1
|
Hoveidaei A, Karimi M, Salmannezhad A, Tavakoli Y, Taghavi SP, Hoveidaei AH. Low-dose Radiation Therapy (LDRT) in Managing Osteoarthritis: A Comprehensive Review. CURRENT THERAPEUTIC RESEARCH 2025; 102:100777. [PMID: 40177366 PMCID: PMC11964493 DOI: 10.1016/j.curtheres.2025.100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/30/2025] [Indexed: 04/05/2025]
Abstract
Osteoarthritis (OA) is the most common degenerative arthropathy, impacting the quality of life for millions worldwide. It typically presents with chronic pain, stiffness, and reduced mobility in the affected joints. Nonsurgical treatments like physiotherapy or pharmacotherapy may provide limited relief and may have adverse effects and complications. Recently, low-dose radiation therapy (LDRT) has emerged as a potential alternative for managing OA, utilizing its anti-inflammatory effects. LDRT's anti-inflammatory effects involve modulating immune responses, reducing pro-inflammatory cytokines, and inducing apoptosis in inflammatory cells. Clinical studies show varying degrees of symptom relief, with some patients experiencing pain reduction and improved joint mobility while others show minimal response. The variability in LDRT treatment designs, radiation dosages, and patient populations complicates standardized treatment protocols and raises concerns about potential carcinogenic risks. Despite these issues, LDRT shows promise as an alternative to other OA treatments, especially for patients who don't respond to other treatments. This review aims to provide updated information on the effectiveness, mechanisms, and safety of LDRT in treating OA. We reviewed the literature of studies on the safety and efficacy of LDRT on affected joints by OA, its biological effects, potential therapeutic and adverse effects, application and contraindications, clinical outcomes, and clinical evidence in subjects with OA.
Collapse
Affiliation(s)
- Armin Hoveidaei
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | | | - Yasaman Tavakoli
- Student Research Committee, Department of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed Pouya Taghavi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
| |
Collapse
|
2
|
Wang L, Rivas R, Wilson A, Park YM, Walls S, Yu T, Miller AC. Dose-Dependent Effects of Radiation on Mitochondrial Morphology and Clonogenic Cell Survival in Human Microvascular Endothelial Cells. Cells 2023; 13:39. [PMID: 38201243 PMCID: PMC10778067 DOI: 10.3390/cells13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
To better understand radiation-induced organ dysfunction at both high and low doses, it is critical to understand how endothelial cells (ECs) respond to radiation. The impact of irradiation (IR) on ECs varies depending on the dose administered. High doses can directly damage ECs, leading to EC impairment. In contrast, the effects of low doses on ECs are subtle but more complex. Low doses in this study refer to radiation exposure levels that are below those that cause immediate and necrotic damage. Mitochondria are the primary cellular components affected by IR, and this study explored their role in determining the effect of radiation on microvascular endothelial cells. Human dermal microvascular ECs (HMEC-1) were exposed to varying IR doses ranging from 0.1 Gy to 8 Gy (~0.4 Gy/min) in the AFRRI 60-Cobalt facility. Results indicated that high doses led to a dose-dependent reduction in cell survival, which can be attributed to factors such as DNA damage, oxidative stress, cell senescence, and mitochondrial dysfunction. However, low doses induced a small but significant increase in cell survival, and this was achieved without detectable DNA damage, oxidative stress, cell senescence, or mitochondrial dysfunction in HMEC-1. Moreover, the mitochondrial morphology was assessed, revealing that all doses increased the percentage of elongated mitochondria, with low doses (0.25 Gy and 0.5 Gy) having a greater effect than high doses. However, only high doses caused an increase in mitochondrial fragmentation/swelling. The study further revealed that low doses induced mitochondrial elongation, likely via an increase in mitochondrial fusion protein 1 (Mfn1), while high doses caused mitochondrial fragmentation via a decrease in optic atrophy protein 1 (Opa1). In conclusion, the study suggests, for the first time, that changes in mitochondrial morphology are likely involved in the mechanism for the radiation dose-dependent effect on the survival of microvascular endothelial cells. This research, by delineating the specific mechanisms through which radiation affects endothelial cells, offers invaluable insights into the potential impact of radiation exposure on cardiovascular health.
Collapse
Affiliation(s)
- Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Rafael Rivas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Angelo Wilson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
| | - Yu Min Park
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shannon Walls
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
| | - Tianzheng Yu
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (Y.M.P.); (T.Y.)
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandra C. Miller
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA; (L.W.); (R.R.); (A.W.); (S.W.)
- Department of Radiation Science and Radiology, Uniformed Services University Health Sciences, Bethesda, MD 20889, USA
- Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Le Reun E, Foray N. Low-Dose Radiation Therapy (LDRT) against Cancer and Inflammatory or Degenerative Diseases: Three Parallel Stories with a Common Molecular Mechanism Involving the Nucleoshuttling of the ATM Protein? Cancers (Basel) 2023; 15:1482. [PMID: 36900274 PMCID: PMC10000719 DOI: 10.3390/cancers15051482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Very early after their discovery, X-rays were used in multiple medical applications, such as treatments against cancer, inflammation and pain. Because of technological constraints, such applications involved X-ray doses lower than 1 Gy per session. Progressively, notably in oncology, the dose per session increased. However, the approach of delivering less than 1 Gy per session, now called low-dose radiation therapy (LDRT), was preserved and is still applied in very specific cases. More recently, LDRT has also been applied in some trials to protect against lung inflammation after COVID-19 infection or to treat degenerative syndromes such as Alzheimer's disease. LDRT illustrates well the discontinuity of the dose-response curve and the counterintuitive observation that a low dose may produce a biological effect higher than a certain higher dose. Even if further investigations are needed to document and optimize LDRT, the apparent paradox of some radiobiological effects specific to low dose may be explained by the same mechanistic model based on the radiation-induced nucleoshuttling of the ATM kinase, a protein involved in various stress response pathways.
Collapse
Affiliation(s)
| | - Nicolas Foray
- Inserm, U1296 Unit, “Radiation: Defense, Health and Environment”, Centre Léon-Bérard, 28 rue Laennec, 69008 Lyon, France
| |
Collapse
|
4
|
Rodríguez-Tomàs E, Acosta JC, Torres-Royo L, De Febrer G, Baiges-Gaya G, Castañé H, Jiménez A, Vasco C, Araguas P, Gómez J, Malave B, Árquez M, Calderón D, Piqué B, Algara M, Montero Á, Simó JM, Gabaldó-Barrios X, Sabater S, Camps J, Joven J, Arenas M. Effect of Low-Dose Radiotherapy on the Circulating Levels of Paraoxonase-1-Related Variables and Markers of Inflammation in Patients with COVID-19 Pneumonia. Antioxidants (Basel) 2022; 11:antiox11061184. [PMID: 35740079 PMCID: PMC9220239 DOI: 10.3390/antiox11061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of our study was to investigate the changes produced by low-dose radiotherapy (LDRT) in the circulating levels of the antioxidant enzyme paraoxonase-1 (PON1) and inflammatory markers in patients with COVID-19 pneumonia treated with LDRT and their interactions with clinical and radiological changes. Data were collected from the IPACOVID prospective clinical trial (NCT04380818). The study included 30 patients treated with a whole-lung dose of 0.5 Gy. Clinical follow-up, as well as PON1-related variables, cytokines, and radiological parameters were analyzed before LDRT, at 24 h, and 1 week after treatment. Twenty-five patients (83.3%) survived 1 week after LDRT. Respiratory function and radiological images improved in survivors. Twenty-four hours after LDRT, PON1 concentration significantly decreased, while transforming growth factor beta 1 (TGF-β1) increased with respect to baseline. One week after LDRT, patients had increased PON1 activities and lower PON1 and TGF-β1 concentrations compared with 24 h after LDRT, PON1 specific activity increased, lactate dehydrogenase (LDH), and C-reactive protein (CRP) decreased, and CD4+ and CD8+ cells increased after one week. Our results highlight the benefit of LDRT in patients with COVID-19 pneumonia and it might be mediated, at least in part, by an increase in serum PON1 activity at one week and an increase in TGF-β1 concentrations at 24 h.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Johana C. Acosta
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Laura Torres-Royo
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Gabriel De Febrer
- Department of Geriatric and Palliative Care, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (G.D.F.); (C.V.)
| | - Gerard Baiges-Gaya
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Helena Castañé
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Andrea Jiménez
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Carlos Vasco
- Department of Geriatric and Palliative Care, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (G.D.F.); (C.V.)
| | - Pablo Araguas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Junior Gómez
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Bárbara Malave
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Miguel Árquez
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - David Calderón
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
| | - Berta Piqué
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
- Department of Pathology, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain
| | - Manel Algara
- Department of Radiation Oncology, Institut d’Investigacions Mèdiques, Hospital del Mar, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Ángel Montero
- Department of Radiation Oncology, HM Hospitales, 28050 Madrid, Spain;
| | - Josep M. Simó
- Laboratori de Referència Sud, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (J.M.S.); (X.G.-B.)
| | - Xavier Gabaldó-Barrios
- Laboratori de Referència Sud, Hospital Universitari Sant Joan de Reus, 43204 Tarragona, Spain; (J.M.S.); (X.G.-B.)
| | - Sebastià Sabater
- Department of Radiation Oncology, Complejo Hospitalario de Albacete, 02006 Albacete, Spain;
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43003 Tarragona, Spain; (G.B.-G.); (H.C.); (A.J.); (J.C.); (J.J.)
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43204 Tarragona, Spain; (E.R.-T.); (J.C.A.); (L.T.-R.); (P.A.); (J.G.); (B.M.); (M.Á.); (D.C.); (B.P.)
- Correspondence:
| |
Collapse
|
5
|
Dove AP, Cmelak A, Darrow K, McComas KN, Chowdhary M, Beckta J, Kirschner AN. The Use of Low-Dose Radiotherapy in Osteoarthritis: A Review. Int J Radiat Oncol Biol Phys 2022; 114:203-220. [DOI: 10.1016/j.ijrobp.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
|
6
|
ROS- and Radiation Source-Dependent Modulation of Leukocyte Adhesion to Primary Microvascular Endothelial Cells. Cells 2021; 11:cells11010072. [PMID: 35011634 PMCID: PMC8750044 DOI: 10.3390/cells11010072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-inflammatory effects of low-dose irradiation often follow a non-linear dose–effect relationship. These characteristics were also described for the modulation of leukocyte adhesion to endothelial cells. Previous results further revealed a contribution of reactive oxygen species (ROS) and anti-oxidative factors to a reduced leukocyte adhesion. Here, we evaluated the expression of anti-oxidative enzymes and the transcription factor Nrf2 (Nuclear factor-erythroid-2-related factor 2), intracellular ROS content, and leukocyte adhesion in primary human microvascular endothelial cells (HMVEC) upon low-dose irradiation under physiological laminar shear stress or static conditions after irradiation with X-ray or Carbon (C)-ions (0–2 Gy). Laminar conditions contributed to increased mRNA expression of anti-oxidative factors and reduced ROS in HMVEC following a 0.1 Gy X-ray and 0.5 Gy C-ion exposure, corresponding to reduced leukocyte adhesion and expression of adhesion molecules. By contrast, mRNA expression of anti-oxidative markers and adhesion molecules, ROS, and leukocyte adhesion were not altered by irradiation under static conditions. In conclusion, irradiation of endothelial cells with low doses under physiological laminar conditions modulates the mRNA expression of key factors of the anti-oxidative system, the intracellular ROS contents of which contribute at least in part to leucocyte adhesion, dependent on the radiation source.
Collapse
|
7
|
Mousavi Darzikolaee N, Kolahdouzan K, Abtahi H, Kazemizadeh H, Salehi M, Ghalehtaki R, Bayani R, Pestehei SK, Ghazanfari T, Ebrahiminasab F, Salarvand S, Haddad P, Kazemian A, Aghili M. Low-dose whole-lung irradiation in severe COVID-19 pneumonia: a controlled clinical trial. J Med Radiat Sci 2021; 68:396-406. [PMID: 34416084 PMCID: PMC8427095 DOI: 10.1002/jmrs.542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION The COVID-19 pandemic has caused significant morbidity and mortality thus far. Considering the historical uses of high-voltage X-ray beams for unresolvable pneumonia, we aimed to assess whether low-dose whole-lung irradiation (WLI) could provide any benefits for patients with refractory COVID-19 pneumonia. METHODS Eleven patients with refractory COVID-19 pneumonia were treated with WLI to a total dose of 1 Gy and compared to 11 patients in a matched control group from June to November 2020. The study's primary endpoint was improvement of chest X-ray severity score (CXRS), followed by changes in mean oxygen (O2) saturation and 28-day mortality as secondary endpoints. RESULTS The final CXRS was significantly lower in the WLI group (8.7 ± 2.5) compared to the control group (12.3 ± 3.3) (P: 0.016). Change of CXRS from the first to the last chest X-ray was -2.2 ± 3.1 for the WLI group and 0.7 ± 3.9 for the control group, which showed a trend for lower CXRS in the WLI group (U = 30, p: 0.085). Mean O2 saturation showed insignificant improvement in the first 24 hours after radiotherapy (mean difference: 2.5 ± 4.1, Z=-1.6, P value: 0.11). Overall survival after 28 days was 32% in the WLI group and 11% in the control group (P: 0.48). The reason for death in many patients was not merely respiratory failure, but also other adverse situations like pneumothorax, cardiogenic shock and pulmonary thromboembolism. CONCLUSIONS Low-dose WLI could improve the CXR severity score and O2 saturation in severely ill COVID-19 patients, but larger studies are required to determine its impact on mortality.
Collapse
Affiliation(s)
- Nima Mousavi Darzikolaee
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | - Kasra Kolahdouzan
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | - Hamidreza Abtahi
- Thoracic Research CenterImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Hossein Kazemizadeh
- Thoracic Research CenterImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Department of PulmonologyImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Mohammadreza Salehi
- Department of Infectious Diseases and Tropical MedicinesImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Reza Ghalehtaki
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | - Reyhaneh Bayani
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | | | | | - Fatemeh Ebrahiminasab
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| | - Samaneh Salarvand
- Department of Clinical and Anatomical PathologyCancer InstituteTehran University of Medical SciencesTehranIran
| | - Peiman Haddad
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | - Ali Kazemian
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| | - Mahdi Aghili
- Radiation Oncology Department, Cancer InstituteImam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
- Radiation Oncology Research CenterCancer InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
8
|
Javadinia SA, Nazeminezhad N, Ghahramani-Asl R, Soroosh D, Fazilat-Panah D, PeyroShabany B, Saberhosseini SN, Mehrabian A, Taghizadeh-Hesary F, Nematshahi M, Dhawan G, Welsh JS, Calabrese EJ, Kapoor R. Low-dose radiation therapy for osteoarthritis and enthesopathies: a review of current data. Int J Radiat Biol 2021; 97:1352-1367. [PMID: 34259615 DOI: 10.1080/09553002.2021.1956000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteoarthritis (OA), the most common degenerative joint disease, is associated with severe functional limitation and impairment of quality of life. Numerous reports have documented the clinical efficacy of low-dose radiotherapy (LD-RT) in the management of various inflammatory disorders, including OA. In this paper, we assessed the clinical literature involving the use of LD-RT in the treatment of OA, its dose-response features, possible underlying mechanistic features, and optimal therapeutic dose range. METHODS We carried out a systematic review based on the guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements and evaluated articles meeting the inclusion criteria for this review. RESULTS A total of 361 articles were identified from databases, such as Scopus, PubMed, Embase, and Science Direct out of which 224 articles were duplicates and were discarded. Of the remaining 137 articles, 74 articles were un-related, 27 articles were review articles, eight were conference abstracts, three were letters, two were editorials, two were notes, and one was a book chapter. Finally, 20 articles met all the inclusion criteria and were included in this systematic review. DISCUSSION Several single-arm retrospective/prospective studies showed advantages for LD-RT in the management of OA in terms of pain relief, improvement of mobility and function, and showed minimal side effects. Mechanistic considerations involve positive subcellular effects mediated by the activation of a nuclear factor erythroid 2-related transcription factor (Nrf2) mediated antioxidant response. Further research on both the short- and long-term effects of LD-RT on OA and other inflammatory disorders is recommended.
Collapse
Affiliation(s)
- Seyed Alireza Javadinia
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Ruhollah Ghahramani-Asl
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Soroosh
- Clinical Research Development Unit, Hospital Research Development Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Babak PeyroShabany
- Department of Internal Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | | | - Arezoo Mehrabian
- Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Nematshahi
- Department of Anesthesiology and Critical Care, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India
| | - James S Welsh
- Edward Hines Jr. VA Hospital, Loyola University Chicago Stritch School of Medicine, Chicago, IL, USA
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA
| |
Collapse
|
9
|
Lumniczky K, Impens N, Armengol G, Candéias S, Georgakilas AG, Hornhardt S, Martin OA, Rödel F, Schaue D. Low dose ionizing radiation effects on the immune system. ENVIRONMENT INTERNATIONAL 2021; 149:106212. [PMID: 33293042 PMCID: PMC8784945 DOI: 10.1016/j.envint.2020.106212] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
Ionizing radiation interacts with the immune system in many ways with a multiplicity that mirrors the complexity of the immune system itself: namely the need to maintain a delicate balance between different compartments, cells and soluble factors that work collectively to protect, maintain, and restore tissue function in the face of severe challenges including radiation damage. The cytotoxic effects of high dose radiation are less relevant after low dose exposure, where subtle quantitative and functional effects predominate that may go unnoticed until late after exposure or after a second challenge reveals or exacerbates the effects. For example, low doses may permanently alter immune fitness and therefore accelerate immune senescence and pave the way for a wide spectrum of possible pathophysiological events, including early-onset of age-related degenerative disorders and cancer. By contrast, the so called low dose radiation therapy displays beneficial, anti-inflammatory and pain relieving properties in chronic inflammatory and degenerative diseases. In this review, epidemiological, clinical and experimental data regarding the effects of low-dose radiation on the homeostasis and functional integrity of immune cells will be discussed, as will be the role of immune-mediated mechanisms in the systemic manifestation of localized exposures such as inflammatory reactions. The central conclusion is that ionizing radiation fundamentally and durably reshapes the immune system. Further, the importance of discovery of immunological pathways for modifying radiation resilience amongst other research directions in this field is implied.
Collapse
Affiliation(s)
- Katalin Lumniczky
- National Public Health Centre, Department of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary.
| | - Nathalie Impens
- Belgian Nuclear Research Centre, Biosciences Expert Group, Boeretang 200, 2400 Mol, Belgium.
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193-Bellaterra, Barcelona, Catalonia, Spain.
| | - Serge Candéias
- Université Grenoble-Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France.
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece.
| | - Sabine Hornhardt
- Federal Office for Radiation Protection (BfS), Ingolstaedter Landstr.1, 85764 Oberschleissheim, Germany.
| | - Olga A Martin
- Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne 3052, Victoria, Australia.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095-1714, USA.
| |
Collapse
|
10
|
Khan MK, Hess CB. A Call to Action: "Low-Dose Radiation May Help Cure COVID-19…" [Taps Mic] "…Is This Thing On?". JNCI Cancer Spectr 2021; 5:pkaa105. [PMID: 33437926 PMCID: PMC7717254 DOI: 10.1093/jncics/pkaa105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Clayton B Hess
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Venkatesulu BP, Lester S, Hsieh CE, Verma V, Sharon E, Ahmed M, Krishnan S. Low-Dose Radiation Therapy for COVID-19: Promises and Pitfalls. JNCI Cancer Spectr 2021; 5:pkaa103. [PMID: 33437924 PMCID: PMC7717342 DOI: 10.1093/jncics/pkaa103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic caused by SARS-CoV-2 has exacted an enormous toll on healthcare systems worldwide. The cytokine storm that follows pulmonary infection is causally linked to respiratory compromise and mortality in the majority of patients. The sparsity of viable treatment options for this viral infection and the sequelae of pulmonary complications have fueled the quest for new therapeutic considerations. One such option, the long-forgotten idea of using low-dose radiation therapy, has recently found renewed interest in many academic centers. We outline the scientific and logistical rationale for consideration of this option and the mechanistic underpinnings of any potential therapeutic value, particularly as viewed from an immunological perspective. We also discuss the preliminary and/or published results of prospective trials examining low-dose radiation therapy for COVID-19.
Collapse
Affiliation(s)
- Bhanu P Venkatesulu
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Scott Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Cheng-En Hsieh
- Department of Immunology, MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Elad Sharon
- Radiation Research Program, Division Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Mansoor Ahmed
- Cancer Therapy Evaluation Program, Division Cancer Treatment and Diagnosis National Cancer Institute, Bethesda, MD, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
12
|
Abdus-Salam AA, Olabumuyi AA, Jimoh MA, Folorunso SA, Orekoya AA. The role of radiation treatment in the management of inflammatory musculoskeletal conditions: a revisit. Radiat Oncol J 2020; 38:151-161. [PMID: 33012142 PMCID: PMC7533403 DOI: 10.3857/roj.2020.00178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/03/2020] [Indexed: 01/28/2023] Open
Abstract
Inflammatory musculoskeletal conditions are a common group of diseases among the elderly, worldwide. They are characterized by articular degenerative changes accompanied with often debilitating pain. Treatments often involve life-long analgesic therapy or joint replacement in extreme cases. The aim of this current review is to look at the role of radiation treatment with the hope of further study into the effectiveness of radiation treatment in reducing pain, eliminate or reduce the need for life-long analgesic therapy and thereby avoiding the analgesics’ side effects. Extensive literature search was done on PubMed and other available data base and the findings are presented and discussed. Literature showed that many countries in Europe, especially Germany use radiation routinely for the treatment of many degenerative disorders including osteoarthritis with good results and few side effects. A pilot study is therefore recommended with a view to establish the effectiveness or otherwise of this treatment method in patients.
Collapse
Affiliation(s)
| | | | - Mutiu Alani Jimoh
- Department of Radiation Oncology, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
13
|
The Influence of Radiation on Bone and Bone Cells-Differential Effects on Osteoclasts and Osteoblasts. Int J Mol Sci 2020; 21:ijms21176377. [PMID: 32887421 PMCID: PMC7504528 DOI: 10.3390/ijms21176377] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The bone is a complex organ that is dependent on a tight regulation between bone formation by osteoblasts (OBs) and bone resorption by osteoclasts (OCs). These processes can be influenced by environmental factors such as ionizing radiation (IR). In cancer therapy, IR is applied in high doses, leading to detrimental effects on bone, whereas radiation therapy with low doses of IR is applied for chronic degenerative and inflammatory diseases, with a positive impact especially on bone homeostasis. Moreover, the effects of IR are of particular interest in space travel, as astronauts suffer from bone loss due to space radiation and microgravity. This review summarizes the current state of knowledge on the effects of IR on bone with a special focus on the influence on OCs and OBs, as these cells are essential in bone remodeling. In addition, the influence of IR on the bone microenvironment is discussed. In summary, the effects of IR on bone and bone remodeling cells strongly depend on the applied radiation dose, as differential results are provided from in vivo as well as in vitro studies with varying doses of IR. Furthermore, the isolated effects of IR on a single cell type are difficult to determine, as the bone cells and bone microenvironment are building a tightly regulated network, influencing on one another. Therefore, future research is necessary in order to elucidate the influence of different bone cells on the overall radiation-induced effects on bone.
Collapse
|
14
|
Li JJ. Mitigating Coronavirus-Induced Acute Respiratory Distress Syndrome by Radiotherapy. iScience 2020; 23:101215. [PMID: 32512383 PMCID: PMC7260547 DOI: 10.1016/j.isci.2020.101215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023] Open
Abstract
The acute respiratory distress syndrome (ARDS) induced by SARS-CoV-2-mediated cytokine storm (CS) in lungs leads to the high mortality in COVID-19 patients. To reduce ARDS, an ideal approach is to diminish virus loading by activating immune cells for CS prevention or to suppress the overactive cytokine-releasing immune cells for CS inhibition. Here, a potential radiation-mediated CS regulation is raised by reevaluating the radiation-mediated pneumonia control in the 1920s, with the following latent advantages of lung radiotherapy (LR) in treatment of COVID-19: (1) radiation accesses poorly circulated tissue more efficiently than blood-delivered medications; (2) low-dose radiation (LDR)-mediated metabolic rewiring and immune cell activation inhibit virus loading; (3) pre-consumption of immune reserves by LDR decreases CS severity; (4) higherdose radiation (HDR) within lung-tolerable doses relieves CS by eliminating in situ overactive cytokine-releasing cells. Thus, LDR and HDR or combined with antiviral and life-supporting modalities may mitigate SARS-CoV-2 and other virus-mediated ARDS.
Collapse
Affiliation(s)
- Jian Jian Li
- Department of Radiation Oncology, NCI-designated Comprehensive Cancer Center, University of California at Davis School of Medicine, 4501 X Street, Suite G0140, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, Calabrese EJ. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol 2020; 147:212-216. [PMID: 32437820 PMCID: PMC7206445 DOI: 10.1016/j.radonc.2020.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 01/22/2023]
Abstract
The new coronavirus COVID-19 disease caused by SARS-CoV-2 was declared a global public health emergency by WHO on Jan 30, 2020. Despite massive efforts from various governmental, health and medical organizations, the disease continues to spread globally with increasing fatality rates. Several experimental drugs have been approved by FDA with unknown efficacy and potential adverse effects. The exponentially spreading pandemic of COVID-19 deserves prime public health attention to evaluate yet unexplored arenas of management. We opine that one of these treatment options is low dose radiation therapy for severe and most critical cases. There is evidence in literature that low dose radiation induces an anti-inflammatory phenotype that can potentially afford therapeutic benefit against COVID-19-related complications that are associated with significant morbidity and mortality. Herein, we review the effects and putative mechanisms of low dose radiation that may be viable, useful and of value in counter-acting the acute inflammatory state induced by critical stage COVID-19.
Collapse
Affiliation(s)
- Gaurav Dhawan
- Human Research Protection Office, University of Massachusetts, Amherst, United States.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, United States
| | - Rajiv Dhawan
- Radiotherapy Department, Government Medical College, Amritsar, India
| | - Ravinder Singh
- MedSurg Urgent Care, Gilbertsville, Pennsylvania, United States
| | - Bharat Monga
- Division of Hospital Medicine, Mount Sinai Morningside Hospital, New York, United States
| | - James Giordano
- Department of Neurology and Biochemistry and Chief, Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States; Program in Biosecurity, Technology, and Ethics, US Naval War College, Newport, United States
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, United States
| |
Collapse
|
16
|
Rogers S, Eberle B, Vogt DR, Meier E, Moser L, Gomez Ordoñez S, Desborough S, Riesterer O, Takacs I, Hasler P, Bodis S. Prospective Evaluation of Changes in Pain Levels, Quality of Life and Functionality After Low Dose Radiotherapy for Epicondylitis, Plantar Fasciitis, and Finger Osteoarthritis. Front Med (Lausanne) 2020; 7:195. [PMID: 32509794 PMCID: PMC7249275 DOI: 10.3389/fmed.2020.00195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Background: The objective benefits of low dose radiotherapy (LDRT) for non-malignant joint disorders are controversial. This study evaluated changes in pain, quality of life (QoL) and function after LDRT for epicondylitis, plantar fasciitis, and finger osteoarthritis. Materials and Methods: Patients over 40 years old with epicondylitis, plantar fasciitis, and finger osteoarthritis were had pain following at least 6 months of conservative therapy. Patients received 0.5 Gy LDRT twice weekly for 4 weeks repeated once after 8 weeks in patients who failed to achieve complete pain relief. Patients assessed their pain according to the visual analog scale. Handgrip strength was measured with an isometric dynamometer and the fast self-paced walking test was used in patients with plantar fasciitis. QoL was evaluated according to the EQ-5D and HAQ-DI questionnaires. Results: Outcomes for 157 patients (204 sites) were documented at 2, 6, and 12 months after last LDRT. Pain reduction at rest (p < 0.001), during activity (p < 0.001) and increase in handgrip strength (extension p < 0.001, flexion p = 0.002) were highly significant for patients with lateral epicondylitis. Patients with medial epicondylitis reported pain relief at rest (p = 0.041) and during activity (p = 0.041) and significant increase in handgrip strength (p = 0.022). Patients with plantar fasciitis reported pain reduction at rest (p < 0.001), during activity (p < 0.001) and faster walking times (p < 0.001). A trend toward improved QoL was observed. Patients with finger osteoarthritis reported significant pain relief during activity (p < 0.001) and a gain in handgrip strength (p = 0.004), with a trend to both pain relief at rest (p = 0.056) and stronger pinch grip (p = 0.099). Conclusions: LDRT achieved significant pain relief at rest and during activity and a corresponding objective improvement in handgrip strength in patients with epicondylitis. Pain relief at rest, during activity and improvement in walking time were demonstrated in patients with plantar fasciitis. LDRT achieved pain relief during activity, and handgrip strength was improved in patients with finger osteoarthritis. No significant effect was seen on quality of life measures for these conditions. The observed benefits were maintained 12 months after LDRT for all 3 indications and we recommend this low cost, safe intervention for patients over 40 who have failed prior conservative therapy.
Collapse
Affiliation(s)
- Susanne Rogers
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Brigitte Eberle
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Deborah R. Vogt
- Clinical Trial Unit, Department of Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Elisabeth Meier
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Lorenz Moser
- Department of Physiotherapy, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Susanne Desborough
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Oliver Riesterer
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Istvan Takacs
- Center for Radiation Oncology KSA-KSB, Kantonsspital Baden, Baden, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Stephan Bodis
- Center for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
- Department of Radiotherapy, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Lara PC, Nguyen NP, Macias-Verde D, Burgos-Burgos J, Arenas M, Zamagni A, Vinh-Hung V, Baumert BG, Motta M, Myint AS, Bonet M, Popescu T, Vuong T, Appalanaido GK, Trigo L, Karlsson U, Thariat J. Whole-lung Low Dose Irradiation for SARS-Cov2 Induced Pneumonia in the Geriatric Population: An Old Effective Treatment for a New Disease? Recommendation of the International Geriatric Radiotherapy Group. Aging Dis 2020; 11:489-493. [PMID: 32489696 PMCID: PMC7220282 DOI: 10.14336/ad.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
A cytokine storm induced by SARS-Cov2 may produce pneumonitis which may be fatal for older patients with underlying lung disease. Hyper-elevation of Interleukin1 (IL-1), Tumor necrosis factor-1alfa (TNF-1 alfa), and Interleukin 6 (IL-6) produced by inflammatory macrophage M1 may damage the lung alveoli leading to severe pneumonitis, decreased oxygenation, and potential death despite artificial ventilation. Older patients may not be suitable candidates for pharmaceutical intervention targeting IL-1/6 blockade or artificial ventilation. Low dose total lung (LDTL) irradiation at a single dose of 50 cGy may stop this cytokine cascade, thus preventing, and/or reversing normal organs damage. This therapy has been proven in the past to be effective against pneumonitis of diverse etiology and could be used to prevent death of older infected patients. Thus, LDRT radiotherapy may be a cost-effective treatment for this frail patient population whom radiation -induced malignancy is not a concern because of their advanced age. This hypothesis should be tested in future prospective trials.
Collapse
Affiliation(s)
- Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Nam P Nguyen
- Department of Radiation Oncology, Howard University, Washington D.C., USA.
| | - David Macias-Verde
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Javier Burgos-Burgos
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University, University Rovira I Virgili, Tarragona, Spain.
| | - Alice Zamagni
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, University Hospital of Martinique, Martinique, France.
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland.
| | - Micaela Motta
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Arthur Sun Myint
- Department of Radiation Oncology, Clatterbridge Cancer Center, Liverpool, United Kingdom.
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, Lleida, Spain.
| | - Tiberiu Popescu
- Department of Radiation Oncology, Prof. Dr. Ion Chricuta Oncology Institute, Cluj-Napoca, Romania.
| | - Te Vuong
- Department Of Radiation Oncology, McGill University, Montreal, Canada.
| | | | - Lurdes Trigo
- Department of Radiation Oncology, Instituto Portuges de Oncologia Porto Francisco Gentil E.P.E, Porto, Portugal.
| | - Ulf Karlsson
- Department of Radiation Oncology, International Geriatric Group, Washington D.C., USA.
| | - Juliette Thariat
- Department of Radiation Oncology, Baclesse Cancer Center, Caen, France.
| |
Collapse
|
18
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
19
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
20
|
Montero A, Sabater S, Rödel F, Gaipl US, Ott OJ, Seegenschmiedt MH, Arenas M. Is it time to redefine the role of low-dose radiotherapy for benign disease? Ann Rheum Dis 2020; 79:e34. [PMID: 30578294 DOI: 10.1136/annrheumdis-2018-214873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Angel Montero
- Department of Radiation Oncology, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Sebastia Sabater
- Department of Radiation Oncology, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Universitätsklinikum Frankfurt am Main, Frankfurt am Main, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, University of Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
21
|
Torres Royo L, Antelo Redondo G, Árquez Pianetta M, Arenas Prat M. Low-Dose radiation therapy for benign pathologies. Rep Pract Oncol Radiother 2020; 25:250-254. [PMID: 32140081 PMCID: PMC7049618 DOI: 10.1016/j.rpor.2020.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/04/2020] [Accepted: 02/19/2020] [Indexed: 01/01/2023] Open
Abstract
Radiotherapy (RT) has always been a mainstay for malignant tumors therapy, but it is also used for benign pathology. The application of low or intermediate doses of RT has been widely studied. This topic was presented and discussed in the last XX GOCO (Grup Oncològic Català-Occità) meeting. The aim of this article is to review the indications of low dose irradiation (LD-RT), total dose and different fractionations, the public to whom it can be directed, and to offer an analysis about secondary effects. We believe it can be useful not only for radiation oncologists, but for other physicians to consider this option for future patients.
Collapse
Affiliation(s)
- Laura Torres Royo
- Radiation Oncology Department of Hospital Universitari Sant Joan de Reus; Universitat Rovira i Virgili; Institut d'Investigació Sanitària Pere Virgili (IISPV), Spain
| | - Gabriela Antelo Redondo
- Radiation Oncology Department of Hospital Germans Trias I Pujol, Institut Català d'Oncologia, Badalona, Spain
| | - Miguel Árquez Pianetta
- Radiation Oncology Department of Hospital Universitari Sant Joan de Reus; Universitat Rovira i Virgili; Institut d'Investigació Sanitària Pere Virgili (IISPV), Spain
| | - Meritxell Arenas Prat
- Radiation Oncology Department of Hospital Universitari Sant Joan de Reus; Universitat Rovira i Virgili; Institut d'Investigació Sanitària Pere Virgili (IISPV), Spain
| |
Collapse
|
22
|
Radiobiological Principles of Radiotherapy for Benign Diseases. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
23
|
Human placenta-derived mesenchymal stem cells ameliorate orbital adipogenesis in female mice models of Graves' ophthalmopathy. Stem Cell Res Ther 2019; 10:246. [PMID: 31399042 PMCID: PMC6688254 DOI: 10.1186/s13287-019-1348-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background Graves’ ophthalmopathy (GO) is a complication of Graves’ disease (GD), in which orbital connective tissues become inflamed and increase in volume and orbital fibroblasts within the orbital fat and extraocular muscles differentiate into adipocytes in vitro when stimulated by hormones, several cytokines, and growth factors including TSH, IGF-1, IL-1, interferon γ, and platelet-derived growth factor. Human placental mesenchymal stem cells (hPMSCs) have immunomodulatory effects in disease pathogenesis. Although a number of studies have reported that hPMSCs can elicit therapeutic effects, these are not sufficient. Therefore, we constructed a GO animal model in order to find out the hPMSCs recovery effect. Methods We investigated their anti-adipogenic effects in in vitro cultures of orbital fibroblasts established from GO patients. Primary orbital fibroblasts were exposed to differentiation medium for 10 days. After being co-cultured with hPMSCs, the characteristics of orbital fibroblast were determined by Oil Red O stain and real-time PCR. Then, we explored the in vivo regulatory effects of hPMSCs in an experimental mouse model of GO. We developed the GO mouse model using immunization by leg muscle electroporation of pTriEx1.1Neo-hTSHR A-subunit plasmid. Human PMSC injection was performed into the left orbit. We also analyzed the effects of hPMSCs in the GO animal model. Result We found that hPMSCs inhibited a lipid accumulation and activated factors, such as ADIPONECTIN, PPARγ, C/EBPα, and TGFβ2 genes in adipogenesis-induced primary orbital fibroblasts from GO patients. Moreover, hPMSCs were highly effective at ameliorating adipogenesis in the orbital tissue of the model. Conclusion These data indicate that hPMSCs recover pathogenic activation of orbital fibroblasts in animals undergoing experimental GO and confirm the feasibility of applying hPMSCs as a novel treatment for GO patients.
Collapse
|
24
|
Zwicker F, Kirchner C, Huber PE, Debus J, Zwicker H, Klepper R. Breast cancer occurrence after low dose radiotherapy of non-malignant disorders of the shoulder. Sci Rep 2019; 9:5301. [PMID: 30923327 PMCID: PMC6438961 DOI: 10.1038/s41598-019-41725-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 03/14/2019] [Indexed: 11/10/2022] Open
Abstract
Stochastic long-term damages at relatively low doses have the potential for cancer induction. For the first time we investigated the occurrence of breast cancer in female patients after radiotherapy of non-malignant disorders of the shoulder and made a comparison with the estimated spontaneous incidence of mammary carcinoma for this cohort. In a geographically defined district with a population of approximately 100.000 inhabitants, comprehensive data of radiological diagnostics and radiotherapy were registered nearly completely for 41 years; data included mammography and radiotherapy of breast cancer patients as well as of non-malignant disorders. Within this population a collective of 158 women with radiotherapy of the shoulder was investigated. Radiotherapy was performed with cobalt-60 photons (Gammatron) with an average cumulative-dose of 6 Gy. The average follow-up time was 21.3 years. Patients were 55 years old (median) when radiotherapy of the shoulder was performed. Seven patients (4.4%) developed breast cancer after a median of 21 years. According to the incidence statistics, 9.4 +/- 1.8 (95%CI) cases (5.9%) would be expected. In regard to the irradiated shoulder neither the ipsilateral nor the contralateral breasts showed increased rates of breast cancer. An induction of additional breast cancer caused by radiation of non-malignant disorders of the shoulder wasn't detected in the investigated cohort.
Collapse
Affiliation(s)
- Felix Zwicker
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany.
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | - Corinna Kirchner
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany
| | - Peter E Huber
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany
| | - Hansjörg Zwicker
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany
| | - Rudolf Klepper
- Clinic and Practice of Radiation Oncology/Practice of Radiology, Konstanz, Germany
| |
Collapse
|
25
|
Dvořák P, Doležalová J, Suchý P, Straková E, Zapletal D, Rulík V. Fatting parameters after duck egg exposure to γ-radiation. Poult Sci 2019; 98:820-827. [PMID: 30169731 DOI: 10.3382/ps/pey391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
In our experiment, we deal with the phenomenon of radiation hormesis and improvements based on this phenomenon to different growing characteristics of the fast-growing, very feed-efficient, and with a high-yielding carcass hybrid of the Peking duck (Cherry Valley SM3 medium). In the first phase of the project, we exposed hatching duck eggs to low and middle doses of gamma radiation 60Co (0.06-2.00 Gy) before placing them into a setter in the hatchery. We then followed the standards of artificial incubation. The treatment of our chosen doses of gamma radiation has no significant influence on the history and results of hatching (from 85.5% to 92.6%); it was influenced only by the basic management and husbandry of the parent stock. From our observations we confirm that the Peking duck, despite genetic progress, retained its vitality and robustness. Its embryos are not damaged even with a dose of 2 Gy, which is over the deterministic effect of ionizing radiation for vertebrates. At the end of the fatting period a significant drop in plasma phosphorus levels was measured in the ducks; however, it was dependent on the radiation dose to which the hatching eggs were exposed (r = -0.965). A positive effect of radiation hormesis may be expected in the case of 1 Gy dose where the highest values of mean corpuscular hemoglobin, mean corpuscular hemoglobin, combined hemoglobin, and drake weight were measured. Lower and higher doses of ionizing radiation used did not display these effects.
Collapse
Affiliation(s)
- P Dvořák
- Centre for Ionizing Radiation Application and Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - J Doležalová
- Centre for Ionizing Radiation Application and Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - P Suchý
- Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - E Straková
- Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - D Zapletal
- Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| | - V Rulík
- Centre for Ionizing Radiation Application and Department of Gastronomy, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42 Brno, Czech Republic
| |
Collapse
|
26
|
Deloch L, Rückert M, Fietkau R, Frey B, Gaipl US. Low-Dose Radiotherapy Has No Harmful Effects on Key Cells of Healthy Non-Inflamed Joints. Int J Mol Sci 2018; 19:ijms19103197. [PMID: 30332826 PMCID: PMC6214021 DOI: 10.3390/ijms19103197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Low-dose radiotherapy (LD-RT) for benign inflammatory and/or bone destructive diseases has been used long. Therefore, mechanistic investigations on cells being present in joints are mostly made in an inflammatory setting. This raises the question whether similar effects of LD-RT are also seen in healthy tissue and thus might cause possible harmful effects. We performed examinations on the functionality and phenotype of key cells within the joint, namely on fibroblast-like synoviocytes (FLS), osteoclasts and osteoblasts, as well as on immune cells. Low doses of ionizing radiation showed only a minor impact on cytokine release by healthy FLS as well as on molecules involved in cartilage and bone destruction and had no significant impact on cell death and migration properties. The bone resorbing abilities of healthy osteoclasts was slightly reduced following LD-RT and a positive impact on bone formation of healthy osteoblasts was observed after in particular exposure to 0.5 Gray (Gy). Cell death rates of bone-marrow cells were only marginally increased and immune cell composition of the bone marrow showed a slight shift from CD8+ to CD4+ T cell subsets. Taken together, our results indicate that LD-RT with particularly a single dose of 0.5 Gy has no harmful effects on cells of healthy joints.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
27
|
Deloch L, Derer A, Hueber AJ, Herrmann M, Schett GA, Wölfelschneider J, Hahn J, Rühle PF, Stillkrieg W, Fuchs J, Fietkau R, Frey B, Gaipl US. Low-Dose Radiotherapy Ameliorates Advanced Arthritis in hTNF-α tg Mice by Particularly Positively Impacting on Bone Metabolism. Front Immunol 2018; 9:1834. [PMID: 30279685 PMCID: PMC6153886 DOI: 10.3389/fimmu.2018.01834] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/25/2018] [Indexed: 11/29/2022] Open
Abstract
Inflammation and bone erosion are central in rheumatoid arthritis (RA). Even though effective medications for control and treatment of RA are available, remission is only seen in a subset of patients. Treatment with low-dose radiotherapy (LD-RT) which has been already successfully used for amelioration of symptoms in benign diseases should be a promising approach to reduce pain, inflammation, and particularly bone erosion in patients with RA. Even though anti-inflammatory effects of LD-RT are already described with non-linear dose response relationships, and pain-reducing effects have been clinically observed, the underlying mechanisms are widely unknown. Besides immune cells many other cell types, such as fibroblast-like synoviocytes (FLS), osteoclasts, and osteoblast are present in the affected joint and might be modulated by LD-RT. For this study, these cell types were obtained from human tumor necrosis factor-α transgenic (hTNF-α tg) mice and were consecutively exposed to different doses of ionizing radiation (0.1, 0.5, 1.0, and 2.0 Gy, respectively) in vitro. In order to study the in vivo effects of LD-RT within the arthritic joint, hind paws of arthritic hTNF-α tg mice were locally irradiated with 0.5 Gy, a single dose per fraction that is known for good clinical responses. Starting at a dose of 0.5 Gy, proliferation of FLS was reduced and apoptosis significantly enhanced with no changes in necrosis. Further, expression of RANK-L was slightly reduced following irradiation with particularly 0.5 Gy. Starting from 0.5 Gy, the numbers of differentiated osteoclasts were significantly reduced, and a lower bone resorbing activity of treated osteoclasts was also observed, as monitored via pit formation and Cross Laps presence. LD-RT had further a positive effect on osteoblast-induced mineralization in a discontinuous dose response relationship with 0.5 Gy being most efficient. An increase of the gene expression ratio of OPG/RANK-L at 0.1 and 0.5 Gy and of production of OPG at 0.5 and 1.0 Gy was observed. In vivo, LD-RT resulted in less severe arthritis in arthritic hTNF-α tg mice and in significant reduction of inflammatory and erosive area with reduced osteoclasts and neutrophils. Locally applied LD-RT can, therefore, induce a beneficial micro-environment within arthritic joints by predominantly positively impacting on bone metabolism.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja Derer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Axel J Hueber
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Georg Andreas Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Jens Wölfelschneider
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 and Institute for Clinical Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum, Erlangen, Germany
| | - Paul-Friedrich Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Willi Stillkrieg
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jana Fuchs
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
28
|
Ding CY, Gao L. Low Dose Radiation Exposure and Cardiovascular Diseases: A Review. INTERNATIONAL JOURNAL OF CARDIOVASCULAR PRACTICE 2017. [DOI: 10.21859/ijcp-030103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
29
|
Li J, Yao ZY, She C, Li J, Ten B, Liu C, Lin SB, Dong QR, Ren PG. Effects of low-dose X-ray irradiation on activated macrophages and their possible signal pathways. PLoS One 2017; 12:e0185854. [PMID: 29077718 PMCID: PMC5659615 DOI: 10.1371/journal.pone.0185854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
Low-dose irradiation (LDI) has been used in clinics to treat human diseases, including chronic inflammation. This study assessed the effects of LDI on the inflammatory response of activated mouse primary peritoneal macrophages, and the underlying signal pathways. Primary peritoneal macrophages were isolated from mice and then incubated with lipopolysaccharide (LPS)-coated Ti microparticles (Ti-positive control) with or without brief exposure to LDI (X-ray, 0.5 Gy) 1 h later (Ti-LDI group) or left untreated in culture medium (Ti-negative control). The macrophages were then subjected to qRT-PCR, Western blot, cell viability CCK-8 assay, and ELISA. qRT-PCR analysis revealed the Ti-LDI group expressed significantly lower levels of IL-1β, IL-6, and TNF-α mRNA than those of the Ti-positive control group, while the ELISA data showed that Ti-LDI group had significantly lower secretion of IL-1β, IL-6, and TNF-α proteins. The most significant reduction associated with LDI was the secretion TNF-α protein, which barely increased from 13 to 25 h after treatment. Western blot data demonstrated that phosphorylation of p65 and ERK was much lower in the Ti-LDI group than in the controls. The data from the current study suggests that LDI of activated mouse macrophages was associated with significantly lower inflammation responses, compared with non-exposed activated macrophages, which was possibly through inhibition of the NF-κB and ERK pathways.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen-yu Yao
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Li
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Bin Ten
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Chang Liu
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Shu-bin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi-Rong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (QRD); (PGR)
| | - Pei-Gen Ren
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
- * E-mail: (QRD); (PGR)
| |
Collapse
|
30
|
Erbeldinger N, Rapp F, Ktitareva S, Wendel P, Bothe AS, Dettmering T, Durante M, Friedrich T, Bertulat B, Meyer S, Cardoso MC, Hehlgans S, Rödel F, Fournier C. Measuring Leukocyte Adhesion to (Primary) Endothelial Cells after Photon and Charged Particle Exposure with a Dedicated Laminar Flow Chamber. Front Immunol 2017; 8:627. [PMID: 28620384 PMCID: PMC5451490 DOI: 10.3389/fimmu.2017.00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions.
Collapse
Affiliation(s)
- Nadine Erbeldinger
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.,Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Svetlana Ktitareva
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Philipp Wendel
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Anna S Bothe
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Till Dettmering
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Meyer
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - M C Cardoso
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| |
Collapse
|
31
|
Abstract
X-ray therapy was used to treat pertussis/whooping cough during a 13-year period from 1923 to 1936 in North America and Europe. Twenty studies from clinicians in the United States reported that approximately 1500 cases of pertussis were treated by X-ray therapy usually with less than 0.5 erythema dose. Young children (<3 years) comprised about 70% to 80% of the cases, with the age of cases ranging from as young as 1 month to 50 years. In general, symptoms of severe coughing, vomiting episodes, and spasms were significantly relieved in about 85% of cases following up to 3 treatments, while about 15% of the cases showed nearly full relief after only 1 treatment. The X-ray therapy was also associated with a marked reduction in mortality of young (<3 years) children by over 90%. Despite such reported clinical success from a wide range of experienced researchers, the use of X-rays for the treatment of pertussis in young children was controversial, principally due to concerns of exposure to the thymus and thyroid even with the availability of lead shielding. By the mid-1930s, the treatment of pertussis cases via vaccine therapy came to dominate the therapeutic arena, and the brief era of a radiotherapy option for the treatment of pertussis ended.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Gaurav Dhawan
- Research Compliance, University of Massachusetts, Mass Venture Center, Hadley, MA, USA
| | | |
Collapse
|
32
|
Kojima S, Ohshima Y, Nakatsukasa H, Tsukimoto M. Role of ATP as a Key Signaling Molecule Mediating Radiation-Induced Biological Effects. Dose Response 2017; 15:1559325817690638. [PMID: 28250717 PMCID: PMC5318813 DOI: 10.1177/1559325817690638] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adenosine triphosphate (ATP) serves as a signaling molecule for adaptive responses to a variety of cytotoxic agents and plays an important role in mediating the radiation stress-induced responses that serve to mitigate or repair the injurious effects of γ radiation on the body. Indeed, low doses of radiation may have a net beneficial effect by activating a variety of protective mechanisms, including antitumor immune responses. On the other hand, ATP signaling may be involved in the radiation resistance of cancer cells. Here, focusing on our previous work, we review the evidence that low-dose γ irradiation (0.25-0.5 Gy) induces release of extracellular ATP, and that the released ATP mediates multiple radiation-induced responses, including increased intracellular antioxidant synthesis, cell-mediated immune responses, induction of DNA damage repair systems, and differentiation of regulatory T cells.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Yasuhiro Ohshima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Hiroko Nakatsukasa
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Chiba, Japan
| |
Collapse
|
33
|
Park SH, Lee JE. Radiotherapy, a New Treatment Option for Non-malignant Disorders: Radiobiological Mechanisms, Clinical Applications, and Radiation Risk. JOURNAL OF RHEUMATIC DISEASES 2017. [DOI: 10.4078/jrd.2017.24.2.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Shin-Hyung Park
- Department of Radiation Oncology, Kyungpook National University Medical Center, Daegu, Korea
| | - Jeong Eun Lee
- Department of Radiation Oncology, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
34
|
Arenas M, Sabater S, Jiménez PL, Rovirosa À, Biete A, Linares V, Belles M, Panés J. Radiotherapy for Graves' disease. The possible role of low-dose radiotherapy. Rep Pract Oncol Radiother 2016; 21:213-8. [PMID: 27601953 DOI: 10.1016/j.rpor.2016.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 02/06/2016] [Indexed: 10/22/2022] Open
Abstract
Immunomodulatory effects of low-dose radiotherapy (LD-RT) have been used for the treatment of several benign diseases, including arthrodegenerative and inflammatory pathologies. Graves' disease is an autoimmune disease and radiotherapy (RT) is a therapeutic option for ocular complications. The dose recommended in the clinical practice is 20 Gy (2 Gy/day). We hypothesized that lower doses (<10 Gy total dose, <1 Gy/day) could results in higher efficacy if we achieved anti-inflammatory and immunomodulatory effects of LD-RT. We review current evidence on the effects of RT in the treatment of Graves' disease and the possible use of LD-RT treatment strategy.
Collapse
Affiliation(s)
- Meritxell Arenas
- Radiation Oncology Department, Hospital Universitari Sant Joan de Reus, Institut d'Investigacions Sanitàries Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Sebastià Sabater
- Radiation Oncology Department, Complejo Hospitalario Universitario Albacete (CHUA), Spain
| | - Pedro Lara Jiménez
- Radiation Oncology Department, Hospital Universitario Dr Negrín, Universidad Las Palmas de Gran Canaria (LPGC), Las Palmas de Gran Canaria, Spain
| | - Àngels Rovirosa
- Radiation Oncology Department, Hospital Universitari Clínic de Barcelona, Spain
| | - Albert Biete
- Radiation Oncology Department, Hospital Universitari Clínic de Barcelona, Spain
| | - Victoria Linares
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, URV, Reus, Spain
| | - Montse Belles
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, URV, Reus, Spain
| | - Julià Panés
- Gastroenterology Department, Hospital Universitari Clínic de Barcelona, Spain
| |
Collapse
|
35
|
Intensity-modulated radiotherapy for localized nasopharyngeal amyloidosis. Strahlenther Onkol 2016; 192:944-950. [DOI: 10.1007/s00066-016-0996-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
36
|
Reichl B, Block A, Schäfer U, Bert C, Müller R, Jung H, Rödel F. DEGRO practical guidelines for radiotherapy of non-malignant disorders. Strahlenther Onkol 2015; 191:701-9. [DOI: 10.1007/s00066-015-0865-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 06/03/2015] [Indexed: 11/29/2022]
|
37
|
Rödel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 2015; 356:105-13. [DOI: 10.1016/j.canlet.2013.09.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|
38
|
Hamada N, Fujimichi Y, Iwasaki T, Fujii N, Furuhashi M, Kubo E, Minamino T, Nomura T, Sato H. Emerging issues in radiogenic cataracts and cardiovascular disease. JOURNAL OF RADIATION RESEARCH 2014; 55:831-46. [PMID: 24824673 PMCID: PMC4202294 DOI: 10.1093/jrr/rru036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/01/2014] [Accepted: 04/06/2014] [Indexed: 05/26/2023]
Abstract
In 2011, the International Commission on Radiological Protection issued a statement on tissue reactions (formerly termed non-stochastic or deterministic effects) to recommend lowering the threshold for cataracts and the occupational equivalent dose limit for the crystalline lens of the eye. Furthermore, this statement was the first to list circulatory disease (cardiovascular and cerebrovascular disease) as a health hazard of radiation exposure and to assign its threshold for the heart and brain. These changes have stimulated various discussions and may have impacts on some radiation workers, such as those in the medical sector. This paper considers emerging issues associated with cataracts and cardiovascular disease. For cataracts, topics dealt with herein include (i) the progressive nature, stochastic nature, target cells and trigger events of lens opacification, (ii) roles of lens protein denaturation, oxidative stress, calcium ions, tumor suppressors and DNA repair factors in cataractogenesis, (iii) dose rate effect, radiation weighting factor, and classification systems for cataracts, and (iv) estimation of the lens dose in clinical settings. Topics for cardiovascular disease include experimental animal models, relevant surrogate markers, latency period, target tissues, and roles of inflammation and cellular senescence. Future research needs are also discussed.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Yuki Fujimichi
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Noriko Fujii
- Kyoto University Research Reactor Institute (KURRI), 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, 1-1 Daigaku, Kahoku, Ishikawa 920-0293, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-754 Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Takaharu Nomura
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Hitoshi Sato
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki 300-0394, Japan
| |
Collapse
|
39
|
Large M, Reichert S, Hehlgans S, Fournier C, Rödel C, Rödel F. A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiat Oncol 2014; 9:80. [PMID: 24655916 PMCID: PMC3997971 DOI: 10.1186/1748-717x-9-80] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/18/2014] [Indexed: 01/01/2023] Open
Abstract
Background A discontinuous dose response relationship is a major characteristic of the anti-inflammatory effects of low-dose X-irradiation therapy. Although recent data indicate an involvement of a variety of molecular mechanisms in these characteristics, the impact of reactive oxygen species (ROS) production to give rise or contribute to these phenomena in endothelial cells (EC) remains elusive. Material and methods HUVEC derived immortalized EA.hy926 cells were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with doses ranging from 0.3 to 1 Gy. To analyse DNA repair capacity, phospho-histone H2AX foci were assayed at 1 h, 4 h and 24 h after irradiation. ROS production and superoxide dismutase (SOD) activity were analysed by fluorometric 2′,7′-dichlorodihydrofluorescein-diacetate (H2DCFDA) and colorimetric assays. A functional impact of ROS on γH2AX production was analysed by treatment with the scavenger N-acetyl-L-cysteine (NAC). Results Irrespective of stimulation by TNF-α, EA.hy926 cells revealed a linear dose response characteristic of γH2AX foci detection at 1 h and 4 h after irradiation. By contrast, we observed a discontinuity in residual γH2AX foci detection at 24 h after irradiation with locally elevated values following a 0.5 Gy exposure that was abolished by inhibition of ROS by NAC. Moreover, SOD protein expression was significantly decreased at doses of 0.5 Gy and 0.7 Gy concomitant with a reduced SOD activity. Conclusion These data implicate a non-linear regulation of ROS production and SOD activity in EA.hy926 EC following irradiation with doses < 1 Gy that may contribute to a discontinuous dose-response relationship of residual γH2AX foci detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
40
|
Stewart FA, Seemann I, Hoving S, Russell NS. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol) 2013; 25:617-24. [PMID: 23876528 DOI: 10.1016/j.clon.2013.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 12/22/2022]
Abstract
There is a clear association between therapeutic doses of thoracic irradiation and an increased risk of cardiovascular disease (CVD) in cancer survivors, although these effects may take decades to become symptomatic. Long-term survivors of Hodgkin's lymphoma and childhood cancers have two-fold to more than seven-fold increased risks for late cardiac deaths after total tumour doses of 30-40 Gy, given in 2 Gy fractions, where large volumes of heart were included in the field. Increased cardiac mortality is also seen in women irradiated for breast cancer. Breast doses are generally 40-50 Gy in 2 Gy fractions, but only a small part of the heart is included in the treatment fields and mean heart doses rarely exceeded 10-15 Gy, even with older techniques. The relative risks of cardiac mortality (1.1-1.4) are consequently lower than for Hodgkin's lymphoma survivors. Some epidemiological studies show increased risks of cardiac death after accidental or environmental total body exposures to much lower radiation doses. The mechanisms whereby these cardiac effects occur are not fully understood and different mechanisms are probably involved after high therapeutic doses to the heart, or part of the heart, than after low total body exposures. These various mechanisms probably result in different cardiac pathologies, e.g. coronary artery atherosclerosis leading to myocardial infarct, versus microvascular damage and fibrosis leading to congestive heart failure. Experimental studies can help to unravel some of these mechanisms and may identify suitable strategies for managing or inhibiting CVD. In this overview, the main epidemiological and clinical evidence for radiation-induced CVD is summarised. Experimental data shedding light on some of the underlying pathologies and possible targets for intervention are also discussed.
Collapse
Affiliation(s)
- F A Stewart
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Arenas M. Anti-inflammatory effects of low-dose radiotherapy: Indications, dose and radiobiological mechanisms involved. Rep Pract Oncol Radiother 2013. [DOI: 10.1016/j.rpor.2013.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
42
|
Calabrese EJ, Calabrese V. Reduction of arthritic symptoms by low dose radiation therapy (LD-RT) is associated with an anti-inflammatory phenotype. Int J Radiat Biol 2012; 89:278-86. [DOI: 10.3109/09553002.2013.752594] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Calabrese EJ, Calabrese V. Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis: Animal model findings. Int J Radiat Biol 2012; 89:287-94. [DOI: 10.3109/09553002.2013.752595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Abstract
Epidemiological studies have shown a clear association between therapeutic doses of thoracic irradiation and increased risk of cardiovascular disease in long-term cancer survivors. Survivors of Hodgkin's lymphoma and childhood cancers, for example, show 2- to >7-fold increases in risk of cardiac death after total tumour doses of 30-40 Gy, given in 2-Gy fractions. The risk of cardiac mortality increases linearly with dose, although there are large uncertainties for mean cardiac doses <5 Gy. Experimental studies show that doses of ≥ 2 Gy induce the expression of inflammatory and thrombotic molecules in endothelial cells. In the heart, this causes progressive loss of capillaries and eventually leads to reduced perfusion, myocardial cell death, and fibrosis. In large arteries, doses of ≥ 8 Gy, combined with elevated cholesterol, initiates atherosclerosis and predisposes to the formation of inflammatory, unstable lesions, which are prone to rupture and may cause a fatal heart attack or stroke. In contrast, doses <1 Gy inhibit inflammatory cell adhesion to endothelial cells and inhibit the development of atherosclerosis in mice. It seems likely that mechanisms other than accelerated atherosclerosis are responsible for cardiovascular effects after low total-body exposures of radiation (e.g. impaired T-cell immunity or persistent increase in systemic cytokines).
Collapse
Affiliation(s)
- F A Stewart
- Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Rödel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US, Rödel C. Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol 2012; 2:120. [PMID: 23057008 PMCID: PMC3457026 DOI: 10.3389/fonc.2012.00120] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/03/2012] [Indexed: 01/12/2023] Open
Abstract
Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice.
Collapse
Affiliation(s)
- Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Johann Wolfgang-Goethe Universität Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Manda K, Glasow A, Paape D, Hildebrandt G. Effects of ionizing radiation on the immune system with special emphasis on the interaction of dendritic and T cells. Front Oncol 2012; 2:102. [PMID: 22937525 PMCID: PMC3426842 DOI: 10.3389/fonc.2012.00102] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/31/2012] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs), as professional antigen-presenting cells, are members of the innate immune system and function as key players during the induction phase of adaptive immune responses. Uptake, processing, and presentation of antigens direct the outcome toward either tolerance or immunity. The cells of the immune system are among the most highly radiosensitive cells in the body. For high doses of ionizing radiation (HD-IR) both immune-suppressive effects after whole body irradiation and possible immune activation during tumor therapy were observed. On the other hand, the effects of low doses of ionizing radiation (LD-IR) on the immune system are controversial and seem to show high variability among different individuals and species. There are reports revealing that protracted LD-IR can result in radioresistance. But immune-suppressive effects of chronic LD-IR are also reported, including the killing or sensitizing of certain cell types. This article shall review the current knowledge of radiation-induced effects on the immune system, paying special attention to the interaction of DCs and T cells.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock Rostock, Germany
| | | | | | | |
Collapse
|
47
|
Arenas M, Sabater S, Hernández V, Rovirosa A, Lara PC, Biete A, Panés J. Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. Strahlenther Onkol 2012; 188:975-81. [PMID: 22907572 DOI: 10.1007/s00066-012-0170-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/13/2012] [Indexed: 12/24/2022]
Abstract
Low-dose radiotherapy (LD-RT) has been used for several benign diseases, including arthrodegenerative and inflammatory pathologies. Despite its effectiveness in clinical practice, little is known about the mechanisms through which LD-RT modulates the various phases of the inflammatory response and about the optimal dose fractionation. The objective of this review is to deepen knowledge about the most effective LD-RT treatment schedule and radiobiological mechanisms underlying the anti-inflammatory effects of LD-RT in various in vitro experiments, in vivo studies, and clinical studies.
Collapse
Affiliation(s)
- M Arenas
- Radiation Oncology Department. Hospital Universitari Sant Joan de Reus, Institut d'Investigacions Sanitàries Pere Virgili, Universitat Rovira i Virgili, C/Sant Joan, 43200, Reus, Spain.
| | | | | | | | | | | | | |
Collapse
|
48
|
Ren S, Ren G. External beam radiation therapy is safe and effective in treating primary pulmonary amyloidosis. Respir Med 2012; 106:1063-9. [DOI: 10.1016/j.rmed.2012.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 01/04/2012] [Accepted: 02/20/2012] [Indexed: 11/16/2022]
|
49
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
50
|
Kostyuk SV, Ermakov AV, Alekseeva AY, Smirnova TD, Glebova KV, Efremova LV, Baranova A, Veiko NN. Role of extracellular DNA oxidative modification in radiation induced bystander effects in human endotheliocytes. Mutat Res 2012; 729:52-60. [PMID: 22001237 DOI: 10.1016/j.mrfmmm.2011.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/30/2011] [Accepted: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The development of the bystander effect induced by low doses of irradiation in human umbilical vein endothelial cells (HUVECs) depends on extracellular DNA (ecDNA) signaling pathway. We found that the changes in the levels of ROS and NO production by human endothelial cells are components of the radiation induced bystander effect that can be registered at a low dose. We exposed HUVECs to X-ray radiation and studied effects of ecDNA(R) isolated from the culture media conditioned by the short-term incubation of irradiated cells on intact HUVECs. Effects of ecDNA(R) produced by irradiated cells on ROS and NO production in non-irradiated HUVECs are similar to bystander effect. These effects at least partially depend on TLR9 signaling. We compared the production of the nitric oxide and the ROS in human endothelial cells that were (1) irradiated at a low dose; (2) exposed to the ecDNA(R) extracted from the media conditioned by irradiated cells; and (3) exposed to human DNA oxidized in vitro. We found that the cellular responses to all three stimuli described above are essentially similar. We conclude that irradiation-related oxidation of the ecDNA is an important component of the ecDNA-mediated bystander effect.
Collapse
Affiliation(s)
- Svetlana V Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|