1
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. eLife 2025; 13:RP98287. [PMID: 40326866 PMCID: PMC12055012 DOI: 10.7554/elife.98287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Furthermore, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Madison Mack
- Immunology and Inflammation Research Therapeutic Area, SanofiCambridgeUnited States
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jenny M Karo
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joseph C Sun
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
2
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.23.590767. [PMID: 38712036 PMCID: PMC11071423 DOI: 10.1101/2024.04.23.590767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Madison Mack
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA 02141, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anna M. Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny M. Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai 10019
| |
Collapse
|
3
|
Khan M, Alteneder M, Reiter W, Krausgruber T, Dobnikar L, Madern M, Waldherr M, Bock C, Hartl M, Ellmeier W, Henriksson J, Boucheron N. Single-cell and chromatin accessibility profiling reveals regulatory programs of pathogenic Th2 cells in allergic asthma. Nat Commun 2025; 16:2565. [PMID: 40089475 PMCID: PMC11910648 DOI: 10.1038/s41467-025-57590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Lung pathogenic T helper type 2 (pTh2) cells are important in mediating allergic asthma, but fundamental questions remain regarding their heterogeneity and epigenetic regulation. Here we investigate immune regulation in allergic asthma by single-cell RNA sequencing in mice challenged with house dust mite, in the presence and absence of histone deacetylase 1 (HDAC1) function. Our analyses indicate two distinct highly proinflammatory subsets of lung pTh2 cells and pinpoint thymic stromal lymphopoietin (TSLP) and Tumour Necrosis Factor Receptor Superfamily (TNFRSF) members as important drivers to generate pTh2 cells in vitro. Using our in vitro model, we uncover how signalling via TSLP and a TNFRSF member shapes chromatin accessibility at the type 2 cytokine gene loci by modulating HDAC1 repressive function. In summary, we have generated insights into pTh2 cell biology and establish an in vitro model for investigating pTh2 cells that proves useful for discovering molecular mechanisms involved in pTh2-mediated allergic asthma.
Collapse
Affiliation(s)
- Matarr Khan
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Marlis Alteneder
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Lina Dobnikar
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Moritz Madern
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Monika Waldherr
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
- FH Campus Wien, Department of Applied Life Sciences/Bioengineering/Bioinformatics, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Johan Henriksson
- Umeå University, Umeå Centre for Microbial Research (UCMR), Integrated Science Lab (Icelab), Department of Molecular Biology, Umeå, Sweden
| | - Nicole Boucheron
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria.
| |
Collapse
|
4
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
5
|
Garnica J, Sole P, Yamanouchi J, Moro J, Mondal D, Fandos C, Serra P, Santamaria P. T-follicular helper cells are epigenetically poised to transdifferentiate into T-regulatory type 1 cells. eLife 2024; 13:RP97665. [PMID: 39576679 PMCID: PMC11584177 DOI: 10.7554/elife.97665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.
Collapse
Affiliation(s)
- Josep Garnica
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Patricia Sole
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Jun Yamanouchi
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Joel Moro
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Debajyoti Mondal
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| | - Cesar Fandos
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pau Serra
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
| | - Pere Santamaria
- Institut D’Investigacions Biomèdiques August Pi i SunyerBarcelonaSpain
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgary, AlbertaCanada
| |
Collapse
|
6
|
Picavet LW, Samat AAK, Calis J, Nijhuis L, Scholman R, Mokry M, Tough DF, Prinjha RK, Vastert SJ, van Loosdregt J. CBP/P300 Inhibition Impairs CD4+ T Cell Activation: Implications for Autoimmune Disorders. Biomedicines 2024; 12:1344. [PMID: 38927552 PMCID: PMC11202127 DOI: 10.3390/biomedicines12061344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation of histone 3 at Lysine 27 (H3K27ac) at enhancer and promoter regions of proinflammatory cytokines, thereby increasing the expression of these genes which is essential for T cell function. Co-activators E1A binding protein P300 (P300) and CREB binding protein (CBP), collectively known as P300/CBP, are essential to facilitate H3K27 acetylation. Presently, the role of P300/CBP in human CD4+ T cells activation remains incompletely understood. To assess the function of P300/CBP in T cell activation and autoimmune disease, we utilized iCBP112, a selective inhibitor of P300/CBP, in T cells obtained from healthy controls and JIA patients. Treatment with iCBP112 suppressed T cell activation and cytokine signaling pathways, leading to reduced expression of many proinflammatory cytokines, including IL-2, IFN-γ, IL-4, and IL-17A. Moreover, P300/CBP inhibition in T cells derived from the inflamed synovium of JIA patients resulted in decreased expression of similar pathways and preferentially suppressed the expression of disease-associated genes. This study underscores the regulatory role of P300/CBP in regulating gene expression during T cell activation while offering potential insights into the pathogenesis of autoimmune diseases. Our findings indicate that P300/CBP inhibition could potentially be leveraged for the treatment of autoimmune diseases such as JIA in the future.
Collapse
Affiliation(s)
- Lucas Wilhelmus Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Anoushka A. K. Samat
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Jorg Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Lotte Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Rianne Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - David F. Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Rabinder K. Prinjha
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| |
Collapse
|
7
|
Gonzalez-Avalos E, Onodera A, Samaniego-Castruita D, Rao A, Ay F. Predicting gene expression state and prioritizing putative enhancers using 5hmC signal. Genome Biol 2024; 25:142. [PMID: 38825692 PMCID: PMC11145787 DOI: 10.1186/s13059-024-03273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/11/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Like its parent base 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC) is a direct epigenetic modification of cytosines in the context of CpG dinucleotides. 5hmC is the most abundant oxidized form of 5mC, generated through the action of TET dioxygenases at gene bodies of actively-transcribed genes and at active or lineage-specific enhancers. Although such enrichments are reported for 5hmC, to date, predictive models of gene expression state or putative regulatory regions for genes using 5hmC have not been developed. RESULTS Here, by using only 5hmC enrichment in genic regions and their vicinity, we develop neural network models that predict gene expression state across 49 cell types. We show that our deep neural network models distinguish high vs low expression state utilizing only 5hmC levels and these predictive models generalize to unseen cell types. Further, in order to leverage 5hmC signal in distal enhancers for expression prediction, we employ an Activity-by-Contact model and also develop a graph convolutional neural network model with both utilizing Hi-C data and 5hmC enrichment to prioritize enhancer-promoter links. These approaches identify known and novel putative enhancers for key genes in multiple immune cell subsets. CONCLUSIONS Our work highlights the importance of 5hmC in gene regulation through proximal and distal mechanisms and provides a framework to link it to genome function. With the recent advances in 6-letter DNA sequencing by short and long-read techniques, profiling of 5mC and 5hmC may be done routinely in the near future, hence, providing a broad range of applications for the methods developed here.
Collapse
Affiliation(s)
- Edahi Gonzalez-Avalos
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Onodera
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Daniela Samaniego-Castruita
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anjana Rao
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Ferhat Ay
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
8
|
Liu S, Cao Y, Cui K, Ren G, Zhao T, Wang X, Wei D, Chen Z, Gurram RK, Liu C, Wu C, Zhu J, Zhao K. Regulation of T helper cell differentiation by the interplay between histone modification and chromatin interaction. Immunity 2024; 57:987-1004.e5. [PMID: 38614090 PMCID: PMC11096031 DOI: 10.1016/j.immuni.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.
Collapse
Affiliation(s)
- Shuai Liu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaqiang Cao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gang Ren
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tingting Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuezheng Wang
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Ferreira ACF, Szeto ACH, Clark PA, Crisp A, Kozik P, Jolin HE, McKenzie ANJ. Neuroprotective protein ADNP-dependent histone remodeling complex promotes T helper 2 immune cell differentiation. Immunity 2023; 56:1468-1484.e7. [PMID: 37285842 PMCID: PMC10501989 DOI: 10.1016/j.immuni.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.
Collapse
Affiliation(s)
| | | | - Paula A Clark
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
10
|
Qin L, Song Y, Zhang F, Wang R, Zhou L, Jin S, Chen C, Li C, Wang M, Jiang B, Sun G, Ma C, Gong Y, Li P. CRL4B complex-mediated H2AK119 monoubiquitination restrains Th1 and Th2 cell differentiation. Cell Death Differ 2023; 30:1488-1502. [PMID: 37024604 PMCID: PMC10244459 DOI: 10.1038/s41418-023-01155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
CD4+ T helper (Th) cell differentiation is regulated by lineage-specific expression of transcription factors, which is tightly associated with epigenetic modifications, including histone acetylation and methylation. However, the factors regulating histone modifications involved in Th cell differentiation remain largely unknown. We herein demonstrated a critical role of Cullin 4B (CUL4B) in restricting Th1 and Th2 cell differentiation. CUL4B, which is assembled into the CUL4B-RING E3 ligase (CRL4B) complex, participates in various physiological and developmental processes through epigenetic repression of transcription. Depletion of Cul4b in CD4+ T cells enhanced Th1 and Th2 cell differentiation. In vivo, an aggravated Th2 response caused by the absence of CUL4B was observed in a murine asthma model. Mechanistically, the CRL4B complex promoted monoubiquitination at H2AK119 (H2AK119ub1) and polycomb repressive complex 2 (PRC2)-mediated trimethylation at H3K27 (H3K27me3) at Tbx21 and Maf and consequently repressed their expression during Th cell differentiation. Our study suggests that CRL4B complex-mediated H2AK119ub1 deposition functions to prevent the aberrant expression of Th1 and Th2 lineage-specific genes.
Collapse
Affiliation(s)
- Liping Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yu Song
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Fan Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ru Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Zhou
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shiqi Jin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chaojia Chen
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunyang Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Molin Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Baichun Jiang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gongping Sun
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chunhong Ma
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yaoqin Gong
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Peishan Li
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
11
|
Kamburov A, Herwig R. ConsensusPathDB 2022: molecular interactions update as a resource for network biology. Nucleic Acids Res 2021; 50:D587-D595. [PMID: 34850110 PMCID: PMC8728246 DOI: 10.1093/nar/gkab1128] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
Molecular interactions are key drivers of biological function. Providing interaction resources to the research community is important since they allow functional interpretation and network-based analysis of molecular data. ConsensusPathDB (http://consensuspathdb.org) is a meta-database combining interactions of diverse types from 31 public resources for humans, 16 for mice and 14 for yeasts. Using ConsensusPathDB, researchers commonly evaluate lists of genes, proteins and metabolites against sets of molecular interactions defined by pathways, Gene Ontology and network neighborhoods and retrieve complex molecular neighborhoods formed by heterogeneous interaction types. Furthermore, the integrated protein–protein interaction network is used as a basis for propagation methods. Here, we present the 2022 update of ConsensusPathDB, highlighting content growth, additional functionality and improved database stability. For example, the number of human molecular interactions increased to 859 848 connecting 200 499 unique physical entities such as genes/proteins, metabolites and drugs. Furthermore, we integrated regulatory datasets in the form of transcription factor–, microRNA– and enhancer–gene target interactions, thus providing novel functionality in the context of overrepresentation and enrichment analyses. We specifically emphasize the use of the integrated protein–protein interaction network as a scaffold for network inferences, present topological characteristics of the network and discuss strengths and shortcomings of such approaches.
Collapse
Affiliation(s)
- Atanas Kamburov
- R&D Digital Technologies Department, Bayer AG, Berlin 13353, Germany
| | - Ralf Herwig
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| |
Collapse
|
12
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
13
|
Pham D, Moseley CE, Gao M, Savic D, Winstead CJ, Sun M, Kee BL, Myers RM, Weaver CT, Hatton RD. Batf Pioneers the Reorganization of Chromatin in Developing Effector T Cells via Ets1-Dependent Recruitment of Ctcf. Cell Rep 2020; 29:1203-1220.e7. [PMID: 31665634 PMCID: PMC7182170 DOI: 10.1016/j.celrep.2019.09.064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/28/2019] [Accepted: 09/20/2019] [Indexed: 11/28/2022] Open
Abstract
The basic leucine zipper transcription factor activating transcription factor-like (Batf) contributes to transcriptional programming of multiple effector T cells and is required for T helper 17 (Th17) and T follicular helper (Tfh) cell development. Here, we examine mechanisms by which Batf initiates gene transcription in developing effector CD4 T cells. We find that, in addition to its pioneering function, Batf controls developmentally regulated recruitment of the architectural factor Ctcf to promote chromatin looping that is associated with lineage-specific gene transcription. The chromatin-organizing actions of Batf are largely dependent on Ets1, which appears to be indispensable for the Batf-dependent recruitment of Ctcf. Moreover, most of the Batf-dependent sites to which Ctcf is recruited lie outside of activating protein-1-interferon regulatory factor (Ap-1-Irf) composite elements (AICEs), indicating that direct involvement of Batf-Irf complexes is not required. These results identify a cooperative role for Batf, Ets1, and Ctcf in chromatin reorganization that underpins the transcriptional programming of effector T cells.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Carson E Moseley
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Gao
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Savic
- Human Genomics and Genetics, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Colleen J Winstead
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mengxi Sun
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Barbara L Kee
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Richard M Myers
- Human Genomics and Genetics, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Bevington SL, Keane P, Soley JK, Tauch S, Gajdasik DW, Fiancette R, Matei-Rascu V, Willis CM, Withers DR, Cockerill PN. IL-2/IL-7-inducible factors pioneer the path to T cell differentiation in advance of lineage-defining factors. EMBO J 2020; 39:e105220. [PMID: 32930455 PMCID: PMC7667885 DOI: 10.15252/embj.2020105220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
When dormant naïve T cells first become activated by antigen-presenting cells, they express the autocrine growth factor IL-2 which transforms them into rapidly dividing effector T cells. During this process, hundreds of genes undergo epigenetic reprogramming for efficient activation, and also for potential reactivation after they return to quiescence as memory T cells. However, the relative contributions of IL-2 and T cell receptor signaling to this process are unknown. Here, we show that IL-2 signaling is required to maintain open chromatin at hundreds of gene regulatory elements, many of which control subsequent stimulus-dependent alternative pathways of T cell differentiation. We demonstrate that IL-2 activates binding of AP-1 and STAT5 at sites that can subsequently bind lineage-determining transcription factors, depending upon what other external factors exist in the local T cell environment. Once established, priming can also be maintained by the stroma-derived homeostatic cytokine IL-7, and priming diminishes if Il7r is subsequently deleted in vivo. Hence, IL-2 is not just a growth factor; it lays the foundation for T cell differentiation and immunological memory.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jake K Soley
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Saskia Tauch
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Remi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Veronika Matei-Rascu
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire M Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
15
|
Zakzuk J, Acevedo N, Harb H, Eick L, Renz H, Potaczek DP, Caraballo L. IgE Levels to Ascaris and House Dust Mite Allergens Are Associated With Increased Histone Acetylation at Key Type-2 Immune Genes. Front Immunol 2020; 11:756. [PMID: 32425942 PMCID: PMC7204827 DOI: 10.3389/fimmu.2020.00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Epigenetic changes in response to allergen exposure are still not well understood. The aim of this study was to evaluate histone acetylation levels in peripheral blood leukocytes from humans naturally infected by intestinal parasites and perennially exposed to house dust mites (HDM). Methods Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from 20 infected and 21 non-infected individuals living in a rural/village in Colombia. Histone 3 acetylation (H3Ac) and histone 4 acetylation (H4Ac) levels were measured in six immune genes previously associated with helminth immunity by chromatin immunoprecipitation (ChIP)-quantitative PCR. Then we analyzed the association between histone acetylation levels with total parasite egg burden and IgE levels. Results We found an inverse correlation between H4Ac levels in the IL13 gene and egg worm burden that remained significant after adjustment by age [−0.20 (−0.32 to −0.09), p < 0.0001]. Moreover, we found significant associations between H4Ac levels in IL4 [0.32 (0.05–0.60), p = 0.02] and CHI3L1 [0.29 (0.08–0.51), p = 0.008] with the IgE levels to Ascaris lumbricoides. In addition, the levels of specific IgE antibodies to HDM were associated with H4Ac levels in the gene TNFSF13B encoding the B cell activating factor (BAFF) [0.51 (0.26–0.76), p < 0.001]. All values are presented as beta (95% CI). Conclusion Histone acetylation levels at key type-2 immune genes in humans were modified by nematode infection and HDM allergens and are associated with the intensity of the IgE response.
Collapse
Affiliation(s)
- Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Hani Harb
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Lisa Eick
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,John Paul II Hospital, Krakow, Poland
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
16
|
Du J, Chen X, Ye Y, Sun H. A comparative study on the mechanisms of innate immune responses in mice induced by Alum and Actinidia eriantha polysaccharide. Int J Biol Macromol 2019; 156:1202-1216. [PMID: 31758993 DOI: 10.1016/j.ijbiomac.2019.11.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
The innate immune mechanisms by which adjuvants enhance the potency and protection of vaccine remain at cellular level, but the molecular mechanisms, especially in vivo, are ill-identified. Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity, while Alum elicits a strict Th2 response. The current experiments were designed to compare the innate immune responses in the peritoneal cavity of mice induced by two adjuvants and explore their molecular mechanisms using gene expression microarray including long noncoding RNAs (lncRNAs). AEPS induced the recruitment of monocytes, neutrophils and dendritic cells. However, Alum recruited neutrophils and eosinophils. AEPS and Alum specifically induced the differential expression of 546 and 922 genes in peritoneal cells, respectively. AEPS induced higher mRNA expression of CCL2, CCL3, CCL4, CCL7, CXCL2, CXCL3, CXCL5, CXCL10, IL-12β, and IL-23α in immune effector process, while Alum tended to Th17 response mRNAs such as IL-7A, IL-17F and IL-17RA. Furthermore, a robust adjuvant-specific expression pattern of lncRNAs was found in above mentioned biological processes, suggesting the involvement of lncRNAs in immune responses induced by AEPS and Alum. This study led to a better understanding of different molecular mechanisms of adjuvants and benefited the rational design of effective vaccines.
Collapse
Affiliation(s)
- Jing Du
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiping Ye
- Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
17
|
Lin F, Meng X, Guo Y, Cao W, Liu W, Xia Q, Hui Z, Chen J, Hong S, Zhang X, Wu C, Wang D, Wang J, Lu L, Qian W, Wei L, Wang L. Epigenetic initiation of the T H17 differentiation program is promoted by Cxxc finger protein 1. SCIENCE ADVANCES 2019; 5:eaax1608. [PMID: 31633019 PMCID: PMC6785255 DOI: 10.1126/sciadv.aax1608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/14/2019] [Indexed: 06/05/2023]
Abstract
IL-6/STAT3 signaling is known to initiate the TH17 differentiation program, but the upstream regulatory mechanisms remain minimally explored. Here, we show that Cxxc finger protein 1 (Cxxc1) promoted the generation of TH17 cells as an epigenetic regulator and prevented their differentiation into Treg cells. Mice with a T cell-specific deletion of Cxxc1 were protected from experimental autoimmune encephalomyelitis and were more susceptible to Citrobacter rodentium infection. Cxxc1 deficiency decreased IL-6Rα expression and impeded IL-6/STAT3 signaling, whereas the overexpression of IL-6Rα could partially reverse the defects in Cxxc1-deficient TH17 cells in vitro and in vivo. Genome-wide occupancy analysis revealed that Cxxc1 bound to Il6rα gene loci by maintaining the appropriate H3K4me3 modification of its promoter. Therefore, these data highlight that Cxxc1 as a key regulator governs the balance between TH17 and Treg cells by controlling the expression of IL-6Rα, which affects IL-6/STAT3 signaling and has an impact on TH17-related autoimmune diseases.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation
- Citrobacter rodentium/physiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Enterobacteriaceae Infections/pathology
- Epigenesis, Genetic
- Female
- Histones/metabolism
- Interleukin-6/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Promoter Regions, Genetic
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/cytology
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- Feng Lin
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yixin Guo
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wenqiang Cao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wanlu Liu
- Zhejiang University–University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| | - Qiming Xia
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhaoyuan Hui
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jian Chen
- Department of General Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Xuliang Zhang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Qian
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Yamashita M, Kuwahara M. The critical role of Bach2 in regulating type 2 chronic airway inflammation. Int Immunol 2019. [PMID: 29529253 DOI: 10.1093/intimm/dxy020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although Bach2 (broad complex-tramtrack-bric a brac and Cap'n'collar homology 2) plays an important role in regulating Th2 cell differentiation and type 2 immune responses, the underlying molecular mechanisms remain unclear. Our current studies demonstrate that Bach2 associates with Batf (basic leucine zipper transcription factor ATF-like) family transcription factors and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2-Batf complex antagonizes the recruitment of the interferon regulatory factor 4 (Irf4)-containing Batf complex to activator protein 1 (AP-1) motifs in the Th2 cytokine gene locus and suppresses Th2 cytokine production and/or Th2 cell differentiation. The deletion of Batf ameliorated the spontaneous development of type 2 airway inflammation that is found in mice with Bach2 deficiency specifically in T cells. Interestingly, Bach2 regulates Batf and Batf3 expression via two distinct pathways. First, the Bach2-Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf-Irf4 complex. Second, Bach2 suppresses interleukin 4 (IL-4)-induced augmentation of Batf and Batf3 expression through the regulation of IL-4 production. These findings suggest that IL-4 and Batf family transcription factors form a positive feedback amplification loop to induce Th2 cell differentiation and that Bach2-Batf interactions block the formation of this amplification loop. Furthermore, we found that reductions in Bach2 confer an innate immunological function on CD4 T cells to induce antigen-independent cytokine production. Some Bach2-deficient lung CD4 T cells showed characteristic features similar to pathogenic Th2 cells, including IL-33 receptor expression and IL-33-dependent Th2 cytokine production. These results suggest a critical role for Bach2 in regulating Th2 cell differentiation and the subsequent onset of chronic type 2 inflammation.
Collapse
Affiliation(s)
- Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, Japan
| | - Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon City, Ehime, Japan
| |
Collapse
|
19
|
Sekimata M, Yoshida D, Araki A, Asao H, Iseki K, Murakami-Sekimata A. Runx1 and RORγt Cooperate to Upregulate IL-22 Expression in Th Cells through Its Distal Enhancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3198-3210. [PMID: 31028121 DOI: 10.4049/jimmunol.1800672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
IL-22 is a cytokine that plays a pivotal role in regulating tissue homeostasis at barrier surfaces and is produced by activated CD4+ Th cells. Currently, the molecular mechanisms regulating Il22 gene expression are still unclear. In this study, we have identified a crucial cis-regulatory element located 32 kb upstream of the mouse Il22 promoter, termed conserved noncoding sequence (CNS)-32. We demonstrated that CNS-32 acts as an enhancer in reporter assays and contains binding motifs for Runt-related transcription factor (Runx)1 and retinoic acid-related orphan receptor γt (RORγt). Mutation of these motifs significantly abrogated the reporter activity, suggesting a role for both factors in the control of enhancer-mediated Il22 expression. Runx1 and RORγt occupancy and elevated histone H4 acetylation at CNS-32 were evident, as naive T cells differentiated into IL-22-producing Th22 cells. Overexpression of Runx1 promoted IL-22 production by inducing RORγt and IL-23 receptor, all critical to Th22 cell induction. Although Runx1 alone enhanced IL-22 production in Th22 cells, it was further enhanced in the presence of RORγt. Conversely, short hairpin RNA-mediated knockdown of core-binding factor β, a cofactor essential for Runx1 activity, was effective in limiting IL-22 production. Collectively, our results suggest that IL-22 production is controlled by a regulatory circuit in which Runx1 induces RORγt and then partners with RORγt to direct Il22 expression through their targeting of the Il22 enhancer.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Animals
- Cell Differentiation
- Cells, Cultured
- Conserved Sequence/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Enhancer Elements, Genetic/genetics
- Interleukins/genetics
- Interleukins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mutation/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Protein Binding
- RNA, Small Interfering/genetics
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- T-Lymphocytes, Helper-Inducer/immunology
- Up-Regulation
- Interleukin-22
Collapse
Affiliation(s)
- Masayuki Sekimata
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan;
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Daiki Yoshida
- Radioisotope Research Center, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan; and
| | - Ken Iseki
- Department of Emergency and Critical Care Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
| |
Collapse
|
20
|
Hagihara Y, Yoshimatsu Y, Mikami Y, Takada Y, Mizuno S, Kanai T. Epigenetic regulation of T helper cells and intestinal pathogenicity. Semin Immunopathol 2019; 41:379-399. [PMID: 30891628 DOI: 10.1007/s00281-019-00732-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
|
21
|
Tumes DJ, Papadopoulos M, Endo Y, Onodera A, Hirahara K, Nakayama T. Epigenetic regulation of T-helper cell differentiation, memory, and plasticity in allergic asthma. Immunol Rev 2018; 278:8-19. [PMID: 28658556 DOI: 10.1111/imr.12560] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An estimated 300 million people currently suffer from asthma, which causes approximately 250 000 deaths a year. Allergen-specific T-helper (Th) cells produce cytokines that induce many of the hallmark features of asthma including airways hyperreactivity, eosinophilic and neutrophilic inflammation, mucus hypersecretion, and airway remodeling. Cytokine-producing Th subsets including Th1 (IFN-γ), Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), Th17 (IL-17), Th22 (IL-22), and T regulatory (IL-10) cells have all been suggested to play a role in the development of asthma. Th differentiation involves genetic regulation of gene expression through the concerted action of cytokines, transcription factors, and epigenetic regulators. We describe how Th differentiation and plasticity is regulated by epigenetic histone and DNA modifications, with a focus on the regulation of histone methylation by members of the polycomb and trithorax complexes. In addition, we outline environmental influences that could influence epigenetic regulation of Th cells and discuss the potential to regulate Th plasticity and function through drugs targeting the epigenetic machinery. It is also becoming apparent that epigenetic regulation of allergen-specific memory Th cells may be important in the development and persistence of chronic allergies. Finally, we describe how epigenetic modifiers regulate cytokine memory in Th cells and describe recently identified hybrid, plastic, and pathogenic memory Th subsets the context of allergic asthma.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | | | - Yusuke Endo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan.,AMED-CREST, AMED, Chiba, Japan
| |
Collapse
|
22
|
T follicular helper and T H2 cells in allergic responses. Allergol Int 2017; 66:377-381. [PMID: 28499720 DOI: 10.1016/j.alit.2017.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/23/2022] Open
Abstract
IL-4 is a cytokine commonly secreted by TH2 and follicular helper T (TFH) cells after antigenic sensitization. TH2 cells have been thought to be the major contributor of B cell help as a source of IL-4 responsible for class switch recombination to Immunoglobulin G1 (IgG1) and Immunoglobulin E (IgE). Importantly, there are some differences in transcriptional regulation between these two T cell subsets. The IL-4 production by TH2 and TFH cells is distinctively regulated by two pathways, GATA-3-mediated Il4-HS2 enhancer and Notch mediated Il4-CNS-2 enhancer. IgE and IgG1 antibody responses are mainly controlled by IL-4-secreting TFH cells, but not by TH2 cells. In this review, we discuss the role of TH2 and TFH cells in IgE production and allergic responses.
Collapse
|
23
|
Hwang SS, Jang SW, Lee KO, Kim HS, Lee GR. RHS6 coordinately regulates the Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4. Allergy 2017; 72:772-782. [PMID: 27878828 DOI: 10.1111/all.13078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND Asthma is a Th2 cell-driven inflammatory disease and a major public health concern. The cis-acting element Rad50 hypersensitive site 6 (RHS6) in the Th2 locus control region is essential for regulation of the Th2 cytokine genes; however, its role in allergic airway inflammation and underlying molecular mechanisms of the regulation by RHS6 are poorly understood. OBJECTIVE We sought to understand the role of RHS6 in the development of allergic airway inflammation and its molecular mechanism for Th2 cytokine expression. METHODS We used an ovalbumin-induced allergic inflammation model with RHS6-deficient mice to examine the role of RHS6 in this process. To examine molecular mechanism of RHS6 for Th2 cytokine expression, we used DNA affinity chromatography and mass spectrometry, quantitative RT-PCR, ELISA, intracellular cytokine staining, chromatin immunoprecipitation, and co-immunoprecipitation. RESULTS Deletion of RHS6 caused a dramatic resistance to allergic airway inflammation. RHS6 recruited transcription factors GATA3, SATB1, and IRF4, which play important roles in expression of all three Th2 cytokine genes. RHS6 deficiency caused inhibition of transcription factor-induced Th2 cytokine gene expression. CONCLUSION RHS6 is a critical regulatory element for allergic airway inflammation and for coordinate regulation of Th2 cytokine genes by recruiting GATA3, SATB1, and IRF4.
Collapse
Affiliation(s)
- S. S. Hwang
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - S. W. Jang
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - K. O. Lee
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - H. S. Kim
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| | - G. R. Lee
- Department of Life Science; Sogang University; Mapo-gu Seoul Korea
| |
Collapse
|
24
|
Affiliation(s)
- C H Flayer
- Pulmonary, Critical Care and Sleep Medicine, Translational Lung Biology Center, University of California, Davis, Davis, CA, USA
| | - A Haczku
- Pulmonary, Critical Care and Sleep Medicine, Translational Lung Biology Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
25
|
Potaczek DP, Harb H, Michel S, Alhamwe BA, Renz H, Tost J. Epigenetics and allergy: from basic mechanisms to clinical applications. Epigenomics 2017; 9:539-571. [PMID: 28322581 DOI: 10.2217/epi-2016-0162] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allergic diseases are on the rise in the Western world and well-known allergy-protecting and -driving factors such as microbial and dietary exposure, pollution and smoking mediate their influence through alterations of the epigenetic landscape. Here, we review key facts on the involvement of epigenetic modifications in allergic diseases and summarize and critically evaluate the lessons learned from epigenome-wide association studies. We show the potential of epigenetic changes for various clinical applications: as diagnostic tools, to assess tolerance following immunotherapy or possibly predict the success of therapy at an early time point. Furthermore, new technological advances such as epigenome editing and DNAzymes will allow targeted alterations of the epigenome in the future and provide novel therapeutic tools.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL).,John Paul II Hospital, Krakow, Poland
| | - Hani Harb
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Sven Michel
- Secarna Pharmaceuticals GmbH & Co KG, Planegg, Germany
| | - Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.,International Inflammation (in-FLAME) Network, Worldwide Universities Network (WUN).,German Centre for Lung Research (DZL)
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France
| |
Collapse
|
26
|
Bevington SL, Cauchy P, Withers DR, Lane PJL, Cockerill PN. T Cell Receptor and Cytokine Signaling Can Function at Different Stages to Establish and Maintain Transcriptional Memory and Enable T Helper Cell Differentiation. Front Immunol 2017; 8:204. [PMID: 28316598 PMCID: PMC5334638 DOI: 10.3389/fimmu.2017.00204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Experienced T cells exhibit immunological memory via a rapid recall response, responding to restimulation much faster than naïve T cells. The formation of immunological memory starts during an initial slow response, when naïve T cells become transformed to proliferating T blast cells, and inducible immune response genes are reprogrammed as active chromatin domains. We demonstrated that these active domains are supported by thousands of priming elements which cooperate with inducible transcriptional enhancers to enable efficient responses to stimuli. At the conclusion of this response, a small proportion of these cells return to the quiescent state as long-term memory T cells. We proposed that priming elements can be established in a hit-and-run process dependent on the inducible factor AP-1, but then maintained by the constitutive factors RUNX1 and ETS-1. This priming mechanism may also function to render genes receptive to additional differentiation-inducing factors such as GATA3 and TBX21 that are encountered under polarizing conditions. The proliferation of recently activated T cells and the maintenance of immunological memory in quiescent memory T cells are also dependent on various cytokine signaling pathways upstream of AP-1. We suggest that immunological memory is established by T cell receptor signaling, but maintained by cytokine signaling.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter J L Lane
- Institute of Immunology and Immunotherapy, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, University of Birmingham , Birmingham , UK
| |
Collapse
|
27
|
Bao K, Carr T, Wu J, Barclay W, Jin J, Ciofani M, Reinhardt RL. BATF Modulates the Th2 Locus Control Region and Regulates CD4+ T Cell Fate during Antihelminth Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4371-4381. [PMID: 27798167 DOI: 10.4049/jimmunol.1601371] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022]
Abstract
The AP-1 factor basic leucine zipper transcription factor, ATF-like (BATF) is important for CD4+ Th17, Th9, and follicular Th cell development. However, its precise role in Th2 differentiation and function remains unclear, and the requirement for BATF in nonallergic settings of type-2 immunity has not been explored. In this article, we show that, in response to parasitic helminths, Batf-/- mice are unable to generate follicular Th and Th2 cells. As a consequence, they fail to establish productive type-2 immunity during primary and secondary infection. Batf-/- CD4+ T cells do not achieve type-2 cytokine competency, which implies that BATF plays a key role in the regulation of IL-4 and IL-13. In contrast to Th17 and Th9 cell subsets in which BATF binds directly to promoter and enhancer regions to regulate cytokine expression, our results show that BATF is significantly enriched at Rad50 hypersensitivity site (RHS)6 and RHS7 of the locus control region relative to AP-1 sites surrounding type-2 cytokine loci in Th2 cells. Indeed, Batf-/- CD4+ T cells do not obtain permissive epigenetic modifications within the Th2 locus, which were linked to RHS6 and RHS7 function. In sum, these findings reveal BATF as a central modulator of peripheral and humoral hallmarks of type-2 immunity and begin to elucidate a novel mechanism by which it regulates type-2 cytokine production through its modification of the Th2 locus control region.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Tiffany Carr
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - William Barclay
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Jingxiao Jin
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - Maria Ciofani
- Department of Immunology, Duke University Medical Center, Durham, NC 27710; and
| | - R Lee Reinhardt
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
28
|
Kuwahara M, Ise W, Ochi M, Suzuki J, Kometani K, Maruyama S, Izumoto M, Matsumoto A, Takemori N, Takemori A, Shinoda K, Nakayama T, Ohara O, Yasukawa M, Sawasaki T, Kurosaki T, Yamashita M. Bach2-Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop. Nat Commun 2016; 7:12596. [PMID: 27581382 PMCID: PMC5025763 DOI: 10.1038/ncomms12596] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/08/2016] [Indexed: 12/17/2022] Open
Abstract
Although Bach2 has an important role in regulating the Th2-type immune response, the underlying molecular mechanisms remain unclear. We herein demonstrate that Bach2 associates with Batf and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2–Batf complex antagonizes the recruitment of the Batf–Irf4 complex to AP-1 motifs and suppresses Th2 cytokine production. Furthermore, we find that Bach2 regulates the Batf and Batf3 expressions via two distinct pathways. First, Bach2 suppresses the maintenance of the Batf and Batf3 expression through the inhibition of IL-4 production. Second, the Bach2–Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf–Irf4 complex. These findings suggest that IL-4 and Batf form a positive feedback amplification loop to induce Th2 cell differentiation and the subsequent Th2-type immune response, and Bach2–Batf interactions are required to prevent an excessive Th2 response. Bach2 limits T cell effector functions. Here the authors show that Bach2–Batf complex antagonizes the recruitment of the Batf–Irf4 complex to AP-1 motifs and suppresses Th2 cytokine production, and describe mechanisms of negative feedback by which Bach2 restricts Baft-mediated Th2 response.
Collapse
Affiliation(s)
- Makoto Kuwahara
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Wataru Ise
- Department of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mizuki Ochi
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Cell-Free Sciences, Department of Proteo-Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Junpei Suzuki
- Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kohei Kometani
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, 1-7-22 suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Saho Maruyama
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Maya Izumoto
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Akira Matsumoto
- Department of Infection and Host Defenses, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Nobuaki Takemori
- Division of Proteomics, Department of Proteo-Medicine, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Ayako Takemori
- Division of Proteomics, Department of Proteo-Medicine, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| | - Kenta Shinoda
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 Japan
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 Japan
| | - Osamu Ohara
- Human DNA Analysis Group, Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Masaki Yasukawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tatsuya Sawasaki
- Division of Cell-Free Sciences, Department of Proteo-Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Tomohiro Kurosaki
- Department of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, 1-7-22 suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Graduate School of Medicine, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan.,Department of Translational Immunology, Translational Research Center, Ehime University Hospital, Shitsukawa, Toon, Ehime 791-0295, Japan.,Division of Immune Regulation, Department of Proteo-Inovation, Proteo-Science Center, Ehime University, Toon, Ehime 791-0295, Japan
| |
Collapse
|
29
|
Hwang SS, Kim LK, Lee GR, Flavell RA. Role of OCT-1 and partner proteins in T cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:825-31. [PMID: 27126747 DOI: 10.1016/j.bbagrm.2016.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, South Korea
| | - Gap Ryol Lee
- Department of Life-Science, Sogang University, Baekbeom-ro, Seoul 121-742, South Korea
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
30
|
Sahoo A, Wali S, Nurieva R. T helper 2 and T follicular helper cells: Regulation and function of interleukin-4. Cytokine Growth Factor Rev 2016; 30:29-37. [PMID: 27072069 DOI: 10.1016/j.cytogfr.2016.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 12/24/2022]
Abstract
Type 2 immunity is characterized by expression of the cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13, which can function in mediating protective immunity in the host or possess a pathogenic role. T helper (Th) 2 cells have emerged to play a beneficial role in mediating anti-parasitic immunity and are also known to be key players in mediating allergic diseases. In addition to the Th2 cells, recent studies have identified T follicular helper (Tfh) cells as an alternative source of IL-4 to regulate type 2 humoral immune responses, indicating that Th2 and Tfh cells exhibit overlapping phenotypical and functional characteristics. Th2 and Tfh cells appear to utilize distinct mechanisms for regulation of IL-4 expression; however unlike Th2 cells, the regulation and function of Tfh-derived IL-4 is not yet fully understood. Understanding of the molecular mechanisms for IL-4 expression and function in both cell subsets will be beneficial for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Anupama Sahoo
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
| | - Shradha Wali
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA
| | - Roza Nurieva
- Department of Immunology, M. D. Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, TX, USA.
| |
Collapse
|
31
|
Bevington SL, Cauchy P, Piper J, Bertrand E, Lalli N, Jarvis RC, Gilding LN, Ott S, Bonifer C, Cockerill PN. Inducible chromatin priming is associated with the establishment of immunological memory in T cells. EMBO J 2016; 35:515-35. [PMID: 26796577 PMCID: PMC4772849 DOI: 10.15252/embj.201592534] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 11/09/2022] Open
Abstract
Immunological memory is a defining feature of vertebrate physiology, allowing rapid responses to repeat infections. However, the molecular mechanisms required for its establishment and maintenance remain poorly understood. Here, we demonstrated that the first steps in the acquisition of T-cell memory occurred during the initial activation phase of naïve T cells by an antigenic stimulus. This event initiated extensive chromatin remodeling that reprogrammed immune response genes toward a stably maintained primed state, prior to terminal differentiation. Activation induced the transcription factors NFAT and AP-1 which created thousands of new DNase I-hypersensitive sites (DHSs), enabling ETS-1 and RUNX1 recruitment to previously inaccessible sites. Significantly, these DHSs remained stable long after activation ceased, were preserved following replication, and were maintained in memory-phenotype cells. We show that primed DHSs maintain regions of active chromatin in the vicinity of inducible genes and enhancers that regulate immune responses. We suggest that this priming mechanism may contribute to immunological memory in T cells by facilitating the induction of nearby inducible regulatory elements in previously activated T cells.
Collapse
Affiliation(s)
- Sarah L Bevington
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Jason Piper
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Elisabeth Bertrand
- Section of Experimental Haematology, Leeds Institute for Molecular Medicine, University of Leeds, Leeds, UK
| | - Naveen Lalli
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Rebecca C Jarvis
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Liam Niall Gilding
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Constanze Bonifer
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Kim K, Kim N, Lee GR. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region. PLoS One 2016; 11:e0148576. [PMID: 26840450 PMCID: PMC4740509 DOI: 10.1371/journal.pone.0148576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/19/2016] [Indexed: 12/22/2022] Open
Abstract
The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner.
Collapse
Affiliation(s)
- Kiwan Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Najung Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
- * E-mail:
| |
Collapse
|
33
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
34
|
Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM. Along the Axis between Type 1 and Type 2 Immunity; Principles Conserved in Evolution from Fish to Mammals. BIOLOGY 2015; 4:814-59. [PMID: 26593954 PMCID: PMC4690019 DOI: 10.3390/biology4040814] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an "immune 1-2 axis" (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with "type 1 immunity" ("i1") are biased towards cell-mediated cytotoxicity, while the term "type 2 immunity" ("i2") is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/ IL-5/GM-CSF families.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Uwe Fischer
- Laboratory of Fish Immunology, Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Dengakugakubo 1-98, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
35
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
36
|
Zhu J. T helper 2 (Th2) cell differentiation, type 2 innate lymphoid cell (ILC2) development and regulation of interleukin-4 (IL-4) and IL-13 production. Cytokine 2015; 75:14-24. [PMID: 26044597 DOI: 10.1016/j.cyto.2015.05.010] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-4 (IL-4), IL-5 and IL-13, the signature cytokines that are produced during type 2 immune responses, are critical for protective immunity against infections of extracellular parasites and are responsible for asthma and many other allergic inflammatory diseases. Although many immune cell types within the myeloid lineage compartment including basophils, eosinophils and mast cells are capable of producing at least one of these cytokines, the production of these "type 2 immune response-related" cytokines by lymphoid lineages, CD4 T helper 2 (Th2) cells and type 2 innate lymphoid cells (ILC2s) in particular, are the central events during type 2 immune responses. In this review, I will focus on the signaling pathways and key molecules that determine the differentiation of naïve CD4 T cells into Th2 cells, and how the expression of Th2 cytokines, especially IL-4 and IL-13, is regulated in Th2 cells. The similarities and differences in the differentiation of Th2 cells, IL-4-producing T follicular helper (Tfh) cells and ILC2s as well as their relationships will also be discussed.
Collapse
Affiliation(s)
- Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Myosin VI regulates gene pairing and transcriptional pause release in T cells. Proc Natl Acad Sci U S A 2015; 112:E1587-93. [PMID: 25770220 DOI: 10.1073/pnas.1502461112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Naive CD4 T cells differentiate into several effector lineages, which generate a stronger and more rapid response to previously encountered immunological challenges. Although effector function is a key feature of adaptive immunity, the molecular basis of this process is poorly understood. Here, we investigated the spatiotemporal regulation of cytokine gene expression in resting and restimulated effector T helper 1 (Th1) cells. We found that the Lymphotoxin (LT)/TNF alleles, which encode TNF-α, were closely juxtaposed shortly after T-cell receptor (TCR) engagement, when transcription factors are limiting. Allelic pairing required a nuclear myosin, myosin VI, which is rapidly recruited to the LT/TNF locus upon restimulation. Furthermore, transcription was paused at the TNF locus and other related genes in resting Th1 cells and released in a myosin VI-dependent manner following activation. We propose that homologous pairing and myosin VI-mediated transcriptional pause release account for the rapid and efficient expression of genes induced by an external stimulus.
Collapse
|
38
|
Abstract
The different cell types of an organism share the same DNA, but during cell differentiation their genomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. These can range from large-scale folding of whole chromosomes or of smaller genomic regions, to the re-organization of local interactions between enhancers and promoters, mediated by the binding of transcription factors and chromatin looping. The higher-order organization of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures such as the lamina. Sophisticated methods for mapping chromatin contacts are generating genome-wide data that provide deep insights into the formation of chromatin interactions, and into their roles in the organization and function of the eukaryotic cell nucleus.
Collapse
|
39
|
Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res 2015; 43:1537-48. [PMID: 25593324 PMCID: PMC4330377 DOI: 10.1093/nar/gkv014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activated naive CD4+ T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4+ T cells, Th1 and Th17 cells. We could demonstrate that naive CD4+ T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.
Collapse
Affiliation(s)
- Bi-Huei Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefanie Hagemann
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Igor V Deyneko
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Groebe
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Joern Pezoldt
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Sparwasser
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Matthias Lochner
- Institute for Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
40
|
Schieck M, Sharma V, Michel S, Toncheva AA, Worth L, Potaczek DP, Genuneit J, Kretschmer A, Depner M, Dalphin JC, Riedler J, Frei R, Pekkanen J, Tost J, Kabesch M. A polymorphism in the TH 2 locus control region is associated with changes in DNA methylation and gene expression. Allergy 2014; 69:1171-80. [PMID: 24866380 DOI: 10.1111/all.12450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND Genomewide association and epigenetic studies found a region within the RAD50 gene on chromosome 5q31 to be associated with total serum IgE levels and asthma. In mice, this region harbors a locus control region for nearby TH 2 cytokines, which is characterized by four Rad50 DNase I hypersensitive sites (RHS4-7). Among these, RHS7 seems to have the strongest impact on TH 2 differentiation. We investigated whether within the human homolog of RHS7, functional polymorphisms exist, which could affect DNA methylation or gene expression in the 5q31 locus and might have an influence on asthma status or IgE regulation. METHODS The human RHS7 region was fine mapped using 1000 genomes database information. In silico analysis and electrophoretic mobility shift assays were used to assess SNP function. Allele-specific effects on DNA methylation were evaluated in cord blood (n = 73) and at age of 4.5 years (n = 61) by pyrosequencing. Allele-specific effects on RAD50, IL4, and IL13 expression were analyzed in 100 subjects. Associations with asthma and IgE levels were investigated in the MAGICS/ISAAC II population (n = 1145). RESULTS Polymorphism rs2240032 in the RHS7 region is suggestive of allele-specific transcription factor binding, affects methylation of the IL13 promoter region and influences RAD50 and IL4 expression (lowest P = 0.0027). It is also associated with total serum IgE levels (P = 0.0227). CONCLUSION A functional relevant polymorphism in the TH 2 locus control region, equivalent to RHS7 in mice, affects DNA methylation and gene expression within 5q31 and influences total serum IgE on the population level.
Collapse
Affiliation(s)
- M Schieck
- Department of Pediatric Pneumology and Allergy, University Children`s Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sharma V, Michel S, Gaertner V, Franke A, Vogelberg C, von Berg A, Bufe A, Heinzmann A, Laub O, Rietschel E, Simma B, Frischer T, Genuneit J, Zeilinger S, Illig T, Schedel M, Potaczek DP, Kabesch M. Fine-mapping of IgE-associated loci 1q23, 5q31, and 12q13 using 1000 Genomes Project data. Allergy 2014; 69:1077-84. [PMID: 24930997 DOI: 10.1111/all.12431] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) repeatedly identified 1q23 (FCER1A), 5q31 (RAD50-IL13 and IL4), and 12q13 (STAT6) as major susceptibility loci influencing the regulation of total serum IgE levels. As GWAS may be insufficient to capture causal variants, we performed fine-mapping and re-genotyping of the three loci using 1000 Genomes Project datasets. METHODS Linkage disequilibrium tagging polymorphisms and polymorphisms of putative functional relevance were genotyped by chip technology (24 polymorphisms) or MALDI-TOF-MS (40 polymorphisms) in at least 1303 German children (651 asthmatics). The effect of polymorphisms on total serum IgE, IgE percentiles, and atopic diseases was assessed, and a risk score model was applied for gene-by-gene interaction analyses. Functional effects of putative causal variants from these three loci were studied in silico. RESULTS Associations from GWAS were confirmed and extended. For 1q23 and 5q31, the majority of associations were found with mild to moderately elevated IgE levels, while in the 12q13 locus, single-nucleotide polymorphisms (SNPs) were associated with strongly elevated IgE levels. Gene-by-gene interaction analyses suggested that the presence of mutations in all three loci increases the risk for elevated IgE up to fourfold. CONCLUSION This fine-mapping study confirmed previous associations and identified novel associations of SNPs in 1q23, 5q31, and 12q13 with different levels of serum IgE and their concomitant contribution to IgE regulation.
Collapse
Affiliation(s)
- V. Sharma
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
| | - S. Michel
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
| | - V. Gaertner
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
| | - A. Franke
- Institute of Clinical Molecular Biology; Christian-Albrechts-University Kiel; Kiel Germany
| | - C. Vogelberg
- University Children's Hospital; Technical University Dresden; Dresden Germany
| | - A. von Berg
- Children's Department; Research Institute for the Prevention of Allergic Diseases; Marien-Hospital; Wesel Germany
| | - A. Bufe
- Department of Experimental Pneumology; Ruhr-University; Bochum Germany
| | - A. Heinzmann
- University Children's Hospital; Albert Ludwigs University; Freiburg Germany
| | - O. Laub
- Kinder-und Jugendarztpraxis Laub; Rosenheim Germany
| | - E. Rietschel
- University Children's Hospital; University of Cologne; Cologne Germany
| | - B. Simma
- Children's Department; University Teaching Hospital; Landeskrankenhaus Feldkirch; Feldkirch Austria
| | - T. Frischer
- University Children's Hospital Vienna; Vienna Austria
| | - J. Genuneit
- Institute of Epidemiology and Medical Biometry; Ulm University; Ulm Germany
| | - S. Zeilinger
- Research Unit of Molecular Epidemiology; Helmholtz Zentrum Munich; Neuherberg Germany
| | - T. Illig
- Research Unit of Molecular Epidemiology; Helmholtz Zentrum Munich; Neuherberg Germany
- Hannover Unified Biobank; Hannover Medical School; Hannover Germany
| | - M. Schedel
- Division of Cell Biology; Department of Pediatrics; National Jewish Health; Denver CO USA
| | - D. P. Potaczek
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
- Institute of Laboratory Medicine; Philipps-Universität Marburg; Marburg Germany
| | - M. Kabesch
- Department of Pediatric Pneumology, Allergy and Neonatology; Hannover Medical School; Hannover Germany
- Department of Pediatric Pneumology and Allergy; University Children's Hospital Regensburg (KUNO); Regensburg Germany
- German Lung Research Center (DZL)
| |
Collapse
|
42
|
Lee GR. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014; 141:498-505. [PMID: 24245687 DOI: 10.1111/imm.12216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Considerable progress has been made in recent years towards our understanding of the molecular mechanisms of transcriptional regulation of T helper type 2 (Th2) cell differentiation. Additional transcription factors and chromatin-modifying factors were identified and shown to promote Th2 cell differentiation and inhibit differentiation into other subsets. Analyses of mice lacking several cis-regulatory elements have yielded more insight into the regulatory mechanism of Th2 cytokine genes. Gene deletion studies of several chromatin modifiers confirmed their impact on CD4 T-cell differentiation. In addition, recent genome-wide analyses of transcription factor binding and chromatin status revealed unexpected roles of these factors in Th2-cell differentiation. In this review, these recent findings and their implication are summarized.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
43
|
Kim LK, Esplugues E, Zorca CE, Parisi F, Kluger Y, Kim TH, Galjart NJ, Flavell RA. Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. Mol Cell 2014; 54:56-66. [PMID: 24613343 PMCID: PMC4058095 DOI: 10.1016/j.molcel.2014.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/18/2013] [Accepted: 01/30/2014] [Indexed: 12/24/2022]
Abstract
Interchromosomal associations can regulate gene expression, but little is known about the molecular basis of such associations. In response to antigen stimulation, naive T cells can differentiate into Th1, Th2, and Th17 cells expressing IFN-γ, IL-4, and IL-17, respectively. We previously reported that in naive T cells, the IFN-γ locus is associated with the Th2 cytokine locus. Here we show that the Th2 locus additionally associates with the IL-17 locus. This association requires a DNase I hypersensitive region (RHS6) at the Th2 locus. RHS6 and the IL-17 promoter both bear Oct-1 binding sites. Deletion of either of these sites or Oct-1 gene impairs the association. Oct-1 and CTCF bind their cognate sites cooperatively, and CTCF deficiency similarly impairs the association. Finally, defects in the association lead to enhanced IL-17 induction. Collectively, our data indicate Th17 lineage differentiation is restrained by the Th2 locus via interchromosomal associations organized by Oct-1 and CTCF.
Collapse
Affiliation(s)
- Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Enric Esplugues
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Cornelia E Zorca
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tae Hoon Kim
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Niels J Galjart
- Department of Cell Biology and Genetics, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Munang'andu HM, Mutoloki S, Evensen Ø. Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:184-196. [PMID: 23962742 DOI: 10.1016/j.dci.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Acquired immunity plays an important role in the protection of salmonids vaccinated against infectious pancreatic necrosis virus (IPNV) infections. In recent years, vaccine research has taken a functional approach to find the correlates of protective immunity against IPNV infections. Accumulating evidence suggests that the humoral response, specifically IgM is a correlate of vaccine protection against IPNV infections. The role of IgT on the other hand, especially at the sites of virus entry into the host is yet to be established. The kinetics of CD4+ and CD8+ T-cell gene expression have also been shown to correlate with protection in salmonids, suggesting that other arms of the adaptive immune response e.g. cytotoxic T cell responses and Th1 may also be important. Overall, the mechanisms of vaccine protection observed in salmonids are comparable to those seen in other vertebrates suggesting that the immunological basis of vaccine protection has been conserved across vertebrate taxa.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Stephen Mutoloki
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
45
|
Antoniou MN, Skipper KA, Anakok O. Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 2014; 24:363-74. [PMID: 23517535 DOI: 10.1089/hum.2013.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With their ability to integrate their genetic material into the target cell genome, retroviral vectors (RV) of both the gamma-retroviral (γ-RV) and lentiviral vector (LV) classes currently remain the most efficient and thus the system of choice for achieving transgene retention and therefore potentially long-term expression and therapeutic benefit. However, γ-RV and LV integration comes at a cost in that transcription units will be present within a native chromatin environment and thus be subject to epigenetic effects (DNA methylation, histone modifications) that can negatively impact on their function. Indeed, highly variable expression and silencing of γ-RV and LV transgenes especially resulting from promoter DNA methylation is well documented and was the cause of the failure of gene therapy in a clinical trial for X-linked chronic granulomatous disease. This review will critically explore the use of different classes of genetic control elements that can in principle reduce vector insertion site position effects and epigenetic-mediated silencing. These transcriptional regulatory elements broadly divide themselves into either those with a chromatin boundary or border function (scaffold/matrix attachment regions, insulators) or those with a dominant chromatin remodeling and transcriptional activating capability (locus control regions,, ubiquitous chromatin opening elements). All these types of elements have their strengths and weaknesses within the constraints of a γ-RV and LV backbone, showing varying degrees of efficacy in improving reproducibility and stability of transgene function. Combinations of boundary and chromatin remodeling; transcriptional activating elements, which do not impede vector production; transduction efficiency; and stability are most likely to meet the requirements within a gene therapy context especially when targeting a stem cell population.
Collapse
Affiliation(s)
- Michael N Antoniou
- Gene Expression and Therapy Group, King's College London School of Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, United Kingdom.
| | | | | |
Collapse
|
46
|
Zeng WP. 'All things considered': transcriptional regulation of T helper type 2 cell differentiation from precursor to effector activation. Immunology 2013; 140:31-8. [PMID: 23668241 DOI: 10.1111/imm.12121] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023] Open
Abstract
T helper type 2 (Th2) cells are critical to host defence against helminth infection and the pathogenesis of allergic diseases. The differentiation of Th2 cells from naive CD4 T cells is controlled by intricate transcriptional mechanisms. At the precursor stage of naive CD4 T cells, transcriptional mechanisms maintain the potential and in the meantime prevent spontaneous differentiation to Th2 fate. In addition, intrachromosomal interactions important for co-ordinated expression of Th2 cytokines pre-exist in naive CD4 T cells. Upon T-cell receptor (TCR) engagement, naive CD4 T cells are induced by polarizing signals of the interleukin-4/Stat6 and Jagged/Notch pathways to up-regulate the expression of GATA-3. Once up-regulated, GATA-3 drives Th2 and suppresses Th1 differentiation in a cell autonomous fashion. In this stage of differentiation, the Th2 cytokine locus, as well as the interferon-γ locus, undergoes chromatin remodelling and epigenetic modifications that contribute to the somatic memory of Th2 cytokine gene expression pattern. Once differentiated, Th2 effector cells promptly produce Th2 cytokines upon TCR stimulation, which is regulated by concerted actions of GATA-3, TCR signalling, enhancers and the Th2 locus control region. This review provides a detailed account of the transcriptional regulatory events at these different stages of Th2 differentiation.
Collapse
Affiliation(s)
- Wei-ping Zeng
- Department of Biochemistry and Microbiology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, USA.
| |
Collapse
|
47
|
Esterhuyse MM, Kaufmann SH. Diagnostic biomarkers are hidden in the infected host's epigenome. Expert Rev Mol Diagn 2013; 13:625-37. [PMID: 23895131 DOI: 10.1586/14737159.2013.811897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The success of our immune system depends on its ability to react efficiently, which in turn is supported by a large degree of plasticity as well as memory. Some aspects of this plasticity and memory are now known to be under epigenetic control - determined both by default, during differentiation, and by responses to environmental factors, including infectious agents. Thus, epigenetic marks in the immune system can occur as predetermined or as responsive marks and as such can potentially serve as diagnostic markers for disease susceptibility and disease progression or treatment response. Here, the authors review some examples of epigenetic control and epigenetic marks during the differentiation process of the immune system and memory formation, followed by some examples of epigenetic marks in the immune system subsequent to infection. These are used to illustrate the potential use of epigenetic marks as diagnostic markers in adverse immune system conditions and treatment thereof.
Collapse
Affiliation(s)
- Maria M Esterhuyse
- Max Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany
| | | |
Collapse
|
48
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
49
|
Hypersensitive site 6 of the Th2 locus control region is essential for Th2 cytokine expression. Proc Natl Acad Sci U S A 2013; 110:6955-60. [PMID: 23569250 DOI: 10.1073/pnas.1304720110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The T helper type 2 (Th2) cytokine genes Il4, Il5, and Il13 are contained within a 140-kb region of mouse chromosome 11 and their expression is controlled by a locus control region (LCR) embedded within this locus. The LCR is composed of a number of DNase I-hypersensitive sites (HSs), which are believed to encompass the regulatory core of the LCR. To determine the function of these sites, mutant mice were generated in which combinations of these HSs had been deleted from the endogenous LCR, and the effect on Th2 cytokine expression was assessed through the use of in vivo and in vitro models. These experiments revealed that, although all of the hypersensitive sites analyzed are important for appropriate LCR function, some sites are more important than others in regulating cytokine expression. Interestingly, each LCR mutation showed contrasting effects on cytokine expression, in some cases with mutants displaying opposing phenotypes between in vitro cultures and in vivo immunizations. These studies indicated that Rad50 hypersensitive site 6 was the singularly most important HS for Th2 cytokine expression, displaying consistent reductions in cytokine levels in all models tested. Furthermore analysis of chromatin modifications revealed that deletion of Rad50 hypersensitive site 6 impacted epigenetic modifications at the promoters of the Il4, Il5, and Il13 genes as well as other regulatory sites within the Th2 locus.
Collapse
|
50
|
Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J, Mazaleyrat N, Weber J, Karvonen AM, Hirvonen MR, Braun-Fahrländer C, Lauener R, von Mutius E, Kabesch M, Tost J. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 2013; 68:355-64. [PMID: 23346934 DOI: 10.1111/all.12097] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 01/17/2023]
Abstract
BACKGROUND Genetic susceptibility and environmental influences are important contributors to the development of asthma and atopic diseases. Epigenetic mechanisms may facilitate gene by environment interactions in these diseases. METHODS We studied the rural birth cohort PASTURE (Protection against allergy: study in rural environments) to investigate (a) whether epigenetic patterns in asthma candidate genes are influenced by farm exposure in general, (b) change over the first years of life, and (c) whether these changes may contribute to the development of asthma. DNA was extracted from cord blood and whole blood collected at the age of 4.5 years in 46 samples per time point. DNA methylation in 23 regions in ten candidate genes (ORMDL1, ORMDL2, ORMDL3, CHI3L1, RAD50, IL13, IL4, STAT6, FOXP3, and RUNX3) was assessed by pyrosequencing, and differences between strata were analyzed by nonparametric Wilcoxon-Mann-Whitney tests. RESULTS In cord blood, regions in ORMDL1 and STAT6 were hypomethylated in DNA from farmers' as compared to nonfarmers' children, while regions in RAD50 and IL13 were hypermethylated (lowest P-value (STAT6) = 0.001). Changes in methylation over time occurred in 15 gene regions (lowest P-value (IL13) = 1.57*10(-8)). Interestingly, these differences clustered in the genes highly associated with asthma (ORMDL family) and IgE regulation (RAD50, IL13, and IL4), but not in the T-regulatory genes (FOXP3, RUNX3). CONCLUSIONS In this first pilot study, DNA methylation patterns change significantly in early childhood in specific asthma- and allergy-related genes in peripheral blood cells, and early exposure to farm environment seems to influence methylation patterns in distinct genes.
Collapse
Affiliation(s)
| | - F. Busato
- Laboratory for Epigenetics; Centre National de Génotypage; CEA-Institut de Génomique; Evry; France
| | - J. Genuneit
- Ulm University; Institute of Epidemiology and Medical Biometry; Ulm; Germany
| | | | - J.-C. Dalphin
- Department of Respiratory Disease; Université de Franche-Comté; University Hospital; Besancon; France
| | - J. Riedler
- Children's Hospital Schwarzach; Schwarzach; Austria
| | - N. Mazaleyrat
- Laboratory for Epigenetics; Centre National de Génotypage; CEA-Institut de Génomique; Evry; France
| | - J. Weber
- LMU Munich; University Children's Hospital; Munich; Germany
| | - A. M. Karvonen
- Department of Environmental Health; National Institute for Health and Welfare; Kuopio; Finland
| | | | | | | | - E. von Mutius
- LMU Munich; University Children's Hospital; Munich; Germany
| | | | - J. Tost
- Laboratory for Epigenetics; Centre National de Génotypage; CEA-Institut de Génomique; Evry; France
| | | |
Collapse
|