1
|
Kernif T, Medrouh B, Eddaikra N, Oury B, Holzmuller P, Sereno D. Ticks as vectors of Trypanosomatidae with medical or veterinary interest: Insights and implications from a comprehensive systematic review and meta-analysis. Heliyon 2024; 10:e40895. [PMID: 39759380 PMCID: PMC11698932 DOI: 10.1016/j.heliyon.2024.e40895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Since the 20th century, numerous studies have detected or isolated parasites from the Trypanosomatidae family in various tick species. However, the status of ticks as vectors for medically or veterinary significant Trypanosoma and Leishmania remains unclear. We conducted a systematic review and meta-analysis to provide new insights into the potential vector status of these pathogens, which have significant medical and veterinary implications. We searched three databases (PubMed, Google Scholar, and Web of Science) from 1912 to June 30, 2023, resulting in 94 papers included in the qualitative analysis and 86 papers in the quantitative analysis. All identified field studies were conducted in endemic areas and investigated the presence of Trypanosoma and Leishmania parasites, DNA, or antigens in ticks. We recorded a pooled prevalence of Trypanosomatidae detection in ticks at 15.48 % [7.99-24.61 %], with significant variations depending on the year, detection method, and geographical area. Most of the infected tick species belonged to the genera Amblyomma, Hyalomma, Ixodes, and Rhipicephalus. Experimental laboratory work on transmission routes demonstrated potential vector competence in both the Argasidae and Ixodidae tick families. Although our systematic review and meta-analysis provide compelling evidence of the natural infection of ticks by Trypanosomatidae parasites, along with some evidence of non-traditional transmission routes, they do not offer conclusive evidence regarding the role of ticks as biological or mechanical vectors for Trypanosomatidae species of veterinary and medical interest. This highlights the urgent need for additional investigations to address this point.
Collapse
Affiliation(s)
- Tahar Kernif
- Laboratory of Parasitic Eco-Epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algiers, Algeria
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), GoInsect: Infectiology and Entomology Research Group, Montpellier, France
| | - Bachir Medrouh
- Research Centre for Agropastoralism, Djelfa, 17000, Algeria
| | - Naouel Eddaikra
- Laboratory of Parasitic Eco-Epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algiers, Algeria
| | - Bruno Oury
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), GoInsect: Infectiology and Entomology Research Group, Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Denis Sereno
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), GoInsect: Infectiology and Entomology Research Group, Montpellier, France
| |
Collapse
|
2
|
Young EJ, Vaughan-Higgins R, Warren KS, Whiting SD, Rossi G, Stephens NS, Yeap L, Austen JM. Novel Haemocystidium sp. Intraerythrocytic Parasite in the Flatback ( Natator depressus) and Green ( Chelonia mydas) Turtle in Western Australia. Pathogens 2024; 13:1112. [PMID: 39770371 PMCID: PMC11676813 DOI: 10.3390/pathogens13121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Malaria and other haemosporidian parasites are common in reptiles. During baseline health surveys of sea turtles in Western Australia (WA), haemosporidian parasites were detected in flatback (Natator depressus) and green (Chelonia mydas) turtle erythrocytes during routine blood film examination. 130 blood samples were screened via polymerase chain reaction (PCR), including 105 N. depressus, 20 C. mydas, and 5 olive ridley turtles (Lepidochelys olivacea). A novel Haemocystidium sp. was identified, detected exclusively in foraging turtles and not in nesting turtles. The combined prevalence by microscopic and molecular methods was 16.9% (22/130), primarily affecting immature C. mydas (77.3%; 17/22). Mature N. depressus were also affected (22.7%; 5/22). DNA sequencing of a partial fragment of the mitochondrial cytochrome b (cytb) gene together with phylogenetic analysis identified two different Haemocystidium sp. genotypes, A and B, with genotype A being most prevalent. The phylogenetic analysis showed close genetic relationships to Haemocystidium sp. in freshwater and terrestrial turtles, suggesting a shared evolutionary lineage despite ecological differences. Preliminary analysis indicates that this parasite is incidental, as no association between health and parasite presence or grade was detected. This study provides the first formal detection of haemosporidian parasites in sea turtles, contributing essential baseline data while highlighting their evolutionary significance and host-parasite ecological relationships.
Collapse
Affiliation(s)
- Erina J. Young
- Conservation Medicine Program, School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (R.V.-H.); (K.S.W.); (L.Y.)
- EnviroVet Consultancy, Sunshine Coast, QLD 4561, Australia
| | - Rebecca Vaughan-Higgins
- Conservation Medicine Program, School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (R.V.-H.); (K.S.W.); (L.Y.)
| | - Kristin S. Warren
- Conservation Medicine Program, School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (R.V.-H.); (K.S.W.); (L.Y.)
| | - Scott D. Whiting
- Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia;
| | - Gabriele Rossi
- Centre for Animal Production and Health, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (G.R.); (N.S.S.)
| | - Nahiid S. Stephens
- Centre for Animal Production and Health, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (G.R.); (N.S.S.)
| | - Lian Yeap
- Conservation Medicine Program, School of Veterinary Medicine, Murdoch University, Murdoch, WA 6150, Australia; (R.V.-H.); (K.S.W.); (L.Y.)
| | - Jill M. Austen
- School of Agriculture Science, Murdoch University, Murdoch, WA 6150, Australia;
| |
Collapse
|
3
|
Megía-Palma R, Cuervo JJ, Fitze PS, Martínez J, Jiménez-Robles O, De la Riva I, Reguera S, Moreno-Rueda G, Blaimont P, Kopena R, Barrientos R, Martín J, Merino S. Do sexual differences in life strategies make male lizards more susceptible to parasite infection? J Anim Ecol 2024; 93:1338-1350. [PMID: 39044387 DOI: 10.1111/1365-2656.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024]
Abstract
Female and male hosts may maximise their fitness by evolving different strategies to compensate for the costs of parasite infections. The resulting sexual dimorphism might be apparent in differential relationships between parasite load and body condition, potentially reflecting differences in energy allocation to anti-parasitic defences. For example, male lacertids with high body condition may produce many offspring while being intensely parasitised. In contrast, female lacertids may show a different outcome of the trade-offs between body condition and immunity, aiming to better protect themselves from the harm of parasites. We predicted that females would have fewer parasites than males and a lower body condition across parasitaemia levels because they would invest resources in parasite defence to mitigate the costs of infection. In contrast, the male strategy to maximise access to females would imply some level of parasite tolerance and, thus, higher parasitaemia. We analysed the relationship between the body condition of lizards and the parasitemias of Karyolysus and Schellackia, two genera of blood parasites with different phylogenetic origins, in 565 females and 899 males belonging to 10 species of the Lacertidae (Squamata). These lizards were sampled over a period of 12 years across 34 sampling sites in southwestern Europe. The results concerning the Karyolysus infections were consistent with the predictions, with males having similar body condition across parasitaemia levels even though they had higher infection intensities than females. On the other hand, females with higher levels of Karyolysus parasitaemia had lower body condition. This is consistent with the prediction that different life strategies of male and female lacertids can explain the infection patterns of Karyolysus. In contrast, the parasitaemia of Schellackia was consistently low in both male and female hosts, with no significant effect on the body condition of lizards. This suggests that lizards of both sexes maintain this parasite below a pathogenic threshold.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Department of Biomedicine and Biotechnology, School of Pharmacy, Universidad de Alcalá (UAH), Madrid, Spain
- CIBIO, Centro de Investigação Em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - José J Cuervo
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Patrick S Fitze
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Javier Martínez
- Department of Biomedicine and Biotechnology, School of Pharmacy, Universidad de Alcalá (UAH), Madrid, Spain
| | - Octavio Jiménez-Robles
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Institut de Biologie, École Normale Supérieure, Paris, France
| | | | - Senda Reguera
- Department of Biology and Geology, IES don Pelayo, Madrid, Spain
| | - Gregorio Moreno-Rueda
- Facultad de Ciencias, Departamento de Zoología, Universidad de Granada (UGR), Granada, Spain
| | - Pauline Blaimont
- Department of Biology, University of Houston Downtown, Houston, Texas, USA
| | - Renata Kopena
- ELKH Centre for Ecological Research, Evolutionary Ecology Research Group, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Rafael Barrientos
- Universidad Complutense de Madrid, School of Biology, Department of Biodiversity Ecology and Evolution, Road Ecology Lab, Madrid, Spain
| | - José Martín
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Santiago Merino
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Zechmeisterová K, Gardner MG, Široký P. Unresolved haemosporidia of the Australian skink, Egernia stokesii. Parasitol Res 2024; 123:206. [PMID: 38713306 PMCID: PMC11076340 DOI: 10.1007/s00436-024-08230-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
The Australian skink Egernia stokesii had been recognised as a host of two species of Plasmodium, Plasmodium mackerrasae and P. circularis; nevertheless, molecular data are available for only a single haemosporidian species of this host. Its sequences are labelled as "Plasmodium sp." or "Plasmodium mackerrasae", but morphological characteristics of this isolate are unavailable. Phylogenetic analyses of these sequences placed them into the clade of the genus Haemocystidium. In this study, blood samples of six E. stokesii were analysed by both, molecular and microscopic methods to clarify the haemosporidia of this lizard. Application of these approaches offered discordant results. Whereas sequence analysis clustered our isolates with lizard species of Haemocystidium, morphology of blood stages is more akin to Plasmodium than Haemocystidium. However, limited sampling, indistinguishable nuclei/merozoites and risk of possible hidden presence of mixed infection prevent reliable species identification of detected parasites or their description as new species of Haemocystidium.
Collapse
Affiliation(s)
- Kristína Zechmeisterová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého 1946/1, Brno, 612 42, Czech Republic
| | - Michael George Gardner
- College of Science and Engineering, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Pavel Široký
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého 1946/1, Brno, 612 42, Czech Republic.
- CEITEC-Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42, Brno, Czech Republic.
| |
Collapse
|
5
|
Morais RAPB, Rodrigues APD, Diniz JAP, Úngari LP, O'Dwyer LH, de Souza W, DaMatta RA, Silva EO. Description of an intramonocytic haemoparasite, Hepatozoon lainsoni sp. nov. (Apicomplexa: Adeleorina: Hepatozoidae), infecting Ameiva ameiva lizard (Reptilia: Squamata: Teiidae) in northern Brazil. Parasitology 2024; 151:468-477. [PMID: 38629122 PMCID: PMC11106504 DOI: 10.1017/s0031182024000180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 05/18/2024]
Abstract
Haemogregarine (Apicomplexa: Adeleorina) parasites are considered to be the most common and widespread haemoparasites in reptiles. The genus Hepatozoon (Apicomplexa: Adeleorina: Hepatozoidae) can be found parasitizing a broad range of species and, in reptiles, they infect mainly peripheral blood erythrocytes. The present study detected and characterized a haemogregarine isolated from the lizard species, Ameiva ameiva, collected from the municipality of Capanema, Pará state, north Brazil. Blood smears and imprints from lungs, brain, heart, kidney, liver, bone marrow and spleen were observed using light microscopy and the parasite was genetically identified by molecular analysis. Morphological, morphometric and molecular data were obtained. Parasite gamonts were found in 49.5% (55/111) of the blood smears from A. ameiva, and were characterized as oval, averaging 12.0 ± 0.8 × 5.9 ± 0.6 μm2 in size, which displaced the nuclei of parasitized monocytes laterally. Parasite forms resembling immature gamonts were observed in the spleen and bone marrow of the lizards. Furthermore, phylogenetic analyses of 18S rRNA sequences did not reveal gene similarity with other Hepatozoon spp. sequences from reptiles. Thus, morphological and molecular analyses have identified a new species of Hepatozoon parasite, Hepatozoon lainsoni sp. nov., which infects monocytes of the A. ameiva lizard.
Collapse
Affiliation(s)
- Rafaela A. P. B. Morais
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Ana Paula D. Rodrigues
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - José Antonio P. Diniz
- Instituto Evandro Chagas, Secretaria de Vigilância em Saúde, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Letícia Pereira Úngari
- Instituto de Biociências, Universidade Estadual Paulista, Setor de Parasitologia, Botucatu, São Paulo, Brazil
| | - Lucia Helena O'Dwyer
- Instituto de Biociências, Universidade Estadual Paulista, Setor de Parasitologia, Botucatu, São Paulo, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renato A. DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Edilene O. Silva
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
6
|
Megía-Palma R, Palomar G, Martínez J, Antunes B, Dudek K, Žagar A, Serén N, Carretero MA, Babik W, Merino S. Lizard host abundances and climatic factors explain phylogenetic diversity and prevalence of blood parasites on an oceanic island. Mol Ecol 2024; 33:e17276. [PMID: 38243603 DOI: 10.1111/mec.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Host abundance might favour the maintenance of a high phylogenetic diversity of some parasites via rapid transmission rates. Blood parasites of insular lizards represent a good model to test this hypothesis because these parasites can be particularly prevalent in islands and host lizards highly abundant. We applied deep amplicon sequencing and analysed environmental predictors of blood parasite prevalence and phylogenetic diversity in the endemic lizard Gallotia galloti across 24 localities on Tenerife, an island in the Canary archipelago that has experienced increasing warming and drought in recent years. Parasite prevalence assessed by microscopy was over 94%, and a higher proportion of infected lizards was found in warmer and drier locations. A total of 33 different 18s rRNA parasite haplotypes were identified, and the phylogenetic analyses indicated that they belong to two genera of Adeleorina (Apicomplexa: Coccidia), with Karyolysus as the dominant genus. The most important predictor of between-locality variation in parasite phylogenetic diversity was the abundance of lizard hosts. We conclude that a combination of climatic and host demographic factors associated with an insular syndrome may be favouring a rapid transmission of blood parasites among lizards on Tenerife, which may favour the maintenance of a high phylogenetic diversity of parasites.
Collapse
Affiliation(s)
- Rodrigo Megía-Palma
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Gemma Palomar
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | - Javier Martínez
- Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, Parasitology Unit, Alcalá de Henares, Spain
| | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Dudek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Anamarija Žagar
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- NIB, National Institute of Biology, Ljubljana, Slovenia
| | - Nina Serén
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Miguel A Carretero
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Santiago Merino
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| |
Collapse
|
7
|
Wiser MF. The Digestive Vacuole of the Malaria Parasite: A Specialized Lysosome. Pathogens 2024; 13:182. [PMID: 38535526 PMCID: PMC10974218 DOI: 10.3390/pathogens13030182] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/11/2025] Open
Abstract
The malaria parasite resides within erythrocytes during one stage of its life cycle. During this intraerythrocytic period, the parasite ingests the erythrocyte cytoplasm and digests approximately two-thirds of the host cell hemoglobin. This digestion occurs within a lysosome-like organelle called the digestive vacuole. Several proteases are localized to the digestive vacuole and these proteases sequentially breakdown hemoglobin into small peptides, dipeptides, and amino acids. The peptides are exported into the host cytoplasm via the chloroquine-resistance transporter and an amino acid transporter has also been identified on the digestive vacuole membrane. The environment of the digestive vacuole also provides appropriate conditions for the biocrystallization of toxic heme into non-toxic hemozoin by a poorly understood process. Hemozoin formation is an attribute of Plasmodium and Haemoproteus and is not exhibited by other intraerythrocytic protozoan parasites. The efficient degradation of hemoglobin and detoxification of heme likely plays a major role in the high level of replication exhibited by malaria parasites within erythrocytes. Unique features of the digestive vacuole and the critical importance of nutrient acquisition provide therapeutic targets for the treatment of malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112-2824, USA
| |
Collapse
|
8
|
Fernandes TDO, Duarte MA, Furtado AP, Scalon MC, Paludo GR. New insights on the phylogeography of Hepatozoon canis in Brazil. Parasitol Res 2024; 123:123. [PMID: 38315237 DOI: 10.1007/s00436-024-08147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
This study aimed to molecularly characterize the Hepatozoon spp. infecting domestic and wild dogs in Brazil. A total of 22 whole blood samples tested positive for Hepatozoon spp., and five samples were sequenced for the 18S rDNA gene from H. canis after PCR amplification with four primer sets. Phylogenetic analysis using Bayesian inference showed that the three H. canis isolates from domestic dogs were not monophyletic; however, they were more closely related to each other than to other H. canis sequences. The isolate from the hoary fox (Lycalopex vetulus) was phylogenetically more distant. Two haplotype networks were constructed, identifying 10 haplotypes of H. canis in Brazil, with H10 constituting the largest group. It contains nine isolates, including three from domestic dogs. The H5 haplotype grouped the sequence of L. vetulus with two additional sequences from hosts Tapirus terrestris and L. vetulus, representing the sole haplotype with wild hosts. Bayesian analysis suggested the possible existence of two genetic groups of H. canis in Brazil, indicating gene flow of this agent within the country. These findings contribute valuable insights for a more comprehensive understanding of the molecular diversity of Hepatozoon spp. in Brazil and may help in the development of effective control measures.
Collapse
Affiliation(s)
- Thais de Oliveira Fernandes
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil
| | - Matheus Almeida Duarte
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil
| | | | - Marcela Correa Scalon
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil
| | - Giane Regina Paludo
- Laboratory of Veterinary Clinical Pathology, College of Agronomy and Veterinary Medicine, FAV/UnB, University of Brasilia, CEP, Darcy Ribeiro University Campus, ICC Center - North Wing, Brasília, Federal District, 70910-900, Brazil.
| |
Collapse
|
9
|
Duszynski DW, Barta JR, Abdel-Baki AAS. CORRECTING THE NAMES OF TWO HAEMOGREGARINA SPP. FROM LIZARDS IN EGYPT. J Parasitol 2024; 110:54-58. [PMID: 38381122 DOI: 10.1645/23-71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
Two haemogregarine "species" names, Haemogregarina tarentannulari and Haemogregarina rawashi, were cited by Saoud et al. (1995) as having been described by Mohammed and Ramadan (1996, in press). However, the paper by Mohammed and Ramadan (1996) was never published and, therefore, these names and their authorities must be suppressed because they violate Chapter 3 (Criteria for Publication), Article 8 (What Constitutes Published Work) of the International Code of Zoological Nomenclature. The following new names are introduced to replace them based on the Principle of Priority (Chapter 6, Article 23, 23.1, and Chapter 11, Article 51, Recommendation 51E): Hepatozoon rawashi (Mohammed and Ramadan in Saoud, Ramadan, Mohammed and Fawzi, 1995) n. comb., with gamonts in the erythrocytes and meronts in the lungs and liver of the fan-footed gecko, Ptyodactylus hasselquisiti (Donndorff, 1798) from Egypt, and Haemogregarina tarentannulari (Mohammed and Ramadan in Saoud, Ramadan, Mohammed and Fawzi, 1995), with gamonts in the erythrocytes and meronts in the lungs and liver of the white-spotted wall gecko, Tarentola annularis (St. Hilaire, 1827) also from Egypt. This latter species was determined to be a junior synonym of Haemogregarina annularis El-Naffar, Mandour, and Mohammed 1991, which was later reassigned to the genus Hepatozoon based on their phylogenetic analysis of 18S rDNA gene sequences.
Collapse
Affiliation(s)
- Donald W Duszynski
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - John R Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
10
|
Fouad AM, Abd El-Lateif RSA, Abo-Al-Ela HG, Abdel-Hakeem SS. Cytotoxicity and immunological impact of Trypanosoma sp. infection on blood parameters of wild African catfish, Clarias gariepinus. Parasitol Res 2023; 123:10. [PMID: 38057596 PMCID: PMC10700209 DOI: 10.1007/s00436-023-08026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Fish trypanosomiasis is a common blood parasitic disease transmitted by aquatic invertebrates, such as leeches. This study aims to shed light on the cytotoxicity of Trypanosoma sp. on erythrocytes and its impacts on the innate immune response (serum lysozyme activity, nitric oxide production, phagocytic activity, serum total protein, and globulin) in wild African catfish, Clarias gariepinus. One hundred catfish were examined using blood smears stained with Giemsa and confirmed with PCR. The prevalence of infection was found to be 10% by microscope detection and 15% by PCR. The morphological identification of Trypanosoma as Trypanosoma mukasai was determined. Additionally, this study included previously undescribed features of Trypanosoma, such as the width of the anterior and posterior body, the length of the posterior pale region, and the number of folds. Various alterations in erythrocytes were observed, totaling 54.57%. Nuclear abnormalities, including fragmented nuclei, eccentric nuclei, and micronuclei, were also reported. Infected fish showed a reduction in serum total protein and globulin levels, while nitric oxide production, lysozyme activity, and phagocytic activity exhibited a significant increase compared to non-infected fish. We believe that our findings will contribute valuable data to the morphological and molecular identification of Trypanosoma sp. in African catfish, as well as their cytotoxic impact.
Collapse
Affiliation(s)
- Alamira Marzouk Fouad
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Rasha S A Abd El-Lateif
- Unit of Fish Diseases and Management, Animal Health Research Institute (AHRI) Agriculture Research Center (ARC), Assiut Lab, Assiut, Egypt
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, 43221, Egypt.
| | - Sara Salah Abdel-Hakeem
- Parasitology Lab., Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
11
|
Chang YC, Lin TS, Huang WW, Lee HY, Shih CH, Wu YC, Huang CC, Chen TH. Reevaluation of Hemoparasites in the Black Spiny-Tailed Iguana ( Ctenosaura similis) with the First Pathological and Molecular Characterizations of Lankesterella desseri n. sp. and Redescription of Hepatozoon gamezi. Microorganisms 2023; 11:2374. [PMID: 37894032 PMCID: PMC10609578 DOI: 10.3390/microorganisms11102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
Hemoprotozoa are microorganisms that parasitize the blood and possess intricate life cycles. Despite the complexity of their nature, little is known about the biology of hemoprotozoa in reptilian hosts. In this study, we conducted disease surveillance on blood samples collected from six black spiny-tailed iguanas (Ctenosaura similis) exhibiting clinical signs. We found two different types of hemoparasites in the blood films and further confirmed they belong to the genera Lakesterella and Hepatozoon through molecular methods. In the tissue section from a dead iguana infected only with Lakesterella sp., parasites were also found in melanomacrophages of the liver and kidney. Since Lakesterella sp. infection has not been reported in C. similis, we propose this hemococcidian as a new species, Lankesterella desseri n. sp. The Hepatozoon parasites discovered in this study were classified as Hepatozoon gamezi based on their morphological characteristics, particularly the notable deformation of all infected erythrocytes, and this classification was further corroborated through molecular biological and phylogenetic analyses. This is the first hemoprotozoa investigation in C. similis with pathological and molecular characterization of these pathogens. We suggest that more studies are needed to understand the epidemiology, transmission, and impact of these parasites on their hosts and ecosystems.
Collapse
Affiliation(s)
- Yen-Chi Chang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.C.); (Y.-C.W.)
| | - Tai-Shen Lin
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 41354, Taiwan (W.-W.H.)
| | - Wei-Wen Huang
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 41354, Taiwan (W.-W.H.)
| | - Hung-Yi Lee
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Cheng-Hsin Shih
- Graduate Institute of Molecular and Comparative Pathobiology, National Taiwan University, Taipei 10617, Taiwan;
| | - Ying-Chen Wu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.C.); (Y.-C.W.)
| | - Chiu-Chen Huang
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 41354, Taiwan (W.-W.H.)
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-C.C.); (Y.-C.W.)
| |
Collapse
|
12
|
Ceylan O, Úngari LP, Sönmez G, Gul C, Ceylan C, Tosunoglu M, Baycan B, O'Dwyer LH, Sevinc F. Discovery of a new Hepatozoon species namely Hepatozoon viperoi sp. nov. in nose-horned vipers in Türkiye. Sci Rep 2023; 13:9677. [PMID: 37322098 PMCID: PMC10272196 DOI: 10.1038/s41598-023-36814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/10/2023] [Indexed: 06/17/2023] Open
Abstract
Although Hepatozoon spp. remains the most prevalent intracellular protozoa infecting snakes, it was reported only in a few snake species of the Colubridae family in Türkiye. Moreover, studies on these hemoparasites are not available in venomous nose-horned vipers from Türkiye. In this study, we investigated Hepatozoon spp. in three individual Vipera ammodytes using morphological and molecular methods. Our results were positive for intraerythrocytic Hepatozoon spp. gamonts in all three snakes, exhibiting low parasitemia. The microscopic findings were further confirmed through molecular data. A genus-specific PCR assay targeting the 18S rRNA gene region of Hepatozoon spp., was performed using HemoF/HemoR and Hep300/Hep900 primers. The obtained sequences were concatenated and used in phylogenetic analyses in comparison with different Hepatozoon species. Although our (OP377741) isolate was separated into a different branch, it was clustered with the isolates of H. massardi (KC342526), H. cevapii (KC342525), and H. annulatum (ON262426) from Brazilian snakes. Moreover, gene similarity and pair-wise distance between our isolate and other Hepatozoon species infecting snakes were found to be 89.30-98.63% and 0.009-0.077, respectively. Hence, we reported a new species of Hepatozoon, namely Hepatozoon viperoi sp. nov. infecting V. ammodytes. Since the literature does not indicate the existence of such a Hepatozoon species in V. ammodytes in different countries, our data may contribute to the expanding knowledge of Hepatozoon species in snakes, providing new insights into the biodiversity of the haemogregarine protozoan parasite.
Collapse
Affiliation(s)
- Onur Ceylan
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye.
| | - Letícia Pereira Úngari
- Instituto de Biociências, Campus de Botucatu, Departamento de Parasitologia, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, Botucatu, SP, 18618-689, Brazil
| | - Gonca Sönmez
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye
| | - Cigdem Gul
- Department of Biology, Faculty of Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Ceylan Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, Siirt University, 56100, Siirt, Türkiye
| | - Murat Tosunoglu
- Department of Biology, Faculty of Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Bengi Baycan
- Department of Biology, School of Graduate Studies, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Lucia Helena O'Dwyer
- Instituto de Biociências, Campus de Botucatu, Departamento de Parasitologia, UNESP-Univ. Estadual Paulista, Distrito de Rubião Junior, Botucatu, SP, 18618-689, Brazil
| | - Ferda Sevinc
- Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Türkiye
| |
Collapse
|
13
|
Verneau O, Melliti S, Kimdil L, El Mouden EH, Achouri MS, Rouag R. Molecular Phylogenies of Leeches and Haemoparasites Infecting Freshwater Turtles in Aquatic Ecosystems of Northern Africa Suggest Phylogenetic Congruence between Placobdella costata Sensu Lato and Haemogregarina stepanowi Sensu Lato. Microorganisms 2023; 11:1584. [PMID: 37375085 DOI: 10.3390/microorganisms11061584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Haemogregarines are blood parasites with a life-cycle involving a vertebrate as the intermediate host and an invertebrate as the definitive host and vector. Extensive phylogenetic investigations based on 18S-rRNA gene sequences have shown that Haemogregarina stepanowi (Apicomplexa: Haemogregarinidae) is able to infest a large diversity of freshwater turtle species, including the European pond turtle Emys orbicularis, the Sicilian pond turtle Emys trinacris, the Caspian turtle Mauremys caspica, the Mediterranean pond turtle Mauremys leprosa, and the Western Caspian turtle Mauremys rivulata, among others. From the same molecular markers, H. stepanowi is further considered to be a complex of cryptic species predisposed to infect the same host species. While Placobdella costata is known to be the unique vector of H. stepanowi, it is only recently that independent lineages within P. costata have been illustrated-suggesting the presence of at least five unique leech species across Western Europe. The aims of our study were therefore to investigate from mitochondrial markers (COI) the genetic diversity within haemogregarines and leeches infecting freshwater turtles of the Maghreb, in order to identify processes of parasite speciation. We showed that H. stepanowi consists of at least five cryptic species in the Maghreb, while two Placobella species were identified in the same area. Although an Eastern-Western speciation pattern was apparent for both leeches and haemogregarines, we cannot make definitive conclusions regarding co-speciation patterns between parasites and vectors. However, we cannot reject the hypothesis of a very strict host-parasite specificity within leeches.
Collapse
Affiliation(s)
- Olivier Verneau
- Centre de Formation et de Recherche sur les Environnements Méditerranéens, University of Perpignan Via Domitia, UMR 5110, F-66860 Perpignan, France
- CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMR 5110, F-66860 Perpignan, France
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 20520, South Africa
| | - Sirine Melliti
- Centre de Formation et de Recherche sur les Environnements Méditerranéens, University of Perpignan Via Domitia, UMR 5110, F-66860 Perpignan, France
- Laboratoire de Diversité, Gestion et Conservation des Systèmes Biologiques, LR18ES06, Faculté des Sciences de Tunis, Université Tunis-El Manar, Tunis 2092, Tunisia
| | - Latifa Kimdil
- Centre de Formation et de Recherche sur les Environnements Méditerranéens, University of Perpignan Via Domitia, UMR 5110, F-66860 Perpignan, France
- Laboratory of Water, Biodiversity and Climatic Change, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - El Hassan El Mouden
- Laboratory of Water, Biodiversity and Climatic Change, Faculty of Sciences, Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Mohamed Sghaier Achouri
- Laboratoire de Diversité, Gestion et Conservation des Systèmes Biologiques, LR18ES06, Faculté des Sciences de Tunis, Université Tunis-El Manar, Tunis 2092, Tunisia
| | - Rachid Rouag
- Laboratoire de Recherche Biodiversité et Pollution des Ecosystèmes, Faculté des Sciences de la Nature et de la Vie, Université Chadli Bendjedid El-Tarf, BP73, El-Tarf 36000, Algeria
| |
Collapse
|
14
|
Picelli AM, Silva MRL, Correa JKC, Paiva GR, Paula FR, Hernández-Ruz EJ, Oliveira EA, Viana LA. Hepatozoon Miller, 1908 parasites in the Colubridae snakes Clelia clelia (Daudin, 1803) and Drymarchon corais (Boie, 1827) from the Eastern Amazonia. AN ACAD BRAS CIENC 2023; 95:e20220115. [PMID: 37255167 DOI: 10.1590/0001-3765202320220115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023] Open
Abstract
Based on the genetic, morphological, and morphometric data of blood gamonts, we identified Hepatozoon parasites in colubrid snakes sampled in the Eastern Amazon region. Hepatozoon trigeminum was detected in the mussurana snake Clelia clelia and exhibited wide and elongated gamonts (mean dimensions: 14.25±0.65 × 4.31±0.43 μm) with an evident parasitophorous vacuole. Hepatozoon odwyerae sp. nov. was described in the indigo snake Drymarchon corais, whose gamonts have elongated and thin bodies (mean dimensions: 13.41±0.79 × 3.72±0.35 μm) with one end more tapered than the other. Phylogenetic analyses, based on the amplification of a 441 bp fragment of the 18S rRNA gene, revealed that the novel sequences of Hepatozoon spp. from our study were closely related to hemogregarine lineages found in lizards and snakes from Brazil, forming a well-supported monophyletic clade with them. The present study provides the first species description of Hepatoozon in D. corais and a new record of a host species for C. clelia using the integrated taxonomic data. We also highlight the importance of further investigations into the diversity of Hepatozoon in snakes, a rich but underestimated group of parasites, especially in the Amazonian biome.
Collapse
Affiliation(s)
- Amanda Maria Picelli
- Programa de Pós-Graduação em Biologia Experimental, Universidade Federal de Rondônia, Avenida Pres. Dutra, 2965, 76801-058 Porto Velho, RO, Brazil
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Rua da Beira, 7671, 76812-245 Porto Velho, RO, Brazil
| | - Maria Regina L Silva
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
| | - Jamille Karina C Correa
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
| | - Gleicierle R Paiva
- Universidade Federal do Pará, Laboratório de Zoologia, Rua Coronel José Porfírio 2515, 68372-040 Altamira, PA, Brazil
| | - Fabiane R Paula
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
- Programa de Pós-Graduação em Biodiversidade e Saúde, Instituto Oswaldo Cruz-IOC/Fiocruz, Avenida Brasil, 4365, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Emil José Hernández-Ruz
- Universidade Federal do Pará, Laboratório de Zoologia, Rua Coronel José Porfírio 2515, 68372-040 Altamira, PA, Brazil
| | - Elciomar A Oliveira
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, Universidade Federal do Amazonas, Avenida General Rodrigo Octavio Jordão Ramos, 1200, 69067-005 Manaus, AM, Brazil
| | - Lúcio André Viana
- Universidade Federal do Amapá, Departamento de Ciências Biológicas e da Saúde, Laboratório de Estudos Morfofisiológicos e Parasitários, Rodovia Josmar Chaves Pinto, Km 02, 68903-419 Macapá, AP, Brazil
| |
Collapse
|
15
|
Defaye B, Moutailler S, Vollot B, Galon C, Gonzalez G, Moraes RA, Leoncini AS, Rataud A, Le Guillou G, Pasqualini V, Quilichini Y. Detection of Pathogens and Ticks on Sedentary and Migratory Birds in Two Corsican Wetlands (France, Mediterranean Area). Microorganisms 2023; 11:microorganisms11040869. [PMID: 37110292 PMCID: PMC10141976 DOI: 10.3390/microorganisms11040869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Birds are one of the most species-diverse vertebrate groups and are susceptible to numerous hematophagous ectoparasites. Migratory birds likely contribute to the circulation of these ectoparasites and their associated pathogens. One of the many migration paths crosses the Mediterranean islands including Corsica and its wetlands, which are migration stopovers. In our study, we collected blood samples and hematophagous ectoparasites in migratory and sedentary bird populations in two coastal lagoons: Biguglia and Gradugine. A total of 1377 birds were captured from which 762 blood samples, 37 louse flies, and 44 ticks were collected. All the louse flies were identified as Ornithomya biloba and all the ticks were from the Ixodes genus: Ixodes sp. (8.5%), I. accuminatus/ventalloi (2.9%), I. arboricola/lividus (14.3%), I. frontalis (5.7%) and I. ricinus (68.6%). Five pathogens were detected: Anaplasma phagocytophilum, Erhlichia chaffeensis, and Rickettsia helvetica in ticks, and Trypanosoma sp. in louse flies. Ehrlichia chaffeensis and the West Nile virus were both detected in bird blood samples in Corsica. This is the first report of these tick, louse fly and pathogen species isolated on the bird population in Corsica. Our finding highlights the importance of bird populations in the presence of arthropod-borne pathogens in Corsican wetlands.
Collapse
|
16
|
Schotte U, Binder A, Goller KV, Faulde M, Ruhl S, Sauer S, Schlegel M, Teifke JP, Ulrich RG, Wylezich C. Field survey and molecular characterization of apicomplexan parasites in small mammals from military camps in Afghanistan. Parasitol Res 2023; 122:1199-1211. [PMID: 36944808 PMCID: PMC10097762 DOI: 10.1007/s00436-023-07820-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023]
Abstract
Small mammals are an important reservoir for causative agents of numerous infectious diseases, including zoonotic and vector-borne diseases. The occurrence of these pathogens represents a regional but permanent threat for humans and animals in general and might especially weaken military personnel and companion animals in abroad missions. In our study, small mammals collected in military camps in Afghanistan (Feyzabad, Mazar-e Sharif, and Kunduz) were investigated for the presence of apicomplexans using histopathology and molecular methods. For this purpose, well-established and newly developed real-time PCR assays were applied. A high prevalence was detected not only in house mice (Mus musculus), but also in shrews (Crocidura cf. suaveolens) and grey dwarf hamsters (Cricetulus migratorius). The molecular characterization based on the 18S rRNA gene revealed a close relationship to a cluster of Hepatozoon sp. detected in voles of the genus Microtus. Hepatozoon canis DNA was detected in one house mouse as well as in two Rhipicephalus ticks from a dog puppy. In addition, around 5% of the house mice were found to be infected with far related adeleorinids showing the highest sequence identity of 91.5% to Klossiella equi, the only published Klossiella sequence at present. For their better phylogenetic characterization, we conducted metagenomics by sequencing of two selected samples. The resulting 18S rRNA gene sequences have a length of about 2400 base pairs including an insertion of about 500 base pairs and are 100% identical to each other. Histopathology together with organ tropism and detection rates verified this sequence as of Klossiella muris. In conclusion, we documented naturally occurring protozoan stages and the additional taxonomic characterization of a well-known commensal in mice by applying a combination of different approaches. The study is of medical, social, and biological importance for ensuring human and animal health in military camps and also stresses the required awareness for the potential risk of zoonoses.
Collapse
Affiliation(s)
- Ulrich Schotte
- Department of Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kopperpahler Allee 120, 24119, Kronshagen, Germany.
| | - Alfred Binder
- Department of Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kopperpahler Allee 120, 24119, Kronshagen, Germany
| | - Katja V Goller
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
- Institute for Hygiene and Environmental Medicine and Central Unit for Infection Prevention and Control, University Medicine Greifswald, Fleischmannstraße 8, 17475, Greifswald, Germany
| | - Michael Faulde
- Department of Medicine, Central Institute of the Bundeswehr Medical Service Koblenz, Andernacher Str. 100, 56070, Koblenz, Germany
- Bundeswehr Research Institute (WIWeB), Institutsweg 1, 85435, Erding, Germany
| | - Silke Ruhl
- Department of Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, Kopperpahler Allee 120, 24119, Kronshagen, Germany
- Bundeswehr Medical Academy, Deployment Health Surveillance Center, Neuherbergstr. 11, 80937, Munich, Germany
| | - Sabine Sauer
- Division E, Bundeswehr Medical Academy, Military Medical Research and Development, Neuherbergstr. 11, 80937, Munich, Germany
| | - Mathias Schlegel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
- Seramun Diagnostica GmbH, Spreenhagener Str. 1, 15754, Heidesee, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management (ATB), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany.
- Department of Experimental Animal Facilities and Biorisk Management (ATB), Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald Insel Riems, Germany.
| |
Collapse
|
17
|
Weerarathne P, Maker R, Huang C, Taylor B, Cowan SR, Hyatt J, Tamil Selvan M, Shatnawi S, Thomas JE, Meinkoth JH, Scimeca R, Birkenheuer A, Liu L, Reichard MV, Miller CA. A Novel Vaccine Strategy to Prevent Cytauxzoonosis in Domestic Cats. Vaccines (Basel) 2023; 11:573. [PMID: 36992157 PMCID: PMC10058880 DOI: 10.3390/vaccines11030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cytauxzoonosis is caused by Cytauxzoon felis (C. felis), a tick-borne parasite that causes severe disease in domestic cats in the United States. Currently, there is no vaccine to prevent this fatal disease, as traditional vaccine development strategies have been limited by the inability to culture this parasite in vitro. Here, we used a replication-defective human adenoviral vector (AdHu5) to deliver C. felis-specific immunogenic antigens and induce a cell-mediated and humoral immune response in cats. Cats (n = 6 per group) received either the vaccine or placebo in two doses, 4 weeks apart, followed by experimental challenge with C. felis at 5 weeks post-second dose. While the vaccine induced significant cell-mediated and humoral immune responses in immunized cats, it did not ultimately prevent infection with C. felis. However, immunization significantly delayed the onset of clinical signs and reduced febrility during C. felis infection. This AdHu5 vaccine platform shows promising results as a vaccination strategy against cytauxzoonosis.
Collapse
Affiliation(s)
- Pabasara Weerarathne
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rebekah Maker
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chaoqun Huang
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brianne Taylor
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon R. Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Julia Hyatt
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer E. Thomas
- Department of Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - James H. Meinkoth
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ruth Scimeca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Adam Birkenheuer
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Lin Liu
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mason V. Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
18
|
Genetic diversity, phylogenetic position, and co-phylogenetic relationships of Karyolysus, a common blood parasite of lizards in the western Mediterranean. Int J Parasitol 2023; 53:185-196. [PMID: 36736608 DOI: 10.1016/j.ijpara.2022.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023]
Abstract
The genus Karyolysus was originally proposed to accommodate blood parasites of lacertid lizards in Western Europe. However, recent phylogenetic analyses suggested an inconclusive taxonomic position of these parasites of the order Adeleorina based on the available genetic information. Inconsistencies between molecular phylogeny, morphology, and/or life cycles can reflect lack of enough genetic information of the target group. We therefore surveyed 28 localities and collected blood samples from 828 lizards of 23 species including lacertids, skinks, and geckoes in the western Mediterranean, North Africa, and Macaronesia, where species of Karyolysus and other adeleorine parasites have been described. We combined molecular and microscopic methods to analyze the samples, including those from the host type species and the type locality of Karyolysus bicapsulatus. The phylogenetic relationship of these parasites was analyzed based on the 18S rRNA gene and the co-phylogenetic relationship with their vertebrate hosts was reconstructed. We molecularly detected adeleorine parasites in 37.9% of the blood samples and found 22 new parasite haplotypes. A phylogenetic reconstruction with 132 sequences indicated that 20 of the newly detected haplotypes clustered in a well-supported clade with another 18 sequences that included Karyolysus galloti and Karyolysus lacazei. Morphological evidence also supported that K. bicapsulatus clustered in this monophyletic clade. These results supported the taxonomic validity of the genus. In addition, we found some parasite haplotypes that infected different lizard host genera with ancient diverging histories, which suggested that Karyolysus is less host-specific than other blood parasites of lizards in the region. A co-phylogenetic analysis supported this interpretation because no significant co-speciation signal was shown between Karyolysus and lizard hosts.
Collapse
|
19
|
Cytauxzoon felis: An Overview. Pathogens 2023; 12:pathogens12010133. [PMID: 36678481 PMCID: PMC9860807 DOI: 10.3390/pathogens12010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cytauxzoon felis is a tick-transmitted, obligate, hemoprotozoal, piroplasmid pathogen of felids and the causative agent of cytauxzoonosis. It has a complex life cycle which includes a tick as its definitive host and a felid as its intermediate host. Since its first description in 1976, C. felis infections of felids have been reported in several southeastern and south-central U.S. states, overlapping with the ranges of its two known biological vectors, Amblyomma americanum (Lone star tick) and Dermacentor variabilis (American dog tick). Infected felids demonstrate disease as either an acute, often-fatal, infection, or a subclinical carrier infection. To develop effective C. felis transmission control strategies, the incidence of acute cytauxzoonosis, patient risk factors, the role of domestic cat carriers, and ecological variabilities need to be investigated further. Of equal importance is communicating these strategies for high-risk cat populations, including recommending year-round use of an acaricide product for all cats that spend any time outdoors. More studies are needed to further identify factors affecting C. felis and other Cytauxzoon spp. infection, transmission, disease progression, and treatment options and outcomes within the U.S. and globally. Here we provide an overview of C. felis highlighting its lifecycle within its definitive host, transmission to its intermediate host, symptoms and signs providing evidence of transmission, definitive diagnosis, current treatment and prevention strategies, and future considerations regarding this condition.
Collapse
|
20
|
The influence of abiotic and biotic variables on the patent parasitemias of Trypanosoma spp. in Thrichomys fosteri (Rodentia: Echimyidae) in the southern Pantanal. Parasitol Res 2022; 121:1719-1724. [DOI: 10.1007/s00436-022-07522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
21
|
First molecular detection of Hemolivia and Hepatozoon parasites in reptile-associated ticks on Iriomote Island, Japan. Parasitol Res 2021; 120:4067-4072. [PMID: 34725733 DOI: 10.1007/s00436-021-07345-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
Hepatozoon and Hemolivia are members of the haemogregarines and are reported in reptiles and reptile-associated ticks. However, no studies have reported on Hepatozoon and Hemolivia in Japanese reptile-associated ticks. This study aimed to molecularly identify and to characterize Hepatozoon and Hemolivia in Japanese reptile-associated ticks, Amblyomma geoemydae (Cantor, 1847) and Amblyomma nitidum (Hirst & Hirst, 1910). A total of 41 and 75 DNA samples from A. geoemydae and A. nitidum ticks, respectively, were used for screening of Hepatozoon and Hemolivia with polymerase chain reaction targeting 18S rDNA. As a result, Hemolivia and Hepatozoon were detected in two A. geoemydae and one A. nitidum, respectively. The sequences of Hemolivia spp. showed a 99.5% (1,050/1,055 bp) identity with Hemolivia parvula (KR069083), and the Hemolivia spp. were located in the same clade as H. parvula in the phylogenetic tree. The sequences of Hepatozoon sp. showed a 98.4% (1,521/1,545 bp) identity with Hepatozoon colubri (MN723844), and the Hepatozoon sp. was distinct from validated Hepatozoon species in the tree. Our findings highlight the first molecular record of Hemolivia in Japan and present the first detection of Hepatozoon in A. nitidum. Further investigations on these tick-borne protozoa are required to understand their life cycle and pathogenicity.
Collapse
|
22
|
Cruz-Bustos T, Feix AS, Ruttkowski B, Joachim A. Sexual Development in Non-Human Parasitic Apicomplexa: Just Biology or Targets for Control? Animals (Basel) 2021; 11:ani11102891. [PMID: 34679913 PMCID: PMC8532714 DOI: 10.3390/ani11102891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Cellular reproduction is a key part of the apicomplexan life cycle, and both mitotic (asexual) and meiotic (sexual) cell divisions produce new individual cells. Sexual reproduction in most eukaryotic taxa indicates that it has had considerable success during evolution, and it must confer profound benefits, considering its significant costs. The phylum Apicomplexa consists of almost exclusively parasitic single-celled eukaryotic organisms that can affect a wide host range of animals from invertebrates to mammals. Their development is characterized by complex steps in which asexual and sexual replication alternate and the fertilization of a macrogamete by a microgamete results in the formation of a zygote that undergoes meiosis, thus forming a new generation of asexual stages. In apicomplexans, sex is assumed to be induced by the (stressful) condition of having to leave the host, and either gametes or zygotes (or stages arising from it) are transmitted to a new host. Therefore, sex and meiosis are linked to parasite transmission, and consequently dissemination, which are key to the parasitic lifestyle. We hypothesize that improved knowledge of the sexual biology of the Apicomplexa will be essential to design and implement effective transmission-blocking strategies for the control of the major parasites of this group. Abstract The phylum Apicomplexa is a major group of protozoan parasites including gregarines, coccidia, haemogregarines, haemosporidia and piroplasms, with more than 6000 named species. Three of these subgroups, the coccidia, hemosporidia, and piroplasms, contain parasites that cause important diseases of humans and animals worldwide. All of them have complex life cycles involving a switch between asexual and sexual reproduction, which is key to their development. Fertilization (i.e., fusion of female and male cells) results in the formation of a zygote that undergoes meiosis, forming a new generation of asexual stages. In eukaryotes, sexual reproduction is the predominant mode of recombination and segregation of DNA. Sex is well documented in many protist groups, and together with meiosis, is frequently linked with transmission to new hosts. Apicomplexan sexual stages constitute a bottleneck in the life cycle of these parasites, as they are obligatory for the development of new transmissible stages. Consequently, the sexual stages represent attractive targets for vaccination. Detailed understanding of apicomplexan sexual biology will pave the way for the design and implementation of effective transmission-blocking strategies for parasite control. This article reviews the current knowledge on the sexual development of Apicomplexa and the progress in transmission-blocking vaccines for their control, their advantages and limitations and outstanding questions for the future.
Collapse
|
23
|
Description of a New Species Hepatozoon quagliattus sp. nov. (Apicomplexa: Adeleorina: Hepatozoidae), infecting the Sleep Snake, Dipsas mikanii (Squamata: Colubridae: Dipsadinae) from Goiás State, Brazil. Acta Parasitol 2021; 66:871-880. [PMID: 33683553 DOI: 10.1007/s11686-021-00355-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Species of Hepatozoon Miller, 1908 (Hepatozoidae) are blood protozoans with a cosmopolitan distribution and are reported to parasitize a range of vertebrate hosts including mammals, birds, reptiles, and amphibians. The present study aimed to describe a new species of Hepatozoon (Apicomplexa: Adeleorina: Hepatozoidae) found infecting the sleep snake Dipsas mikanii (Schlegel, 1837) (Squamata: Colubridae: Dipsadinae). METHODS The snake was collected in 2017 at the municipality of Britânia, Goiás State, Brazil. Blood smears were made in order to find blood gametocytes and PCR was performed targeting the 18S rRNA gene. RESULTS Microscopy screening of blood smears revealed the presence of intraerythrocytic gamont stages of Hepatozoon sp. in the peripheral blood with a parasitemia of 0.25%. Furthermore, meronts and monozoic cysts were observed in histological sections of the liver from the infected individual. The interspecific divergence of 18S rRNA sequences fragments isolated from D. mikanii had differences (2.39-11.3%) as compared to other sequences of species of Hepatozoon from snakes. CONCLUSIONS Based on morphological and molecular data, a new species of Hepatozoon infecting D. mikanii from Brazil is described.
Collapse
|
24
|
Khumpim P, Chawengkirttikul R, Junsiri W, Watthanadirek A, Poolsawat N, Minsakorn S, Srionrod N, Anuracpreeda P. Molecular detection and genetic diversity of Leucocytozoon sabrazesi in chickens in Thailand. Sci Rep 2021; 11:16686. [PMID: 34404893 PMCID: PMC8370975 DOI: 10.1038/s41598-021-96241-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/05/2021] [Indexed: 11/27/2022] Open
Abstract
Leucocytozoon sabrazesi is the intracellular protozoa of leucocytozoonosis, which is transmitted by the insect vectors and affects chickens in most subtropical and tropical regions of the globe, except South America, and causing enormous economic losses due to decreasing meat yield and egg production. In this study, L. sabrazesi gametocytes have been observed in the blood smears, and molecular methods have been used to analyse the occurrence and genetic diversity of L. sabrazesi in blood samples from 313 chickens raised in northern, western and southern parts of Thailand. The nested polymerase chain reaction (nested PCR) assay based on the cytb gene revealed that 80.51% (252/313) chickens were positive of L. sabrazesi. The phylogenetic analysis indicated that L. sabrazesi cytb gene is conserved in Thailand, showed 2 clades and 2 subclades with similarity ranged from 89.5 to 100%. The diversity analysis showed 13 and 18 haplotypes of the sequences from Thailand and from other countries, respectively. The entropy analyses of nucleic acid sequences showed 26 high entropy peaks with values ranging from 0.24493 to 1.21056, while those of amino acid sequences exhibited 5 high entropy peaks with values ranging from 0.39267 to 0.97012. The results; therefore, indicate a high molecular occurrence of L. sabrazesi in chicken blood samples with the associated factors that is statistically significant (p < 0.05). Hence, our results could be used to improve the immunodiagnostic methods and to find appropriate preventive control strategies or vaccination programs against leucocytozoonosis in order to mitigate or eliminate the harmful impact of this infection on chicken industry.
Collapse
Affiliation(s)
- Pacharaporn Khumpim
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Witchuta Junsiri
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Amaya Watthanadirek
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Napassorn Poolsawat
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Sutthida Minsakorn
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Nitipon Srionrod
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Panat Anuracpreeda
- Parasitology Research Laboratory (PRL), Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
25
|
Characterization and identification of haemogregarine hemoparasites (Apicomplexa: Adeleina: Hepatozoidae) in natural populations of Mauremys leprosa leprosa and M. leprosa saharica from Morocco. Syst Parasitol 2021; 98:547-557. [PMID: 34322858 DOI: 10.1007/s11230-021-09995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
Distribution, prevalence and parasitaemia of apicomplexan parasites of the genus Haemogregarina were studied in 858 freshwater turtles (735 Mauremys leprosa leprosa and 123 Mauremys leprosa saharica) throughout 30 localities from Morocco. Blood smears were collected from the turtles and partial 18S rRNA sequence data used to infer genetic diversity and phylogenetic relationships. Of the 858 individuals analyzed by microscopy 22.7% were infected, from 16 M. leprosa leprosa localities. Individuals of M. leprosa saharica sampled south of the High Atlas Mountains were not infected, probably due to the absence or rarity of the leech vectors in these localities. Within M. leprosa leprosa, we did not identify any patterns between geography and prevalence, which varied between 10% (Oued Nfiss) to 100% (Oued Tassaout). Five distinct genetic lineages were identified, indicating the likely presence of multiple species of haemogregarines, one of which probably corresponds to Haemogregarina stepanowi. Mixed infections were also detected. Additional studies are needed to better understand the ecology and epidemiology of this parasite in turtles, as well as the host-parasite relationship with their definitive hosts, leeches.
Collapse
|
26
|
Minozzo GA, da Silva Mathias B, Riediger IN, de Oliveira Guimarães L, dos Anjos CC, Monteiro EF, dos Santos AP, Biondo AW, Kirchgatter K. First Molecular Detection of Polychromophilus Parasites in Brazilian Bat Species. Microorganisms 2021; 9:microorganisms9061240. [PMID: 34200516 PMCID: PMC8230147 DOI: 10.3390/microorganisms9061240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/25/2022] Open
Abstract
Blood parasites of the Haemosporida order, such as the Plasmodium spp. responsible for malaria, have become the focus of many studies in evolutionary biology. However, there is a lack of molecular investigation of haemosporidian parasites of wildlife, such as the genus Polychromophilus. Species of this neglected genus exclusively have been described in bats, mainly in Europe, Asia, and Africa, but little is known about its presence and genetic diversity on the American continent. Here, we investigated 406 bats from sites inserted in remnant fragments of the Atlantic Forest and Cerrado biomes and urbanized areas from southern Brazil for the presence of Polychromophilus species by PCR of the mitochondrial cytochrome b encoding gene. A total of 1.2% of bats was positive for Polychromophilus, providing the first molecular information of these parasites in Myotis riparius and Eptesicus diminutus, common vespertilionid bats widely distributed in different Brazilian biomes, and Myotis ruber, an endangered species. A Bayesian analysis was conducted to reconstruct the phylogenetic relationships between Polychromophilus recovered from Brazilian bats and those identified elsewhere. Sequences of Brazilian Polychromophilus lineages were placed with P. murinus and in a clade distinct from P. melanipherus, mainly restricted to bats in the family Vespertilionidae. However, the sequences were split into two minor clades, according to the genus of hosts, indicating that P. murinus and a distinct species may be circulating in Brazil. Morphological observations combined with additional molecular studies are needed to conclude and describe these Polychromophilus species.
Collapse
Affiliation(s)
- Guilherme Augusto Minozzo
- Laboratório Central de Saúde Pública do Paraná, São José dos Pinhais 83060-500, PR, Brazil; (G.A.M.); (I.N.R.)
| | - Bruno da Silva Mathias
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (B.d.S.M.); (C.C.d.A.); (E.F.M.)
| | - Irina Nastassja Riediger
- Laboratório Central de Saúde Pública do Paraná, São José dos Pinhais 83060-500, PR, Brazil; (G.A.M.); (I.N.R.)
| | - Lilian de Oliveira Guimarães
- Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo 01027-000b, SP, Brazil;
| | - Carolina Clares dos Anjos
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (B.d.S.M.); (C.C.d.A.); (E.F.M.)
| | - Eliana Ferreira Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (B.d.S.M.); (C.C.d.A.); (E.F.M.)
| | | | - Alexander Welker Biondo
- Departamento de Medicina Veterinária, Universidade Federal do Paraná, Curitiba 80035-050, PR, Brazil;
| | - Karin Kirchgatter
- Programa de Pós-Graduação em Medicina Tropical, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-000, SP, Brazil; (B.d.S.M.); (C.C.d.A.); (E.F.M.)
- Laboratório de Bioquímica e Biologia Molecular, Superintendência de Controle de Endemias, São Paulo 01027-000b, SP, Brazil;
- Correspondence:
| |
Collapse
|
27
|
Phenological and intrinsic predictors of mite and haemacoccidian infection dynamics in a Mediterranean community of lizards. Parasitology 2021; 148:1328-1338. [PMID: 34078494 PMCID: PMC8383277 DOI: 10.1017/s0031182021000858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ectotherms are vulnerable to environmental changes and their parasites are biological health indicators. Thus, parasite load in ectotherms is expected to show a marked phenology. This study investigates temporal host–parasite dynamics in a lizard community in Eastern Spain during an entire annual activity period. The hosts investigated were Acanthodactylus erythrurus, Psammodromus algirus and Psammodromus edwardsianus, three lizard species coexisting in a mixed habitat of forests and dunes, providing a range of body sizes, ecological requirements and life history traits. Habitat and climate were considered as potential environmental predictors of parasite abundance, while size, body condition and sex as intrinsic predictors. Linear models based on robust estimates were fitted to analyse parasite abundance and prevalence. Ectoparasitic mites and blood parasites from two haemococcidian genera were found: Lankesterella spp. and Schellackia spp. Habitat type was the only predictor explaining the abundance of all parasites, being mostly higher in the forest than in the dunes. The results suggest that particularities in each host–parasite relationship should be accounted even when parasites infect close-related hosts under the same environmental pressures. They also support that lizard parasites can be biomarkers of environmental perturbation, but the relationships need to be carefully interpreted for each host–parasite assemblage.
Collapse
|
28
|
Lankesterella (Apicomplexa, Lankesterellidae) Blood Parasites of Passeriform Birds: Prevalence, Molecular and Morphological Characterization, with Notes on Sporozoite Persistence In Vivo and Development In Vitro. Animals (Basel) 2021; 11:ani11051451. [PMID: 34070187 PMCID: PMC8158525 DOI: 10.3390/ani11051451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Birds are hosts of various apicomplexan blood parasites, whose blood stages are often similar, resulting in much ongoing debate about the taxonomic and genetic identity of some species. Parasites of several closely related apicomplexan genera can be distinguished mainly by differences in their life cycles in both vertebrate and invertebrate hosts. Recent studies confirmed that some avian blood parasites, which were formerly attributed to the genus Hepatozoon, are genetically closely related to the amphibian parasite Lankesterella minima and might belong to the genus Lankesterella. To understand the distribution and diversity of avian Lankesterella parasites, we examined samples from wild birds, combining molecular genetics and microscopic methods. Experiments which aim for a better understanding of the life cycle of these parasites, and their host specificity, were designed. We demonstrated that avian Lankesterella parasites are more diverse than previously thought, and several species of Hepatozoon described in birds in fact belong to Lankesterella. Two new Lankesterella species parasitizing birds are described, and one species is re-described. This study contributes to a better understanding of diversity and distribution of bird Lankesterella spp. and shows directions for future research on their pathogenicity. Abstract Recent studies confirmed that some Hepatozoon-like blood parasites (Apicomplexa) of birds are closely related to the amphibian parasite Lankesterella minima. Little is known about the biology of these pathogens in birds, including their distribution, life cycles, specificity, vectors, and molecular characterization. Using blood samples of 641 birds from 16 species, we (i) determined the prevalence and molecular diversity of Lankesterella parasites in naturally infected birds; (ii) investigated the development of Lankesterella kabeeni in laboratory-reared mosquitoes, Culex pipiens forma molestus and Aedes aegypti; and (iii) tested experimentally the susceptibility of domestic canaries, Serinus canaria, to this parasite. This study combined molecular and morphological diagnostic methods and determined 11% prevalence of Lankesterella parasites in Acrocephalidae birds; 16 Lankesterella lineages with a certain degree of host specificity and two new species (Lankesterella vacuolata n. sp. and Lankesterella macrovacuolata n. sp.) were found and characterized. Lankesterella kabeeni (formerly Hepatozoon kabeeni) was re-described. Serinus canaria were resistant after various experimental exposures. Lankesterella sporozoites rapidly escaped from host cells in vitro. Sporozoites persisted for a long time in infected mosquitoes (up to 42 days post exposure). Our study demonstrated a high diversity of Lankesterella parasites in birds, and showed that several avian Hepatozoon-like parasites, in fact, belong to Lankesterella genus.
Collapse
|
29
|
Hrazdilová K, Červená B, Blanvillain C, Foronda P, Modrý D. Quest for the type species of the genus Hepatozoon – phylogenetic position of hemogregarines of rats and consequences for taxonomy. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1903616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kristýna Hrazdilová
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1 Brno 612 42, Czech Republic
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, alej Svobody 1655/76, 32300, Plzeň, Czech Republic
| | - Barbora Červená
- Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, Brno, 612 42, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, Brno, 603 65, Czech Republic
| | | | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna. Avda. Astrofísico F. Sánchez, s/n, 38203 La Laguna, Canary Islands, Spain
- Departament Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna. Avda. Astrofísico F. Sánchez, s/n, 38203 La Laguna, Canary Islands, Spain
| | - David Modrý
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1 Brno 612 42, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
30
|
Haemogregarines and Criteria for Identification. Animals (Basel) 2021; 11:ani11010170. [PMID: 33445814 PMCID: PMC7828249 DOI: 10.3390/ani11010170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Taxonomic classification of haemogregarines belonging to Apicomplexa can become difficult when the information about the life cycle stages is not available. Using a self-reporting, we record different haemogregarine species infecting various animal categories and exploring the most systematic features for each life cycle stage. The keystone in the classification of any species of haemogregarines is related to the sporogonic cycle more than other stages of schizogony and gamogony. Molecular approaches are excellent tools that enabled the identification of apicomplexan parasites by clarifying their evolutionary relationships. Abstract Apicomplexa is a phylum that includes all parasitic protozoa sharing unique ultrastructural features. Haemogregarines are sophisticated apicomplexan blood parasites with an obligatory heteroxenous life cycle and haplohomophasic alternation of generations. Haemogregarines are common blood parasites of fish, amphibians, lizards, snakes, turtles, tortoises, crocodilians, birds, and mammals. Haemogregarine ultrastructure has been so far examined only for stages from the vertebrate host. PCR-based assays and the sequencing of the 18S rRNA gene are helpful methods to further characterize this parasite group. The proper classification for the haemogregarine complex is available with the criteria of generic and unique diagnosis of these parasites.
Collapse
|
31
|
Egan SL, Taylor CL, Austen JM, Banks PB, Northover AS, Ahlstrom LA, Ryan UM, Irwin PJ, Oskam CL. Haemoprotozoan surveillance in peri-urban native and introduced wildlife from Australia. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100052. [PMID: 35284862 PMCID: PMC8906138 DOI: 10.1016/j.crpvbd.2021.100052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/30/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Siobhon L. Egan
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Corresponding author.
| | - Casey L. Taylor
- School of Life and Environmental Sciences, Camperdown, The University of Sydney, New South Wales, 2006, Australia
| | - Jill M. Austen
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Peter B. Banks
- School of Life and Environmental Sciences, Camperdown, The University of Sydney, New South Wales, 2006, Australia
| | - Amy S. Northover
- College of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Liisa A. Ahlstrom
- Elanco Animal Health, Macquarie Park, New South Wales, 2113, Australia
| | - Una M. Ryan
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Peter J. Irwin
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- College of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Charlotte L. Oskam
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
- Corresponding author.
| |
Collapse
|
32
|
Úngari LP, Netherlands EC, Quagliatto Santos AL, de Alcantara EP, Emmerich E, da Silva RJ, O’Dwyer LH. A new species, Dactylosoma piperis n. sp. (Apicomplexa, Dactylosomatidae), from the pepper frog Leptodactylus labyrinthicus (Anura, Leptodactylidae) from Mato Grosso State, Brazil. Parasite 2020; 27:73. [PMID: 33332263 PMCID: PMC7746082 DOI: 10.1051/parasite/2020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
The Dactylosomatidae Jakowska and Negrelli, 1955 are one of four families belonging to adeleorinid coccidia and comprise the genera Babesiosoma Jakowska and Nigrelli, 1956 and Dactylosoma Labbé, 1894. These blood protozoa occur in peripheral blood of lower vertebrates, and are commonly reported parasitising amphibians. The present study describes Dactylosoma piperis n. sp. from the pepper frog Leptodactylus labyrinthicus (Spix, 1824) (Anura: Leptodactylidae), collected in 2018 at the municipality of Araguaiana, Mato Grosso State, Brazil, based on morphology of intra-erythrocytic trophozoite, primary and secondary merogonic stages and a molecular analysis (partial 18S rDNA). Dactylosoma piperis n. sp. forms a well-supported clade with other Dactylosomatidae. This is the first molecular characterization of a species of Dactylosoma from a Brazilian anuran.
Collapse
Affiliation(s)
- Letícia Pereira Úngari
-
Setor de Parasitologia, DBBVPZ, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Distrito de Rubião Junior Botucatu CEP 18.618-970 São Paulo Brazil
| | - Edward Charles Netherlands
-
Unit for Environmental Sciences and Management, North-West University Private Bag X6001 Potchefstroom 2520 South Africa
| | - André Luiz Quagliatto Santos
-
Laboratório de Ensino e Pesquisa em Animais Silvestres, Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia CEP 38.400-902 Minas Gerais Brazil
| | - Edna Paulino de Alcantara
-
Setor de Parasitologia, DBBVPZ, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Distrito de Rubião Junior Botucatu CEP 18.618-970 São Paulo Brazil
| | - Enzo Emmerich
-
Setor de Parasitologia, DBBVPZ, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Distrito de Rubião Junior Botucatu CEP 18.618-970 São Paulo Brazil
| | - Reinaldo José da Silva
-
Setor de Parasitologia, DBBVPZ, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Distrito de Rubião Junior Botucatu CEP 18.618-970 São Paulo Brazil
| | - Lucia Helena O’Dwyer
-
Setor de Parasitologia, DBBVPZ, Instituto de Biociências, Universidade Estadual Paulista-UNESP, Distrito de Rubião Junior Botucatu CEP 18.618-970 São Paulo Brazil
| |
Collapse
|
33
|
Win SY, Chel HM, Hmoon MM, Htun LL, Bawm S, Win MM, Murata S, Nonaka N, Nakao R, Katakura K. Detection and molecular identification of Leucocytozoon and Plasmodium species from village chickens in different areas of Myanmar. Acta Trop 2020; 212:105719. [PMID: 32976841 DOI: 10.1016/j.actatropica.2020.105719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
Village chicken production, a traditional, small-scale, and extensive backyard poultry industry, has been profitable for local farmers in Myanmar. However, there is scanty information available concerning the infection of these chickens with avian pathogens, including haemoprotozoan parasites. In the present study, we provide the first report of microscopic detection and molecular identification of Leucocytozoon and Plasmodium parasites from seven different areas of Myanmar. Leucocytozoon gametocytes were detected in 17.6% (81/461) of the blood smears from village chickens. The nested polymerase chain reaction (PCR) for targeting Leucocytozoon mitochondrial cytochrome b (cyt b) genes had a 17.6% positive rate. Although the positive rate of nested PCR targeting Plasmodium/Haemoproteus cyt b was 34.3%, the PCR protocol was observed to possibly amplify DNA of a certain species of Leucocytozoon. There were no obvious clinical signs in the infected birds. Statistical analysis of the microscopic detection and PCR detection rates using the age and sex of birds as internal factors revealed that the statistical significances differed according to the study area. The sequencing of 32 PCR products obtained from each study area revealed infection by Leucocytozoon caulleryi in three birds, Leucocytozoon sabrazesi in two birds, Leucocytozoon schoutedeni in two birds, Leucocytozoon sp. in eighteen birds, and Plasmodium juxtanucleare in seven birds; however, Haemoproteus infection was not detected. While L. sabrazesi was detected in chickens from the central region of Myanmar, the other haemosporidians were detected in those from different areas. In the haplotype analysis, we detected 17 haemosporidian cyt b haplotypes, including two for L. caulleryi, one for L. sabrazesi, two for L. schoutedeni, nine for Leucocytozoon sp., and three for P. juxtanucleare. Phylogenetic analysis of the cyt b haplotypes revealed a considerably close genetic relationship among chicken haemosporidians detected in Myanmar, Thailand, and Malaysia. These results indicate that well-recognized widespread species of chicken Leucocytozoon and Plasmodium are distributed nationwide in Myanmar, providing new insights into the ecosystem and control strategies of haemosporidian parasites in domesticated chickens in Myanmar.
Collapse
|
34
|
Egan SL, Ruiz-Aravena M, Austen JM, Barton X, Comte S, Hamilton DG, Hamede RK, Ryan UM, Irwin PJ, Jones ME, Oskam CL. Blood Parasites in Endangered Wildlife-Trypanosomes Discovered During a Survey of Haemoprotozoa from the Tasmanian Devil. Pathogens 2020; 9:E873. [PMID: 33114071 PMCID: PMC7690708 DOI: 10.3390/pathogens9110873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
The impact of emerging infectious diseases is increasingly recognised as a major threat to wildlife. Wild populations of the endangered Tasmanian devil, Sarcophilus harrisii, are experiencing devastating losses from a novel transmissible cancer, devil facial tumour disease (DFTD); however, despite the rapid decline of this species, there is currently no information on the presence of haemoprotozoan parasites. In the present study, 95 Tasmanian devil blood samples were collected from four populations in Tasmania, Australia, which underwent molecular screening to detect four major groups of haemoprotozoa: (i) trypanosomes, (ii) piroplasms, (iii) Hepatozoon, and (iv) haemosporidia. Sequence results revealed Trypanosoma infections in 32/95 individuals. Trypanosoma copemani was identified in 10 Tasmanian devils from three sites and a second Trypanosoma sp. was identified in 22 individuals that were grouped within the poorly described T. cyclops clade. A single blood sample was positive for Babesia sp., which most closely matched Babesia lohae. No other blood protozoan parasite DNA was detected. This study provides the first insight into haemoprotozoa from the Tasmanian devil and the first identification of Trypanosoma and Babesia in this carnivorous marsupial.
Collapse
Affiliation(s)
- Siobhon L. Egan
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.A.); (X.B.); (P.J.I.); (C.L.O.)
| | - Manuel Ruiz-Aravena
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Jill M. Austen
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.A.); (X.B.); (P.J.I.); (C.L.O.)
| | - Xavier Barton
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.A.); (X.B.); (P.J.I.); (C.L.O.)
| | - Sebastien Comte
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, TAS 7001, Australia; (S.C.); (D.G.H.); (R.K.H.); (M.E.J.)
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW 2800, Australia
| | - David G. Hamilton
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, TAS 7001, Australia; (S.C.); (D.G.H.); (R.K.H.); (M.E.J.)
| | - Rodrigo K. Hamede
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, TAS 7001, Australia; (S.C.); (D.G.H.); (R.K.H.); (M.E.J.)
- CANECEV, Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC), 34090 Montpellier, France
| | - Una M. Ryan
- Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Peter J. Irwin
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.A.); (X.B.); (P.J.I.); (C.L.O.)
| | - Menna E. Jones
- School of Natural Sciences, College of Sciences and Engineering, University of Tasmania, Hobart, TAS 7001, Australia; (S.C.); (D.G.H.); (R.K.H.); (M.E.J.)
| | - Charlotte L. Oskam
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia; (J.M.A.); (X.B.); (P.J.I.); (C.L.O.)
| |
Collapse
|
35
|
Helm CS, Samson-Himmelstjerna GV, Liesner JM, Kohn B, Müller E, Schaper R, Pachnicke S, Schulze C, Krücken J. Identical 18S rRNA haplotypes of Hepatozoon canis in dogs and foxes in Brandenburg, Germany. Ticks Tick Borne Dis 2020; 11:101520. [PMID: 32993940 DOI: 10.1016/j.ttbdis.2020.101520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Hepatozoon canis is a blood parasite of the suborder Adeleorina infecting wild and domestic canids. Transmission occurs by oral uptake of Rhipicephalus sanguineus sensu lato vector ticks infected with H. canis, but vertical transmission is also assumed to be possible. In German foxes, a high prevalence of H. canis has previously been reported despite the fact that R. sanguineus s.l. is not endemic. In the absence of knowledge about local transmission pathways, foxes should be considered to be possible reservoirs of H. canis and contribute to infection of domestic dogs. The present study aimed to determine how often foxes and dogs are infected in Brandenburg (Germany) and if identical or different H. canis 18S rRNA haplotypes are found in these host species. Hepatozoon spp. were detected by PCR in 46/1050 (4.4 %) of dog blood and 176/201 (77.6 %) of fox spleen samples from Brandenburg. Sequencing of 19 dog and 56 fox samples identified all as H. canis. For nine positive dogs, owners stated that they had never left Germany suggesting that autochthonous transmission occurs not only in foxes but also in dogs. Sequences for seven of these possible autochthonous cases were obtained and six were identical to the predominant haplotype found in the foxes. Haplotype network analysis confirmed that many dogs, including some without travel history, carried the same or very similar 18S rRNA haplotypes as the foxes suggesting that both hosts participate in the same epidemiological cycle.
Collapse
Affiliation(s)
- Christina S Helm
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Jana M Liesner
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Barbara Kohn
- Small Animal Clinic, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Picelli AM, Ramires AC, Masseli GS, Pessoa FAC, Viana LA, Kaefer IL. Under the light: high prevalence of haemoparasites in lizards (Reptilia: Squamata) from Central Amazonia revealed by microscopy. AN ACAD BRAS CIENC 2020; 92:e20200428. [PMID: 32696845 DOI: 10.1590/0001-3765202020200428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022] Open
Abstract
Blood samples from 330 lizards of 19 species were collected to investigate the occurrence of haemoparasites. Samplings were performed in areas of upland (terra-firme) forest adjacent to Manaus municipality, Amazonas, Brazil. Blood parasites were detected in 220 (66%) lizards of 12 species and comprised four major groups: Apicomplexa (including haemogregarines, piroplasms, and haemosporidians), trypanosomatids, microfilarid nematodes and viral or bacterial organisms. Order Haemosporida had the highest prevalence, with 118 (35%) animals from 11 species. For lizard species, Uranoscodon superciliosus was the most parasitised host, with 103 (87%; n = 118) positive individuals. This species also presented the highest parasite diversity, with the occurrence of six taxa. Despite the difficulties attributed by many authors regarding the use of morphological characters for taxonomic resolution of haemoparasites, our low-cost approach using light microscopy recorded a high prevalence and diversity of blood parasite taxa in a relatively small number of host species. This report is the first survey of haemoparasites in lizards in the study region. It revealed a high diversity of lizard haemoparasites and highlights the need to understand their impacts on hosts.
Collapse
Affiliation(s)
- Amanda M Picelli
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Adriane C Ramires
- Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Gabriel S Masseli
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Felipe A C Pessoa
- Instituto Leônidas e Maria Deane, Laboratório de Ecologia de Doenças Transmissíveis na Amazônia (EDTA), Manaus, AM, Brazil
| | - Lucio A Viana
- Laboratório de Estudos Morfofisiológicos e Parasitários, Universidade Federal do Amapá, Macapá, AP, Brazil
| | - Igor L Kaefer
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Amazonas, Manaus, AM, Brazil
| |
Collapse
|
37
|
Mansour L, Abdel-Haleem HM, Al-Malki ES, Al-Quraishy S, Abdel-Baki AAS. Hepatozoon pyramidumi sp. n. (Apicomplexa: Adeleorina) from the blood of Echis pyramidum: morphology and SSU rDNA sequence. ACTA ACUST UNITED AC 2020; 29:e002420. [PMID: 32428179 DOI: 10.1590/s1984-29612020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022]
Abstract
Hepatozoon pyramidumi sp. n. is described from the blood of the Egyptian saw-scaled viper, Echis pyramidum, captured from Saudi Arabia. Five out of ten viper specimens examined (50%) were found infected with Hepatozoon pyramidumi sp. n. with parasitaemia level ranged from 20-30%. The infection was restricted only to the erythrocytes. Two morphologically different forms of intraerythrocytic stages were observed; small and mature gamonts. The small ganomt with average size of 10.7 × 3.5 μm. Mature gamont was sausage-shaped with recurved poles measuring 16.3 × 4.2 μm in average size. Infected erythrocytes were hypertrophied; their nuclei were deformed and sometimes displaced from their central position in the normal uninfected cell. Merogonic stages were observed in the lung endothelial cell and the liver parenchyma cells. Mature meront was 17.8 × 13.6 µm and contained banana-shaped merozoites with average size of ~15 × 2 µm. Phylogenetic analysis based on the SSU rDNA sequence clustered Hepatozoon pyramidumi sp. n with previously sequenced Hepatozoon spp., most of them infected reptilian hosts without geographic consideration. The morphological and molecular comparison with closely related species proved the taxonomic uniqueness and novelty of the present form.
Collapse
Affiliation(s)
- Lamjed Mansour
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Esam Sharf Al-Malki
- Department of Biology, College of Sciences, Majmaah University, Majmaah, Riyadh Region, Saudi Arabia
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
38
|
Sikkel PC, Pagan JA, Santos JL, Hendrick GC, Nicholson MD, Xavier R. Molecular detection of apicomplexan blood parasites of coral reef fishes from free-living stages of ectoparasitic gnathiid isopods. Parasitol Res 2020; 119:1975-1980. [PMID: 32333110 DOI: 10.1007/s00436-020-06676-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/24/2020] [Indexed: 11/25/2022]
Abstract
Gnathiid isopods are marine ectoparasites that feed on the blood of fishes that have been implicated as vectors of blood parasites, with transmission possibly occurring through biting during their parasitic life-stages, or through ingestion by fishes. However, evidence for their role as vectors is limited, reflecting the small number of research groups working on them. Here, we used a molecular barcode approach to identify fish hosts and apicomplexan parasites in free-living gnathiids from the eastern Caribbean Sea, with the goal of further evaluating their potential role as reservoirs and/or vectors for these parasites. Apicomplexa were only identified in 8% of the Gnathia analyzed, and in four cases we could identify both Apicomplexa and fish host DNA. The results further suggest that Gnathia spp. in this region may serve as reservoirs for Apicomplexa, but whether they are vectors for this parasite remains uncertain.
Collapse
Affiliation(s)
- Paul C Sikkel
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, PO Box 599, State University, Jonesboro, AR, 72467, USA. .,Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - J Andres Pagan
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Joana L Santos
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Gina C Hendrick
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, PO Box 599, State University, Jonesboro, AR, 72467, USA
| | - Matthew D Nicholson
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, PO Box 599, State University, Jonesboro, AR, 72467, USA
| | - Raquel Xavier
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
39
|
Netherlands EC, Cook CA, Du Preez LH, Vanhove MP, Brendonck L, Smit NJ. An overview of the Dactylosomatidae (Apicomplexa: Adeleorina: Dactylosomatidae), with the description of Dactylosoma kermiti n. sp. parasitising Ptychadena anchietae and Sclerophrys gutturalis from South Africa. Int J Parasitol Parasites Wildl 2020; 11:246-260. [PMID: 32195110 PMCID: PMC7078462 DOI: 10.1016/j.ijppaw.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/24/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
Haemogregarine (Apicomplexa: Adeleorina) blood parasites are commonly reported from anuran hosts. Dactylosomatidae (Jakowska and Nigrelli, 1955) is a group of haemogregarines comprising Dactylosoma Labbé, 1894 and Babesiosoma Jakowska and Nigrelli, 1956. Currently Dactylosoma and Babesiosoma contain five recognised species each. In the current study, a total of 643 anurans, comprising 38 species, 20 genera, and 13 families were collected from South Africa (n = 618) and Belgium (n = 25), and their blood screened for the presence of dactylosomatid parasites. Three anuran species were found infected namely, Ptychadena anchietae (Bocage, 1868) and Sclerophrys gutturalis (Power, 1927) from South Africa, and Pelophylax lessonae (Camerano, 1882) from Belgium. Based on morphological characteristics, morphometrics and molecular results a new dactylosomatid, Dactylosoma kermiti n. sp. is described form Pty. anchietae and Scl. gutturalis. The species of Dactylosoma isolated from Pel. lessonae could not, based on morphological or molecular analysis, be identified to species level. Phylogenetic analysis shows species of Dactylosoma infecting anurans as a monophyletic group separate from the other haemogregarine groups. Additionally, the mosquitoes Uranotaenia (Pseudoficalbia) mashonaensis Theobald, 1901 and U. (Pfc.) montana Ingram and De Meillon, 1927 were observed feeding on Scl. gutturalis in situ and possible dividing stages of this new parasite were observed in the mosquitoes. This study is the first to describe a dactylosomatid parasite based on morphological and molecular data from Africa as well as observe potential stages in possible dipteran vectors.
Collapse
Affiliation(s)
- Edward C. Netherlands
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Charles Debériotstraat 32, B-3000, Leuven, Belgium
| | - Courtney A. Cook
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Louis H. Du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Biodiversity, Somerset Street, Grahamstown, 6140, South Africa
| | - Maarten P.M. Vanhove
- Hasselt University, Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Agoralaan Gebouw D, B-3590, Diepenbeek, Belgium
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37, Brno, Czech Republic
- Zoology Unit, Finnish Museum of Natural History, P.O.Box 17, FI-00014, University of Helsinki, Helsinki, Finland
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Charles Debériotstraat 32, B-3000, Leuven, Belgium
| | - Luc Brendonck
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Charles Debériotstraat 32, B-3000, Leuven, Belgium
| | - Nico J. Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
40
|
Clift SJ, Collins NE, Oosthuizen MC, Steyl JCA, Lawrence JA, Mitchell EP. The Pathology of Pathogenic Theileriosis in African Wild Artiodactyls. Vet Pathol 2019; 57:24-48. [PMID: 31854265 DOI: 10.1177/0300985819879443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The published literature on schizont-"transforming," or pathogenic theileriosis, in African wild artiodactyls is dated and based on limited information. Here the authors review the taxonomy, diagnosis, epidemiology, hematology, pathology, and aspects of control in various species. Molecular studies based on 18S and 16S rRNA gene sequences have shown that African wild artiodactyls are commonly infected with diverse Theileria spp., as well as nontheilerial hemoprotozoa and rickettsia-like bacteria, and coinfections with pathogenic and nonpathogenic Theileria species are often recorded. Although theileriosis is still confusingly referred to as cytauxzoonosis in many species, the validity of a separate Cytauxzoon genus in artiodactyls is debated. The epidemiology of theileriosis is complex; the likelihood of fatal disease depends on the interplay of parasite, vertebrate host, tick vector, and environmental factors. Roan calves (Hippotragus equinus) and stressed animals of all host species are more susceptible to fatal theileriosis. Even though regenerative anemia is common, peripheral blood piroplasm parasitemia does not correlate with disease severity. Other than anemia, common macroscopic lesions include icterus, hemorrhages (mucosal, serosal, and tissue), fluid effusions into body cavities, lung edema, and variably sized raised cream-colored foci of leukocyte infiltration in multiple organs. Histopathologic findings include vasocentric hyperproliferation and lysis of atypical leukocytes with associated intracellular schizonts, parenchymal necrosis, hemorrhage, thromboembolism, and edema. Immunophenotyping is required to establish the identity of the schizont-transformed leukocytes in wild ungulates. Throughout the review, we propose avenues for future research by comparing existing knowledge on selected aspects of theileriosis in domestic livestock with that in African wild artiodactyls.
Collapse
Affiliation(s)
- Sarah J Clift
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Nicola E Collins
- Vectors and Vector-Borne Diseases Research Program, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-Borne Diseases Research Program, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Johan C A Steyl
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - John A Lawrence
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Emily P Mitchell
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
41
|
Barbosa AD, Austen J, Portas TJ, Friend JA, Ahlstrom LA, Oskam CL, Ryan UM, Irwin PJ. Sequence analyses at mitochondrial and nuclear loci reveal a novel Theileria sp. and aid in the phylogenetic resolution of piroplasms from Australian marsupials and ticks. PLoS One 2019; 14:e0225822. [PMID: 31851687 PMCID: PMC6919580 DOI: 10.1371/journal.pone.0225822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 01/16/2023] Open
Abstract
The order Piroplasmida encompasses two main families: Babesiidae and Theileriidae, containing tick-borne pathogens of veterinary and medical importance worldwide. While only three genera (Babesia, Cytauxzoon and Theileria) comprising piroplasm parasites are currently recognised, phylogenetic studies at the 18S rRNA (18S) gene suggest that these organisms represent at least ten lineages, one of which comprises the relatively unique and highly diverse Theileria spp. from Australian marsupials and ticks. As an alternative to analysing 18S sequences alone, sequencing of mitochondrial genes has proven to be useful for the elucidation of evolutionary relationships amongst some groups of piroplasms. This research aimed to characterise piroplasms from Australian native mammals and ticks using multiple genetic markers (18S, cytochrome c, oxidase subunit III (cox3) and cytochrome B (cytB)) and microscopy. For this, nearly complete piroplasm-18S sequences were obtained from 32 animals belonging to six marsupial species: eastern bettong (Bettongia gaimardi), eastern quoll (Dasyurus viverrinus), eastern grey kangaroo (Macropus giganteus), swamp wallaby (Wallabia bicolor), quokka (Setonix brachyurus) and Gilbert’s potoroo (Potorous gilbertii). The organisms detected represented eight novel Theileria genotypes, which formed five sub-clades within the main marsupial clade containing previously reported Australian marsupial and tick-derived Theileria spp. A selection of both novel and previously described Australian piroplasms at the 18S were also successfully characterised, for the first time, at the cox3 and cytB loci, and corroborated the position of Australian native theilerias in a separate, well-supported clade. Analyses of the cox3 and cytB genes also aided in the taxonomic resolution within the clade of Australian Piroplasmida. Importantly, microscopy and molecular analysis at multiple loci led to the discovery of a unique piroplasm species that clustered with the Australian marsupial theilerias, for which we propose the name Theileria lupei n. sp.
Collapse
Affiliation(s)
- Amanda D. Barbosa
- Vector- and Water-Borne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
- CAPES Foundation, Ministry of Education of Brazil, Brasília—DF, Brazil
- * E-mail:
| | - Jill Austen
- Vector- and Water-Borne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Timothy J. Portas
- Veterinary and Research Centre, Tidbinbilla Nature Reserve, Australian Capital Territory, Australia
| | - J. Anthony Friend
- Department of Biodiversity, Conservation and Attractions, Albany, WA, Australia
| | | | - Charlotte L. Oskam
- Vector- and Water-Borne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Una M. Ryan
- Vector- and Water-Borne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Peter J. Irwin
- Vector- and Water-Borne Pathogen Research Group, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
42
|
Further characterisation of Haemocystidium chelodinae-like Haemoproteidae isolated from the Bellinger River snapping turtle (Myuchelys georgesi). Parasitol Res 2019; 119:601-609. [PMID: 31754857 DOI: 10.1007/s00436-019-06547-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
The Bellinger River snapping turtle (Myuchelys georgesi) is endemic to Australia and is confined to a highly restricted distribution in the Bellinger River in New South Wales. Routine veterinary health examinations of 17 healthy turtles were undertaken, along with the collection and analysis of blood samples, during conservation efforts to save the species following a catastrophic population decline. Microscopy analysis of blood films detected Haemoproteidae parasites that morphologically resembled Haemocystidium chelodinae inside turtle erythrocytes. Of the 17 turtles examined, 16 were positive for infection with H. chelodinae by both light microscopy and PCR. DNA sequencing of a partial fragment of the mitochondrial cytochrome b (cytb) gene and phylogenetic analysis identified two different H. chelodinae-like genotypes. The phylogenetic relationship of H. chelodinae-like to other Haemoproteidae species based on cytb sequences grouped H. chelodinae-like into the reptile clade, but revealed the Haemocystidium genus to be paraphyletic as the clade also contained Haemoproteus, thus supporting a re-naming of Haemoproteus species from reptiles to Haemocystidium species. This study reports for the first time the genetic characterisation of H. chelodinae-like organisms isolated from a new Testudine host species, the Bellinger River snapping turtle. As evidence grows, further research will be necessary to understand the mode of transmission and to investigate whether these parasites are pathogenic to their hosts.
Collapse
|
43
|
Baneth G, Cardoso L, Brilhante-Simões P, Schnittger L. Establishment of Babesia vulpes n. sp. (Apicomplexa: Babesiidae), a piroplasmid species pathogenic for domestic dogs. Parasit Vectors 2019; 12:129. [PMID: 30909951 PMCID: PMC6434798 DOI: 10.1186/s13071-019-3385-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/07/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Canine babesiosis is a severe disease caused by several Babesia spp. A number of names have been proposed for the canine-infecting piroplasmid pathogen initially named Theileria annae Zahler, Rinder, Schein & Gothe, 2000. It was shown to be a member of the Babesia (sensu lato) group infecting carnivores and is also closely related to the Babesia microti group. Subsequently, the same parasite species was reclassified as a member of the genus Babesia and the name Babesia vulpes Baneth, Florin-Christensen, Cardoso & Schnittger, 2015 was proposed for it. However, both names do not meet the requirements of the International Code of Zoological Nomenclature (no accompanying descriptions, no deposition of type-specimens) and cannot be recognized as available names from the nomenclatural point of view. The purpose of this study was to further characterize this parasite in order to confirm its validity, to provide its description and to introduce zoological nomenclature for it with the name Babesia vulpes n. sp. RESULTS Morphological description of the parasite in canine erythrocytes demonstrated that it takes the shape of small (1.33 × 0.98 µm), round to oval forms reminiscent of the pyriform and ring shapes of other small canine Babesia spp., such as Babesia gibsoni Patton, 1910 and Babesia conradae Kjemtrup, Wainwright, Miller, Penzhorn & Carreno, 2006. However, these parasite forms were overall smaller than those measured for the latter two species and no tetrad (Maltese cross) form was reported. Furthermore, phylogenetic analysis using the cytochrome c oxidase subunit 1 (COX1) amino acid sequences substantiates the species identity of this parasite as previously demonstrated based on phylogenetic analysis of the 18S rRNA and β-tubulin genes. The holotype of the parasite species was designated and deposited in an accessible public collection. CONCLUSIONS This study ratifies the name Babesia vulpes n. sp. proposed for the parasite previously referred to as Theileria annae Zahler, Rinder, Schein & Gothe, 2000, Babesia annae (Zahler, Rinder, Schein & Gothe, 2000) or Babesia vulpes Baneth, Florin-Christensen, Cardoso & Schnittger, 2015, or mentioned as "Babesia microti-like piroplasm", "Babesia Spanish dog isolate" and Babesia cf. microti.
Collapse
Affiliation(s)
- Gad Baneth
- Koret School of Veterinary Medicine, Hebrew University, P.O. Box 12, 76100 Rehovot, Israel
| | - Luís Cardoso
- Department of Veterinary Sciences, and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | | | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), 1686 Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
44
|
Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia Life Cycle - When Phylogeny Meets Biology. Trends Parasitol 2019; 35:356-368. [PMID: 30733093 DOI: 10.1016/j.pt.2019.01.007] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Although Babesia represents an important worldwide veterinary threat and an emerging risk to humans, this parasite has been poorly studied as compared to Plasmodium, its malaria-causing relative. In fact, Babesia employs highly specific survival strategies during its intraerythrocytic development and its intricate journey through the tick vector. This review introduces a substantially extended molecular phylogeny of the order Piroplasmida, challenging previous taxonomic classifications. The intriguing developmental proficiencies of Babesia are highlighted and compared with those of other haemoparasitic Apicomplexa. Molecular mechanisms associated with distinctive events in the Babesia life cycle are emphasized as potential targets for the development of Babesia-specific treatments.
Collapse
Affiliation(s)
- Marie Jalovecka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05 Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, CZ-370 05 Ceske Budejovice, Czech Republic.
| | - Daniel Sojka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05 Ceske Budejovice, Czech Republic
| | - Mariano Ascencio
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| | - Leonhard Schnittger
- Instituto de Patobiología Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
| |
Collapse
|
45
|
Úngari LP, Santos ALQ, O’Dwyer LH, da Silva MRL, Rodrigues Santos TC, da Cunha MJR, de Melo Costa Pinto R, Cury MC. Molecular characterization and identification of Hepatozoon species Miller, 1908 (Apicomplexa: Adeleina: Hepatozoidae) in captive snakes from Brazil. Parasitol Res 2018; 117:3857-3865. [DOI: 10.1007/s00436-018-6092-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/19/2018] [Indexed: 11/25/2022]
|
46
|
Cotes-Perdomo A, Santodomingo A, Castro LR. Hemogregarine and Rickettsial infection in ticks of toads from northeastern Colombia. Int J Parasitol Parasites Wildl 2018; 7:237-242. [PMID: 29988825 PMCID: PMC6032028 DOI: 10.1016/j.ijppaw.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 11/25/2022]
Abstract
The toads Rhinella spp. are in constant contact with humans and domestic animals and are commonly parasitized by ticks, which are also potential vectors of pathogenic microorganisms, such as apicomplexans and rickettsia. However, little is known about microorganisms associated with toad ticks. In this work, we molecularly evaluated the presence of Rickettsia spp. and hemogregarines in ticks of Rhinella horribilis and R. humboldti in the Colombian Caribbean, finding two different species of Rickettsia: the colombianensi strain and one close to R. bellii. In the case of hemogregarines, since only 18S gene sequences are available, it is difficult to define species and place them correctly in a phylogeny, but most of our samples show a 99% identity with Hemolivia stellata, while others identical to each other seem to form another clade within this genre. All collected ticks were identified as Amblyomma dissimile, representing the first time that H. stellata was recorded in this tick. The prevalence of both microorganisms was very high, which makes it necessary to generate robust phylogenies to clarify their taxonomic diversity and to correctly define their ecological role and pathogenicity, which should be taken into account in amphibian conservation plans and veterinary medicine.
Collapse
Affiliation(s)
| | | | - Lyda R. Castro
- Grupo de Investigación Evolución, Sistemática y Ecología Molecular (GIESEMOL), Universidad del Magdalena, Santa Marta, Magdalena, Colombia
| |
Collapse
|
47
|
Sikkel PC, Cook CA, Renoux LP, Bennett CL, Tuttle LJ, Smit NJ. The distribution and host-association of a haemoparasite of damselfishes (Pomacentridae) from the eastern Caribbean based on a combination of morphology and 18S rDNA sequences. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:213-220. [PMID: 29988386 PMCID: PMC6024192 DOI: 10.1016/j.ijppaw.2018.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 11/29/2022]
Abstract
Coral reefs harbor the greatest biodiversity per unit area of any ecosystem on earth. While parasites constitute the majority of this biodiversity, they remain poorly studied due to the cryptic nature of many parasites and the lack of appropriate training among coral reef ecologists. Damselfishes (Pomacentridae) are among the most abundant and diverse fishes on coral reefs. In a recent study of blood parasites of Caribbean reef fishes, the first ever apicomplexan blood parasites discovered in damselfishes were reported for members of the genus Stegastes. While these blood parasites were characterized as “Haemohormidium-like”, they appear to be distinct from any other known apicomplexan. In this study, we examined host associations, geographic distributions, and provide further insights on the phylogenetic affiliation of this parasite. A combination of morphological characteristics and 18S rDNA sequences suggest that this parasite may be the same species at multiple sites and occurs from the southern to the northern extreme of the eastern Caribbean, although it appears rare in the north. At present it appears to be limited to members of the genus Stegastes and infects all life history stages. It is most common in benthophagous species that occur in high population densities and appears basal to a major monophyletic clade containing species of coccidia, distinct from the Piroplasmida, the order to which Haemohormidium spp. have been assigned. These findings suggest a possible fecal-oral mode of transmission. A new species of Haemorhormidium-like apicomplexan blood parasite has recently been discovered in Caribbean damselfishes. Morphological and molecular data indicate that it is widespread in the eastern Caribbean. This parasite is limited to damselfish species of the genus Stegastes and infects juveniles and adults. It is most common in benthophagous species that occur in high population densities. This parasite resembles coccidia but 18S rDNA show it to be distinct from known genera, as well as genera of piroplasms.
Collapse
Affiliation(s)
- Paul C Sikkel
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, AR, USA.,Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Courtney A Cook
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Lance P Renoux
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, AR, USA
| | - Courtney L Bennett
- Department of Biological Sciences and Environmental Sciences Program, Arkansas State University, State University, AR, USA.,Sarasota High School, 2155 Bahia Vista St, Sarasota, FL 34239, USA
| | - Lillian J Tuttle
- Pacific Biosciences Research Center, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
48
|
Abstract
Morphological and molecular techniques were used to investigate the presence of hemogregarines and haemosporidians in biological samples of free-living Geoffroy's side-necked turtles (Phrynops geoffroanus) and Giant Amazon turtles (Podocnemis expansa) from Brazil. No evolutionary form of haemosporidians or hemogregarines were observed in the blood smears of 83 P. geoffroanus samples, and there were no meronts in the histological sections of 31 necropsied P. geoffroanus samples. All DNA samples extracted from P. geoffroanus tissues and blood aliquots were negative in haemosporidian PCR assays (based on the mitochondrial cytochrome b gene) and hemogregarine PCR assays (based on the 18S rRNA gene). In the analysis of blood smears of all seven Podocnemis expansa evaluated, gametocytes of hemogregarines were observed. The seven P. expansa were negative in the haemosporidian PCR assays. Moreover, hemogregarine DNA was detected in blood samples from all of the sampled P. expansa. The phylogenetic maximum likelihood inference and probabilistic Bayesian inference revealed five closely related genotypes that formed a monophyletic group. There was also a sister group to the lineage that consisted of Haemogregarina spp. of freshwater turtles from Canada, Italy, Mozambique, Kenya, Gabon, Vietnam, and China. The findings suggest that free-living P. expansa were parasitized by a new genotype or even a possible new species of the genus Haemogregarina. Haemosporidians and hemogregarines are not frequently found in P. geoffroanus in the studied region under the local conditions of that period.
Collapse
|
49
|
Oliveira JPD, André MR, Alves Júnior JRF, Lustosa APG, Werther K. Molecular detection of hemogregarines and haemosporidians in Brazilian free-living testudines. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:75-84. [PMID: 30050752 PMCID: PMC6058349 DOI: 10.1016/j.ijppaw.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/11/2017] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Morphological and molecular techniques were used to investigate the presence of hemogregarines and haemosporidians in biological samples of free-living Geoffroy's side-necked turtles (Phrynops geoffroanus) and Giant Amazon turtles (Podocnemis expansa) from Brazil. No evolutionary form of haemosporidians or hemogregarines were observed in the blood smears of 83 P. geoffroanus samples, and there were no meronts in the histological sections of 31 necropsied P. geoffroanus samples. All DNA samples extracted from P. geoffroanus tissues and blood aliquots were negative in haemosporidian PCR assays (based on the mitochondrial cytochrome b gene) and hemogregarine PCR assays (based on the 18S rRNA gene). In the analysis of blood smears of all seven Podocnemis expansa evaluated, gametocytes of hemogregarines were observed. The seven P. expansa were negative in the haemosporidian PCR assays. Moreover, hemogregarine DNA was detected in blood samples from all of the sampled P. expansa. The phylogenetic maximum likelihood inference and probabilistic Bayesian inference revealed five closely related genotypes that formed a monophyletic group. There was also a sister group to the lineage that consisted of Haemogregarina spp. of freshwater turtles from Canada, Italy, Mozambique, Kenya, Gabon, Vietnam, and China. The findings suggest that free-living P. expansa were parasitized by a new genotype or even a possible new species of the genus Haemogregarina. Haemosporidians and hemogregarines are not frequently found in P. geoffroanus in the studied region under the local conditions of that period. Hemogregarines was detected in blood samples of free-living Brazilian testudines. Gametocytes of hemogregarines were observed in Podocnemis expansa blood smears. Hemogregarines DNA fragments based on the 18S rRNA gene were detected in P. expansa. We propose that P. expansa were parasitized by a new genotype of Haemogregarina. Haemosporidians was not observed in either P. expansa or Phrynops geoffroanus samples.
Collapse
Affiliation(s)
- Juliana Paula de Oliveira
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| | - Marcos Rogério André
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| | | | - Ana Paula Gomes Lustosa
- Chico Mendes Institute for Biodiversity Conservation (ICMBio), National Center for Research and Conservation of Reptiles and Amphibians (RAN), Rua 229, n 95, Setor Leste Universitário, 74.605-090, Goiânia, GO, Brazil
| | - Karin Werther
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Studies, Jaboticabal Campus, Via de Acesso Professor Paulo Donato Castellane s/n, 14.884-900, Jaboticabal, SP, Brazil
| |
Collapse
|