1
|
Garcia P, Wang Y, Viallet J, Macek Jilkova Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021; 12:791081. [PMID: 34868080 PMCID: PMC8640176 DOI: 10.3389/fimmu.2021.791081] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the immune system is associated with many pathologies, including cardiovascular diseases, diabetes, and cancer. To date, the most commonly used models in biomedical research are rodents, and despite the various advantages they offer, their use also raises numerous drawbacks. Recently, another in vivo model, the chicken embryo and its chorioallantoic membrane, has re-emerged for various applications. This model has many benefits compared to other classical models, as it is cost-effective, time-efficient, and easier to use. In this review, we explain how the chicken embryo can be used as a model for immune-based studies, as it gradually develops an embryonic immune system, yet which is functionally similar to humans'. We mainly aim to describe the avian immune system, highlighting the differences and similarities with the human immune system, including the repertoire of lymphoid tissues, immune cells, and other key features. We also describe the general in ovo immune ontogeny. In conclusion, we expect that this review will help future studies better tailor their use of the chicken embryo model for testing specific experimental hypotheses or performing preclinical testing.
Collapse
Affiliation(s)
- Paul Garcia
- Université Grenoble Alpes, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, Centre Hospitalo-Universitaire (USA) Grenoble Alpes, La Tronche, France
| |
Collapse
|
2
|
Mindus C, van Staaveren N, Bharwani A, Fuchs D, Gostner JM, Kjaer JB, Kunze W, Mian MF, Shoveller AK, Forsythe P, Harlander-Matauschek A. Ingestion of Lactobacillus rhamnosus modulates chronic stress-induced feather pecking in chickens. Sci Rep 2021; 11:17119. [PMID: 34429482 PMCID: PMC8384842 DOI: 10.1038/s41598-021-96615-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Feather pecking (FP) is a stress-induced neuropsychological disorder of birds. Intestinal dysbiosis and inflammation are common traits of these disorders. FP is, therefore, proposed to be a behavioral consequence of dysregulated communication between the gut and the brain. Probiotic bacteria are known to favorably modulate the gut microbiome and hence the neurochemical and immune components of the gut-brain axis. Consequently, probiotic supplementation represents a promising new therapeutic to mitigate widespread FP in domestic chickens. We monitored FP, gut microbiota composition, immune markers, and amino acids related to the production of neurochemicals in chickens supplemented with Lactobacillus rhamnosus or a placebo. Data demonstrate that, when stressed, the incidence of FP increased significantly; however, L. rhamnosus prevented this increase. L. rhamnosus supplementation showed a strong immunological effect by increasing the regulatory T cell population of the spleen and the cecal tonsils, in addition to limiting cecal microbiota dysbiosis. Despite minimal changes in aromatic amino acid levels, data suggest that catecholaminergic circuits may be an interesting target for further studies. Overall, our findings provide the first data supporting the use of a single-strain probiotic to reduce stress-induced FP in chickens and promise to improve domestic birds' welfare.
Collapse
Affiliation(s)
- Claire Mindus
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Nienke van Staaveren
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Aadil Bharwani
- Michael G. DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Center for Chemistry and Biomedicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Joergen B Kjaer
- Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Wolfgang Kunze
- Brain-Body Institute, St. Joseph's Healthcare, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - M Firoz Mian
- Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Paul Forsythe
- Division of Respirology, Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | | |
Collapse
|
3
|
Li Y, Song Y, Deng G, Tan Q, Xu S, Yang M, Shi H, Hong M, Ye H, Wu C, Ma S, Huang H, Zhang Y, Zeng Z, Wang M, Chen Y, Wang Y, Ma J, Li J, Gao L. Indoleamine 2, 3-dioxygenase 1 aggravates acetaminophen-induced acute liver failure by triggering excess nitroxidative stress and iron accumulation. Free Radic Biol Med 2021; 172:578-589. [PMID: 34242792 DOI: 10.1016/j.freeradbiomed.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
Acetaminophen (APAP) is the leading cause of acute liver failure (ALF), which is characterized by GSH depletion, oxidative stress and mitochondrial dysfunction. However, the specific mechanism of APAP-induced ALF remains to be clarified. In this study, we demonstrated that indoleamine 2,3-dioxygenase 1 (IDO1) aggravated APAP-induced ALF associated with excess lipid peroxidation, which was reversed by lipid peroxidation inhibitor (ferrostatin-1). Meanwhile, IDO1 deficiency effectively decreased the accumulation of reactive nitrogen species. Additionally, IDO1 deficiency prevented against APAP-induced liver injury through suppressing the activation of macrophages, thereby reduced their iron uptake and export, eventually reduced iron accumulation in hepatocytes through transferrin and transferrin receptor axis. In summary, our study confirmed that APAP-induced IDO1 aggravated ALF by triggering excess oxidative and nitrative stress and iron accumulation in liver. These results offer new insights for the clinical treatment of ALF or iron-dysregulated liver diseases in the future.
Collapse
Affiliation(s)
- Yunjia Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yuhong Song
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518116, Guangdong, China
| | - Guanghui Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Qinxiang Tan
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, 518116, Guangdong, China
| | - Shu Xu
- Department of Oncology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518107, Guangdong, China
| | - Menghan Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Hao Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Mukeng Hong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Haixin Ye
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Chaofeng Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Shuoyi Ma
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Huacong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yanhong Zhang
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Zhiyun Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Ming Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yunqing Wang
- Fifth People's Hospital, Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Jun Ma
- Department of Traditional Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China.
| | - Juan Li
- Department of Rheumatic & TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| | - Lei Gao
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
4
|
Pirzadeh M, Khalili N, Rezaei N. The interplay between aryl hydrocarbon receptor, H. pylori, tryptophan, and arginine in the pathogenesis of gastric cancer. Int Rev Immunol 2020; 41:299-312. [DOI: 10.1080/08830185.2020.1851371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
5
|
Fan Q, Abouelezz K, Wang Y, Lin X, Li L, Gou Z, Cheng Z, Ding F, Jiang S. Influence of vitamin E, tryptophan and β-glucan on growth performance, meat quality, intestinal immunity, and antioxidative status of yellow-feathered chickens fed thermally oxidized oils. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
7
|
Chaudhari AA, Kim WH, Lillehoj HS. Interleukin-4 (IL-4) may regulate alternative activation of macrophage-like cells in chickens: A sequential study using novel and specific neutralizing monoclonal antibodies against chicken IL-4. Vet Immunol Immunopathol 2018; 205:72-82. [DOI: 10.1016/j.vetimm.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
|
8
|
Jiang SQ, Gou ZY, Lin XJ, Li L. Effects of dietary tryptophan levels on performance and biochemical variables of plasma and intestinal mucosa in yellow-feathered broiler breeders. J Anim Physiol Anim Nutr (Berl) 2017; 102:e387-e394. [PMID: 29152793 DOI: 10.1111/jpn.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/28/2017] [Indexed: 01/06/2023]
Abstract
The effects of dietary tryptophan (Trp) levels on performance and biochemical variables of plasma and intestinal mucosa in broiler breeder hens were investigated in this study. A total of 780 Lingnan yellow-feathered broiler breeder hens were randomly assigned in one of five dietary treatments with six replicates per treatment (26 birds per replicate). The breeder hens were fed either the basal diet (0.11% Trp) or the basal diet supplemented to 0.15%, 0.19%, 0.23% and 0.27% Trp, from 197 to 259 days of age. Graded levels of Trp from 0.11% to 0.27% in the diet produced quadratic (p < .05) responses in laying rate, average daily egg production, and feed conversion ratio, and quadratic (p < .01) responses in total large follicle weight and average large follicle weight. An increase in fertilization rate of total eggs was observed in breeders fed 0.27% Trp, and hatchability was higher in breeders fed 0.23% and 0.27% Trp than with 0.19% Trp (p < .05). The content of uric acid N decreased with 0.15% and 0.23% dietary Trp (p < .05). The content of GSH and the GSH-to-GSSG ratio in plasma were reduced by 0.15%, 0.19% and 0.27% Trp diets (p < .05). A higher activity of GST in plasma was observed with 0.15% Trp in relation to 0.23% and 0.27% Trp (p < .05). The activity of Na+ -K+ -ATPase of plasma in birds fed 0.27% Trp was lower than in those fed 0.15% Trp and the control birds (p < .05). There were significant influences of dietary Trp levels on S6K1, B0 AT1, Nrf2, TLR4, TNF-α and IL-6 transcripts of ileal mucosa (p < .05). The optimal dietary Trp level was 0.203% or 254 mg per hen per day, for Chinese yellow-feathered broiler breeder hens aged from 197 to 259 days.
Collapse
Affiliation(s)
- S Q Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Z Y Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - X J Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - L Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| |
Collapse
|
9
|
Participation of hippocampal nitric oxide synthase and soluble guanylate cyclase in the modulation of behavioral responses elicited by the rat forced swimming test. Behav Pharmacol 2017; 28:19-29. [PMID: 27779493 DOI: 10.1097/fbp.0000000000000263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Passos CS, Carvalho LN, Pontes RB, Campos RR, Ikuta O, Boim MA. Blood pressure reducing effects of Phalaris canariensis in normotensive and spontaneously hypertensive rats. Can J Physiol Pharmacol 2012; 90:201-8. [PMID: 22309003 DOI: 10.1139/y11-120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The birdseed Phalaris canariensis (Pc) is popularly used as an antihypertensive agent. The aqueous extract of Pc (AEPc) was administered in adult normotensive Wistar rats and spontaneously hypertensive rats (SHR) and in prehypertensive young SHR (SHR(Y), 3 weeks old). Animals received AEPc (400 mg·kg(-1)·day(-1), by gavage) for 30 days, then groups were divided into 2 subgroups: one was treated for another 30 days and the other received water instead of AEPc for 30 days. AEPc reduced systolic blood pressure (SBP) in both adult groups; however, treatment interruption was followed by a gradual return of the SBP to baseline levels. SHR(Y) became hypertensive 30 days after weaning. AEPc minimized the increase in SBP in SHR(Y), but blood pressure rose to levels similar to those in the untreated group with treatment interruption. There were no changes in renal function, diuresis, or Na(+) excretion. Pc is rich in tryptophan, and the inhibition of the metabolism of tryptophan to kynurenine, a potential vasodilator factor, prevented the blood pressure reducing effect of AEPc. Moreover, AEPc significantly reduced sympathoexcitation. Data indicate that the metabolic derivative of tryptophan, kynurenine, may be a mediator of the volume-independent antihypertensive effect of Pc, which was at least in part mediated by suppression of the sympathetic tonus.
Collapse
Affiliation(s)
- Clévia Santos Passos
- Renal Division, Federal University of São Paulo (UNIFESP), Rua Botucatu, 740, 04023-900, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
He H, Genovese KJ, Kogut MH. Modulation of chicken macrophage effector function by T(H)1/T(H)2 cytokines. Cytokine 2011; 53:363-9. [PMID: 21208811 DOI: 10.1016/j.cyto.2010.12.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/18/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022]
Abstract
Regulation of macrophage activity by T(H)1/2 cytokines is important to maintain the balance of immunity to provide adequate protective immunity while avoiding excessive inflammation. IFN-γ and IL-4 are the hallmark T(H)1 and T(H)2 cytokines, respectively. In avian species, information concerning regulation of macrophage activity by T(H)1/2 cytokines is limited. Here, we investigated the regulatory function of chicken T(H)1 cytokines IFN-γ, IL-18 and T(H)2 cytokines IL-4, IL-10 on the HD11 macrophage cell line. Chicken IFN-γ stimulated nitric oxide (NO) synthesis in HD11 cells and primed the cells to produce significantly greater amounts of NO when exposed to microbial agonists, lipopolysaccharide, lipoteichoic acid, peptidoglycan, CpG-ODN, and poly I:C. In contrast, chicken IL-4 exhibited bi-directional immune regulatory activity: it activated macrophage NO synthesis in the absence of inflammatory agonists, but inhibited NO production by macrophages in response to microbial agonists. Both IFN-γ and IL-4, however, enhanced oxidative burst activity of the HD11 cells when exposed to Salmonella enteritidis. IL-18 and IL-10 did not affect NO production nor oxidative burst in HD11 cells. Phagocytosis and bacterial killing by the HD11 cells were not affected by the treatments of these cytokines. Infection of HD11 cells with S.enteritidis was shown to completely abolish NO production regardless of IFN-γ treatment. This study has demonstrated that IFN-γ and IL-4 are important T(H)1 and T(H)2 cytokines that regulate macrophage function in chickens.
Collapse
Affiliation(s)
- Haiqi He
- Southern Plain Agricultural Research Center, USDA-ARS, 2881 F&B Road, College Station, TX 77845, United States.
| | | | | |
Collapse
|
12
|
Yuasa HJ, Ball HJ. Molecular evolution and characterization of fungal indoleamine 2,3-dioxygenases. J Mol Evol 2010; 72:160-8. [PMID: 21170645 DOI: 10.1007/s00239-010-9412-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 11/12/2010] [Indexed: 11/26/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes. Mammalian IDO expression is induced by cytokines and has antimicrobial and immunomodulatory effects. A major role of mammalian TDO is to supply nicotinamide adenine dinucleotide (NAD(+)). In fungi, the IDO homologue is thought to be expressed constitutively and supply NAD(+), as TDO is absent from their genomes. Here, we reveal the distribution of IDO genes among fungal species and characterize their enzymatic activity. The yeast, Saccharomyces cerevisiae has only one IDO gene, whereas the koji-mold, Aspergillus oryzae has two genes, IDOα and IDOβ. The A. oryzae IDOα showed more similar enzymatic properties to those of S. cerevisiae IDO than IDOβ, suggesting that the A. oryzae IDOα is a functional homologue of the S. cerevisiae IDO. From the IDOβ gene, two isoforms, IDOβ and IDOβ(+) could be generated by alternative splicing. The latter contained a 17 amino acids insertion which were encoded by the first intron of IDOβ gene. In comparison to IDOβ(+), bacterially expressed IDOβ showed much lower K(m) value and more than five-times faster V(max) value, resulting in 85 times higher catalytic efficiency; i.e., the removal of the domain encoded by the first intron from IDOβ(+) increases its enzymatic activity drastically. This might be a unique regulation mechanism of the L-Trp metabolism in the A. oryzae. The levo-1-methyl tryptophan (L-1MT) is a good inhibitor of both IDO1 and IDO2. However, the activity of fungal IDOs tested was not inhibited at all by L-1MT.
Collapse
Affiliation(s)
- Hajime J Yuasa
- Laboratory of Biochemistry, Department of Applied Science, Faculty of Science, National University Corporation Kochi University, Kochi 780-8520, Japan.
| | | |
Collapse
|
13
|
Yuasa HJ, Ball HJ, Austin CJ, Hunt NH. 1-l-methyltryptophan is a more effective inhibitor of vertebrate IDO2 enzymes than 1-d-methyltryptophan. Comp Biochem Physiol B Biochem Mol Biol 2010; 157:10-5. [DOI: 10.1016/j.cbpb.2010.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/23/2023]
|
14
|
Wang Y, Lawson MA, Dantzer R, Kelley KW. LPS-induced indoleamine 2,3-dioxygenase is regulated in an interferon-gamma-independent manner by a JNK signaling pathway in primary murine microglia. Brain Behav Immun 2010; 24:201-9. [PMID: 19577630 PMCID: PMC2818058 DOI: 10.1016/j.bbi.2009.06.152] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 01/03/2023] Open
Abstract
Inflammation-induced activation of the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) causes depressive-like behavior in mice following acute activation of the innate immune system by lipopolysaccharide (LPS). Here we investigated the mechanism of IDO expression induced by LPS in primary cultures of microglia derived from neonatal C57BL/6J mice. LPS (10 ng/ml) induced IDO transcripts that peaked at 8h and enzymatic activity at 24h, resulting in an increase in extracellular kynurenine, the catabolic product of IDO-induced tryptophan catabolism. This IDO induction by LPS was accompanied by synthesis and secretion of the proinflammatory cytokines TNFalpha and IL-6, but without detectable IFNgamma expression. To explore the mechanism of LPS-induced IDO expression, microglia were pretreated with the c-Jun-N-terminal kinase (JNK) inhibitor SP600125 for 30 min before LPS treatment. We found that SP600125 blocked JNK phosphorylation and significantly decreased IDO expression induced by LPS, which was accompanied by a reduction of LPS-induced expression of TNFalpha and IL-6. Collectively, these data extend to microglia the property that LPS induces IDO expression via an IFNgamma-independent mechanism that depends upon activation of JNK. Inhibition of the JNK pathway may provide a new therapy for inflammatory depression.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Animal Sciences, Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, 227 Edward R. Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801-3873, USA.
| | - Marcus A. Lawson
- Department of Animal Sciences, Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, 227 Edward R. Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801-3873, USA
| | - Robert Dantzer
- Department of Animal Sciences, Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, 227 Edward R. Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801-3873, USA,Department of Pathology, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W. Kelley
- Department of Animal Sciences, Integrative Immunology and Behavior Program, University of Illinois at Urbana-Champaign, 227 Edward R. Madigan Laboratory, 1201 W. Gregory Drive, Urbana, IL 61801-3873, USA,Department of Pathology, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA,Corresponding authors: Keith W. Kelley, 227 Edward R. Madigan Laboratory, 1201 W. Gregory Dr., University of Illinois at Urbana-Champaign, Urbana, IL 61801-3873. Tel: (217) 333-5141, Fax: (217) 244-5617, or Yunxia Wang, 800 Xiangyin Road, Department of Nautical Medicine, Second Military Medical University, Shanghai, China 200433,
| |
Collapse
|
15
|
Bitzer-Quintero OK, Dávalos-Marín AJ, Ortiz GG, Meza ARDA, Torres-Mendoza BM, Robles RG, Huerta VC, Beas-Zárate C. Antioxidant activity of tryptophan in rats under experimental endotoxic shock. Biomed Pharmacother 2010; 64:77-81. [DOI: 10.1016/j.biopha.2009.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/02/2009] [Indexed: 11/29/2022] Open
|
16
|
Becerra A, Warke RV, Xhaja K, Evans B, Evans J, Martin K, de Bosch N, Rothman AL, Bosch I. Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function. J Gen Virol 2009; 90:810-817. [PMID: 19264674 DOI: 10.1099/vir.0.004416-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-gamma) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-gamma against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo.
Collapse
Affiliation(s)
- Aniuska Becerra
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Rajas V Warke
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Kris Xhaja
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Barbara Evans
- University of Massachusetts Medical School Proteomic and Mass Spectrometry Core Facility, 365 Plantation Street, Worcester, MA 01605, USA
| | - James Evans
- University of Massachusetts Medical School Proteomic and Mass Spectrometry Core Facility, 365 Plantation Street, Worcester, MA 01605, USA
| | - Katherine Martin
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Norma de Bosch
- Banco Municipal de Sangre del Distrito Capital, San Jose, Caracas, Venezuela
| | - Alan L Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Irene Bosch
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| |
Collapse
|
17
|
Abstract
The etiology of multiple sclerosis (MS) is unknown but it manifests as a chronic inflammatory demyelinating disease in the central nervous system (CNS). During chronic CNS inflammation, nicotinamide adenine dinucleotide (NAD) concentrations are altered by (T helper) Th1-derived cytokines through the coordinated induction of both indoleamine 2,3-dioxygenase (IDO) and the ADP cyclase CD38 in pathogenic microglia and lymphocytes. While IDO activation may keep auto-reactive T cells in check, hyper-activation of IDO can leave neuronal CNS cells starving for extracellular sources of NAD. Existing data indicate that glia may serve critical functions as an essential supplier of NAD to neurons during times of stress. Administration of pharmacological doses of non-tryptophan NAD precursors ameliorates pathogenesis in animal models of MS. Animal models of MS involve artificially stimulated autoimmune attack of myelin by experimental autoimmune encephalomyelitis (EAE) or by viral-mediated demyelination using Thieler's murine encephalomyelitis virus (TMEV). The Wld(S) mouse dramatically resists razor axotomy mediated axonal degeneration. This resistance is due to increased efficiency of NAD biosynthesis that delays stress-induced depletion of axonal NAD and ATP. Although the Wld(S) genotype protects against EAE pathogenesis, TMEV-mediated pathogenesis is exacerbated. In this review, we contrast the role of NAD in EAE versus TMEV demyelinating pathogenesis to increase our understanding of the pharmacotherapeutic potential of NAD signal transduction pathways. We speculate on the importance of increased SIRT1 activity in both PARP-1 inhibition and the potentially integral role of neuronal CD200 interactions through glial CD200R with induction of IDO in MS pathogenesis. A comprehensive review of immunomodulatory control of NAD biosynthesis and degradation in MS pathogenesis is presented. Distinctive pharmacological approaches designed for NAD-complementation or targeting NAD-centric proteins (SIRT1, SIRT2, PARP-1, GPR109a, and CD38) are outlined towards determining which approach may work best in the context of clinical application.
Collapse
Affiliation(s)
- W Todd Penberthy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, Ohio 45237, USA.
| | | |
Collapse
|