1
|
Modulation of regulatory T cell function and stability by co-inhibitory receptors. Nat Rev Immunol 2020; 20:680-693. [PMID: 32269380 DOI: 10.1038/s41577-020-0296-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells constitute a dynamic population that is essential for controlling immune responses in health and disease. Defects in Treg cell function and decreases in Treg cell numbers have been observed in patients with autoimmunity and the opposite effects on Treg cells occur in cancer settings. Current research on new therapies for these diseases is focused on modulating Treg cell function to increase or decrease suppressive activity in autoimmunity and cancer, respectively. In this regard, several co-inhibitory receptors that are preferentially expressed by Treg cells under homeostatic conditions have recently been shown to control Treg cell function and stability in different disease settings. These receptors could be amenable to therapeutic targeting aimed at modulating Treg cell function and plasticity. This Review summarizes recent data regarding the role of co-inhibitory molecules in the control of Treg cell function and stability, with a focus on their roles and potential therapeutic use in autoimmunity and cancer.
Collapse
|
2
|
Gelfand EW, Joetham A, Wang M, Takeda K, Schedel M. Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev 2017; 278:63-86. [PMID: 28658551 PMCID: PMC5501488 DOI: 10.1111/imr.12561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite advances in the treatment of asthma, optimization of symptom control remains an unmet need in many patients. These patients, labeled severe asthma, are responsible for a substantial fraction of the disease burden. In these patients, research is needed to define the cellular and molecular pathways contributing to disease which in large part are refractory to corticosteroid treatment. The causes of steroid-resistant asthma are multifactorial and result from complex interactions of genetics, environmental factors, and innate and adaptive immunity. Adaptive immunity, addressed here, integrates the activities of distinct T-cell subsets and by definition is dynamic and responsive to an ever-changing environment and the influences of epigenetic modifications. These T-cell subsets exhibit different susceptibilities to the actions of corticosteroids and, in some, corticosteroids enhance their functional activation. Moreover, these subsets are not fixed in lineage differentiation but can undergo transcriptional reprogramming in a bidirectional manner between protective and pathogenic effector states. Together, these factors contribute to asthma heterogeneity between patients but also in the same patient at different stages of their disease. Only by carefully defining mechanistic pathways, delineating their sensitivity to corticosteroids, and determining the balance between regulatory and effector pathways will precision medicine become a reality with selective and effective application of targeted therapies.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Michaela Schedel
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Golding A, Darko S, Wylie WH, Douek DC, Shevach EM. Deep sequencing of the TCR-β repertoire of human forkhead box protein 3 (FoxP3) + and FoxP3 - T cells suggests that they are completely distinct and non-overlapping. Clin Exp Immunol 2017; 188:12-21. [PMID: 27880974 DOI: 10.1111/cei.12904] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Maintenance of peripheral tolerance requires a balance between autoreactive conventional T cells (Tconv ) and thymically derived forkhead box protein 3 (FoxP3)+ regulatory T cells (tTregs ). Considerable controversy exists regarding the similarities/differences in T cell receptor (TCR) repertoires expressed by Tconv and tTregs . We generated highly purified populations of human adult and cord blood Tconv and tTregs based on the differential expression of CD25 and CD127. The purity of the sorted populations was validated by intracellular staining for FoxP3 and Helios. We also purified an overlap group of CD4 T cells from adult donors to ensure that considerable numbers of shared clonotypes could be detected when present. We used deep sequencing of entire TCR-β CDR3 sequences to analyse the TCR repertoire of Tconv and tTregs . Our studies suggest that both neonatal and adult human Tconv and tTreg cells are, in fact, entirely distinct CD4 T cell lineages.
Collapse
Affiliation(s)
- A Golding
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - S Darko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - W H Wylie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - E M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Nie J, Li YY, Zheng SG, Tsun A, Li B. FOXP3(+) Treg Cells and Gender Bias in Autoimmune Diseases. Front Immunol 2015; 6:493. [PMID: 26441996 PMCID: PMC4585344 DOI: 10.3389/fimmu.2015.00493] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 09/09/2015] [Indexed: 01/22/2023] Open
Abstract
CD4+CD25+ regulatory T (Treg) cells play a pivotal role in the maintenance of immune homeostasis, where the X-linked master transcription factor forkhead box P3 (FOXP3) determines Treg cell development and function. Genetic deficiency of foxp3 induces dysfunction of Treg cells and immuno-dysregulation, polyendocrinopathy, enteropathy, and X-linked syndrome in humans. Functionally deficient Treg cells or the development of exTreg cells positively correlate with autoimmune diseases, such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), and ankylosing spondylitis (AS). In general, females are more susceptible to SLE and MS but less susceptible to AS, where the expression of FOXP3 and its protein complex are perturbed by multiple factors, including hormonal fluctuations, inflammatory cytokines, and danger signals. Therefore, it is critical to explore the potential molecular mechanisms involved and these differences linked to gender. Here, we review recent findings on the regulation of FOXP3 activity in Treg cells and also discuss gender difference in the determination of Treg cell function in autoimmune diseases.
Collapse
Affiliation(s)
- Jia Nie
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Yang Yang Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Song Guo Zheng
- Clinical Immunology Center, The Third Affiliated Hospital, Sun Yat-Sen University , Guangzhou , China ; Department of Medicine, Division of Rheumatology, Penn State Hershey College of Medicine , Hershey, PA , USA
| | - Andy Tsun
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China ; Innovent Biologics Inc. , Suzhou , China
| | - Bin Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
5
|
Bergot AS, Chaara W, Ruggiero E, Mariotti-Ferrandiz E, Dulauroy S, Schmidt M, von Kalle C, Six A, Klatzmann D. TCR sequences and tissue distribution discriminate the subsets of naïve and activated/memory Treg cells in mice. Eur J Immunol 2015; 45:1524-34. [PMID: 25726757 DOI: 10.1002/eji.201445269] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Analyses of the regulatory T (Treg) cell TCR repertoire should help elucidate the nature and diversity of their cognate antigens and thus how Treg cells protect us from autoimmune diseases. We earlier identified CD44(hi) CD62L(low) activated/memory (am) Treg cells as a Treg-cell subset with a high turnover and possible self-specificity. We now report that amTreg cells are predominantly distributed in lymph nodes (LNs) draining deep tissues. Multivariate analyses of CDR3 spectratyping first revealed that amTreg TCR repertoire is different from that of naïve Treg cells (nTreg cells) and effector T (Teff) cells. Furthermore, in deep- versus superficial LNs, TCR-β deep sequencing further revealed diversified nTreg-cell and amTreg-cell repertoires, although twofold less diverse than that of Teff cells, and with repertoire richness significantly lower in deep-LN versus superficial-LN Treg cells. Importantly, expanded clonotypes were mostly detected in deep-LN amTreg cells, some accounting for 20% of the repertoire. Strikingly, these clonotypes were absent from nTreg cells, but found at low frequency in Teff cells. Our results, obtained in nonmanipulated mice, indicate different antigenic targets for naïve and amTreg cells and that amTreg cells are self-specific. The data we present are consistent with an instructive component in Treg-cell differentiation.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Wahiba Chaara
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Eliana Ruggiero
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - Sophie Dulauroy
- CNRS, URA 1961 UPMC, Immunophysiopathologie Infectieuse, Institut Pasteur, Paris, France
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany
| | - Adrien Six
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,INSERM, UMRS 959, Immunology-Immunopathology-Immunotherapy (i3), Paris, France.,AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy and Département Hospitalo-Universitaire Inflammation-Immunopathology-Biotherapy (i2B), Paris, France
| |
Collapse
|
6
|
Khailaie S, Robert PA, Toker A, Huehn J, Meyer-Hermann M. A signal integration model of thymic selection and natural regulatory T cell commitment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5983-96. [PMID: 25392533 DOI: 10.4049/jimmunol.1400889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history. These fates are separated based on sustained accumulated signals for positive selection and transient peak signals for negative selection. This spans up the cells into a two-dimensional space where they are either neglected, positively selected, negatively selected, or selected as natural regulatory T cells (nTregs). We show that the dynamics of the integrated signal can serve as a successful basis for extracting specificity of thymocytes to MHC and detecting the existence of cognate self-peptide-MHC. It allows to select a self-MHC-biased and self-peptide-tolerant T cell repertoire. Furthermore, nTregs in the model are enriched with MHC-specific TCRs. This allows nTregs to be more sensitive to activation and more cross-reactive than conventional T cells. This study provides a mechanistic model showing that time integration of TCR-mediated signals, as opposed to single-cell interaction events, is needed to gain a full view on the properties emerging from thymic selection.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique, 34293 Montpellier, France
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, University of Technology Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Okuno Y, Murakoshi A, Negita M, Akane K, Kojima S, Suzuki H. CD8+ CD122+ regulatory T cells contain clonally expanded cells with identical CDR3 sequences of the T-cell receptor β-chain. Immunology 2013; 139:309-17. [PMID: 23317140 PMCID: PMC3701177 DOI: 10.1111/imm.12067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 12/26/2012] [Accepted: 01/07/2013] [Indexed: 12/23/2022] Open
Abstract
We identified CD8(+) CD122(+) regulatory T cells (CD8(+) CD122(+) Treg cells) and reported their importance in maintaining immune homeostasis. The absence of CD8(+) CD122(+) Treg cells has been shown to lead to severe systemic autoimmunity in several mouse models, including inflammatory bowel diseases and experimental autoimmune encephalomyelitis. The T-cell receptors (TCRs) expressed on CD8(+) CD122(+) Treg cells recognize the target cells to be regulated. To aid in the identification of the target antigen(s) recognized by TCRs of CD8(+) CD122(+) Treg cells, we compared the TCR diversity of CD8(+) CD122(+) T cells with that of conventional, naive T cells in mice. We analysed the use of TCR-Vβ in the interleukin 10-producing population of CD8(+) CD122(+) T cells marked by high levels of CD49d expression, and found the significantly increased use of Vβ13 in these cells. Immunoscope analysis of the complementarity-determining region 3 (CDR3) of the TCR β-chain revealed remarkable skewing in a pair of Vβ regions, suggesting the existence of clonally expanded cells in CD8(+) CD122(+) T cells. Clonal expansion in Vβ13(+) cells was confirmed by determining the DNA sequences of the CDR3s. The characteristic TCR found in this study is an important building block for further studies to identify the target antigen recognized by CD8(+) CD122(+) Treg cells.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/physiopathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells/metabolism
- Complementarity Determining Regions/genetics
- Female
- Humans
- Interleukin-10/metabolism
- Interleukin-2 Receptor beta Subunit/metabolism
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Polymerase Chain Reaction/methods
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Sequence Analysis, DNA
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Yusuke Okuno
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Ayako Murakoshi
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Masashi Negita
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Kazuyuki Akane
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Seiji Kojima
- Department of Paediatrics, Nagoya University Graduate School of MedicineNagoya, Japan
| | - Haruhiko Suzuki
- Department of Immunology, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
8
|
Michishita Y, Hirokawa M, Fujishima N, Abe Y, Fujishima M, Guo YM, Ubukawa K, Liu J, Yoshioka T, Kameoka Y, Saitoh H, Tagawa H, Takahashi N, Sawada K. CDR3-independent expansion of Vδ1 T lymphocytes in acquired chronic pure red cell aplasia. Immunol Lett 2013; 150:23-9. [DOI: 10.1016/j.imlet.2012.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 01/09/2023]
|
9
|
Zhuang QJ, Qiu LM, Yao XS, Chen Y, Lv H. CD4 + CD25 + regulatory T cells and hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2012; 20:2248-2253. [DOI: 10.11569/wcjd.v20.i24.2248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CD4+ CD25+ regulatory T cells are a recently discovered subset of CD4+ T cell populations that mediate immune suppression. Their unique mode of action and characteristics make them play an important role in autoimmune diseases, transplantation immunology, tumor immunity and anti-infection immunity. Recent studies suggest that regulatory T cells are closely associated with the pathogenesis and outcome of hepatitis B. Here we review recent advances in understanding the relationship between CD4+ CD25+ regulatory T cells and hepatitis B virus infection.
Collapse
|
10
|
Föhse L, Suffner J, Suhre K, Wahl B, Lindner C, Lee CW, Schmitz S, Haas JD, Lamprecht S, Koenecke C, Bleich A, Hämmerling GJ, Malissen B, Suerbaum S, Förster R, Prinz I. High TCR diversity ensures optimal function and homeostasis of Foxp3+ regulatory T cells. Eur J Immunol 2011; 41:3101-13. [PMID: 21932448 DOI: 10.1002/eji.201141986] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/24/2011] [Accepted: 08/31/2011] [Indexed: 01/08/2023]
Abstract
Dominant tolerance to self-antigen requires the presence of sufficient numbers of CD4(+) Foxp3(+) Treg cells with matching antigen specificity. However, the size and role of TCR repertoire diversity for antigen-specific immuno-regulation through Treg cells is not clear. Here, we developed and applied a novel high-throughput (HT) TCR sequencing approach to analyze the TCR repertoire of Treg cells and revealed the importance of high diversity for Treg-cell homeostasis and function. We found that highly polyclonal Treg cells from WT mice vigorously expanded after adoptive transfer into non-lymphopenic TCR-transgenic recipients with low Treg-cell diversity. In that system, we identified specific Treg-cell TCR preferences in distinct anatomic locations such as the mesenteric LN indicating that Treg cells continuously compete for MHC class-II-presented self-, food-, or flora-antigen. Functionally, we showed that high TCR diversity was required for optimal suppressive function of Treg cells in experimental acute graft versus host disease (GvHD). In conclusion, we suggest that efficient immuno-regulation by Treg cells requires high TCR diversity. Thereby, continuous competition of peripheral Treg cells for limited self-antigen shapes an organ-optimized, yet highly diverse, local TCR repertoire.
Collapse
Affiliation(s)
- Lisa Föhse
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Immune dysregulation after cardiothoracic surgery and incidental thymectomy: maintenance of regulatory T cells despite impaired thymopoiesis. Clin Dev Immunol 2011; 2011:915864. [PMID: 21776289 PMCID: PMC3138054 DOI: 10.1155/2011/915864] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/30/2011] [Accepted: 04/18/2011] [Indexed: 02/06/2023]
Abstract
Thymectomy is performed in infants during cardiothoracic surgery leaving many patients with reduced thympopoiesis. An association between immune disorders and regulatory T cells (Treg) after incidental thymectomy has not been investigated. Questionnaires soliciting symptoms of atopic or autoimmune disease and biomarkers were measured in children and adults with congenital heart disease and either reduced or preserved thymopoiesis. Tregs were examined. Atopic or autoimmune-like symptoms and elevated anti-dsDNA antibodies were common after surgery in individuals with low thymopoiesis. Total Treg number and function were maintained but with fewer naïve Treg. TCR spectratypes were similar to other memory T cells. These data suggest that thymectomy does not reduce total Treg number but homeostasis is affected with reduced naïve Treg. Prevalence of autoimmune or atopic symptoms after surgery is not associated with total number or proportion of Tregs but appears to be due to otherwise unknown factors that may include altered Treg homeostasis.
Collapse
|
12
|
McLean-Tooke A, Barge D, Spickett GP, Gennery AR. Flow Cytometric Analysis of TCR Vβ Repertoire in Patients with 22q11.2 Deletion Syndrome. Scand J Immunol 2011; 73:577-85. [DOI: 10.1111/j.1365-3083.2011.02527.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
13
|
Daniely D, Kern J, Cebula A, Ignatowicz L. Diversity of TCRs on natural Foxp3+ T cells in mice lacking Aire expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:6865-73. [PMID: 20483761 PMCID: PMC3885241 DOI: 10.4049/jimmunol.0903609] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medullary thymic epithelial cells expressing the Aire gene play a critical role in the induction of tolerance to tissue-specific Ags (TSAs). It was postulated that recognition of Aire-controlled TSAs by immature thymocytes results in the selection of natural CD4+Foxp3+ regulatory T cells (Tregs) and enriches this repertoire in self-reactive receptors, contributing to its vast diversity. In this study, we compared the TCRs on individual Tregs in Aire+ and Aire- mice expressing a miniature TCR repertoire (TCRmini) along with GFP driven by the Foxp3 promoter (Foxp3GFP). The Treg TCR repertoires in Aire+ and Aire- TCRminiFoxp3GFP mice were similar and more diverse than their repertoires on CD4+ Foxp3- thymocytes. Further, TCRs found on potentially self-reactive T cells, with an activated phenotype (CD4+Foxp3-CD62Llow) in Aire- TCRminiFoxp3GFP mice, appear distinct from TCRs found on Tregs in Aire+ TCRminiFoxp3GFP mice. Lastly, we found no evidence that TSAs presented by medullary thymic epithelial cells in Aire+TCRmini mice are often recognized as agonists by Treg-derived TCR hybridomas or CD4+CD25+ thymocytes, containing both natural Tregs and precursors. Thus, positive selection and self-reactivity of the global Treg repertoire are not controlled by Aire-dependent TSAs.
Collapse
Affiliation(s)
- Danielle Daniely
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
14
|
Chapoval S, Dasgupta P, Dorsey NJ, Keegan AD. Regulation of the T helper cell type 2 (Th2)/T regulatory cell (Treg) balance by IL-4 and STAT6. J Leukoc Biol 2010; 87:1011-8. [PMID: 20335310 DOI: 10.1189/jlb.1209772] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During the development of immune responses to pathogens, self-antigens, or environmental allergens, naive CD4(+) T cells differentiate into subsets of effector cells including Th1, Th2, and Th17 cells. The differentiation into these subsets is controlled by specific transcription factors. The activity of these effector cells is limited by nTregs and iTregs, whose differentiation and maintenance are dependent on the transcription factor Foxp3. The regulation of autoimmune diseases mediated by Th1 and Th17 cells by Tregs has been studied and reviewed extensively. However, much less has been presented about the interplay between Tregs and Th2 cells and their contribution to allergic disease. In this perspective, we discuss the regulation of Th2 cells by Tregs and vice versa, focusing on the interplay between the IL-4-activated STAT6/GATA3 pathway and Foxp3.
Collapse
Affiliation(s)
- Svetlana Chapoval
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
15
|
Diluvio L, Romiti ML, Angelini F, Campione E, Rossi P, Prinz JC, Chimenti S, Lamioni A. Infliximab therapy induces increased polyclonality of CD4+CD25+ regulatory T cells in psoriasis. Br J Dermatol 2010; 162:895-7. [PMID: 20199542 DOI: 10.1111/j.1365-2133.2010.09650.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Abstract
Natural regulatory T cells (nTregs) are defined by their inherent ability to establish and maintain peripheral self-tolerance. In recent years, the development of nTregs has come under close examination with the advent of Forkhead Box P3 protein (FOXP3)-green fluorescent protein reporter mice that pinpointed the initiation of FOXP3 expression within the thymus. The mechanism and pathway of nTreg development has only recently been studied in detail and to a large degree remains unclear. In this review, we will discuss our current understanding of nTreg lineage choice and development from a cellular and intracellular standpoint.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Humans
- Mice
- MicroRNAs/physiology
- Models, Biological
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/physiology
- Thymus Gland/cytology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Matthew L Bettini
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA
| | | |
Collapse
|
17
|
Velásquez SY, Arias LF, García LF, Alvarez CM. T cell receptor beta chain (TCR-Vbeta) repertoire of circulating CD4(+) CD25(-), CD4(+) CD25(low) and CD4(+) CD25(high) T cells in patients with long-term renal allograft survival. Transpl Int 2009; 23:54-63. [PMID: 19694999 DOI: 10.1111/j.1432-2277.2009.00946.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying maintenance of renal allografts in humans under minimal or conventional immunosuppression are poorly understood. There is evidence that CD4(+) CD25(+) regulatory T cells and clonal deletion, among other mechanisms of tolerance, could play a key role in clinical allograft survival. Twenty-four TCR-Vbeta families were assessed in CD4(+) CD25(-), CD4(+) CD25(low) and CD4(+) CD25(high) T cells from patients with long-term renal allograft survival (LTS), patients exhibiting chronic rejection (ChrRx), patients on dialysis (Dial) and healthy controls (HC) by flow cytometry. LTS patients presented a higher variability in their TCR-Vbeta repertoire, such decreased percentage of Vbeta2(+), Vbeta8a(+) and Vbeta13(+) in CD4(+) CD25(low) and (high) compared with CD4(+) CD25(-) subset and increased Vbeta4 and Vbeta7 families in CD4(+) CD25(high) T cells exclusively. Additionally, LTS patients, particularly those that were not receiving calcineurin inhibitors (CNI), had increased percentages of CD4(+) CD25(high) T cells when compared with Dial (P < 0.05) and ChrRx (P < 0.05) patients. Our results suggest that a differential expression of particular TCR-Vbeta families and high levels of circulating CD4(+) CD25(high) T cells in long-term surviving renal transplant patients could contribute to an active and specific state of immunologic suppression. However, the increase in this T cell subset with regulatory phenotype can be affected by CNI.
Collapse
Affiliation(s)
- Sonia Y Velásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | | | | |
Collapse
|
18
|
Mariani S, Hwang SY, Foglietta M, Bonello L, Vitale C, Coscia M, Fiore F, Bruno B, Massaia M. Comprehensive assessment of the TCRBV repertoire in small T-cell samples by means of an improved and convenient multiplex PCR method. Exp Hematol 2009; 37:728-38. [PMID: 19463773 DOI: 10.1016/j.exphem.2009.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/06/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Overall diversity of the T-cell receptor (TCR) repertoire can be regarded as a recapitulatory signature of a host's immunocompetence status. We aimed to establish a time- and cost-saving multiplex polymerase chain reaction (PCR) method for determining the TCR repertoire of conventional alphabeta T cells in small T-cell samples. MATERIALS AND METHODS The method estimates the length distribution of the complementarity-determining regions 3 (CDR3) of beta variable (BV) gene segments (TCRBV repertoire) by multiplex PCR, followed by fluorescent run-off reactions to visualize BV-BC and/or BV-BJ rearrangements. Run-off products are separated on a capillary sequencer and subsequently analyzed with GeneScan or Genotyper programs. Detection-limit studies with normal T cells, KMS27 cells, and regulatory T cells were carried out to evaluate sensitivity and reproducibility. RESULTS Head-to-head comparison of the method with conventional immunoscope assay has shown that it is a time- and cost-saving approach to characterize TCRBV and TCRBJ repertoires, including the presence of oligoclonal T cells in samples containing as few as 1 x 10(5) T cells. CONCLUSION We have developed a multiplex PCR method that allows comprehensive assessment of the TCRBV repertoire at the BV-BC and BV-BJ levels, and saves a considerable amount of time, reagents, and cell input.
Collapse
Affiliation(s)
- Sara Mariani
- Divisione di Ematologia dell'Università di Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tran DQ, Shevach EM. Therapeutic potential of FOXP3(+) regulatory T cells and their interactions with dendritic cells. Hum Immunol 2009; 70:294-9. [PMID: 19236900 PMCID: PMC11007672 DOI: 10.1016/j.humimm.2009.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/09/2009] [Accepted: 02/11/2009] [Indexed: 12/17/2022]
Abstract
FOXP3(+) regulatory T cells, a unique subset of T cells, are critical for orchestrating an immune response and preventing self-reactivity. With the increasing prevalence and unsatisfactory treatment of autoimmunity, allergic diseases, cancer and chronic infections, much attention has been focused on understanding their mechanisms of action in order to manipulate their function. One goal is to develop drugs or biologics that can enhance or abrogate their functions. Another approach is to utilize Tregs in adoptive cell-based therapy to treat autoimmune diseases or transplant-related complications. This review will focus on their therapeutic potential and mechanisms of action, particularly their interaction with dendritic cells.
Collapse
Affiliation(s)
- Dat Q. Tran
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ethan M. Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Abstract
The CD4(+) CD25(+) regulatory population of T cells (Treg cells), which expresses the forkhead family transcription factor (Foxp3), is the key component of the peripheral tolerance mechanism that protects us from a variety of autoimmune diseases. Experimental evidence shows that Treg cells recognize a wide range of antigenic specificities with increased reactivity to self antigens, although the affinity of these interactions remains to be further defined. The Treg repertoire is highly diverse with a distinct set of T-cell receptors (TCRs), and yet is overlapping to some extent with the repertoire of conventional T cells (Tconv cells). The majority of Treg cells are generated in the thymus. However, the role of the TCR specificity in directing thymic precursors to become Treg or Tconv cells remains unclear. On the one hand, the higher self reactivity of Treg cells and utilization of different TCRs in Treg and Tconv repertoires suggest that in TCR interactions an initial decision is made about the 'suitability' of a developing thymocyte to become a Treg cell. On the other hand, as Treg cells can recognize a wide range of foreign antigens, have a diverse TCR repertoire, and show some degree of overlap with Tconv cells, the signals through the TCR may be complementary to the TCR-independent process that generates precursors of Treg cells. In this review, we discuss how different features of the Treg repertoire influence our understanding of Treg specificities and the role of self reactivity in the generation of this population.
Collapse
Affiliation(s)
- Rafal Pacholczyk
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, 30912-2400, USA.
| | | |
Collapse
|
21
|
McLean-Tooke A, Barge D, Spickett GP, Gennery AR. T cell receptor Vbeta repertoire of T lymphocytes and T regulatory cells by flow cytometric analysis in healthy children. Clin Exp Immunol 2007; 151:190-8. [PMID: 17983445 DOI: 10.1111/j.1365-2249.2007.03536.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Evaluation of the T cell receptor (TCR) Vbeta repertoire by flow cytometric analysis has been used for studying the T cell compartments for diseases in which T cells are implicated in the pathogenesis. For the interpretation of these studies information is needed about Vbeta usage in healthy individuals and there are few data for normal usage in paediatric populations. We examined the T lymphocyte (sub)populations in 47 healthy controls (age range: 3 months-16 years). We found non-random Vbeta usage with skewed reactivity of some families towards CD4+ or CD4- T cells. Importantly, there appeared to be no significant change in Vbeta usage according to age group. Some controls showed expansions in some Vbeta families, although incidence of such expansions was low. We went on to examine the repertoire of CD4+CD25(Bright) T regulatory cells in 25 healthy controls. We found overlapping quantitative usage for each of the Vbeta families between CD4+CD25- and CD4+CD25(Bright) T cells. However, there was a significant preferential usage for five Vbeta families and decreased usage of two Vbeta families in the CD4+CD25(Bright) T cells, suggesting that although they overlap there may be subtle but important differences in the TCR repertoire of T regulatory cells.
Collapse
Affiliation(s)
- A McLean-Tooke
- Department of Immunology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| | | | | | | |
Collapse
|
22
|
Li S, Gowans EJ, Chougnet C, Plebanski M, Dittmer U. Natural regulatory T cells and persistent viral infection. J Virol 2007; 82:21-30. [PMID: 17855537 PMCID: PMC2224364 DOI: 10.1128/jvi.01768-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Shuo Li
- HCV Laboratory, Macfarlane Burnet Institute, GPO Box 2284, Melbourne, VIC 3001, Australia.
| | | | | | | | | |
Collapse
|
23
|
Hoffmann HJ, Malling TM, Topcu A, Ryder LP, Nielsen KR, Varming K, Dahl R, Omland O, Sigsgaard T. CD4dimCD25bright Treg cell frequencies above a standardized gating threshold are similar in asthmatics and controls. Cytometry A 2007; 71:371-8. [PMID: 17458883 DOI: 10.1002/cyto.a.20389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Thymus selected CD4(+)CD25(bright) natural regulatory Treg cells expressing FOXP3 may contribute to control of immune responses. No unique markers have been available to identify and characterize Treg. We present a gating strategy that allows enumeration of Treg on the basis of CD4 and CD25 and investigate whether asthmatics have fewer Treg than controls. METHODS Asthmatics and controls were selected from responses to a mailed questionnaire. CD25, CD4, HLA DR, and appropriate isotypes were recorded by flow cytometry. RESULTS The CD4 T cells expressing most CD25 are a separate population expressing FOXP3 and lower levels of CD4 and CD127. On a CD4 CD25 dot-plot, the CD4 MFI of Treg for 152 participants was calculated to be 0.83 +/- 0.043*MFI of CD25(bright) T-cells. CD4(dim)CD25(bright) T cells in a rectangular gate with a CD4 MFI </= 0.9 (0.83 + [2*0.043])*MFI of CD25(+) T cells were enumerated and shown to be similar for controls (median 8.34%) and asthmatics (median 10.1%). HLA DR expression on Treg correlated with CD25 expression. CONCLUSIONS A standardized two color gating method defines Treg. It may be applied in most clinical scenarios and is useful for sorting viable Treg. Asthmatics and controls have similar numbers of Treg.
Collapse
Affiliation(s)
- Hans Jürgen Hoffmann
- Department of Respiratory Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Knutson KL. Strong-arming immune regulation: suppressing regulatory T-cell function to treat cancers. Future Oncol 2006; 2:379-89. [PMID: 16787118 DOI: 10.2217/14796694.2.3.379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In recent years there has been an accelerated understanding of immune regulatory mechanisms. Much of this immune regulation is linked to a collection of specialized regulatory cells of the T-cell lineage (Tregs). This collection consists of Tregs that are either thymically derived or peripherally induced. Tregs are important for controlling potentially autoreactive immune effectors and immune responses to foreign organisms and molecules. Their importance in maintaining immune homeostasis and the overall health of an organism cannot be overstated. However, there is a dark side, and Tregs may also be involved in the pathogenesis of malignancies. Evidence shows that tumors induce or recruit Tregs to block antitumor effectors. Thus, there are efforts underway to identify approaches that specifically inhibit the function of intratumoral Tregs, which could lead to increased immunity to tumors without off-target immune-related pathologies (i.e., autoimmune disease). In this review, the biology of Tregs is discussed along with their involvement in malignancies and emerging strategies to block their function.
Collapse
Affiliation(s)
- Keith L Knutson
- Department of Immunology, Mayo Clinic College of Medicine, 342C Guggenheim, 200 First St. SW, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
25
|
Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 2006; 25:249-59. [PMID: 16879995 DOI: 10.1016/j.immuni.2006.05.016] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 04/24/2006] [Accepted: 05/30/2006] [Indexed: 11/18/2022]
Abstract
Foxp3(+)CD4(+)CD25(+) regulatory T cells can differentiate from Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) naive T cells. However, the impact of these two processes on size and composition of the peripheral repertoire of regulatory T cells is unclear. Here we followed the fate of individual Foxp3(+)CD4(+)CD25(+) thymocytes and T cells in vivo in T cell receptor (TCR) transgenic mice that express a restricted but polyclonal repertoire of TCRs. By utilizing high-throughput single-cell analysis, we showed that Foxp3(+)CD4(+) peripheral T cells were derived from thymic precursors that expressed a different TCRs than Foxp3(-)CD4(+) medullary thymocytes and Foxp3(-)CD4(+) T cells. Furthermore, the diversity of TCRs on Foxp3(+)CD4(+) regulatory T cells exceeded the diversity of TCRs on Foxp3(-)CD4(+) naive T cells, even in mice that lack expression of tissue-specific antigens. Our results imply that higher TCR diversity on Foxp3(+) regulatory T cells helps these cells to match the specificities of autoreactive and naive T cells.
Collapse
Affiliation(s)
- Rafal Pacholczyk
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | |
Collapse
|
26
|
Robertson SJ, Hasenkrug KJ. The role of virus-induced regulatory T cells in immunopathology. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2006; 28:51-62. [PMID: 16841143 PMCID: PMC7079961 DOI: 10.1007/s00281-006-0019-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 05/17/2006] [Indexed: 12/14/2022]
Abstract
In recent years, regulatory T cells have received increased attention for their role in immune responses to microbial infections. The list of microbial pathogens associated with regulatory T cell responses is growing rapidly and includes bacteria, viruses, parasites, and fungi. As the biology of regulatory T cells is revealed, we are discovering that their induction during infection is a normal aspect of immunity, necessary to limit collateral damage from inflammatory responses and aggressive immunological effectors. Thus, these cells play a critical role in maintaining the delicate balance between preventing immunopathology and allowing the immune response to clear infections. While generally successful, there are notable exceptions where regulatory T cell-mediated suppression appears to be responsible for allowing certain viruses to establish and maintain a persistent state. In this review, we will discuss our current understanding of what virus-induced regulatory T cells are, how they are induced, and what mechanisms they use to suppress immunity. The complex role of Tregs in regulating immunity to viral infections, and the consequences their activity has on disease is illustrated by a review of specific viral infections including hepatitis C virus and human immunodeficiency virus.
Collapse
Affiliation(s)
- Shelly J. Robertson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT 59840 USA
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th St., Hamilton, MT 59840 USA
| |
Collapse
|
27
|
Dejaco C, Duftner C, Schirmer M. Are regulatory T-cells linked with aging? Exp Gerontol 2006; 41:339-45. [PMID: 16516426 DOI: 10.1016/j.exger.2006.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/11/2006] [Accepted: 01/24/2006] [Indexed: 01/10/2023]
Abstract
There is increasing evidence for an active and 'dominant' tolerance mediated by regulatory T-cells. Out of these CD4+ 'naturally occurring' regulatory T-cells (TREGs) are currently the main research focus in this field. TREGs exert their suppressive function in vitro in a contact-dependent manner and preferentially express high levels of CD25 and the forkhead and winged-helix family transcription factor forkhead box P3 (FOXP3). Age-related increment of the prevalences of CD4+ CD25(hi) TREGs were described controversially, and whether such changes explain immune dysfunction in the elderly is still unclear. During aging thymic TREG output may decrease with significant loss of thymic capacity to generate new T-cells, and TREG homeostasis has been shown to be sustained by alternative pathways like peripheral generation of TREGs. An imbalance of TREG homeostasis would then predispose to immune dysfunction in aged individuals explaining their higher risk of immune-mediated diseases, cancer or infections.
Collapse
Affiliation(s)
- Christian Dejaco
- Division of General Internal Medicine, Clinical Department of Internal Medicine, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | |
Collapse
|
28
|
Buer J, Westendorf AM, Zeng AP, He F, Hansen W, Probst-Kepper M. Mechanisms of Central and Peripheral T-Cell Tolerance: An Update. Transfus Med Hemother 2005. [DOI: 10.1159/000089128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|