe. This interpretation has been hampered by a lack of knowledge of global genetic variation, geographic origin, and changing prevalence patterns ofN. bombiin declining North American populations. Thus, the temporal and spatial emergence ofN. bombiand its potential role in bumble bee decline remain speculative. We analyzeNosemaprevalence and genetic variation in the United States and Europe from 1980, before an alleged introduction in the early 1990s, to 2011, extractingNosemaDNA fromBombusnatural history collection specimens from across this time period.Nosema bombiprevalence increased significantly from low detectable frequency in the 1980s to significantly higher frequency in the mid- to late-1990s, corresponding to a period of reported massive infectious outbreak ofN. bombiin commercial bumble bee rearing stocks in North America. Despite the increased frequency, we find no conclusive evidence of an exoticN. bombiorigin based on genetic analysis of globalNosemapopulations; the widespreadNosemastrain found currently in declining United States bumble bees was present in the United States before commercial colony trade. Notably, the USN. bombiis not detectably different from that found predominantly throughout Western Europe, with both regions characterized by low genetic diversity compared with high levels of diversity found in Asia, where commercial bee breeding activities are low or nonexistent.
Collapse
Affiliation(s)
- Sydney A Cameron
- Department of Entomology, University of Illinois, Urbana, IL 61801;
| | - Haw Chuan Lim
- Department of Entomology, University of Illinois, Urbana, IL 61801
| | - Jeffrey D Lozier
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487
| | | | - Robbin Thorp
- Department of Entomology and Nematology, University of California, Davis, CA 95616
| |
Collapse
|
35
|
Graystock P, Jones JC, Pamminger T, Parkinson JF, Norman V, Blane EJ, Rothstein L, Wäckers F, Goulson D, Hughes WOH. Hygienic food to reduce pathogen risk to bumblebees. J Invertebr Pathol 2016; 136:68-73. [PMID: 26970260 DOI: 10.1016/j.jip.2016.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 02/14/2016] [Accepted: 03/09/2016] [Indexed: 01/15/2023]
Abstract
Bumblebees are ecologically and economically important pollinators, and the value of bumblebees for crop pollination has led to the commercial production and exportation/importation of colonies on a global scale. Commercially produced bumblebee colonies can carry with them infectious parasites, which can both reduce the health of the colonies and spillover to wild bees, with potentially serious consequences. The presence of parasites in commercially produced bumblebee colonies is in part because colonies are reared on pollen collected from honey bees, which often contains a diversity of microbial parasites. In response to this threat, part of the industry has started to irradiate pollen used for bumblebee rearing. However, to date there is limited data published on the efficacy of this treatment. Here we examine the effect of gamma irradiation and an experimental ozone treatment on the presence and viability of parasites in honey bee pollen. While untreated pollen contained numerous viable parasites, we find that gamma irradiation reduced the viability of parasites in pollen, but did not eliminate parasites entirely. Ozone treatment appeared to be less effective than gamma irradiation, while an artificial pollen substitute was, as expected, entirely free of parasites. The results suggest that the irradiation of pollen before using it to rear bumblebee colonies is a sensible method which will help reduce the incidence of parasite infections in commercially produced bumblebee colonies, but that further optimisation, or the use of a nutritionally equivalent artificial pollen substitute, may be needed to fully eliminate this route of disease entry into factories.
Collapse
Affiliation(s)
- P Graystock
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK; Department of Entomology, University of California, Riverside, CA 92507, USA
| | - J C Jones
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - T Pamminger
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - J F Parkinson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - V Norman
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - E J Blane
- Natural England, Mail Hub Block B, Whittington Road, Worcester WR5 2LQ, UK
| | - L Rothstein
- Bumblebee Conservation Trust, Cottrell Building, University of Stirling, Stirling FK9 4LA, UK
| | - F Wäckers
- Biobest NV, Ilse Velden 18, B-2260 Westerlo, Belgium
| | - D Goulson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - W O H Hughes
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
36
|
Gallot-Lavallée M, Schmid-Hempel R, Vandame R, Vergara CH, Schmid-Hempel P. Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. J Invertebr Pathol 2015; 133:73-82. [PMID: 26678506 DOI: 10.1016/j.jip.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/17/2015] [Accepted: 12/07/2015] [Indexed: 11/28/2022]
Abstract
Bumblebees are highly valued for their pollination services in natural ecosystems as well as for agricultural crops. These precious pollinators are known to be declining worldwide, and one major factor contributing to this decline are infections by parasites. Knowledge about parasites in wild bumblebee populations is thus of paramount importance for conservation purposes. We here report the geographical distribution of Crithidia and Nosema, two common parasites of bumblebees, in a yet poorly investigated country: Mexico. Based on sequence divergence of the Cytochrome b and Glycosomal glyceraldehyde phosphate deshydrogenase (gGPDAH) genes, we discovered the presence of a new Crithidia species, which is mainly distributed in the southern half of the country. It is placed by Bayesian inference as a sister species to C. bombi. We suggest the name Crithidia mexicana for this newly discovered organism. A population of C. expoeki was encountered concentrated on the flanks of the dormant volcanic mountain, Iztaccihuatl, and microsatellite data showed evidence of a bottleneck in this population. This study is the first to provide a large-scale insight into the health status of endemic bumblebees in Mexico, based on a large sample size (n=3,285 bees examined) over a variety of host species and habitats.
Collapse
Affiliation(s)
- Marie Gallot-Lavallée
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| | - Regula Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Rémy Vandame
- Departamento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur, San Cristóbal de Las Casas, Chiapas, Mexico
| | - Carlos H Vergara
- Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Mexico
| | - Paul Schmid-Hempel
- Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| |
Collapse
|
37
|
Arbulo N, Antúnez K, Salvarrey S, Santos E, Branchiccela B, Martín-Hernández R, Higes M, Invernizzi C. High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J Invertebr Pathol 2015; 130:165-8. [DOI: 10.1016/j.jip.2015.07.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/16/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
38
|
Graystock P, Goulson D, Hughes WOH. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc Biol Sci 2015; 282:20151371. [PMID: 26246556 PMCID: PMC4632632 DOI: 10.1098/rspb.2015.1371] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/15/2015] [Indexed: 01/02/2023] Open
Abstract
The dispersal of parasites is critical for epidemiology, and the interspecific vectoring of parasites when species share resources may play an underappreciated role in parasite dispersal. One of the best examples of such a situation is the shared use of flowers by pollinators, but the importance of flowers and interspecific vectoring in the dispersal of pollinator parasites is poorly understood and frequently overlooked. Here, we use an experimental approach to show that during even short foraging periods of 3 h, three bumblebee parasites and two honeybee parasites were dispersed effectively onto flowers by their hosts, and then vectored readily between flowers by non-host pollinator species. The results suggest that flowers are likely to be hotspots for the transmission of pollinator parasites and that considering potential vector, as well as host, species will be of general importance for understanding the distribution and transmission of parasites in the environment and between pollinators.
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
39
|
The cost of promiscuity: sexual transmission of Nosema microsporidian parasites in polyandrous honey bees. Sci Rep 2015; 5:10982. [PMID: 26123939 PMCID: PMC4485198 DOI: 10.1038/srep10982] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/14/2015] [Indexed: 01/25/2023] Open
Abstract
Multiple mating (and insemination) by females with different males, polyandry, is widespread across animals, due to material and/or genetic benefits for females. It reaches particularly high levels in some social insects, in which queens can produce significantly fitter colonies by being polyandrous. It is therefore a paradox that two thirds of eusocial hymenopteran insects appear to be exclusively monandrous, in spite of the fitness benefits that polyandry could provide. One possible cost of polyandry could be sexually transmitted parasites, but evidence for these in social insects is extremely limited. Here we show that two different species of Nosema microsporidian parasites can transmit sexually in the honey bee Apis mellifera. Honey bee males that are infected by the parasite have Nosema spores in their semen, and queens artificially inseminated with either Nosema spores or the semen of Nosema-infected males became infected by the parasite. The emergent and more virulent N. ceranae achieved much higher rates of infection following insemination than did N. apis. The results provide the first quantitative evidence of a sexually transmitted disease (STD) in social insects, indicating that STDs may represent a potential cost of polyandry in social insects.
Collapse
|
40
|
Hedtke SM, Blitzer EJ, Montgomery GA, Danforth BN. Introduction of Non-Native Pollinators Can Lead to Trans-Continental Movement of Bee-Associated Fungi. PLoS One 2015; 10:e0130560. [PMID: 26102072 PMCID: PMC4478036 DOI: 10.1371/journal.pone.0130560] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Bees are essential pollinators for many flowering plants, including agriculturally important crops such as apple. As geographic ranges of bees or their host plants change as a result of human activities, we need to identify pathogens that could be transmitted among newly sympatric species to evaluate and anticipate their effects on bee communities. We used PCR screening and DNA sequencing to evaluate exposure to potentially disease-causing microorganisms in a pollinator of apple, the horned mason bee (Osmia cornifrons). We did not detect microsporidia, Wolbachia, or trypanosomes, which are common pathogens of bees, in any of the hundreds of mason bees screened. We did detect both pathogenic and apathogenic (saprophytic) fungal species in the genus Ascosphaera (chalkbrood), an unidentified species of Aspergillus fungus, and a strain of bacteria in the genus Paenibacillus that is probably apathogenic. We detected pathogenic fungal strains in asymptomatic adult bees that therefore may be carriers of disease. We demonstrate that fungi from the genus Ascosphaera have been transported to North America along with the bee from its native range in Japan, and that O. cornifrons is exposed to fungi previously only identified from nests of other related bee species. Further study will be required to quantify pathogenicity and health effects of these different microbial species on O. cornifrons and on closely-related native North American mason bees that may now be exposed to novel pathogens. A global perspective is required for pathogen research as geographic ranges of insects and microorganisms shift due to intentional or accidental introductions.
Collapse
Affiliation(s)
- Shannon M. Hedtke
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Ecology, Environment, and Evolution, La Trobe University, Bundoora, Victoria, Australia
- * E-mail:
| | - Eleanor J. Blitzer
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Graham A. Montgomery
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Bryan N. Danforth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
41
|
Vavilova V, Sormacheva I, Woyciechowski M, Eremeeva N, Fet V, Strachecka A, Bayborodin SI, Blinov A. Distribution and diversity of Nosema bombi (Microsporidia: Nosematidae) in the natural populations of bumblebees (Bombus spp.) from West Siberia. Parasitol Res 2015; 114:3373-83. [PMID: 26063531 DOI: 10.1007/s00436-015-4562-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/27/2015] [Indexed: 11/27/2022]
Abstract
Nosema bombi is an obligate intracellular parasite of bumblebees (Hymenoptera, Bombus spp.), which has significant negative effect on individual bumblebees, colony fitness, and development. Recently, several new genetic variants of N. bombi without a defined taxonomic status were identified in natural bumblebee populations from Russia, China, and several European countries, as well as N. ceranae, originally isolated from honey bees, was described in bumblebee species. Thus, it is required to investigate more Nosema variability in bumblebee populations for identifying new genetic Nosema variants. In our study, we used several methods such as total DNA isolation, polymerase chain reaction (PCR) amplification, cloning, sequencing, and comparative and phylogenetic analysis to investigate a prevalence of N. bombi and its diversity in the natural populations of bumblebees across West Siberia. DNA was extracted from intestinal bumblebee tissues. Identification of the parasite was conducted, using PCR with primers specific for the ribosomal RNA gene cluster and methionine aminopeptidase 2 gene of N. bombi followed by sequencing. Seven hundred twenty-seven individual bumblebees belonging to 16 species were tested; 64 specimens revealed presence of the parasite. Prevalence of Nosema bombi infection was different in each region and varied from 4 to 20 %. No infection was found in Bombus agrorum (n = 194) and Bombus equestris (n = 132), both common bumblebees in West Siberia. Three different genetic variants of the same species, N. bombi, were identified. The first variant belonged to N. bombi (AY008373) identified by Fies et al. (J Apicult Res 40:91-96, 2001), second (N. bombi WS2) was identical to the West Siberian variant identified by Szentgyörgyi et al. (Polish Journal of Ecology 59:599-610, 2011), and the last variant, N. bombi WS3, was new. The results led us to suggest that the prevalence of the N. bombi is related to the population structure of bumblebees and distribution of the particular genetic variants of N. bombi.
Collapse
Affiliation(s)
- Valeriya Vavilova
- Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva, 10, Novosibirsk, 630090, Russian Federation,
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015; 347:1255957. [PMID: 25721506 DOI: 10.1126/science.1255957] [Citation(s) in RCA: 1757] [Impact Index Per Article: 175.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bees are subject to numerous pressures in the modern world. The abundance and diversity of flowers has declined; bees are chronically exposed to cocktails of agrochemicals, and they are simultaneously exposed to novel parasites accidentally spread by humans. Climate change is likely to exacerbate these problems in the future. Stressors do not act in isolation; for example, pesticide exposure can impair both detoxification mechanisms and immune responses, rendering bees more susceptible to parasites. It seems certain that chronic exposure to multiple interacting stressors is driving honey bee colony losses and declines of wild pollinators, but such interactions are not addressed by current regulatory procedures, and studying these interactions experimentally poses a major challenge. In the meantime, taking steps to reduce stress on bees would seem prudent; incorporating flower-rich habitat into farmland, reducing pesticide use through adopting more sustainable farming methods, and enforcing effective quarantine measures on bee movements are all practical measures that should be adopted. Effective monitoring of wild pollinator populations is urgently needed to inform management strategies into the future.
Collapse
Affiliation(s)
- Dave Goulson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | - Elizabeth Nicholls
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Cristina Botías
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Ellen L Rotheray
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
43
|
Plischuk S, Sanscrainte ND, Becnel JJ, Estep AS, Lange CE. Tubulinosema pampeana sp. n. (Microsporidia, Tubulinosematidae), a pathogen of the South American bumble bee Bombus atratus. J Invertebr Pathol 2015; 126:31-42. [PMID: 25637516 DOI: 10.1016/j.jip.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
An undescribed microsporidium was detected and isolated from the South American bumble bee Bombus atratus collected in the Pampas region of Argentina. Infection intensity in workers averaged 8.2 × 10(7)spores/bee. The main site of infection was adipose tissue where hypertrophy of adipocytes resulted in cyst-like body formation. Mature spores were ovoid and monomorphic. They measured 4.00 μm × 2.37 μm (fresh) or 3.98 μm × 1.88 μm (fixed). All stages were diplokariotic and developed in direct contact with host cytoplasm. Isofilar polar filament was arranged in 16 coils in one or, posteriorly, two layers. Coiling angle was variable, between perpendicular and almost parallel to major spore axis. Late meronts and sporogonial stages were surrounded by vesicles of approximately 60 nm in diameter. Based on both new and already designed primers, a 1827 bp (SSUrRNA, ITS, LSUrRNA) sequence was obtained. Data analyses suggest that this microsporidium is a new species of the genus Tubulinosema. The name Tubulinosema pampeana sp. n. is proposed.
Collapse
Affiliation(s)
- Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores - CEPAVE (CCT La Plata CONICET - UNLP), La Plata, Buenos Aires, Argentina
| | - Neil D Sanscrainte
- Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, FL, USA
| | - James J Becnel
- Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, FL, USA
| | - Alden S Estep
- Center for Medical, Agricultural and Veterinary Entomology - CMAVE (USDA, ARS), Gainesville, FL, USA; Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL, USA
| | - Carlos E Lange
- Centro de Estudios Parasitológicos y de Vectores - CEPAVE (CCT La Plata CONICET - UNLP), La Plata, Buenos Aires, Argentina; Comisión de Investigaciones Científicas (CIC), provincia de Buenos Aires, Argentina
| |
Collapse
|
44
|
Gómez-Moracho T, Bartolomé C, Bello X, Martín-Hernández R, Higes M, Maside X. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. INFECTION GENETICS AND EVOLUTION 2015; 31:87-94. [PMID: 25583446 DOI: 10.1016/j.meegid.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/26/2014] [Accepted: 01/03/2015] [Indexed: 01/22/2023]
Abstract
Nosema ceranae has been found infecting Apismellifera colonies with increasing frequency and it now represents a major threat to the health and long-term survival of these honeybees worldwide. However, so far little is known about the population genetics of this parasite. Here, we describe the patterns of genetic variation at three genomic loci in a collection of isolates from all over the world. Our main findings are: (i) the levels of genetic polymorphism (πS≈1%) do not vary significantly across its distribution range, (ii) there is substantial evidence for recombination among haplotypes, (iii) the best part of the observed genetic variance corresponds to differences within bee colonies (up to 88% of the total variance), (iv) parasites collected from Asian honeybees (Apis cerana and Apis florea) display significant differentiation from those obtained from Apismellifera (8-16% of the total variance, p<0.01) and (v) there is a significant excess of low frequency variants over neutral expectations among samples obtained from A. mellifera, but not from Asian honeybees. Overall these results are consistent with a recent colonization and rapid expansion of N. ceranae throughout A. mellifera colonies.
Collapse
Affiliation(s)
- T Gómez-Moracho
- Laboratorio de Patología Apícola, Centro Apícola Regional, Consejería de Agricultura, Gobierno de Castilla-La Mancha, 19180 Marchamalo, Spain; Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain
| | - C Bartolomé
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain; Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - X Bello
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain; Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - R Martín-Hernández
- Laboratorio de Patología Apícola, Centro Apícola Regional, Consejería de Agricultura, Gobierno de Castilla-La Mancha, 19180 Marchamalo, Spain; Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT), Fundación Parque Científico y Tecnológico de Albacete, Spain
| | - M Higes
- Laboratorio de Patología Apícola, Centro Apícola Regional, Consejería de Agricultura, Gobierno de Castilla-La Mancha, 19180 Marchamalo, Spain
| | - X Maside
- Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; Xenómica Comparada de Parásitos Humanos, IDIS, Santiago de Compostela, Galicia, Spain; Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain.
| |
Collapse
|
45
|
Ravoet J, De Smet L, Meeus I, Smagghe G, Wenseleers T, de Graaf DC. Widespread occurrence of honey bee pathogens in solitary bees. J Invertebr Pathol 2014; 122:55-8. [PMID: 25196470 DOI: 10.1016/j.jip.2014.08.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 01/11/2023]
Abstract
Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens.
Collapse
Affiliation(s)
- Jorgen Ravoet
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium.
| | - Lina De Smet
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium
| | - Ivan Meeus
- Laboratory of Agrozoology, Ghent University, B-9000 Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Ghent University, B-9000 Ghent, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, K.U. Leuven, B-3000 Leuven, Belgium
| | - Dirk C de Graaf
- Laboratory of Zoophysiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
46
|
Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME JOURNAL 2014; 8:2369-79. [PMID: 24763369 DOI: 10.1038/ismej.2014.68] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/15/2022]
Abstract
Bacterial gut symbiont communities are critical for the health of many insect species. However, little is known about how microbial communities vary among host species or how they respond to anthropogenic disturbances. Bacterial communities that differ in richness or composition may vary in their ability to provide nutrients or defenses. We used deep sequencing to investigate gut microbiota of three species in the genus Bombus (bumble bees). Bombus are among the most economically and ecologically important non-managed pollinators. Some species have experienced dramatic declines, probably due to pathogens and land-use change. We examined variation within and across bee species and between semi-natural and conventional agricultural habitats. We categorized as 'core bacteria' any operational taxonomic units (OTUs) with closest hits to sequences previously found exclusively or primarily in the guts of honey bees and bumble bees (genera Apis and Bombus). Microbial community composition differed among bee species. Richness, defined as number of bacterial OTUs, was highest for B. bimaculatus and B. impatiens. For B. bimaculatus, this was due to high richness of non-core bacteria. We found little effect of habitat on microbial communities. Richness of non-core bacteria was negatively associated with bacterial abundance in individual bees, possibly due to deeper sampling of non-core bacteria in bees with low populations of core bacteria. Infection by the gut parasite Crithidia was negatively associated with abundance of the core bacterium Gilliamella and positively associated with richness of non-core bacteria. Our results indicate that Bombus species have distinctive gut communities, and community-level variation is associated with pathogen infection.
Collapse
|
47
|
Presence of Nosema ceranae associated with honeybee queen introductions. INFECTION GENETICS AND EVOLUTION 2014; 23:161-8. [DOI: 10.1016/j.meegid.2014.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 12/28/2022]
|
48
|
Kwak KW, Yoon HJ, Choi Y, Park K, Hwang J, Kim H, Nam S. Identification, Characterization, and DNA Sequencing of Nosema bombi in Bumblebees from Gangwon Province, Korea. ACTA ACUST UNITED AC 2013. [DOI: 10.7852/ijie.2013.27.2.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Teixeira EW, Santos LGD, Sattler A, Message D, Alves MLTMF, Martins MF, Grassi-Sella ML, Francoy TM. Nosema ceranae has been present in Brazil for more than three decades infecting Africanized honey bees. J Invertebr Pathol 2013; 114:250-4. [DOI: 10.1016/j.jip.2013.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 11/26/2022]
|
50
|
Steele T, Bjørnson S. Nosema adaliae sp. nov., a new microsporidian pathogen from the two-spotted lady beetle, Adalia bipunctata L. (Coleoptera: Coccinellidae) and its relationship to microsporidia that infect other coccinellids. J Invertebr Pathol 2013; 115:108-15. [PMID: 24135414 DOI: 10.1016/j.jip.2013.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
Abstract
The two-spotted lady beetle, Adalia bipunctata L., is a tree-dwelling lady beetle endemic to parts of Europe, Central Asia and North America that is commercially available for aphid control in Europe and North America. Lady beetles host a wide variety of symbionts including parasitoids, viruses, eugregarines, fungi, bacteria, nematodes and microsporidia. Four species of microsporidia have been described from lady beetles, and an undescribed microsporidium was recently isolated from local populations of A. bipunctata in Nova Scotia, Canada. In a previous study, this pathogen prolonged the development of A. bipunctata larvae but had no effect on adult fecundity, longevity or sex ratios. The objective of this study was to formally describe the microsporidium by means of its ultrastructure, tissue pathology and molecular characterization. All stages of the microsporidium were diplokaryotic and developed in direct contact with the host cell cytoplasm. Mature spores measured 4.25±0.09×1.82±0.03μm (SE, n=49, from micrographs) and fresh spores measured 6.10±0.06×3.01±0.05μm (±SE, n=60; range: 5.0-6.9×2.18-3.86μm). The polar filament was isofilar with 10-18 coils that were frequently arranged in a single row. The lamellar polaroplast was not typically visible and spores contained a relatively small posterior vacuole. Both the flight muscles and fat body were heavily infected and a large number of spores were observed within and between the cells of these tissues. The ovaries, developing oocytes, spermatocytes and accessory glands within the testes, midgut epithelium, Malpighian tubules, ileum, colon, and ventral nerve cord were also infected but not as heavily. Connective tissue near the cuticle and surrounding the trachea were lightly infected. The presence of spores in both the alimentary canal and ovaries (particularly within developing oocytes) suggests that the microsporidium can be transmitted per os (horizontally) and transovarially (vertically). Molecular analysis of the genome of the microsporidium described in this study was 97% similar to Nosema bombi and 96% similar to Nosema thomsoni, Nosema vespula and Nosema oulemae. Based on information gained during this study, we propose that the microsporidium in A. bipunctata be given the name Nosema adaliae sp. nov.
Collapse
Affiliation(s)
- T Steele
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - S Bjørnson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| |
Collapse
|