1
|
Soliman L, Party P, Nagy A, Farkas Á, Paróczai D, Burián K, Ambrus R. Enhanced pulmonary delivery of spray-dried theophylline: investigation of the trehalose and amino acid combinations as innovative fine carriers. Eur J Pharm Sci 2025; 209:107109. [PMID: 40280283 DOI: 10.1016/j.ejps.2025.107109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The emergence of novel carrier systems for dry powder inhalers is an attractive research subject. Additionally, the site-specific pulmonary delivery of theophylline (THN) remains challenging. Therefore, the present research aims to assess the potential enhancement of THN local delivery to the deep lung via powder inhalation for asthma treatment by developing appropriate fine carriers utilizing the well-established spray-drying technique. The preliminary study aimed to develop novel trehalose-based carrier systems combined with amino acids leucine, glycine, and arginine. Aqueous feedstock solutions were spray-dried, and the obtained microparticulate carriers were assessed. Subsequently, therapeutic powders were produced by spray drying ethanol 10 % solutions of THN combined with candidate-developed carriers. Following each sample preparation, it was subjected to structural, thermal, morphological, rheological, aerodynamic, and particle size distribution characterization. Furthermore, THN solubility was determined. In vitro drug release and diffusion, in vitro and in silico simulated lung deposition, and aerodynamic particle count were analyzed by applying samples equivalent to 10 mg of THN. To summarize the outcomes, carriers composed of trehalose with either leucine or a leucine-glycine combination demonstrated superior respirable properties and were considered candidates for further development. THN co-spray-dried samples showed less crystalline structure and particle size of 4-5 µm, leading to profound solubility enhancement (⁓20 fold) and rapid drug release compared to the pure THN (⁓100 % in 5 min). The in vitro and in silico aerodynamic measurements demonstrated that the THN-trehalose-leucine combination had a significantly enhanced fine particle fraction (43 %), leading to higher deep lung deposition (36 %), and the aerodynamic counter confirmed the development of fine particles (mean=3.61 µm). Moreover, the in vitro experiments on the A549 cells demonstrated that the optimized formulation has a low cytotoxicity profile. In conclusion, the acquired characteristics suggest that inhalable co-spray-dried THN with the trehalose-leucine fine carrier may be a practical approach for local asthma therapy.
Collapse
Affiliation(s)
- Lomass Soliman
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary
| | - Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary
| | - Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Street 29-33, Budapest 1121, Hungary
| | - Dóra Paróczai
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, H-6720 Sze-ged, Hungary; Department of Pulmonology, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt 107, H-6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, Dóm Square 10, H-6720 Sze-ged, Hungary
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Eötvös utca 6, 6720 Hungary.
| |
Collapse
|
2
|
Khan I, Sabu M, Hussein N, Omer H, Houacine C, Khan W, Elhissi A, Yousaf S. Trans-resveratrol-loaded nanostructured lipid carrier formulations for pulmonary drug delivery using medical nebulizers. J Pharm Sci 2025; 114:103713. [PMID: 40023286 DOI: 10.1016/j.xphs.2025.103713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Aerosolization is a non-invasive approach of delivering drugs for both localized and systemic effects, specifically pulmonary targeting. The aim of this study was to deliver trans-resveratrol (TR) as an anti-cancer drug entrapped in a new generation versatile carriers nanostructured lipid carrier (NLC) to protect degradation and improve bioavailability via medical nebulizers. Twelve TR-NLC (i.e., F1-F12) formulations were prepared using different combinations and ratios of formulation ingredients via hot high-pressure homogenization. Upon analysis, formulations F1 and F2 demonstrated a particle size of <185 nm, a polydispersity index (PDI) <0.25, Zeta potential values of ∼30 mV and an entrapment efficiency >94%. The aerosolization performance of the F1 and F2 formulations was performed via a next generation impactor (NGI), using medical nebulizers. The air jet nebulizer demonstrated lower drug deposition in the earlier stages (1-2) and significantly higher deposition in the latter stages 3-5 (for both formulations), targeting middle to lower lung deposition. Moreover, the air jet nebulizer exhibited significantly higher emitted dose (ED) (87.44 ± 3.36%), fine particle dose (FPD) (1652.52 ± 9.68 µg) fine particle fraction (FPF) (36.25 ± 4.26%), and respirable fraction (RF) (93.41 ± 4.03%) when the F1 formulation was used as compared to the F2 formulation. Thus, the TR-NLC F1 formulation and air jet nebulizer were identified as the best combination for the delivery and targeting peripheral lungs.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom.
| | - Maria Sabu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Nozad Hussein
- College of pharmacy, Hawler Medical University, Erbil, Iraq
| | - Huner Omer
- College of pharmacy, Hawler Medical University, Erbil, Iraq
| | - Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Wasiq Khan
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| | - Abdelbary Elhissi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
3
|
Party P, Soliman L, Nagy A, Farkas Á, Ambrus R. Optimization, In Vitro, and In Silico Characterization of Theophylline Inhalable Powder Using Raffinose-Amino Acid Combination as Fine Co-Spray-Dried Carriers. Pharmaceutics 2025; 17:466. [PMID: 40284461 PMCID: PMC12030175 DOI: 10.3390/pharmaceutics17040466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Dry powder inhalation is an attractive research area for development. Therefore, this work aimed to develop inhalable co-spray-dried theophylline (TN) microparticles, utilizing raffinose-amino acid fine carriers intended for asthma therapy. The study addressed enhancing TN's physicochemical and aerodynamic properties to ensure efficient lung deposition. Methods: The process involves spray-drying each formulation's solution using a mini spray drier. A rigorous assessment was conducted on particle size distribution, structural and thermal analysis, morphology study, in vitro and in silico aerodynamic investigation, and aerodynamic particle counter in addition to the solubility, in vitro dissolution, and diffusion of TN. Results: The carriers containing leucine and glycine revealed superior characteristics (mass median aerodynamic diameter (MMAD): 4.6-5 µm, fine particle fraction (FPF): 30.6-35.1%, and amorphous spherical structure) as candidates for further development of TN-DPIs, while arginine was excluded due to intensive aggregation and hygroscopicity, which led to poor aerodynamic performance. TN co-spray-dried samples demonstrated fine micronized particles (D [0.5]: 3.99-5.96 µm) with predominantly amorphous structure (crystallinity index: 24.1-45.2%) and significant solubility enhancement (~19-fold). Formulations containing leucine and leucine-glycine revealed the highest FPF (45.7-47.8%) and in silico lung deposition (39.3-40.1%), rapid in vitro drug release (~100% within 10 min), and improved in vitro diffusion (2.29-2.43-fold), respectively. Moreover, the aerodynamic counter confirmed the development of fine microparticles (mean number particle size = 2.3-2.02 µm). Conclusions: This innovative formulation possesses enhanced physicochemical, morphological, and aerodynamic characteristics of low-dose TN for local asthma treatment and could be applied as a promising carrier for dry powder inhaler development.
Collapse
Affiliation(s)
- Petra Party
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Utca 6, 6720 Szeged, Hungary; (P.P.); (L.S.)
| | - Lomass Soliman
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Utca 6, 6720 Szeged, Hungary; (P.P.); (L.S.)
| | - Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary;
| | - Árpád Farkas
- HUN-REN Centre for Energy Research, Institute for Energy Security and Environmental Safety, Konkoly-Thege Miklós St. 29-33, 1121 Budapest, Hungary;
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös Utca 6, 6720 Szeged, Hungary; (P.P.); (L.S.)
| |
Collapse
|
4
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
5
|
Omidian H, Nokhodchi A, Babanejad N. Dry Powder Inhalers for Delivery of Synthetic Biomolecules. Pharmaceuticals (Basel) 2025; 18:175. [PMID: 40005989 PMCID: PMC11858879 DOI: 10.3390/ph18020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
This manuscript provides a comprehensive review of advancements in dry powder inhaler (DPI) technology for pulmonary and systemic drug delivery, focusing on proteins, peptides, nucleic acids, and small molecules. Innovations in spray-drying (SD), spray freeze-drying (SFD), and nanocarrier engineering have led to enhanced stability, bioactivity, and aerosol performance. Studies reveal the critical role of excipients, particle morphology, and device design in optimizing deposition and therapeutic efficacy. Applications include asthma, cystic fibrosis, tuberculosis (TB), and lung cancer, with emerging platforms such as ternary formulations and siRNA-loaded systems demonstrating significant clinical potential. Challenges such as stability, scalability, and patient adherence are addressed through novel strategies, including Quality by Design (QbD) approaches and advanced imaging tools. This work outlines pathways for future innovation in pulmonary drug delivery.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Juddy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ali Nokhodchi
- Lupin Inhalation Research Center, 4006 NW 124th Ave, Coral Springs, FL 33065, USA;
| | | |
Collapse
|
6
|
Zeng P, Zhang P, Chan HW, Chow SF, Lam JKW, Ip M, Leung SSY. Storage stability of lysostaphin solution and its pulmonary delivery. Drug Deliv Transl Res 2024; 14:2433-2443. [PMID: 38231385 PMCID: PMC11291608 DOI: 10.1007/s13346-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has become a leading causative pathogen of nosocomial pneumonia with an alarming in-hospital mortality rate of 30%. Last resort antibiotic, vancomycin, has been increasingly used to treat MRSA infections, but the rapid emergence of vancomycin-resistant strains urges the development of alternative treatment strategies against MRSA-associated pneumonia. The bacteriolytic enzyme, lysostaphin, targeting the cell wall peptidoglycan of S. aureus, has been considered as a promising alternative for MRSA infections. Its proteinaceous nature is likely benefit from direct delivery to the lungs, but the challenges for successful pulmonary delivery of lysostaphin lying on a suitable inhalation device and a formulation with sufficient storage stability. In this study, the applicability of a vibrating mesh nebulizer (Aerogen Solo®) and a soft mist inhaler (Respimat®) was investigated. Both devices were capable of aerosolizing lysostaphin solution into inhalable droplets and caused minimum antibacterial activity loss. In addition, lysostaphin stabilized with phosphate-buffered saline and 0.1% Tween 80 was proved to have acceptable stability for at least 12 months when stored at 4 °C. These promising data encourage further clinical development of lysostaphin for management of MRSA-associated lung infections.
Collapse
Affiliation(s)
- Ping Zeng
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pengfei Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Ka Wing Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sharon Shui Yee Leung
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Changsan N, Atipairin A, Muenraya P, Sritharadol R, Srichana T, Balekar N, Sawatdee S. In Vitro Evaluation of Colistin Conjugated with Chitosan-Capped Gold Nanoparticles as a Possible Formulation Applied in a Metered-Dose Inhaler. Antibiotics (Basel) 2024; 13:630. [PMID: 39061312 PMCID: PMC11274357 DOI: 10.3390/antibiotics13070630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Inhaled colistin is used to treat pneumonia and respiratory infections through nebulization or dry powder inhalers. Nevertheless, the development of a metered-dose inhaler (MDI) for colistin, which could enhance patient convenience and treatment efficacy, has not yet been developed. Colistin is known for its ability to induce cellular toxicity. Gold nanoparticles (AuNPs) can potentially mitigate colistin toxicity. Therefore, this study aimed to evaluate the antimicrobial effectiveness of colistin conjugated with chitosan-capped gold nanoparticles (Col-CS-AuNPs) and their potential formulation for use with MDIs to deliver the aerosol directly to the deep lung. Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and elemental analysis were used to characterize the synthesized Col-CS-AuNPs. Drug release profiles fitted with the most suitable release kinetic model were evaluated. An MDI formulation containing 100 µg of colistin per puff was prepared. The aerosol properties used to determine the MDI performance included the fine particle fraction, mass median aerodynamic diameter, and geometric standard deviation, which were evaluated using the Andersen Cascade Impactor. The delivered dose uniformity was also determined. The antimicrobial efficacy of the Col-CS-AuNP formulation in the MDI was assessed. The chitosan-capped gold nanoparticles (CS-AuNPs) and Col-CS-AuNPs had particle sizes of 44.34 ± 1.02 and 174.50 ± 4.46 nm, respectively. CS-AuNPs effectively entrapped 76.4% of colistin. Col-CS-AuNPs exhibited an initial burst release of up to 60% colistin within the first 6 h. The release mechanism was accurately described by the Korsmeyer-Peppas model, with an R2 > 0.95. The aerosol properties of the Col-CS-AuNP formulation in the MDI revealed a high fine particle fraction of 61.08%, mass median aerodynamic diameter of 2.34 µm, and geometric standard deviation of 0.21, with a delivered dose uniformity within 75-125% of the labeled claim. The Col-CS-AuNP MDI formulation completely killed Escherichia coli at 5× and 10× minimum inhibitory concentrations after 6 and 12 h of incubation, respectively. The toxicity of CS-AuNP and Col-CS-AuNP MDI formulations in upper and lower respiratory tract cell lines was lower than that of free colistin. The stability of the Col-CS-AuNP MDI formulation was maintained for at least 3 months. The Col-CS-AuNP MDI formulation effectively eradicated bacteria over a 12-h period, showing promise for advancing lung infection treatments.
Collapse
Affiliation(s)
- Narumon Changsan
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
| | - Apichart Atipairin
- School of Pharmacy, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand; (A.A.); (P.M.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand
| | - Poowadon Muenraya
- School of Pharmacy, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand; (A.A.); (P.M.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand
| | - Rutthapol Sritharadol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand;
| | - Neelam Balekar
- College of Pharmacy, IPS Academy, Indore 452012, Madhya Pradesh, India;
| | - Somchai Sawatdee
- School of Pharmacy, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand; (A.A.); (P.M.)
- Drug and Cosmetics Excellence Center, Walailak University, Thasala 80160, Nakhon Si Thammarat, Thailand
| |
Collapse
|
8
|
Xie S, Erfani A, Manouchehri S, Ramsey J, Aichele C. Aerosolization of poly(sulfobetaine) microparticles that encapsulate therapeutic antibodies. BIOMATERIALS ADVANCES 2024; 160:213839. [PMID: 38579521 DOI: 10.1016/j.bioadv.2024.213839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Pulmonary delivery of protein therapeutics poses significant challenges that have not been well addressed in the research literature or practice. In fact, there is currently only one commercial protein therapeutic that is delivered through aerosolization and inhalation. In this study, we propose a drug delivery strategy that enables a high-concentration dosage for the pulmonary delivery of antibodies as an aerosolizable solid powder with desired stability. We utilized zwitterionic polymers for their promising properties as drug delivery vehicles and synthesized swellable, biodegradable poly(sulfo-betaine) (pSB) microparticles. The microparticles were loaded with Immunoglobulin G (IgG) as a model antibody. We quantified the microparticle size and morphology, and the particles were found to have an average diameter of 1.6 μm, falling within the optimal range (~1-5 μm) for pulmonary drug delivery. In addition, we quantified the impact of the crosslinker to monomer ratio on particle morphology and drug loading capacity. The results showed that there is a trade-off between desired morphology and drug loading capacity as the crosslinker density increases. In addition, the particles were aerosolized, and our data indicated that the particles remained intact and retained their initial morphology and size after aerosolization. The combination of morphology, particle size, antibody loading capacity, low cytotoxicity, and ease of aerosolization support the potential use of these particles for pulmonary delivery of protein therapeutics.
Collapse
Affiliation(s)
- Songpei Xie
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Amir Erfani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joshua Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Clint Aichele
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
9
|
McSweeney MD, Alnajjar S, Schaefer AM, Richardson Z, Wolf W, Stewart I, Sriboonyapirat P, McCallen J, Farmer E, Nzati B, Lord S, Farrer B, Moench TR, Kumar PA, Arora H, Pickles RJ, Hickey AJ, Ackermann M, Lai SK. Inhaled "Muco-Trapping" Monoclonal Antibody Effectively Treats Established Respiratory Syncytial Virus (RSV) Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306729. [PMID: 38225749 DOI: 10.1002/advs.202306729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants, the immunocompromised, and the elderly. RSV infects the airway epithelium via the apical membrane and almost exclusively sheds progeny virions back into the airway mucus (AM), making RSV difficult to target by systemically administered therapies. An inhalable "muco-trapping" variant of motavizumab (Mota-MT), a potent neutralizing mAb against RSV F is engineered. Mota-MT traps RSV in AM via polyvalent Fc-mucin bonds, reducing the fraction of fast-moving RSV particles in both fresh pediatric and adult AM by ≈20-30-fold in a Fc-glycan dependent manner, and facilitates clearance from the airways of mice within minutes. Intranasal dosing of Mota-MT eliminated viral load in cotton rats within 2 days. Daily nebulized delivery of Mota-MT to RSV-infected neonatal lambs, beginning 3 days after infection when viral load is at its maximum, led to a 10 000-fold and 100 000-fold reduction in viral load in bronchoalveolar lavage and lung tissues relative to placebo control, respectively. Mota-MT-treated lambs exhibited reduced bronchiolitis, neutrophil infiltration, and airway remodeling than lambs receiving placebo or intramuscular palivizumab. The findings underscore inhaled delivery of muco-trapping mAbs as a promising strategy for the treatment of RSV and other acute respiratory infections.
Collapse
Affiliation(s)
| | - Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Alison M Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Whitney Wolf
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ian Stewart
- RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Justin McCallen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ellen Farmer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Sam Lord
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | - Brian Farrer
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
| | | | - Priya A Kumar
- Department of Anesthesiology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- Outcomes Research Consortium, Cleveland, OH, 44195, USA
| | - Harendra Arora
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Raymond J Pickles
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Mark Ackermann
- USDA/ARS-National Animal Disease Center, Ames, IA, 50010, USA
| | - Samuel K Lai
- Inhalon Biopharma, Research Triangle Park, NC, 27707, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology & Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Pan HW, Guo J, Zhu L, Leung SWS, Zhang C, Lam JKW. Enhanced powder dispersion of dual-excipient spray-dried powder formulations of a monoclonal antibody and its fragment for local treatment of severe asthma. Int J Pharm 2023; 644:123272. [PMID: 37499774 DOI: 10.1016/j.ijpharm.2023.123272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The advent of biologics has brought renewed hope for patients with severe asthma, a condition notorious for being hampered by poor response to conventional therapies and adverse drug reactions owing to corticosteroid dependence. However, biologics are administered as injections, thereby precluding the benefits inhalation therapy could offer such as increased bioavailability at the site of action, minimal systemic side effects, non-invasiveness, and self-administration. Here, 2-hydroxypropyl-beta-cyclodextrin and ʟ-leucine were co-spray-dried, as protein stabiliser and dispersion enhancer, respectively, at various weight ratios to produce a series of formulation platforms. Powder aerosolisation characteristics and particle morphology were assessed for suitability for pulmonary delivery. The selected platform with the best aerosol performance, a 1:1 ratio of the excipients, was then incorporated with a monoclonal antibody directed against IL-4 receptor alpha or its antigen-binding fragment. The dual-excipient antibody formulations exhibited emitted fraction of at least 80% and fine particle fraction exceeding 60% in cascade impactor study, while the residual moisture content was within a desirable range between 1% and 3%. The in vitro antigen-binding ability and inhibitory potency of the spray-dried antibody were satisfactorily preserved. The results from this study corroborate the viability of inhaled solid-state biomacromolecules as a promising treatment approach for asthma.
Collapse
Affiliation(s)
- Harry W Pan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Jinlin Guo
- R&D Department, Shanghai MabGeek Biotech Co. Ltd., Room 304, No. 1011 Halei Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Lingqiao Zhu
- R&D Department, Shanghai MabGeek Biotech Co. Ltd., Room 304, No. 1011 Halei Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Chenghai Zhang
- R&D Department, Shanghai MabGeek Biotech Co. Ltd., Room 304, No. 1011 Halei Road, Zhangjiang Hi-tech Park, Shanghai, 201203, China.
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China; Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39, Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
11
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
12
|
Puccetti M, Pariano M, Stincardini C, Wojtylo P, Schoubben A, Nunzi E, Ricci M, Romani L, Giovagnoli S. Pulmonary drug delivery technology enables anakinra repurposing in cystic fibrosis. J Control Release 2023; 353:1023-1036. [PMID: 36442616 DOI: 10.1016/j.jconrel.2022.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Inflammation is a key pathological driver in cystic fibrosis (CF). Current therapies are ineffective in treating and preventing the escalation of inflammatory events often exacerbated by superimposed infection. In this work, we propose a novel treatment based on the pulmonary administration of anakinra, a non-glycosylated recombinant form of IL-1Ra. An inhalable dry powder of anakinra was successfully developed to meet the specific needs of lung drug delivery. The new formulation was investigated in vitro for aerodynamic performances and activity and in vivo for its pharmacological profile, including the pharmacokinetics, treatment schedule, antimicrobial and anti-inflammatory activity and systemic toxicity. The protein was structurally preserved inside the formulation and retained its pharmacological activity in vitro immediately after preparation and over time when stored at ambient conditions. Anakinra when delivered to the lungs showed an improved and extended therapeutic efficacy in CF models in vivo as well as higher potency compared to systemic delivery. Peripheral side effects were significantly reduced and correlated with lower serum levels compared to systemic treatment. These findings provide proof-of-concept demonstration for anakinra repurposing in CF through the pulmonary route.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Paulina Wojtylo
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Aurelie Schoubben
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, piazzale Lucio Severi 1, 06132 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
13
|
Kang JH, Yang MS, Kim DW, Park CW. In vivo pharmacokinetic and pharmacodynamic study of co-spray-dried inhalable pirfenidone microparticles in rats. Drug Deliv 2022; 29:3384-3396. [DOI: 10.1080/10717544.2022.2149899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Ji-Hyun Kang
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Min-Seok Yang
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
14
|
Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022; 24:2. [PMID: 36416999 PMCID: PMC9684852 DOI: 10.1208/s12249-022-02455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic has proven to be an unprecedented health crisis in the human history with more than 5 million deaths worldwide caused to the SARS-CoV-2 and its variants ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ). The currently authorized lipid nanoparticle (LNP)-encapsulated mRNA vaccines have been shown to have more than 90% vaccine efficacy at preventing COVID-19 illness (Baden et al. New England J Med 384(5):403-416, 2021; Thomas et al., 2021). In addition to vaccines, other small molecules belonging to the class of anti-viral and anti-inflammatory compounds have also been prescribed to reduce the viral proliferation and the associated cytokine storm. These anti-viral and anti-inflammatory compounds have also been shown to be effective in reducing COVID-19 exacerbations especially in reducing the host inflammatory response to SARS-CoV-2. However, all of the currently FDA-authorized vaccines for COVID-19 are meant for intramuscular injection directly into the systemic circulation. Also, most of the small molecules investigated for their anti-COVID-19 efficacy have also been explored using the intravenous route with a few of them explored for the inhalation route (Ramakrishnan et al. Lancet Respir Med 9:763-772, 2021; Horby et al. N Engl J Med 384(8):693-704, 2021). The fact that the SARS-CoV-2 enters the human body mainly via the nasal and airway route resulting in the lungs being the primary organs of infection as characterized by acute respiratory distress syndrome (ARDS)-mediated cytokine storm in the alveolar region has made the inhalation route gain significant attention for the purposes of targeting both vaccines and small molecules to the lungs (Mitchell et al., J Aerosol Med Pulm Drug Deliv 33(4):235-8, 2020). While there have been many studies reporting the safety and efficacy of targeting various therapeutics to the lungs to treat COVID-19, there is still a need to match the choice of inhalation formulation and the delivery device platform itself with the patient-related factors like breathing pattern and respiratory rate as seen in a clinical setting. In that perspective, this review aims to describe the various formulation and patient-related clinical factors that can play an important role in the judicious choice of the inhalation delivery platforms or devices for the development of inhaled COVID-19 vaccines.
Collapse
Affiliation(s)
- Sayeed Mossadeq
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA.
| | - Rajen Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Viraj Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Milind Bagul
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| |
Collapse
|
15
|
Qin L, Cui Z, Wu Y, Wang H, Zhang X, Guan J, Mao S. Challenges and Strategies to Enhance the Systemic Absorption of Inhaled Peptides and Proteins. Pharm Res 2022; 40:1037-1055. [DOI: 10.1007/s11095-022-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
16
|
Spray-Dried and Spray-Freeze-Dried Powder Formulations of an Anti-Interleukin-4Rα Antibody for Pulmonary Delivery. Pharm Res 2022; 39:2291-2304. [PMID: 35879500 DOI: 10.1007/s11095-022-03331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/03/2022] [Indexed: 10/16/2022]
Abstract
OBJECTIVE The therapeutic options for severe asthma are limited, and the biological therapies are all parenterally administered. The purpose of this study was to formulate a monoclonal antibody that targets the receptor for IL-4, an interleukin implicated in the pathogenesis of severe asthma, into a dry powder intended for delivery via inhalation. METHODS Dehydration was achieved using either spray drying or spray freeze drying, which exposes the thermolabile biomacromolecules to stresses such as shear and adverse temperatures. 2-hydroxypropyl-beta-cyclodextrin was incorporated into the formulation as protein stabiliser and aerosol performance enhancer. The powder formulations were characterised in terms of physical and aerodynamic properties, while the antibody was assessed with regard to its structural stability, antigen-binding ability, and in vitro biological activity after drying. RESULTS The spray-freeze-dried formulations exhibited satisfactory aerosol performance, with emitted fraction exceeding 80% and fine particle fraction of around 50%. The aerosolisation of the spray-dried powders was hindered possibly by high residual moisture. Nevertheless, the antigen-binding ability and inhibitory potency were unaffected for the antibody in the selected spray-dried and spray-freeze-dried formulations, and the antibody was physically stable even after one-year storage at ambient conditions. CONCLUSIONS The findings of this study establish the feasibility of developing an inhaled dry powder formulation of an anti-IL-4R antibody using spray drying and spray freeze drying techniques with potential for the treatment of severe asthma.
Collapse
|
17
|
Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B 2022; 13:1400-1428. [PMID: 37139423 PMCID: PMC10150162 DOI: 10.1016/j.apsb.2022.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/01/2022] Open
Abstract
Emerging therapies based on localized delivery of siRNA to lungs have opened up exciting possibilities for treatment of different lung diseases. Localized delivery of siRNA to lungs has shown to result in severalfold higher lung accumulation than systemic route, while minimizing non-specific distribution in other organs. However, to date, only 2 clinical trials have explored localized delivery of siRNA for pulmonary diseases. Here we systematically reviewed recent advances in the field of pulmonary delivery of siRNA using non-viral approaches. We firstly introduce the routes of local administration and analyze the anatomical and physiological barriers towards effective local delivery of siRNA in lungs. We then discuss current progress in pulmonary delivery of siRNA for respiratory tract infections, chronic obstructive pulmonary diseases, acute lung injury, and lung cancer, list outstanding questions, and highlight directions for future research. We expect this review to provide a comprehensive understanding of current advances in pulmonary delivery of siRNA.
Collapse
|
18
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
19
|
Fernandes DA, Costa E, Leandro P, Corvo ML. Formulation of spray dried enzymes for dry powder inhalers: An integrated methodology. Int J Pharm 2022; 615:121492. [DOI: 10.1016/j.ijpharm.2022.121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
20
|
Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or Discouraging for systemic disorders? Int J Pharm 2022; 614:121457. [PMID: 35026316 PMCID: PMC8744475 DOI: 10.1016/j.ijpharm.2022.121457] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Dry powder inhalation therapy has been shown to be an effective method for treating respiratory diseases like asthma, Chronic Obstructive Pulmonary Diseases and Cystic Fibrosis. It has also been widely accepted and used in clinical practices. Such success has led to great interest in inhaled therapy on treating systemic diseases in the past two decades. The current coronavirus (COVID-19) pandemic also has increased such interest and is triggering more potential applications of dry powder inhalation therapy in vaccines and antivirus drugs. Would the inhaled dry powder therapy on systemic disorders be as encouraging as expected? This paper reviews the marketed and in-development dry powder inhaler (DPI) products on the treatment of systemic diseases, their status in clinical trials, as well as the potential for COVID-19 treatment. The advancements and unmet problems on DPI systems are also summarized. With countless attempts behind and more challenges ahead, it is believed that the dry powder inhaled therapy for the treatment of systemic disorders still holds great potential and promise.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
21
|
Matuszak M, Ochowiak M, Włodarczak S, Krupińska A, Doligalski M. State-of-the-Art Review of The Application and Development of Various Methods of Aerosol Therapy. Int J Pharm 2021; 614:121432. [PMID: 34971755 DOI: 10.1016/j.ijpharm.2021.121432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/23/2022]
Abstract
Aerosol therapy is a rapidly developing field of science. Due to a number of advantages, the administration of drugs to the body with the use of aerosol therapy is becoming more and more popular. Spraying drugs into the patient's lungs has a significant advantage over other methods of administering drugs to the body, including injection and oral methods. In order to conduct proper and effective aerosol therapy, it is necessary to become familiar with the basic principles and applications of aerosol therapy under various conditions. The effectiveness of inhalation depends on many factors, but most of all on: the physicochemical properties of the sprayed system, the design of the medical inhaler and its correct application, the dynamics of inhalation (i.e. the frequency of breathing and the volume of inhaled air). It is worth emphasizing that respiratory system diseases are one of the most frequently occurring and fastest growing diseases in the world. Accordingly, in recent years, a significant increase in the number of new spraying devices and pharmaceutical drugs for spraying has appeared on the market. It should also be remembered that the process of spraying a liquid is a complicated and complex process, and its efficiency is very often characterized by the use of micro- and macro parameters (including average droplet diameters or the spectrum of droplet diameter distribution). In order to determine the effectiveness of the atomization process and in the delivery of drugs to the patient's respiratory tract, the analysis of the size of the generated aerosol droplets is most often performed. Based on the proposed literature review, it has been shown that many papers dealt with the issues related to aerosol therapy, the selection of an appropriate spraying device, the possibility of modifying the spraying devices in order to increase the effectiveness of inhalation, and the possibility of occurrence of certain discrepancies resulting from the use of various measurement methods to determine the characteristics of the generated aerosol. The literature review presented in the paper was prepared in order to better understand the spraying process. Moreover, it can be helpful in choosing the right medical inhaler for a given liquid with specific rheological properties. The experimental data contained in this study are of great cognitive importance and may be of interest to entities involved in pharmaceutical product engineering (in particular in the case of the production of drugs containing liquids with complex rheological properties).
Collapse
Affiliation(s)
- M Matuszak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland.
| | - M Ochowiak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - S Włodarczak
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - A Krupińska
- Faculty of Chemical Technology, Poznan University of Technology, Institute of Chemical Technology and Engineering, 4 Berdychowo Street, 60-965 Poznan, Poland
| | - M Doligalski
- Faculty of Computer, Electrical and Control Engineering, University of Zielona Góra, 4a Szafrana Street, 65-516 Zielona Góra, Poland
| |
Collapse
|
22
|
Kumar K, Chawla R. Nanocarriers-mediated therapeutics as a promising approach for treatment and diagnosis of lung cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Mansour HM. Spray-Dried Inhalable Powder Formulations of Therapeutic Proteins and Peptides. AAPS PharmSciTech 2021; 22:185. [PMID: 34143327 DOI: 10.1208/s12249-021-02043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide. Innovations in biochemical engineering and understanding of the pathophysiology of respiratory diseases resulted in the development of many therapeutic proteins and peptide drugs with high specificity and potency. Currently, protein and peptide drugs are mostly administered by injections due to their large molecular size, poor oral absorption, and labile physicochemical properties. However, parenteral administration has several limitations such as frequent dosing due to the short half-life of protein and peptide in blood, pain on administration, sterility requirement, and poor patient compliance. Among various noninvasive routes of administrations, the pulmonary route has received a great deal of attention and is a better alternative to deliver protein and peptide drugs for treating respiratory diseases and systemic diseases. Among the various aerosol dosage forms, dry powder inhaler (DPI) systems appear to be promising for inhalation delivery of proteins and peptides due to their improved stability in solid state. This review focuses on the development of DPI formulations of protein and peptide drugs using advanced spray drying. An overview of the challenges in maintaining protein stability during the drying process and stabilizing excipients used in spray drying of proteins and peptide drugs is discussed. Finally, a summary of spray-dried DPI formulations of protein and peptide drugs, their characterization, various DPI devices used to deliver protein and peptide drugs, and current clinical status are discussed.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA.,Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA.,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA. .,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA. .,Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|
24
|
Fatima N, Kaushik V, Ayoub A. A Narrative Review of a Pulmonary Aerosolized Formulation or a Nasal Drop Using Sera Containing Neutralizing Antibodies Collected from COVID-19-Recovered Patients as a Probable Therapy for COVID-19. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:151-168. [PMID: 34083848 PMCID: PMC8163704 DOI: 10.30476/ijms.2020.86417.1624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) emerged as a new contagion during December 2019, since which time it has triggered a rampant spike in fatality rates worldwide due to insufficient medical treatments and a lack of counteragents and prompted the World Health Organization to declare COVID-19 a public health emergency. It is, therefore, vital to accelerate the screening of new molecules or vaccines to win the battle against this pandemic. Experiences from previous epidemiological data on coronaviruses guide investigators in designing and exploring new compounds for a safe and cost-effective treatment. Several reports on the severe acute respiratory syndrome (SARS) epidemic indicate that severe acute respiratory syndrome coronavirus (SARS-CoV) and the novel COVID-19 use angiotensin-converting enzyme 2 (ACE2) as a receptor for binding to the host cell in the lung epithelia through the spike protein on their virion surface. ACE2 is a mono-carboxypeptidase best known for cleaving major peptides and substrates. Its degree in human airway epithelia positively correlates with coronavirus infection. The treatment approach can be the neutralization of the virus entering lung epithelial cells by using sera containing antibodies collected from COVID-19-recovered patients. Hence, we herein propose a pulmonary aerosolized formulation or a nasal drop using sera, which contain antibodies to prevent, treat, or immunize against COVID-19 infection.
Collapse
Affiliation(s)
- Nishat Fatima
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| | | | - Amjad Ayoub
- School of Pharmacy, Al-Hawash Private University, Homs, Syria
| |
Collapse
|
25
|
Sala V, Cnudde SJ, Murabito A, Massarotti A, Hirsch E, Ghigo A. Therapeutic peptides for the treatment of cystic fibrosis: Challenges and perspectives. Eur J Med Chem 2021; 213:113191. [PMID: 33493828 DOI: 10.1016/j.ejmech.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common amongst rare genetic diseases, affecting more than 70.000 people worldwide. CF is characterized by a dysfunctional chloride channel, termed cystic fibrosis conductance regulator (CFTR), which leads to the production of a thick and viscous mucus layer that clogs the lungs of CF patients and traps pathogens, leading to chronic infections and inflammation and, ultimately, lung damage. In recent years, the use of peptides for the treatment of respiratory diseases, including CF, has gained growing interest. Therapeutic peptides for CF include antimicrobial peptides, inhibitors of proteases, and modulators of ion channels, among others. Peptides display unique features that make them appealing candidates for clinical translation, like specificity of action, high efficacy, and low toxicity. Nevertheless, the intrinsic properties of peptides, together with the need of delivering these compounds locally, e.g. by inhalation, raise a number of concerns in the development of peptide therapeutics for CF lung disease. In this review, we discuss the challenges related to the use of peptides for the treatment of CF lung disease through inhalation, which include retention within mucus, proteolysis, immunogenicity and aggregation. Strategies for overcoming major shortcomings of peptide therapeutics will be presented, together with recent developments in peptide design and optimization, including computational analysis and high-throughput screening.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sophie Julie Cnudde
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
26
|
Learning from past failures: Challenges with monoclonal antibody therapies for COVID-19. J Control Release 2020; 329:87-95. [PMID: 33276017 PMCID: PMC7836766 DOI: 10.1016/j.jconrel.2020.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 01/08/2023]
Abstract
COVID-19, the disease caused by infection with SARS-CoV-2, requires urgent development of therapeutic interventions. Due to their safety, specificity, and potential for rapid advancement into the clinic, monoclonal antibodies (mAbs) represent a highly promising class of antiviral or anti-inflammatory agents. Herein, by analyzing prior efforts to advance antiviral mAbs for other acute respiratory infections (ARIs), we highlight the challenges faced by mAb-based immunotherapies for COVID-19. We present evidence supporting early intervention immediately following a positive diagnosis via inhaled delivery of mAbs with vibrating mesh nebulizers as a promising approach for the treatment of COVID-19.
Collapse
|
27
|
Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. MOLECULAR BIOMEDICINE 2020; 1:11. [PMID: 34765995 PMCID: PMC7595758 DOI: 10.1186/s43556-020-00014-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Biologic therapeutics such as protein/polypeptide drugs are conventionally administered systemically via intravenous injection for the treatment of diseases including lung diseases, although this approach leads to low target site accumulation and the potential risk for systemic side effects. In comparison, topical delivery of protein drugs to the lung via inhalation is deemed to be a more effective approach for lung diseases, as proteins would directly reach the target in the lung while exhibiting poor diffusion into the systemic circulation, leading to higher lung drug retention and efficacy while minimising toxicity to other organs. This review examines the important considerations and challenges in designing an inhaled protein therapeutics for local lung delivery: the choice of inhalation device, structural changes affecting drug deposition in diseased lungs, clearance mechanisms affecting an inhaled protein drug’s lung accumulation, protein stability, and immunogenicity. Possible approaches to overcoming these issues will also be discussed.
Collapse
|
28
|
Wu L, Magaz A, Huo S, Darbyshire A, Loizidou M, Emberton M, Birchall M, Song W. Human airway-like multilayered tissue on 3D-TIPS printed thermoresponsive elastomer/collagen hybrid scaffolds. Acta Biomater 2020; 113:177-195. [PMID: 32663664 DOI: 10.1016/j.actbio.2020.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 01/13/2023]
Abstract
Developing a biologically representative complex tissue of the respiratory airway is challenging, however, beneficial for treatment of respiratory diseases, a common medical condition representing a leading cause of death in the world. This in vitro study reports a successful development of synthetic human tracheobronchial epithelium based on interpenetrated hierarchical networks composed of a reversely 3D printed porous structure of a thermoresponsive stiffness-softening elastomer nanohybrid impregnated with collagen nanofibrous hydrogel. Human bronchial epithelial cells (hBEpiCs) were able to attach and grow into an epithelial monolayer on the hybrid scaffolds co-cultured with either human bronchial fibroblasts (hBFs) or human bone-marrow derived mesenchymal stem cells (hBM-MSCs), with substantial enhancement of mucin expression, ciliation, well-constructed intercellular tight junctions and adherens junctions. The multi-layered co-culture 3D scaffolds consisting of a top monolayer of differentiated epithelium, with either hBFs or hBM-MSCs proliferating within the hyperelastic nanohybrid scaffold underneath, created a tissue analogue of the upper respiratory tract, validating these 3D printed guided scaffolds as a platform to support co-culture and cellular organization. In particular, hBM-MSCs in the co-culture system promoted an overall matured physiological tissue analogue of the respiratory system, a promising synthetic tissue for drug discovery, tracheal repair and reconstruction. STATEMENT OF SIGNIFICANCE: Respiratory diseases are a common medical condition and represent a leading cause of death in the world. However, the epithelium is one of the most challenging tissues to culture in vitro, and suitable tracheobronchial models, physiologically representative of the innate airway, remain largely elusive. This study presents, for the first time, a systematic approach for the development of functional multilayered epithelial synthetic tissue in vitro via co-culture on a 3D-printed thermoresponsive elastomer interpenetrated with a collagen hydrogel network. The viscoelastic nature of the scaffold with stiffness softening at body temperature provide a promising matrix for soft tissue engineering. The results presented here provide new insights about the epithelium at different surfaces and interfaces of co-culture, and pave the way to offer a customizable reproducible technology to generate physiologically relevant 3D biomimetic systems to advance our understanding of airway tissue regeneration.
Collapse
|
29
|
Marqus S, Lee L, Istivan T, Kyung Chang RY, Dekiwadia C, Chan HK, Yeo LY. High frequency acoustic nebulization for pulmonary delivery of antibiotic alternatives against Staphylococcus aureus. Eur J Pharm Biopharm 2020; 151:181-188. [PMID: 32315699 DOI: 10.1016/j.ejpb.2020.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023]
Abstract
The increasing prevalence of multidrug resistant bacteria has warranted the search for new antimicrobial agents as existing antibiotics lose their potency. Among these, bacteriophage therapy, as well as the administration of specific bacteriolysis agents, i.e., lytic enzymes, have emerged as attractive alternatives. Nebulizers offer the possibility for delivering these therapeutics directly to the lung, which is particularly advantageous as a non-invasive and direct route to treat bacterial lung infections. Nevertheless, nebulizers can often result in significant degradation of the bacteriophage or protein, both structurally and functionally, due to the large stresses the aerosolization process imposes on these entities. In this work, we assess the capability of a novel low-cost and portable hybrid surface and bulk acoustic wave platform (HYDRA) to nebulize a Myoviridae bacteriophage (phage K) and lytic enzyme (lysostaphin) that specifically targets Staphylococcus aureus. Besides its efficiency in producing phage or protein-laden aerosols within the 1-5 μm respirable range for optimum delivery to the lower respiratory tract where lung infections commonly take place, we observe that the HYDRA platform-owing to the efficiency of driving the aerosolization process at relatively low powers and high frequencies (approximately 10 MHz)-does not result in appreciable denaturation of the phages or proteins, such that the loss of antimicrobial activity following nebulization is minimized. Specifically, a low (0.1 log10 (pfu/ml)) titer loss was obtained with the phages, resulting in a high viable respirable fraction of approximately 90%. Similarly, minimal loss of antimicrobial activity was obtained with lysostaphin upon nebulization wherein its minimum inhibitory concentration (0.5 μg/ml) remained unaltered as compared with the non-nebulized control. These results therefore demonstrate the potential of the HYDRA nebulization platform as a promising strategy for pulmonary administration of alternative antimicrobial agents to antibiotics for the treatment of lung diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Susan Marqus
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Lillian Lee
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Taghrid Istivan
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
30
|
Thotakura N, Kaushik L, Kumar V, Preet S, Babu PV. Advanced Approaches of Bioactive Peptide Molecules and Protein Drug Delivery Systems. Curr Pharm Des 2019; 24:5147-5163. [PMID: 30727874 DOI: 10.2174/1381612825666190206211458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/01/2019] [Indexed: 11/22/2022]
Abstract
Despite the fact that protein and peptide therapeutics are widely employed in the treatment of various diseases, their delivery is posing an unembellished challenge to the scientists. It was discovered that delivery of these therapeutic systems through oral route is easy with high patient compliance. However, proteolytic degradation and absorption through the mucosal epithelium are the barriers in this route. These issues can be minimized by the use of enzyme inhibitors, absorption enhancers, different carrier systems or either by direct modification. In the process of investigation, it was found that transdermal route is not posing any challenges of enzymatic degradation, but, still absorption is the limitation as the outer layer of skin acts as a barrier. To suppress the effect of the barrier and increase the rate of the absorption, various advanced technologies were developed, namely, microneedle technology, iontophoresis, electroporation, sonophoresis and biochemical enhancement. Indeed, even these molecules are targeted to the cells with the use of cell-penetrating peptides. In this review, delivery of the peptide and protein therapeutics using oral, transdermal and other routes is discussed in detail.
Collapse
Affiliation(s)
- Nagarani Thotakura
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, India
| | - Lokesh Kaushik
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, India
| | - Vipin Kumar
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Ajmer, Rajasthan, India
| | - Simran Preet
- Department of Biophysics, Basic Medical Sciences Block-2, Panjab University, Sector-25, Chandigarh, India
| | - Penke Vijaya Babu
- Department of chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23:20. [PMID: 31832232 PMCID: PMC6869321 DOI: 10.1186/s40824-019-0166-x] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
In modern-day medicine, nanotechnology and nanoparticles are some of the indispensable tools in disease monitoring and therapy. The term “nanomaterials” describes materials with nanoscale dimensions (< 100 nm) and are broadly classified into natural and synthetic nanomaterials. However, “engineered” nanomaterials have received significant attention due to their versatility. Although enormous strides have been made in research and development in the field of nanotechnology, it is often confusing for beginners to make an informed choice regarding the nanocarrier system and its potential applications. Hence, in this review, we have endeavored to briefly explain the most commonly used nanomaterials, their core properties and how surface functionalization would facilitate competent delivery of drugs or therapeutic molecules. Similarly, the suitability of carbon-based nanomaterials like CNT and QD has been discussed for targeted drug delivery and siRNA therapy. One of the biggest challenges in the formulation of drug delivery systems is fulfilling targeted/specific drug delivery, controlling drug release and preventing opsonization. Thus, a different mechanism of drug targeting, the role of suitable drug-laden nanocarrier fabrication and methods to augment drug solubility and bioavailability are discussed. Additionally, different routes of nanocarrier administration are discussed to provide greater understanding of the biological and other barriers and their impact on drug transport. The overall aim of this article is to facilitate straightforward perception of nanocarrier design, routes of various nanoparticle administration and the challenges associated with each drug delivery method.
Collapse
|
32
|
Making Concentrated Antibody Formulations Accessible for Vibrating-Mesh Nebulization. J Pharm Sci 2019; 108:2588-2592. [DOI: 10.1016/j.xphs.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/17/2019] [Accepted: 03/08/2019] [Indexed: 01/03/2023]
|
33
|
Abstract
The chemical and biological nonproliferation regime stands at a watershed moment, when failure seems a real possibility. After the unsuccessful outcome of the 2016 Eighth Review Conference, the future of the Biological and Toxin Weapons Convention is uncertain. As the Chemical Weapons Convention (CWC) approaches its Fourth Review Conference in 2018, it has almost completed removing the huge stocks of chemical weapons, but it now faces the difficult organizational task of moving its focus to preventing the reemergence of chemical weapons at a time when the international security situation appears to be increasingly more difficult and dangerous. In this article, we assess the current and near-term state (5-10 years) and impact of three related areas of science and technology that could be of dual-use concern: targeted delivery of agents to the central nervous system (CNS), particularly by means of nanotechnology; direct impact of nanomaterials on synaptic functions in the CNS; and neuronal circuits in the brain that might be targeted by those with hostile intent. We attempt to assess the implications of our findings, particularly for the consideration of the problem of state-level interest in so-called nonlethal incapacitating chemical agents for law enforcement at the CWC Review Conference in 2018, but also more generally for the longer-term future of the chemical and biological nonproliferation regime.
Collapse
|
34
|
Lin YJ, Mi FL, Lin PY, Miao YB, Huang T, Chen KH, Chen CT, Chang Y, Sung HW. Strategies for improving diabetic therapy via alternative administration routes that involve stimuli-responsive insulin-delivering systems. Adv Drug Deliv Rev 2019; 139:71-82. [PMID: 30529306 DOI: 10.1016/j.addr.2018.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/06/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The encapsulation of insulin in micro- or nanodelivery systems may eliminate the need for frequent subcutaneous injections, improving the quality of life of diabetic patients. Formulations for oral, intranasal, pulmonary, subcutaneous, and transdermal administration have been developed. The use of stimuli-responsive polymeric carriers that can release the encapsulated drug in response to changes of the environmental stimuli or external activation enables the design of less invasive or non-invasive systems for smart insulin delivery from depots in the body. This article will look at strategies for the development of responsive delivery systems and the future meeting of the demands of new modes of insulin delivery.
Collapse
|
35
|
Sousa F, Fonte P, Cruz A, Kennedy PJ, Pinto IM, Sarmento B. Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies. Methods Mol Biol 2018; 1674:239-253. [PMID: 28921443 DOI: 10.1007/978-1-4939-7312-5_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aliphatic polyesters have been widely explored for biomedical applications (e.g., drug delivery systems, biomedical devices, and tissue engineering). Recently, polyesters have been used in nanoparticle formulations for the controlled release of monoclonal antibodies (mAbs) for the enhanced efficacy of antibody-based therapy. Polyester-based nanoparticles for mAb delivery provide decreased antibody dosage, increased antibody stability and protection and longer therapeutic action, ultimately translating to an increased therapeutic index. Additionally, nanoencapsulation holds the potential for the selective cellular recognition and internalization of mAbs, in the disease context when intracellular organelles and molecules (e.g., enzymes, transcription factors and oncogenic proteins) are the preferred target. We present here a detailed method to prepare mAb-loaded polyester-based nanoparticles and the various techniques to characterize the resulting nanoparticles and mAb structure. Finally, we highlight different biological approaches to assess the in vitro bioactivity of the antibody upon nanoparticle release.
Collapse
Affiliation(s)
- Flávia Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180, Porto, Portugal
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, PRD, Portugal
| | - Pedro Fonte
- UCIBIO, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Andreia Cruz
- INL, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330, Braga, Portugal
| | - Patrick J Kennedy
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Inês Mendes Pinto
- INL, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330, Braga, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180, Porto, Portugal.
| |
Collapse
|
36
|
Huang Z, Wu H, Yang B, Chen L, Huang Y, Quan G, Zhu C, Li X, Pan X, Wu C. Anhydrous reverse micelle nanoparticles: new strategy to overcome sedimentation instability of peptide-containing pressurized metered-dose inhalers. Drug Deliv 2017; 24:527-538. [PMID: 28181839 PMCID: PMC8241067 DOI: 10.1080/10717544.2016.1269850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to develop a novel anhydrous reverse micelle nanoparticles (ARM-NPs) system to overcome the sedimentation instability of peptide-containing pressurized metered-dose inhalers (pMDIs). A bottom-up method was utilized to fabricate ARM-NPs. Tertiary butyl alcohol (TBA)/water system, freeze-drying and lipid inversion method were successively used to produce the ARM-NPs for pMDI. Various characteristics of ARM-NPs were investigated including particle size, morphology, secondary structure of the peptide drug, aerosolization properties and storage stability. As revealed by the results, ARM-NPs with spherical shape possessed 147.7 ± 2.0 nm of particle size with 0.152 ± 0.021 PdI. The ARM-NPs for pMDI had satisfactory fine particle fraction (FPF) value of 46.99 ± 1.33%, while the secondary structure of the peptide drug was unchanged. Stability tests showed no pronounced sedimentation instability for over 12 weeks at 4-6 °C. Furthermore, a hypothesis was raised to explain the formation mechanism of ARM-NPs, which was verified by the differential scanning calorimetry analysis. The lecithin employed in the reverse micelle vesicles could serve as a steric barrier between peptide drugs and bulk propellant, which prevented the instability of peptide drugs in hydrophobic environment. Homogenous particle size could avoid Ostwald ripening phenomenon of particles in pMDIs. It was concluded that the ARM-NPs for pMDI could successfully overcome sedimentation instability by the steric barrier effect and homogeneous particle size.
Collapse
Affiliation(s)
- Zhengwei Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Han Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Beibei Yang
- School of Pharmaceutical Sciences, School Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Longkai Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Guilan Quan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Chune Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Xing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, P.R. China and
| |
Collapse
|
37
|
Tavares M, Cabral RP, Costa C, Martins P, Fernandes AR, Casimiro T, Aguiar-Ricardo A. Development of PLGA dry powder microparticles by supercritical CO 2 -assisted spray-drying for potential vaccine delivery to the lungs. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Röhm M, Carle S, Maigler F, Flamm J, Kramer V, Mavoungou C, Schmid O, Schindowski K. A comprehensive screening platform for aerosolizable protein formulations for intranasal and pulmonary drug delivery. Int J Pharm 2017; 532:537-546. [PMID: 28917988 DOI: 10.1016/j.ijpharm.2017.09.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
Aerosolized administration of biopharmaceuticals to the airways is a promising route for nasal and pulmonary drug delivery, but - in contrast to small molecules - little is known about the effects of aerosolization on safety and efficacy of biopharmaceuticals. Proteins are sensitive against aerosolization-associated shear stress. Tailored formulations can shield proteins and enhance permeation, but formulation development requires extensive screening approaches. Thus, the aim of this study was to develop a cell-based in vitro technology platform that includes screening of protein quality after aerosolization and transepithelial permeation. For efficient screening, a previously published aerosolization-surrogate assay was used in a design of experiments approach to screen suitable formulations for an IgG and its antigen-binding fragment (Fab) as exemplary biopharmaceuticals. Efficient, dose-controlled aerosol-cell delivery was performed with the ALICE-CLOUD system containing RPMI 2650 epithelial cells at the air-liquid interface. We could demonstrate that our technology platform allows for rapid and efficient screening of formulations consisting of different excipients (here: arginine, cyclodextrin, polysorbate, sorbitol, and trehalose) to minimize aerosolization-induced protein aggregation and maximize permeation through an in vitro epithelial cell barrier. Formulations reduced aggregation of native Fab and IgG relative to vehicle up to 50% and enhanced transepithelial permeation rate up to 2.8-fold.
Collapse
Affiliation(s)
- Martina Röhm
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Stefan Carle
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Ulm, Faculty of Medicine, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Frank Maigler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany; University of Applied Sciences Sigmaringen, Faculty of Life Sciences, Anton-Günther-Strasse 51, 72488 Sigmaringen, Germany
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Viktoria Kramer
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Chrystelle Mavoungou
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; Comprehensive Pneumology Center, Member of the German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Hubertus-Liebrecht-Strasse 35, 88400 Biberach, Germany.
| |
Collapse
|
39
|
Morales JO, Fathe KR, Brunaugh A, Ferrati S, Li S, Montenegro-Nicolini M, Mousavikhamene Z, McConville JT, Prausnitz MR, Smyth HDC. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. AAPS JOURNAL 2017; 19:652-668. [DOI: 10.1208/s12248-017-0054-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/01/2017] [Indexed: 12/25/2022]
|
40
|
Bodier-Montagutelli E, Morello E, L’Hostis G, Guillon A, Dalloneau E, Respaud R, Pallaoro N, Blois H, Vecellio L, Gabard J, Heuzé-Vourc’h N. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 2016; 14:959-972. [DOI: 10.1080/17425247.2017.1252329] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elsa Bodier-Montagutelli
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Eric Morello
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | | | - Antoine Guillon
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Emilie Dalloneau
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Renaud Respaud
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Nikita Pallaoro
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Hélène Blois
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- DTF-Aerodrug, St Etienne, France
| | | | - Nathalie Heuzé-Vourc’h
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| |
Collapse
|
41
|
Reslan M, Demir YK, Trout BL, Chan HK, Kayser V. Lack of a synergistic effect of arginine–glutamic acid on the physical stability of spray-dried bovine serum albumin. Pharm Dev Technol 2016; 22:785-791. [DOI: 10.1080/10837450.2016.1185116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Mouhamad Reslan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Yusuf K. Demir
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | | | - Hak-Kim Chan
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Veysel Kayser
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| |
Collapse
|
42
|
Respaud R, Marchand D, Pelat T, Tchou-Wong KM, Roy CJ, Parent C, Cabrera M, Guillemain J, Mac Loughlin R, Levacher E, Fontayne A, Douziech-Eyrolles L, Junqua-Moullet A, Guilleminault L, Thullier P, Guillot-Combe E, Vecellio L, Heuzé-Vourc'h N. Development of a drug delivery system for efficient alveolar delivery of a neutralizing monoclonal antibody to treat pulmonary intoxication to ricin. J Control Release 2016; 234:21-32. [PMID: 27173943 DOI: 10.1016/j.jconrel.2016.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/06/2016] [Accepted: 05/07/2016] [Indexed: 12/13/2022]
Abstract
The high toxicity of ricin and its ease of production have made it a major bioterrorism threat worldwide. There is however no efficient and approved treatment for poisoning by ricin inhalation, although there have been major improvements in diagnosis and therapeutic strategies. We describe the development of an anti-ricin neutralizing monoclonal antibody (IgG 43RCA-G1) and a device for its rapid and effective delivery into the lungs for an application in humans. The antibody is a full-length IgG and binds to the ricin A-chain subunit with a high affinity (KD=53pM). Local administration of the antibody into the respiratory tract of mice 6h after pulmonary ricin intoxication allowed the rescue of 100% of intoxicated animals. Specific operational constraints and aerosolization stresses, resulting in protein aggregation and loss of activity, were overcome by formulating the drug as a dry-powder that is solubilized extemporaneously in a stabilizing solution to be nebulized. Inhalation studies in mice showed that this formulation of IgG 43RCA-G1 did not induce pulmonary inflammation. A mesh nebulizer was customized to improve IgG 43RCA-G1 deposition into the alveolar region of human lungs, where ricin aerosol particles mostly accumulate. The drug delivery system also comprises a semi-automatic reconstitution system to facilitate its use and a specific holding chamber to maximize aerosol delivery deep into the lung. In vivo studies in monkeys showed that drug delivery with the device resulted in a high concentration of IgG 43RCA-G1 in the airways for at least 6h after local deposition, which is consistent with the therapeutic window and limited passage into the bloodstream.
Collapse
Affiliation(s)
- Renaud Respaud
- Université François-Rabelais de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Denis Marchand
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France; Aerodrug, F-37032 Tours, France
| | - Thibaut Pelat
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; Brétigny sur Orge, France; BIOTEM, Parc d'activité Bièvre Dauphine, Apprieu, France
| | - Kam-Meng Tchou-Wong
- NYU School of Medicine, Department of Environmental Medicine, 57 Old Forge Road, Tuxedo, New York 10987, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA; Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Christelle Parent
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Maria Cabrera
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Joël Guillemain
- SESAME, Expertise en toxicologie, Chambray-les-tours, France
| | | | | | | | | | | | - Laurent Guilleminault
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France
| | - Philippe Thullier
- Institut de Recherche Biomédicale des Armées (IRBA-CRSSA); Département de Microbiologie; Unité de biotechnologie des anticorps et des toxines; Brétigny sur Orge, France
| | - Emmanuelle Guillot-Combe
- DGA, Direction de la Stratégie (DS), Mission pour la recherche et l'Innovation scientifique (MRIS), France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France; Aerodrug, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- Université François Rabelais, UMR 1100, F-37032 Tours, France; INSERM, Centre d'Etude des Pathologies Respiratoires, UMR 1100, F-37032 Tours, France.
| |
Collapse
|
43
|
Rahhal TB, Fromen CA, Wilson EM, Kai MP, Shen TW, Luft JC, DeSimone JM. Pulmonary Delivery of Butyrylcholinesterase as a Model Protein to the Lung. Mol Pharm 2016; 13:1626-35. [PMID: 27012934 DOI: 10.1021/acs.molpharmaceut.6b00066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pulmonary delivery has great potential for delivering biologics to the lung if the challenges of maintaining activity, stability, and ideal aerosol characteristics can be overcome. To study the interactions of a biologic in the lung, we chose butyrylcholinesterase (BuChE) as our model enzyme, which has application for use as a bioscavenger protecting against organophosphate exposure or for use with pseudocholinesterase deficient patients. In mice, orotracheal administration of free BuChE resulted in 72 h detection in the lungs and 48 h in the broncheoalveolar lavage fluid (BALF). Free BuChE administered to the lung of all mouse backgrounds (Nude, C57BL/6, and BALB/c) showed evidence of an acute cytokine (IL-6, TNF-α, MIP2, and KC) and cellular immune response that subsided within 48 h, indicating relatively safe administration of this non-native biologic. We then developed a formulation of BuChE using Particle Replication in Non-Wetting Templates (PRINT). Aerosol characterization demonstrated biologically active BuChE 1 μm cylindrical particles with a mass median aerodynamic diameter of 2.77 μm, indicative of promising airway deposition via dry powder inhalers (DPI). Furthermore, particulate BuChE delivered via dry powder insufflation showed residence time of 48 h in the lungs and BALF. The in vivo residence time, immune response, and safety of particulate BuChE delivered via a pulmonary route, along with the cascade impaction distribution of dry powder PRINT BuChE, showed promise in the ability to deliver active enzymes with ideal deposition characteristics. These findings provide evidence for the feasibility of optimizing the use of BuChE in the clinic; PRINT BuChE particles can be readily formulated for use in DPIs, providing a convenient and effective treatment option.
Collapse
Affiliation(s)
- Tojan B Rahhal
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Catherine A Fromen
- Department of Chemical & Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Erin M Wilson
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Marc P Kai
- Department of Chemical & Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Tammy W Shen
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - J Christopher Luft
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Joseph M DeSimone
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
- Department of Chemical & Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
44
|
Youngren-Ortiz SR, Gandhi NS, España-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs. Part 1: Rationale for Gene Delivery Systems. KONA : POWDER SCIENCE AND TECHNOLOGY IN JAPAN 2016; 33:63-85. [PMID: 27081214 PMCID: PMC4829385 DOI: 10.14356/kona.2016014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This article reviews the pulmonary route of administration, aerosol delivery devices, characterization of pulmonary drug delivery systems, and discusses the rationale for inhaled delivery of siRNA. Diseases with known protein malfunctions may be mitigated through the use of siRNA therapeutics. The inhalation route of administration provides local delivery of siRNA therapeutics for the treatment of various pulmonary diseases, however barriers to pulmonary delivery and intracellular delivery of siRNA exists. siRNA loaded nanocarriers can be used to overcome the barriers associated with the pulmonary route, such as anatomical barriers, mucociliary clearance, and alveolar macrophage clearance. Apart from naked siRNA aerosol delivery, previously studied siRNA carrier systems comprise of lipidic, polymeric, peptide, or inorganic origin. Such siRNA delivery systems formulated as aerosols can be successfully delivered via an inhaler or nebulizer to the pulmonary region. Preclinical animal investigations of inhaled siRNA therapeutics rely on intratracheal and intranasal siRNA and siRNA nanocarrier delivery. Aerosolized siRNA delivery systems may be characterized using in vitro techniques, such as dissolution test, inertial cascade impaction, delivered dose uniformity assay, laser diffraction, and laser Doppler velocimetry. The ex vivo techniques used to characterize pulmonary administered formulations include the isolated perfused lung model. In vivo techniques like gamma scintigraphy, 3D SPECT, PET, MRI, fluorescence imaging and pharmacokinetic/pharmacodynamics analysis may be used for evaluation of aerosolized siRNA delivery systems. The use of inhalable siRNA delivery systems encounters barriers to their delivery, however overcoming the barriers while formulating a safe and effective delivery system will offer unique advances to the field of inhaled medicine.
Collapse
Affiliation(s)
- Susanne R. Youngren-Ortiz
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Nishant S. Gandhi
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Laura España-Serrano
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
| | - Mahavir B. Chougule
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 West Kawili Street, Hilo, Hawaii 96720, USA
- Natural Products and Experimental Therapeutics Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| |
Collapse
|
45
|
The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold. Biomaterials 2016; 85:111-27. [PMID: 26871888 DOI: 10.1016/j.biomaterials.2016.01.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with delamination occurring at stresses of 12-15 kPa. Crosslinked scaffolds had a compressive modulus of 1.9 kPa and mean pore diameters of 70 μm and 80 μm, depending on the freezing temperature. Histological analysis showed that the Calu-3 bronchial epithelial cell line attached and grew on CHyA-B with adoption of an epithelial monolayer on the film layer. Immunofluorescence and qRT-PCR studies demonstrated that the CHyA-B scaffolds facilitated Calu-3 cell differentiation, with enhanced mucin expression, increased ciliation and the formation of intercellular tight junctions. Co-culture of Calu-3 cells with Wi38 lung fibroblasts was achieved on the scaffold to create a submucosal tissue analogue of the upper respiratory tract, validating CHyA-B as a platform to support co-culture and cellular organisation reminiscent of in vivo tissue architecture. In summary, this study has demonstrated that CHyA-B is a promising tool for the development of novel 3D tracheobronchial co-culture in vitro models with the potential to unravel new pathways in drug discovery and drug delivery.
Collapse
|
46
|
Poursina N, Vatanara A, Rouini MR, Gilani K, Rouholamini Najafabadi A. Systemic delivery of parathyroid hormone (1–34) using spray freeze-dried inhalable particles. Pharm Dev Technol 2015; 22:733-739. [DOI: 10.3109/10837450.2015.1125924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Narges Poursina
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Vatanara
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
47
|
Hertel SP, Winter G, Friess W. Protein stability in pulmonary drug delivery via nebulization. Adv Drug Deliv Rev 2015; 93:79-94. [PMID: 25312674 DOI: 10.1016/j.addr.2014.10.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 08/22/2014] [Accepted: 10/01/2014] [Indexed: 10/24/2022]
Abstract
Protein inhalation is a delivery route which offers high potential for direct local lung application of proteins. Liquid formulations are usually available in early stages of biopharmaceutical development and nebulizers are the device of choice for atomization avoiding additional process steps like drying and enabling fast progression to clinical trials. While some proteins were proven to remain stable throughout aerosolization e.g. DNase, many biopharmaceuticals are more susceptible towards the stresses encountered during nebulization. The main reason for protein instability is unfolding and aggregation at the air-liquid interface, a problem which is of particular challenge in the case of ultrasound and jet nebulizers due to recirculation of much of the generated droplets. Surfactants are an important formulation component to protect the sensitive biomolecules. A second important challenge is warming of ultrasound and vibrating mesh devices, which can be overcome by overfilling, precooled solutions or cooling of the reservoir. Ultimately, formulation development has to go hand in hand with device evaluation.
Collapse
|
48
|
Hittinger M, Juntke J, Kletting S, Schneider-Daum N, de Souza Carvalho C, Lehr CM. Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv Drug Deliv Rev 2015; 85:44-56. [PMID: 25453270 DOI: 10.1016/j.addr.2014.10.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
New pharmaceutical formulations must be proven as safe and effective before entering clinical trials. Also in the context of pulmonary drug delivery, preclinical models allow testing of novel antimicrobials, reducing risks and costs during their development. Such models allow reducing the complexity of the human lung, but still need to reflect relevant (patho-) physiological features. This review focuses on preclinical pulmonary models, mainly in vitro models, to assess drug safety and efficacy of antimicrobials. Furthermore, approaches to investigate common infectious diseases of the respiratory tract, are emphasized. Pneumonia, tuberculosis and infections occurring due to cystic fibrosis are in focus of this review. We conclude that especially in vitro models offer the chance of an efficient and detailed analysis of new antimicrobials, but also draw attention to the advantages and limitations of such currently available models and critically discuss the necessary steps for their future development.
Collapse
|
49
|
Mcleod VM, Chan LJ, Ryan GM, Porter CJ, Kaminskas LM. Optimal PEGylation can Improve the Exposure of Interferon in the Lungs Following Pulmonary Administration. J Pharm Sci 2015; 104:1421-30. [DOI: 10.1002/jps.24353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 11/07/2022]
|
50
|
Microfluidic immobilization of polyglycerin-b-poly(ε-caprolactone) polymeric micelles in uniform zwitterionic hydrogel microparticles for molecular network-mediated drug release. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-014-3493-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|