1
|
Ma C, Li Y, Li M, Lv C, Tian Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol Immunother 2025; 74:40. [PMID: 39751898 PMCID: PMC11699031 DOI: 10.1007/s00262-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025]
Abstract
Myeloid cells accumulate extensively in most tumors and play a critical role in immunosuppression of the tumor microenvironment (TME). Like T cells, myeloid cells also express immune checkpoint molecules, which induce the immunosuppressive phenotype of these cells. In this review, we summarize the tumor-promoting function and immune checkpoint expression of four types of myeloid cells: macrophages, neutrophils, dendritic cells, and myeloid-derived suppressor cells, which are the main components of the TME. By summarizing the research status of myeloid checkpoints, we propose that blocking immune checkpoints on myeloid cells might be an effective strategy to reverse the immunosuppressive status of the TME. Moreover, combining nanotechnology, cellular therapy, and bispecific antibodies to achieve precise targeting of myeloid immune checkpoints can help to avoid the adverse effects of systemic administration, ultimately achieving a balance between efficacy and safety in cancer therapy.
Collapse
Affiliation(s)
- Chuhan Ma
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China
| | - Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center (Group), DalianLiaoning Province, 116000, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, ShenyangLiaoning Province, 110004, China.
| |
Collapse
|
2
|
L’Estrange-Stranieri E, Gottschalk TA, Wright MD, Hibbs ML. The dualistic role of Lyn tyrosine kinase in immune cell signaling: implications for systemic lupus erythematosus. Front Immunol 2024; 15:1395427. [PMID: 39007135 PMCID: PMC11239442 DOI: 10.3389/fimmu.2024.1395427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.
Collapse
Affiliation(s)
- Elan L’Estrange-Stranieri
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Timothy A. Gottschalk
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mark D. Wright
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Margaret L. Hibbs
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol 2024; 21:184-197. [PMID: 38110547 DOI: 10.1038/s41575-023-00871-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that results from dysfunction in innate and/or adaptive immune responses. Impaired innate immunity, which leads to lack of control of an altered intestinal microbiota and to activation of the adaptive immune system, promotes a secondary inflammatory response that is responsible for tissue damage. Neutrophils are key players in innate immunity in IBD, but their roles have been neglected compared with those of other immune cells. The latest studies on neutrophils in IBD have revealed unexpected complexities, with heterogeneous populations and dual functions, both deleterious and protective, for the host. In parallel, interconnections between disease development, intestinal microbiota and neutrophils have been highlighted. Numerous IBD susceptibility genes (such as NOD2, NCF4, LRRK2, CARD9) are involved in neutrophil functions related to defence against microorganisms. Moreover, severe monogenic diseases involving dysfunctional neutrophils, including chronic granulomatous disease, are characterized by intestinal inflammation that mimics IBD and by alterations in the intestinal microbiota. This observation demonstrates the dialogue between neutrophils, gut inflammation and the microbiota. Neutrophils affect microbiota composition and function in several ways. In return, microbial factors, including metabolites, regulate neutrophil production and function directly and indirectly. It is crucial to further investigate the diverse roles played by neutrophils in host-microbiota interactions, both at steady state and in inflammatory conditions, to develop new IBD therapies. In this Review, we discuss the roles of neutrophils in IBD, in light of emerging evidence proving strong interconnections between neutrophils and the gut microbiota, especially in an inflammatory context.
Collapse
Affiliation(s)
- Camille Danne
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France.
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France.
| | - Jurate Skerniskyte
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Benoit Marteyn
- CNRS, UPR 9002, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l'ARN, Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France
- Institut Pasteur, Université de Paris, Inserm 1225 Unité de Pathogenèse des Infections Vasculaires, Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint-Antoine, Service de Gastroentérologie, Paris, France
- Paris Center For Microbiome Medicine (PaCeMM) FHU, Paris, France
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
4
|
Chen M, Menon MC, Wang W, Fu J, Yi Z, Sun Z, Liu J, Li Z, Mou L, Banu K, Lee SW, Dai Y, Anandakrishnan N, Azeloglu EU, Lee K, Zhang W, Das B, He JC, Wei C. HCK induces macrophage activation to promote renal inflammation and fibrosis via suppression of autophagy. Nat Commun 2023; 14:4297. [PMID: 37463911 PMCID: PMC10354075 DOI: 10.1038/s41467-023-40086-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Renal inflammation and fibrosis are the common pathways leading to progressive chronic kidney disease (CKD). We previously identified hematopoietic cell kinase (HCK) as upregulated in human chronic allograft injury promoting kidney fibrosis; however, the cellular source and molecular mechanisms are unclear. Here, using immunostaining and single cell sequencing data, we show that HCK expression is highly enriched in pro-inflammatory macrophages in diseased kidneys. HCK-knockout (KO) or HCK-inhibitor decreases macrophage M1-like pro-inflammatory polarization, proliferation, and migration in RAW264.7 cells and bone marrow-derived macrophages (BMDM). We identify an interaction between HCK and ATG2A and CBL, two autophagy-related proteins, inhibiting autophagy flux in macrophages. In vivo, both global or myeloid cell specific HCK-KO attenuates renal inflammation and fibrosis with reduces macrophage numbers, pro-inflammatory polarization and migration into unilateral ureteral obstruction (UUO) kidneys and unilateral ischemia reperfusion injury (IRI) models. Finally, we developed a selective boron containing HCK inhibitor which can reduce macrophage pro-inflammatory activity, proliferation, and migration in vitro, and attenuate kidney fibrosis in the UUO mice. The current study elucidates mechanisms downstream of HCK regulating macrophage activation and polarization via autophagy in CKD and identifies that selective HCK inhibitors could be potentially developed as a new therapy for renal fibrosis.
Collapse
Affiliation(s)
- Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Madhav C Menon
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Wenlin Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sui-Wan Lee
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying Dai
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nanditha Anandakrishnan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J. Peters VAMC, Bronx, NY, USA.
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Futosi K, Németh T, Horváth ÁI, Abram CL, Tusnády S, Lowell CA, Helyes Z, Mócsai A. Myeloid Src-family kinases are critical for neutrophil-mediated autoinflammation in gout and motheaten models. J Exp Med 2023; 220:e20221010. [PMID: 37074415 PMCID: PMC10120404 DOI: 10.1084/jem.20221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Autoinflammatory diseases include a number of monogenic systemic inflammatory diseases, as well as acquired autoinflammatory diseases such as gout. Here, we show that the myeloid Src-family kinases Hck, Fgr, and Lyn are critical for experimental models of gout, as well as for genetically determined systemic inflammation in the Ptpn6me-v/me-v (motheaten viable) mouse model. The Hck-/-Fgr-/-Lyn-/- mutation abrogated various monosodium urate (MSU) crystal-induced pro-inflammatory responses of neutrophils, and protected mice from the development of gouty arthritis. The Src-family inhibitor dasatinib abrogated MSU crystal-induced responses of human neutrophils and reduced experimental gouty arthritis in mice. The Hck-/-Fgr-/-Lyn-/- mutation also abrogated spontaneous inflammation and prolonged the survival of the Ptpn6me-v/me-v mice. Spontaneous adhesion and superoxide release of Ptpn6me-v/me-v neutrophils were also abolished by the Hck-/-Fgr-/-Lyn-/- mutation. Excessive activation of tyrosine phosphorylation pathways in myeloid cells may characterize a subset of autoinflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE “Lendület” Translational Rheumatology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Rheumatology and Clinical Immunology, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Ádám I. Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Clare L. Abram
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Simon Tusnády
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Pécs, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Attila Mócsai
- Department of Physiology, School of Medicine, Semmelweis University, Budapest, Hungary
- ELKH-SE Inflammation Physiology Research Group, Eötvös Loránd Research Network and Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Luo S, Du S, Tao M, Cao J, Cheng P. Insights on hematopoietic cell kinase: An oncogenic player in human cancer. Biomed Pharmacother 2023; 160:114339. [PMID: 36736283 DOI: 10.1016/j.biopha.2023.114339] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Hematopoietic cell kinase (Hck) is a member of the Src family and is expressed in hematopoietic cells. By regulating multiple signaling pathways, HCK can interact with multiple receptors to regulate signaling events involved in cell adhesion, proliferation, migration, invasion, apoptosis, and angiogenesis. However, aberrant expression of Hck in various hematopoietic cells and solid tumors plays a crucial role in tumor-related properties, including cell proliferation and epithelial-mesenchymal transition. In addition, Hck signaling regulates the function of immune cells such as macrophages, contributing to an immunosuppressive tumor microenvironment. The clinical success of various kinase inhibitors targeting the Src kinase family has validated the efficacy of targeting Src, and therapies with highly selective Hck kinase inhibitors are in clinical trials. This article reviews Hck inhibition as an emerging cancer treatment strategy, focusing on the expressions and functions of Hck in tumors and its impact on the tumor microenvironment. It also explores preclinical and clinical pharmacological strategies for Hck targeting to shed light on Hck-targeted tumor therapy.
Collapse
Affiliation(s)
- Shuyan Luo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Shaonan Du
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mei Tao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, 300060 Tianjin, China
| | - Jingyuan Cao
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
7
|
Chen Z, Chen C, Chen F, Lan R, Lin G, Xu Y. Bioinformatics analysis of potential pathogenesis and risk genes of immunoinflammation-promoted renal injury in severe COVID-19. Front Immunol 2022; 13:950076. [PMID: 36052061 PMCID: PMC9424635 DOI: 10.3389/fimmu.2022.950076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Renal injury secondary to COVID-19 is an important factor for the poor prognosis of COVID-19 patients. The pathogenesis of renal injury caused by aberrant immune inflammatory of COVID-19 remains unclear. In this study, a total of 166 samples from 4 peripheral blood transcriptomic datasets of COVID-19 patients were integrated. By using the weighted gene co-expression network (WGCNA) algorithm, we identified key genes for mild, moderate, and severe COVID-19. Subsequently, taking these genes as input genes, we performed Short Time-series Expression Miner (STEM) analysis in a time consecutive ischemia-reperfusion injury (IRI) -kidney dataset to identify genes associated with renal injury in COVID-19. The results showed that only in severe COVID-19 there exist a small group of genes associated with the progression of renal injury. Gene enrichment analysis revealed that these genes are involved in extensive immune inflammation and cell death-related pathways. A further protein-protein interaction (PPI) network analysis screened 15 PPI-hub genes: ALOX5, CD38, GSF3R, LGR, RPR1, HCK, ITGAX, LYN, MAPK3, NCF4, SELP, SPI1, WAS, TLR2 and TLR4. Single-cell sequencing analysis indicated that PPI-hub genes were mainly distributed in neutrophils, macrophages, and dendritic cells. Intercellular ligand-receptor analysis characterized the activated ligand-receptors between these immune cells and parenchyma cells in depth. And KEGG enrichment analysis revealed that viral protein interaction with cytokine and cytokine receptor, necroptosis, and Toll-like receptor signaling pathway may be potentially essential for immune cell infiltration leading to COVID-19 renal injury. Finally, we validated the expression pattern of PPI-hub genes in an independent data set by random forest. In addition, we found that the high expression of these genes was correlated with a low glomerular filtration rate. Including them as risk genes in lasso regression, we constructed a Nomogram model for predicting severe COVID-19. In conclusion, our study explores the pathogenesis of renal injury promoted by immunoinflammatory in severe COVID-19 and extends the clinical utility of its key genes.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fengbin Chen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruilong Lan
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guo Lin
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Yanfang Xu,
| |
Collapse
|
8
|
Poh AR, Love CG, Chisanga D, Steer JH, Baloyan D, Chopin M, Nutt S, Rautela J, Huntington ND, Etemadi N, O’Brien M, O’Keefe R, Ellies LG, Macri C, Mintern JD, Whitehead L, Gangadhara G, Boon L, Chand AL, Lowell CA, Shi W, Pixley FJ, Ernst M. Therapeutic inhibition of the SRC-kinase HCK facilitates T cell tumor infiltration and improves response to immunotherapy. SCIENCE ADVANCES 2022; 8:eabl7882. [PMID: 35731867 PMCID: PMC9216510 DOI: 10.1126/sciadv.abl7882] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although immunotherapy has revolutionized cancer treatment, many immunogenic tumors remain refractory to treatment. This can be largely attributed to an immunologically "cold" tumor microenvironment characterized by an accumulation of immunosuppressive myeloid cells and exclusion of activated T cells. Here, we demonstrate that genetic ablation or therapeutic inhibition of the myeloid-specific hematopoietic cell kinase (HCK) enables activity of antagonistic anti-programmed cell death protein 1 (anti-PD1), anti-CTLA4, or agonistic anti-CD40 immunotherapies in otherwise refractory tumors and augments response in treatment-susceptible tumors. Mechanistically, HCK ablation reprograms tumor-associated macrophages and dendritic cells toward an inflammatory endotype and enhances CD8+ T cell recruitment and activation when combined with immunotherapy in mice. Meanwhile, therapeutic inhibition of HCK in humanized mice engrafted with patient-derived xenografts counteracts tumor immunosuppression, improves T cell recruitment, and impairs tumor growth. Collectively, our results suggest that therapeutic targeting of HCK activity enhances response to immunotherapy by simultaneously stimulating immune cell activation and inhibiting the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Christopher G. Love
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - James H. Steer
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Michaël Chopin
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Stephen Nutt
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jai Rautela
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3186, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria 3039, Australia
| | - Nicholas D. Huntington
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3186, Australia
- oNKo-Innate Pty Ltd, Moonee Ponds, Victoria 3039, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3186, Australia
| | - Nima Etemadi
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Megan O’Brien
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Ryan O’Keefe
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Lesley G. Ellies
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Christophe Macri
- Department of Biochemistry and Pharmacology, University of Melbourne and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria 3010, Australia
| | - Justine D. Mintern
- Department of Biochemistry and Pharmacology, University of Melbourne and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Victoria 3010, Australia
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute and Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Gangadhara Gangadhara
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | | | - Ashwini L. Chand
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | | | - Wei Shi
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
| | - Fiona J. Pixley
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Heidelberg, Victoria 3084, Australia
- Corresponding author.
| |
Collapse
|
9
|
Szumilas N, Corneth OBJ, Lehmann CHK, Schmitt H, Cunz S, Cullen JG, Chu T, Marosan A, Mócsai A, Benes V, Zehn D, Dudziak D, Hendriks RW, Nitschke L. Siglec-H-Deficient Mice Show Enhanced Type I IFN Responses, but Do Not Develop Autoimmunity After Influenza or LCMV Infections. Front Immunol 2021; 12:698420. [PMID: 34497606 PMCID: PMC8419311 DOI: 10.3389/fimmu.2021.698420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Siglec-H is a DAP12-associated receptor on plasmacytoid dendritic cells (pDCs) and microglia. Siglec-H inhibits TLR9-induced IFN-α production by pDCs. Previously, it was found that Siglec-H-deficient mice develop a lupus-like severe autoimmune disease after persistent murine cytomegalovirus (mCMV) infection. This was due to enhanced type I interferon responses, including IFN-α. Here we examined, whether other virus infections can also induce autoimmunity in Siglec-H-deficient mice. To this end we infected Siglec-H-deficient mice with influenza virus or with Lymphocytic Choriomeningitis virus (LCMV) clone 13. With both types of viruses we did not observe induction of autoimmune disease in Siglec-H-deficient mice. This can be explained by the fact that both types of viruses are ssRNA viruses that engage TLR7, rather than TLR9. Also, Influenza causes an acute infection that is rapidly cleared and the chronicity of LCMV clone 13 may not be sufficient and may rather suppress pDC functions. Siglec-H inhibited exclusively TLR-9 driven type I interferon responses, but did not affect type II or type III interferon production by pDCs. Siglec-H-deficient pDCs showed impaired Hck expression, which is a Src-family kinase expressed in myeloid cells, and downmodulation of the chemokine receptor CCR9, that has important functions for pDCs. Accordingly, Siglec-H-deficient pDCs showed impaired migration towards the CCR9 ligand CCL25. Furthermore, autoimmune-related genes such as Klk1 and DNase1l3 are downregulated in Siglec-H-deficient pDCs as well. From these findings we conclude that Siglec-H controls TLR-9-dependent, but not TLR-7 dependent inflammatory responses after virus infections and regulates chemokine responsiveness of pDCs.
Collapse
Affiliation(s)
- Nadine Szumilas
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Heike Schmitt
- First Department of Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Svenia Cunz
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jolie G Cullen
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Talyn Chu
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Anita Marosan
- Department of Immune Modulation, University Hospital Erlangen, Erlangen, Germany
| | - Attila Mócsai
- Semmelweis University School of Medicine, Budapest, Hungary
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen (MICE), University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Tahir M, Arshid S, Fontes B, S. Castro M, Sidoli S, Schwämmle V, Luz IS, Roepstorff P, Fontes W. Phosphoproteomic Analysis of Rat Neutrophils Shows the Effect of Intestinal Ischemia/Reperfusion and Preconditioning on Kinases and Phosphatases. Int J Mol Sci 2020; 21:ijms21165799. [PMID: 32823483 PMCID: PMC7460855 DOI: 10.3390/ijms21165799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 01/02/2023] Open
Abstract
Intestinal ischemia reperfusion injury (iIRI) is a severe clinical condition presenting high morbidity and mortality worldwide. Some of the systemic consequences of IRI can be prevented by applying ischemic preconditioning (IPC), a series of short ischemia/reperfusion events preceding the major ischemia. Although neutrophils are key players in the pathophysiology of ischemic injuries, neither the dysregulation presented by these cells in iIRI nor the protective effect of iIPC have their regulation mechanisms fully understood. Protein phosphorylation, as well as the regulation of the respective phosphatases and kinases are responsible for regulating a large number of cellular functions in the inflammatory response. Moreover, in previous work we found hydrolases and transferases to be modulated in iIR and iIPC, suggesting the possible involvement of phosphatases and kinases in the process. Therefore, in the present study, we analyzed the phosphoproteome of neutrophils from rats submitted to mesenteric ischemia and reperfusion, either submitted or not to IPC, compared to quiescent controls and sham laparotomy. Proteomic analysis was performed by multi-step enrichment of phosphopeptides, isobaric labeling, and LC-MS/MS analysis. Bioinformatics was used to determine phosphosite and phosphopeptide abundance and clustering, as well as kinases and phosphatases sites and domains. We found that most of the phosphorylation-regulated proteins are involved in apoptosis and migration, and most of the regulatory kinases belong to CAMK and CMGC families. An interesting finding revealed groups of proteins that are modulated by iIR, but such modulation can be prevented by iIPC. Among the regulated proteins related to the iIPC protective effect, Vamp8 and Inpp5d/Ship are discussed as possible candidates for control of the iIR damage.
Collapse
Affiliation(s)
- Muhammad Tahir
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Samina Arshid
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Belchor Fontes
- Laboratory of Surgical Physiopathology (LIM-62), Faculty of Medicine, University of São Paulo, São Paulo 01246903, Brazil;
| | - Mariana S. Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Simone Sidoli
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Isabelle S. Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark; (S.S.); (V.S.); (P.R.)
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil; (M.T.); (S.A.); (M.S.C.); (I.S.L.)
- Correspondence:
| |
Collapse
|
11
|
Chitu V, Biundo F, Shlager GGL, Park ES, Wang P, Gulinello ME, Gokhan Ş, Ketchum HC, Saha K, DeTure MA, Dickson DW, Wszolek ZK, Zheng D, Croxford AL, Becher B, Sun D, Mehler MF, Stanley ER. Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Rep 2020; 30:3004-3019.e5. [PMID: 32130903 PMCID: PMC7370656 DOI: 10.1016/j.celrep.2020.02.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
CSF-1R haploinsufficiency causes adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Previous studies in the Csf1r+/- mouse model of ALSP hypothesized a central role of elevated cerebral Csf2 expression. Here, we show that monoallelic deletion of Csf2 rescues most behavioral deficits and histopathological changes in Csf1r+/- mice by preventing microgliosis and eliminating most microglial transcriptomic alterations, including those indicative of oxidative stress and demyelination. We also show elevation of Csf2 transcripts and of several CSF-2 downstream targets in the brains of ALSP patients, demonstrating that the mechanisms identified in the mouse model are functional in humans. Our data provide insights into the mechanisms underlying ALSP. Because increased CSF2 levels and decreased microglial Csf1r expression have also been reported in Alzheimer's disease and multiple sclerosis, we suggest that the unbalanced CSF-1R/CSF-2 signaling we describe in the present study may contribute to the pathogenesis of other neurodegenerative conditions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel G L Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eun S Park
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harmony C Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kusumika Saha
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael A DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
12
|
Tsai YF, Chen CY, Chang WY, Syu YT, Hwang TL. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic Biol Med 2019; 145:67-77. [PMID: 31550527 DOI: 10.1016/j.freeradbiomed.2019.09.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023]
Abstract
The natural stilbenoid, Resveratrol (RSV; 3,5,4'-trihydroxystilbene) has been shown to have beneficial effects on inflammatory diseases as well as cancer, neurodegenerative diseases, and cardiovascular disorders. The underlying mechanism by which RSV affects neutrophil activation has yet to be fully elucidated. In this study, we tested the hypothesis that RSV modulates the inflammatory activities of formyl-Met-Leu-Phe-stimulated human neutrophils. We employed a well-established isolated-neutrophil model to investigate the effects of RSV on neutrophil functions and the underlying mechanism of signaling transduction. The lipopolysaccharide-induced ALI murine model was employed to evaluate the therapeutic effects of RSV. Experiment results demonstrate that RSV reduces respiratory burst, degranulation, integrin expression, and cell adhesion in activated neutrophils in dose-dependent manners. RSV inhibited phosphorylation of Src family kinases (SFKs) and reduced their enzymatic activities. Moreover, RSV and a selective inhibitor of SFKs (PP2) reduced the phosphorylation of Bruton's tyrosine kinase and Vav. There results indicated that the inhibitory effects of RSV are mediated through the inhibition of the SFKs-Btk-Vav pathway. This study also revealed that RSV attenuates endotoxin-induced lung injury. We surmise that the therapeutic effects of RSV on ALI may derive from its anti-neutrophilic inflammation function and free radical-scavenging effects.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
13
|
LILRB4 ITIMs mediate the T cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol 2019; 17:272-282. [PMID: 31700117 DOI: 10.1038/s41423-019-0321-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
We recently demonstrated that leukocyte Ig-like receptor 4 (LILRB4) expressed by monocytic acute myeloid leukemia (AML) cells mediates T-cell inhibition and leukemia cell infiltration via its intracellular domain. The cytoplasmic domain of LILRB4 contains three immunoreceptor tyrosine-based inhibitory motifs (ITIMs); the tyrosines at positions 360, 412, and 442 are phosphorylation sites. Here, we analyzed how the ITIMs of LILRB4 in AML cells mediate its function. Our in vitro and in vivo data show that Y412 and Y442, but not Y360, of LILRB4 are required for T-cell inhibition, and all three ITIMs are needed for leukemia cell infiltration. We constructed chimeric proteins containing the extracellular domain of LILRB4 and the intracellular domain of LILRB1 and vice versa. The intracellular domain of LILRB4, but not that of LILRB1, mediates T-cell suppression and AML cell migration. Our studies thus defined the unique signaling roles of LILRB4 ITIMs in AML cells.
Collapse
|
14
|
Inamdar VV, Kostyak JC, Badolia R, Dangelmaier CA, Manne BK, Patel A, Kim S, Kunapuli SP. Impaired Glycoprotein VI-Mediated Signaling and Platelet Functional Responses in CD45 Knockout Mice. Thromb Haemost 2019; 119:1321-1331. [PMID: 31226719 DOI: 10.1055/s-0039-1692422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE CD45 is a receptor protein tyrosine phosphatase present on the surface of all hematopoietic cells except for erythrocytes and platelets. Proteomics studies, however, have demonstrated the presence of a CD45 c-terminal catalytic peptide in platelets. Therefore, we investigated the functional role of this truncated isoform of CD45 in platelets, which contains the c-terminal catalytic domain but lacks the extracellular region. METHODS AND RESULTS We used an antibody specific to the c-terminus of CD45 to confirm the presence of a truncated CD45 isoform in platelets. We also examined ex vivo and in vivo platelet function using CD45 knockout (KO) mice. Aggregation and secretion mediated by the glycoprotein VI (GPVI) receptor was impaired in CD45 KO platelets. Consequently, CD45 KO mice had impaired hemostasis indicated by increased tail bleeding times. Also, using a model of pulmonary embolism we showed that CD45 KO mice had defective in vivo thrombus formation. Next, we investigated whether or not the truncated isoform of CD45 had a role in GPVI signaling. The full-length isoform of CD45 is known to regulate Src family kinase (SFK) activation in lymphocytes. We find a similar role for the truncated isoform of CD45 in platelets. SFK activation was impaired downstream of the GPVI receptor in the CD45 KO murine platelets. Consequently, Syk, PLCγ2, and pleckstrin phosphorylations were also impaired in CD45 KO murine platelets. CONCLUSION We conclude that the truncated CD45 isoform regulates GPVI-mediated signaling and platelet functional responses by regulating SFK activation.
Collapse
Affiliation(s)
- Vaishali V Inamdar
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - John C Kostyak
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Rachit Badolia
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Carol A Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Bhanu Kanth Manne
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Soochong Kim
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
15
|
Roseweir AK, Powell AG, Horstman SL, Inthagard J, Park JH, McMillan DC, Horgan PG, Edwards J. Src family kinases, HCK and FGR, associate with local inflammation and tumour progression in colorectal cancer. Cell Signal 2019; 56:15-22. [DOI: 10.1016/j.cellsig.2019.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
|
16
|
Vlieg HC, Huizinga EG, Janssen BJC. Structure and flexibility of the extracellular region of the PirB receptor. J Biol Chem 2019; 294:4634-4643. [PMID: 30674550 DOI: 10.1074/jbc.ra118.004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 01/14/2019] [Indexed: 11/06/2022] Open
Abstract
Murine paired immunoglobulin receptor B (PirB) and its human ortholog leukocyte immunoglobulin-like receptor B2 (LILRB2) are widely expressed inhibitory receptors that interact with a diverse set of extracellular ligands and exert functions ranging from down-regulation of immune responses to inhibition of neuronal growth. However, structural information that could shed light on how PirB interacts with its ligands is lacking. Here, we report crystal structures of the PirB ectodomain; the first full ectodomain structure for a LILR family member, at 3.3-4.5 Å resolution. The structures reveal that PirB's six Ig-like domains are arranged at acute angles, similar to the structures of leukocyte immunoglobulin-like receptor (LILR) and killer-cell immunoglobulin-like receptor (KIR). We observe that this regular arrangement is followed throughout the ectodomain, resulting in an extended zigzag conformation. In two out of the five structures reported here, the repeating zigzag is broken by the first domain that can adopt two alternative orientations. Quantitative binding experiments revealed a 9 μm dissociation constant for PirB-myelin-associated glycoprotein (MAG) ectodomain interactions. Taken together, these structural findings and the observed PirB-MAG interactions are compatible with a model for intercellular signaling in which the PirB extracellular domains, which point away from the cell surface, enable interaction with ligands in trans.
Collapse
Affiliation(s)
- Hedwich C Vlieg
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Eric G Huizinga
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Bert J C Janssen
- From Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
CD45 in human physiology and clinical medicine. Immunol Lett 2018; 196:22-32. [PMID: 29366662 DOI: 10.1016/j.imlet.2018.01.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023]
Abstract
CD45 is an evolutionary highly conserved receptor protein tyrosine phosphatase exclusively expressed on all nucleated cells of the hematopoietic system. It is characterized by the expression of several isoforms, specific to a certain cell type and the developmental or activation status of the cell. CD45 is one of the key players in the initiation of T cell receptor signaling by controlling the activation of the Src family protein-tyrosine kinases Lck and Fyn. CD45 deficiency results in T- and B-lymphocyte dysfunction in the form of severe combined immune deficiency. It also plays a significant role in autoimmune diseases and cancer as well as in infectious diseases including fungal infections. The knowledge collected on CD45 biology is rather vast, but it remains unclear whether all findings in rodent immune cells also apply to human CD45. This review focuses on human CD45 expression and function and provides an overview on its ligands and role in human pathology.
Collapse
|
18
|
Azcutia V, Parkos CA, Brazil JC. Role of negative regulation of immune signaling pathways in neutrophil function. J Leukoc Biol 2017; 103:10.1002/JLB.3MIR0917-374R. [PMID: 29345376 PMCID: PMC6203665 DOI: 10.1002/jlb.3mir0917-374r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 12/26/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) play a critical role in host defense against infection and in the resolution of inflammation. However, immune responses mediated by PMN must be tightly regulated to facilitate elimination of invading pathogens without inducing detrimental inflammation and host tissue damage. Specific engagement of cell surface immunoreceptors by a diverse range of extracellular signals regulates PMN effector functions through differential activation of intracellular signaling cascades. Although mechanisms of PMN activation mediated via cell signaling pathways have been well described, less is known about negative regulation of PMN function by immune signaling cascades. Here, we provide an overview of immunoreceptor-mediated negative regulation of key PMN effector functions including maturation, migration, phagocytosis, reactive oxygen species release, degranulation, apoptosis, and NET formation. Increased understanding of mechanisms of suppression of PMN effector functions may point to possible future therapeutic targets for the amelioration of PMN-mediated autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Veronica Azcutia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Jennifer C. Brazil
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
19
|
van der Touw W, Chen HM, Pan PY, Chen SH. LILRB receptor-mediated regulation of myeloid cell maturation and function. Cancer Immunol Immunother 2017. [PMID: 28638976 DOI: 10.1007/s00262-017-2023-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The leukocyte immunoglobulin-like receptor (LILR) family comprises a set of paired immunomodulatory receptors expressed among human myeloid and lymphocyte cell populations. While six members of LILR subfamily A (LILRA) associate with membrane adaptors to signal via immunoreceptor tyrosine-based activating motifs (ITAM), LILR subfamily B (LILRB) members signal via multiple cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIM). Ligand specificity of some LILR family members has been studied in detail, but new perspective into the immunoregulatory aspects of this receptor family in human myeloid cells has been limited. LILRB receptors and the murine ortholog, paired immunoglobulin-like receptor B (PIRB), have been shown to negatively regulate maturation pathways in myeloid cells including mast cells, neutrophils, dendritic cells, as well as B cells. Our laboratory further demonstrated in mouse models that PIRB regulated functional development of myeloid-derived suppressor cell and the formation of a tumor-permissive microenvironment. Based on observations from the literature and our own studies, our laboratory is focusing on how LILRs modulate immune homeostasis of human myeloid cells and how these pathways may be targeted in disease states. Integrity of this pathway in tumor microenvironments, for example, permits a myeloid phenotype that suppresses antitumor adaptive immunity. This review presents the evidence supporting a role of LILRs as myeloid cell regulators and ongoing efforts to understand the functional immunology surrounding this family.
Collapse
Affiliation(s)
- William van der Touw
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Hui-Ming Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Immunotherapy Research Center, Houston Methodist Research institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Abram CL, Lowell CA. Shp1 function in myeloid cells. J Leukoc Biol 2017; 102:657-675. [PMID: 28606940 DOI: 10.1189/jlb.2mr0317-105r] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/28/2023] Open
Abstract
The motheaten mouse was first described in 1975 as a model of systemic inflammation and autoimmunity, as a result of immune system dysregulation. The phenotype was later ascribed to mutations in the cytoplasmic tyrosine phosphatase Shp1. This phosphatase is expressed widely throughout the hematopoietic system and has been shown to impact a multitude of cell signaling pathways. The determination of which cell types contribute to the different aspects of the phenotype caused by global Shp1 loss or mutation and which pathways within these cell types are regulated by Shp1 is important to further our understanding of immune system regulation. In this review, we focus on the role of Shp1 in myeloid cells and how its dysregulation affects immune function, which can impact human disease.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine and Immunology Program, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Abstract
Neutrophils play a critical role in antimicrobial host defense, but their improper activation also contributes to inflammation-induced tissue damage. Therefore, understanding neutrophil biology is important for the understanding, diagnosis, and therapy of both infectious and inflammatory diseases. Neutrophils express a large number of cell-surface receptors that sense extracellular cues and trigger various functional responses through complex intracellular signaling pathways. During the last several years, we and others have shown that tyrosine kinases play a critical role in those processes. In particular, Src-family and Syk tyrosine kinases couple Fc-receptors and adhesion receptors (integrins and selectins) to various neutrophil effector functions. This pathway shows surprising similarity to lymphocyte antigen receptor signaling and involves various other enzymes (e.g. PLCγ2), exchange factors (e.g. Vav-family members) and adapter proteins (such as ITAM-containing adapters, SLP-76, and CARD9). Those mediators trigger various antimicrobial functions and play a critical role in coordinating the inflammatory response through the release of inflammatory mediators, such as chemokines and LTB4 . Interestingly, however, tyrosine kinases have a limited direct role in the migration of neutrophils to the site of inflammation. Here, we review the role of tyrosine kinase signaling pathways in neutrophils and how those pathways contribute to neutrophil activation in health and disease.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
- MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Favier B. Regulation of neutrophil functions through inhibitory receptors: an emerging paradigm in health and disease. Immunol Rev 2016; 273:140-55. [DOI: 10.1111/imr.12457] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benoit Favier
- CEA, DRF, IMETI, IMVA, UMR 1184, INSERM; Université Paris-Sud; IDMIT Infrastructure; Fontenay-aux-Roses France
| |
Collapse
|
23
|
Kuwano Y, Adler M, Zhang H, Groisman A, Ley K. Gαi2 and Gαi3 Differentially Regulate Arrest from Flow and Chemotaxis in Mouse Neutrophils. THE JOURNAL OF IMMUNOLOGY 2016; 196:3828-33. [PMID: 26976957 DOI: 10.4049/jimmunol.1500532] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 02/22/2016] [Indexed: 01/13/2023]
Abstract
Leukocyte recruitment to inflammation sites progresses in a multistep cascade. Chemokines regulate multiple steps of the cascade, including arrest, transmigration, and chemotaxis. The most important chemokine receptor in mouse neutrophils is CXCR2, which couples through Gαi2- and Gαi3-containing heterotrimeric G proteins. Neutrophils arrest in response to CXCR2 stimulation. This is defective in Gαi2-deficient neutrophils. In this study, we show that Gαi3-deficient neutrophils showed reduced transmigration but normal arrest in mice. We also tested Gαi2- or Gαi3-deficient neutrophils in a CXCL1 gradient generated by a microfluidic device. Gαi3-, but not Gαi2-, deficient neutrophils showed significantly reduced migration and directionality. This was confirmed in a model of sterile inflammation in vivo. Gαi2-, but not Gαi3-, deficient neutrophils showed decreased Ca(2+) flux in response to CXCR2 stimulation. Conversely, Gαi3-, but not Gαi2-, deficient neutrophils exhibited reduced AKT phosphorylation upon CXCR2 stimulation. We conclude that Gαi2 controls arrest and Gαi3 controls transmigration and chemotaxis in response to chemokine stimulation of neutrophils.
Collapse
Affiliation(s)
- Yoshihiro Kuwano
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Micha Adler
- Department of Physics, University of California, San Diego, La Jolla, CA 92093; and
| | - Hong Zhang
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alex Groisman
- Department of Physics, University of California, San Diego, La Jolla, CA 92093; and
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
24
|
van Rees DJ, Szilagyi K, Kuijpers TW, Matlung HL, van den Berg TK. Immunoreceptors on neutrophils. Semin Immunol 2016; 28:94-108. [PMID: 26976825 PMCID: PMC7129252 DOI: 10.1016/j.smim.2016.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Neutrophil activities must be tightly controlled to maintain immune homeostasis. Activating and inhibitory receptors balance the outcome of immune cell activation. Immunoreceptors contain Ig-like extracellular domains and signal via ITAMs or ITIMs. Syk or SHP/SHIP mediate downstream signaling after immunoreceptor activation. Targeting immunoreceptors provides opportunities for therapeutic interventions.
Neutrophils play a critical role in the host defense against infection, and they are able to perform a variety of effector mechanisms for this purpose. However, there are also a number of pathological conditions, including autoimmunity and cancer, in which the activities of neutrophils can be harmful to the host. Thus the activities of neutrophils need to be tightly controlled. As in the case of other immune cells, many of the neutrophil effector functions are regulated by a series of immunoreceptors on the plasma membrane. Here, we review what is currently known about the functions of the various individual immunoreceptors and their signaling in neutrophils. While these immunoreceptors allow for the recognition of a diverse range of extracellular ligands, such as cell surface structures (like proteins, glycans and lipids) and extracellular matrix components, they commonly signal via conserved ITAM or ITIM motifs and their associated downstream pathways that depend on the phosphorylation of tyrosine residues in proteins and/or inositol lipids. This allows for a balanced homeostatic regulation of neutrophil effector functions. Given the number of available immunoreceptors and their fundamental importance for neutrophil behavior, it is perhaps not surprising that pathogens have evolved means to evade immune responses through some of these pathways. Inversely, some of these receptors evolved to specifically recognize these pathogens. Finally, some interactions mediated by immunoreceptors in neutrophils have been identified as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Dieke J van Rees
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Abstract
The neutrophil transmigration across the blood endothelial cell barrier represents the prerequisite step of innate inflammation. Neutrophil recruitment to inflamed tissues occurs in a well-defined stepwise manner, which includes elements of neutrophil rolling, firm adhesion, and crawling onto the endothelial cell surface before transmigrating across the endothelial barrier. This latter step known as diapedesis can occur at the endothelial cell junction (paracellular) or directly through the endothelial cell body (transcellular). The extravasation cascade is controlled by series of engagement of various adhesive modules, which result in activation of bidirectional signals to neutrophils and endothelial cells for adequate cellular response. This review will focus on recent advances in our understanding of mechanism of leukocyte crawling and diapedesis, with an emphasis on leukocyte-endothelial interactions and the signaling pathways they transduce to determine the mode of diapedesis, junctional or nonjunctional. I will also discuss emerging evidence highlighting key differences in the two modes of diapedesis and why it is clinically important to understand specificity in the regulation of diapedesis.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, USA; University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
26
|
Liu J, Wang Y, Fu W. Axon regeneration impediment: the role of paired immunoglobulin-like receptor B. Neural Regen Res 2015; 10:1338-1342. [PMID: 26487866 PMCID: PMC4590251 DOI: 10.4103/1673-5374.162771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 02/05/2023] Open
Abstract
Regenerative capacity is weak after central nervous system injury because of the absence of an enhancing microenvironment and presence of an inhibitory microenvironment for neuronal and axonal repair. In addition to the Nogo receptor (NgR), the paired immunoglobulin-like receptor B (PirB) is a recently discovered coreceptor of Nogo, myelin-associated glycoprotein, and myelin oligodendrocyte glycoprotein. Concurrent blocking of NgR and PirB almost completely eliminates the inhibitory effect of myelin-associated inhibitory molecules on axonal regeneration. PirB participates in a key pathological process of the nervous system, specifically axonal regeneration inhibition. PirB is an inhibitory receptor similar to NgR, but their effects are not identical. This study summarizes the structure, distribution, relationship with common nervous system diseases, and known mechanisms of PirB, and concludes that PirB is also distributed in cells of the immune and hematopoietic systems. Further investigations are needed to determine if immunomodulation and blood cell migration involve inhibition of axonal regeneration.
Collapse
Affiliation(s)
- Jing Liu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
| | - Yan Wang
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wei Fu
- Neonatal Intensive Care Center, BAYI Children's Hospital, Beijing Military General Hospital of Chinese PLA, Beijing, China
- Graduate School, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
27
|
Mazzi P, Caveggion E, Lapinet-Vera JA, Lowell CA, Berton G. The Src-Family Kinases Hck and Fgr Regulate Early Lipopolysaccharide-Induced Myeloid Cell Recruitment into the Lung and Their Ability To Secrete Chemokines. THE JOURNAL OF IMMUNOLOGY 2015; 195:2383-95. [PMID: 26232427 DOI: 10.4049/jimmunol.1402011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 07/04/2015] [Indexed: 12/20/2022]
Abstract
Myeloid leukocyte recruitment into the lung in response to environmental cues represents a key factor for the induction of lung damage. We report that Hck- and Fgr-deficient mice show a profound impairment in early recruitment of neutrophils and monocytes in response to bacterial LPS. The reduction in interstitial and airway neutrophil recruitment was not due to a cell-intrinsic migratory defect, because Hck- and Fgr-deficient neutrophils were attracted to the airways by the chemokine CXCL2 as wild type cells. However, early accumulation of chemokines and TNF-α in the airways was reduced in hck(-/-)fgr(-/-) mice. Considering that chemokine and TNF-α release into the airways was neutrophil independent, as suggested by a comparison between control and neutrophil-depleted mice, we examined LPS-induced chemokine secretion by neutrophils and macrophages in wild type and mutant cells. Notably, mutant neutrophils displayed a marked deficit in their capability to release the chemokines CXCL1, CXCL2, CCL3, and CCL4 and TNF-α in response to LPS. However, intracellular accumulation of these chemokines and TNF-α, as well as secretion of a wide array of cytokines, including IL-1α, IL-1β, IL-6, and IL-10, by hck(-/-)fgr(-/-) neutrophils was normal. Intriguingly, secretion of CXCL1, CXCL2, CCL2, CCL3, CCL4, RANTES, and TNF-α, but not IL-1α, IL-1β, IL-6, IL-10, and GM-CSF, was also markedly reduced in bone marrow-derived macrophages. Consistently, the Src kinase inhibitors PP2 and dasatinib reduced chemokine secretion by neutrophils and bone marrow-derived macrophages. These findings identify Src kinases as a critical regulator of chemokine secretion in myeloid leukocytes during lung inflammation.
Collapse
Affiliation(s)
- Paola Mazzi
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Elena Caveggion
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Josè A Lapinet-Vera
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Giorgio Berton
- Section of General Pathology, Department of Pathology and Diagnostics, University of Verona, Verona, 37134, Italy; and
| |
Collapse
|
28
|
Stadtmann A, Block H, Volmering S, Abram C, Sohlbach C, Boras M, Lowell CA, Zarbock A. Cross-Talk between Shp1 and PIPKIγ Controls Leukocyte Recruitment. THE JOURNAL OF IMMUNOLOGY 2015; 195:1152-61. [PMID: 26101325 DOI: 10.4049/jimmunol.1500606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022]
Abstract
Neutrophil recruitment to the site of inflammation plays a pivotal role in host defense. However, overwhelming activation and accumulation of neutrophils in the tissue may cause tissue damage and autoimmunity due to the release of cytokines, oxidants, and proteases. Neutrophil adhesion in acute inflammation is initiated by activation of αLβ2 (LFA-1), which can be induced by rolling on E-selectin (slowly) or by exposure to the chemokine CXCL1 (rapidly). Despite the clinical importance, cell-intrinsic molecular mechanisms of negative regulation of integrin adhesiveness and neutrophil recruitment are poorly understood. Mice deficient in the tyrosine phosphatase Src homology 2 domain-containing protein tyrosine phosphatase 1 (Shp1) show increased leukocyte adhesion, but the interpretation of these data is limited by the severe global phenotype of these mice. In this study, we used mice with global and myeloid-restricted deletion of Shp1 to study neutrophil arrest, adhesion, crawling, and transendothelial migration in vitro and in vivo. Shp1 deficiency results in increased neutrophil adhesion in vivo; however, neutrophil crawling, transmigration, and chemotaxis were reduced in these mice. Mechanistically, Shp1 binds and controls PIPKIγ activity and, thereby, modulates phosphatidylinositol (4,5)-bisphosphate levels and adhesion. Thus, Shp1 is involved in the deactivation of integrins and regulation of neutrophil recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Anika Stadtmann
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, 48149 Münster, Germany; Max-Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; and
| | - Helena Block
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, 48149 Münster, Germany; Max-Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; and
| | - Stephanie Volmering
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, 48149 Münster, Germany; Max-Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; and
| | - Clare Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Charlotte Sohlbach
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, 48149 Münster, Germany; Max-Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; and
| | - Mark Boras
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, 48149 Münster, Germany; Max-Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, 48149 Münster, Germany; Max-Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; and
| |
Collapse
|
29
|
Mócsai A, Walzog B, Lowell CA. Intracellular signalling during neutrophil recruitment. Cardiovasc Res 2015; 107:373-85. [PMID: 25998986 PMCID: PMC4502828 DOI: 10.1093/cvr/cvv159] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/19/2015] [Indexed: 12/29/2022] Open
Abstract
Recruitment of leucocytes such as neutrophils to the extravascular space is a critical step of the inflammation process and plays a major role in the development of various diseases including several cardiovascular diseases. Neutrophils themselves play a very active role in that process by sensing their environment and responding to the extracellular cues by adhesion and de-adhesion, cellular shape changes, chemotactic migration, and other effector functions of cell activation. Those responses are co-ordinated by a number of cell surface receptors and their complex intracellular signal transduction pathways. Here, we review neutrophil signal transduction processes critical for recruitment to the site of inflammation. The two key requirements for neutrophil recruitment are the establishment of appropriate chemoattractant gradients and the intrinsic ability of the cells to migrate along those gradients. We will first discuss signalling steps required for sensing extracellular chemoattractants such as chemokines and lipid mediators and the processes (e.g. PI3-kinase pathways) leading to the translation of extracellular chemoattractant gradients to polarized cellular responses. We will then discuss signal transduction by leucocyte adhesion receptors (e.g. tyrosine kinase pathways) which are critical for adhesion to, and migration through the vessel wall. Finally, additional neutrophil signalling pathways with an indirect effect on the neutrophil recruitment process, e.g. through modulation of the inflammatory environment, will be discussed. Mechanistic understanding of these pathways provide better understanding of the inflammation process and may point to novel therapeutic strategies for controlling excessive inflammation during infection or tissue damage.
Collapse
Affiliation(s)
- Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37-47, 1094 Budapest, Hungary MTA-SE 'Lendület' Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
30
|
Filippi MD. Leukocyte transcellular diapedesis: Rap1b is in control. Tissue Barriers 2015; 3:e1052185. [PMID: 26451346 DOI: 10.1080/21688370.2015.1052185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/30/2022] Open
Abstract
The neutrophil transmigration across the blood endothelial cell barrier represents the prerequisite step of innate inflammation. It is well known that neutrophils cross the endothelial barrier by transmigrating at the endothelial cell junction ('paracellular'). However, in vivo and in vitro evidence have clearly demonstrated occurrence of an alternate mode of migration directly through the endothelial cell body ('transcellular'). Despite our knowledge on mechanisms of transendothelial migration, it remains unclear which factors determine distinct modes of migration. We recently found that the Ras-like Rap1b GTPase limits neutrophil transcellular migration. Rap1b restrains transcellular migration by suppressing Akt-driven invasive protrusions while leaving the paracellular route unaffected. Furthermore, Rap1b limits neutrophil tissue infiltration in mice and prevents hyper susceptibility to endotoxin shock. These findings uncover a novel role for Rap1b in neutrophil migration and inflammation. Importantly, they offer emerging evidences that paracellular and transcellular migration of neutrophils are regulated by separate mechanisms. Here, we discuss the mechanisms of neutrophil transmigration and their clinical importance for vascular integrity and innate inflammation.
Collapse
Affiliation(s)
- Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology; Cincinnati Children's Research Foundation ; Cincinnati, OH USA ; University of Cincinnati College of Medicine ; Cincinnati, OH USA
| |
Collapse
|
31
|
Kovács M, Németh T, Jakus Z, Sitaru C, Simon E, Futosi K, Botz B, Helyes Z, Lowell CA, Mócsai A. The Src family kinases Hck, Fgr, and Lyn are critical for the generation of the in vivo inflammatory environment without a direct role in leukocyte recruitment. ACTA ACUST UNITED AC 2014; 211:1993-2011. [PMID: 25225462 PMCID: PMC4172222 DOI: 10.1084/jem.20132496] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Kovács et al. examine the role of the Src family kinases Hck, Fgr, and Lyn in immune cell–mediated inflammation. Using arthritis and skin inflammation models, the authors show that mice lacking hematopoietic Hck, Fgr, and Lyn are protected from these inflammatory diseases, showing loss of myeloid cell recruitment and lack of inflammatory mediator production. Unexpectedly, the three kinases are dispensable for the intrinsic migratory ability of myeloid cells. These finding may have clinical implications in rheumatic and skin diseases. Although Src family kinases participate in leukocyte function in vitro, such as integrin signal transduction, their role in inflammation in vivo is poorly understood. We show that Src family kinases play a critical role in myeloid cell–mediated in vivo inflammatory reactions. Mice lacking the Src family kinases Hck, Fgr, and Lyn in the hematopoietic compartment were completely protected from autoantibody-induced arthritis and skin blistering disease, as well as from the reverse passive Arthus reaction, with functional overlap between the three kinases. Though the overall phenotype resembled the leukocyte recruitment defect observed in β2 integrin–deficient (CD18−/−) mice, Hck−/−Fgr−/−Lyn−/− neutrophils and monocytes/macrophages had no cell-autonomous in vivo or in vitro migration defect. Instead, Src family kinases were required for the generation of the inflammatory environment in vivo and for the release of proinflammatory mediators from neutrophils and macrophages in vitro, likely due to their role in Fcγ receptor signal transduction. Our results suggest that infiltrating myeloid cells release proinflammatory chemokine, cytokine, and lipid mediators that attract further neutrophils and monocytes from the circulation in a CD18-dependent manner. Src family kinases are required for the generation of the inflammatory environment but not for the intrinsic migratory ability of myeloid cells.
Collapse
Affiliation(s)
- Miklós Kovács
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Cassian Sitaru
- Department of Dermatology, University Hospital Freiburg and BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, and János Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, and MTA-SE "Lendület" Lymphatic Physiology Research Group of the Hungarian Academy of Sciences and the Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
32
|
Kumar S, Xu J, Kumar RS, Lakshmikanthan S, Kapur R, Kofron M, Chrzanowska-Wodnicka M, Filippi MD. The small GTPase Rap1b negatively regulates neutrophil chemotaxis and transcellular diapedesis by inhibiting Akt activation. ACTA ACUST UNITED AC 2014; 211:1741-58. [PMID: 25092872 PMCID: PMC4144729 DOI: 10.1084/jem.20131706] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mice lacking the small GTPase Rap1b exhibit enhanced neutrophil recruitment to inflamed lungs and susceptibility to endotoxin shock via enhance PI3K-Akt activation. Neutrophils are the first line of cellular defense in response to infections and inflammatory injuries. However, neutrophil activation and accumulation into tissues trigger tissue damage due to release of a plethora of toxic oxidants and proteases, a cause of acute lung injury (ALI). Despite its clinical importance, the molecular regulation of neutrophil migration is poorly understood. The small GTPase Rap1b is generally viewed as a positive regulator of immune cell functions by controlling bidirectional integrin signaling. However, we found that Rap1b-deficient mice exhibited enhanced neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock. Unexpectedly, Rap1b deficiency promoted the transcellular route of diapedesis through endothelial cell. Increased transcellular migration of Rap1b-deficient neutrophils in vitro was selectively mediated by enhanced PI3K-Akt activation and invadopodia-like protrusions. Akt inhibition in vivo suppressed excessive Rap1b-deficient neutrophil migration and associated endotoxin shock. The inhibitory action of Rap1b on PI3K signaling may be mediated by activation of phosphatase SHP-1. Thus, this study reveals an unexpected role for Rap1b as a key suppressor of neutrophil migration and lung inflammation.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Juying Xu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | - Rupali Sani Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| | | | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Cancer Research Institute, Indianapolis, IN 46202
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229
| | | | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 University of Cincinnati College of Medicine, Cincinnati OH 45229
| |
Collapse
|
33
|
Shik D, Moshkovits I, Karo-Atar D, Reichman H, Munitz A. Interleukin-33 requires CMRF35-like molecule-1 expression for induction of myeloid cell activation. Allergy 2014; 69:719-29. [PMID: 24735452 DOI: 10.1111/all.12388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND IL-33 is a potent activator of various cells involved in allergic inflammation, including eosinophils and mast cells. Despite its critical role in Th2 disease settings, endogenous molecular mechanisms that may regulate IL-33-induced responses remain to be defined. We have recently shown that eosinophils express CMRF35-like molecule (CLM)-1. Yet, the role of CLM-1 in regulating eosinophil functions is still elusive. METHODS CLM-1 and CLM-8 expression and cellular localization were assessed in murine bone marrow-derived and/or peritoneal cells at baseline and following IL-33 stimulation (flow cytometry, western blot). IL-33-induced mediator release and signaling were assessed in wild-type (wt) and Clm1(-/-) cells and mice. RESULTS BM-derived eosinophils express high levels of glycosylated CLM-1. IL-33 induced a rapid, specific, concentration- and time-dependent upregulation of CLM-1 in eosinophils (in vitro and in vivo). Clm1(-/-) eosinophils secreted less IL-33-induced mediators than wt eosinophils. CLM-1 co-localized to ST2 following IL-33 stimulation and was required for IL-33-induced NFκB and p38 phosphorylation. Th2 cytokine (e.g., IL-5, IL-13) and chemokine (e.g., eotaxins, CCL2) secretion was markedly attenuated in IL-33-treated Clm1(-/-) mice. Subsequently, IL-33-challenged mice displayed reduced infiltration of mast cells, macrophages, neutrophils, and B cells. Despite the markedly impaired IL-33-induced eotaxin expression in Clm1(-/-) mice, eosinophil accumulation was similar in wt and Clm1(-/-) mice, due to hyperchemotactic responses of Clm1(-/-) eosinophils. CONCLUSIONS CLM-1 is a novel regulator of IL-33-induced eosinophil activation. These data contribute to the understanding of endogenous molecular mechanisms regulating IL-33-induced responses and may ultimately lead to receptor-based tools for future therapeutic intervention in IL-33-associated diseases.
Collapse
Affiliation(s)
- D. Shik
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - I. Moshkovits
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - D. Karo-Atar
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - H. Reichman
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| | - A. Munitz
- Department of Clinical Microbiology and Immunology; The Sackler School of Medicine; Tel-Aviv University; Ramat Aviv Israel
| |
Collapse
|
34
|
Nerreter T, Köchel C, Jesper D, Eichelbrönner I, Putz E, Einsele H, Seggewiss-Bernhardt R. Dasatinib enhances migration of monocyte-derived dendritic cells by reducing phosphorylation of inhibitory immune receptors Siglec-9 and Siglec-3. Exp Hematol 2014; 42:773-82.e1-3. [PMID: 24882272 DOI: 10.1016/j.exphem.2014.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/18/2014] [Accepted: 05/19/2014] [Indexed: 11/19/2022]
Abstract
The SRC family of kinases (SFKs) is crucial to malignant growth, but also important for signaling in immune cells such as dendritic cells (DCs). These specialized antigen-presenting cells are essential for inducing and boosting specific T-cell responses against pathogens and malignancies. Targeted therapy with SFK inhibitors holds great promise as a direct anti-cancer treatment, but potentially also as an indirect treatment via immunomodulation. Here, we investigated whether the BCR-ABL/SRC inhibitor dasatinib would modulate the major effector functions of DCs, especially their migration, a prerequisite to interaction with lymphocytes in secondary lymphoid organs. We report for the first time that dasatinib more than doubled the number of mature human monocyte-derived DCs (moDCs) migrating toward a CCL19 gradient despite unchanged CCR7 expression when used for pretreatment. These effects were caused by dephosphorylation of SFKs, as confirmed by the specific SFK inhibitor SRC inhibitor 1, leading to dephosphorylation of the inhibitory immunoreceptors Siglec-9 and Siglec-3. The specific blocking of the latter also enhanced migration and underlined the importance of these SFK-dependent receptor systems for migration of moDCs. Dasatinib hampered the secretion of interleukin-12 by moDCs at clinically relevant concentrations. In contrast, endocytosis or boosting of cytomegalovirus-specific CD8(+) T-cell responses remained unaltered when applying dasatinib-pretreated moDCs, in line with minor effects on the expression of co-stimulatory molecules essential for DC-T cell interaction. The induction of enhanced migration of moDCs may potentially be useful in chemo-immunotherapeutic applications. Thus, the use of dasatinib or blocking Siglec antibodies as adjuvants in this setting to induce stronger immune responses is worthy of further study.
Collapse
Affiliation(s)
- Thomas Nerreter
- Immune Recovery Section, Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken (CCC MF), University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Köchel
- Immune Recovery Section, Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Daniel Jesper
- Immune Recovery Section, Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Irina Eichelbrönner
- Immune Recovery Section, Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Evelyn Putz
- Department of Transfusion Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Immune Recovery Section, Division of Hematology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Ruth Seggewiss-Bernhardt
- Comprehensive Cancer Center Mainfranken (CCC MF), University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
35
|
Moshkovits I, Shik D, Itan M, Karo-Atar D, Bernshtein B, Hershko AY, van Lookeren Campagne M, Munitz A. CMRF35-like molecule 1 (CLM-1) regulates eosinophil homeostasis by suppressing cellular chemotaxis. Mucosal Immunol 2014; 7:292-303. [PMID: 23820751 DOI: 10.1038/mi.2013.47] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 02/04/2023]
Abstract
Eosinophil accumulation in health and disease is a hallmark characteristic of mucosal immunity and type 2 helper T cell (Th2) inflammation. Eotaxin-induced CCR3 (chemokine (C-C motif) receptor 3) signaling has a critical role in eosinophil chemotactic responses. Nevertheless, the expressions of immunoreceptor tyrosine-based inhibitory motif-bearing receptors such as CMRF35-like molecule-1 (CLM-1) and their ability to govern eosinophil migration are largely unknown. We now report that CLM-1 (but not CLM-8) is highly and distinctly expressed by colonic and adipose tissue eosinophils. Furthermore, Clm1⁻/⁻ mice display elevated baseline tissue eosinophilia. CLM-1 negatively regulated eotaxin-induced eosinophil responses including eosinophil chemotaxis, actin polymerization, calcium influx, and extracellular signal-regulated kinase (ERK)-1/2, but not p38 phosphorylation. Addition of CLM-1 ligand (e.g., phosphatidylserine) rendered wild-type eosinophils hypochemotactic in vitro and blockade of CLM-1/ligand interactions rendered wild-type eosinophils hyperchemotactic in vitro and in vivo in a model of allergic airway disease. Interestingly, suppression of cellular recruitment via CLM-1 was specific to eosinophils and eotaxin, as leukotriene B₄ (LTB₄)- and macrophage inflammatory protein-1α (MIP-1α)-induced eosinophil and neutrophil migration were not negatively regulated by CLM-1. Finally, peripheral blood eosinophils obtained from allergic rhinitis patients displayed elevated CLM-1/CD300f levels. These data highlight CLM-1 as a novel regulator of eosinophil homeostasis and demonstrate that eosinophil accumulation is constantly governed by CLM-1, which negatively regulates eotaxin-induced eosinophil responses.
Collapse
Affiliation(s)
- I Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - D Shik
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Itan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - D Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - B Bernshtein
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A Y Hershko
- Laboratory of Allergy and Clinical Immunology, Department of Medicine, The Herbert Center of Mast Cell Disorders, Meir Medical Center, Kfar Saba, Israel
| | | | - A Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
36
|
STIM1 calcium sensor is required for activation of the phagocyte oxidase during inflammation and host defense. Blood 2014; 123:2238-49. [PMID: 24493668 DOI: 10.1182/blood-2012-08-450403] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The stromal-interacting molecule 1 (STIM1) is a potent sensor of intracellular calcium, which in turn regulates entry of external calcium through plasma membrane channels to affect immune cell activation. Although the contribution of STIM1 to calcium signaling in lymphocytes has been well studied, the role of this protein in neutrophil-mediated inflammation and host defense is unknown. We report that STIM1-deficient murine neutrophils show loss of store-operated calcium entry (SOCE) in response to both soluble ligands that activate G-proteins as well as Fcγ-receptor or integrin ligation that activates tyrosine kinase signaling. This results in modest defects in phagocytosis and degranulation responses but a profound block in superoxide production by the phagocyte oxidase. We trace the primary intracellular target of calcium to be protein kinase C isoforms α and β (PKCα and PKCβ), which in turn phosphorylate subunits of the oxidase leading to superoxide production. In vivo the loss of SOCE in stim1(-/-) chimeric mice results in marked susceptibility to bacterial infections but also protection from tissue injury in hepatic ischemia/reperfusion injury. These results demonstrate the critical role of STIM1-mediated SOCE and define major protein targets of calcium signaling in neutrophil activation during inflammatory disease.
Collapse
|
37
|
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:1185-97. [PMID: 24263067 DOI: 10.1016/j.intimp.2013.11.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca(2+) signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | | | | |
Collapse
|
38
|
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:638-50. [PMID: 23994464 PMCID: PMC3827506 DOI: 10.1016/j.intimp.2013.06.034] [Citation(s) in RCA: 476] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. Neutrophils are crucial players in innate and adaptive immunity. Neutrophils also participate in autoimmune and inflammatory diseases. Various neutrophil receptors recognize pathogens and the inflammatory environment. The various cell surface receptors trigger diverse intracellular signaling. Neutrophil receptors and signaling are potential targets in inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
- Corresponding author at: Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37–47, 1094 Budapest, Hungary. Tel.: + 36 1 459 1500x60 409; fax: + 36 1 266 7480.
| |
Collapse
|
39
|
Karo-Atar D, Moshkovits I, Eickelberg O, Königshoff M, Munitz A. Paired immunoglobulin-like receptor-B inhibits pulmonary fibrosis by suppressing profibrogenic properties of alveolar macrophages. Am J Respir Cell Mol Biol 2013; 48:456-64. [PMID: 23258232 DOI: 10.1165/rcmb.2012-0329oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophages are lung-resident cells that play key roles in fibrosis. Surprisingly, pathways that inhibit macrophage functions, especially in idiopathic pulmonary fibrosis (IPF), receive little attention. The cell-surface molecule paired immunoglobulin-like receptor B (PIR-B) can suppress macrophage activation. However, its role in pulmonary fibrosis remains unknown. We sought to define the role of PIR-B in IPF. The expression of PIR-B was assessed (by quantitative PCR and flow cytometry) after bleomycin treatment. Differential cell counts, histopathology, and profibrogenic-mediator expression, for example, collagen, α-smooth muscle actin, resistin-like molecule-α (Relm-α), matrix metalloproteinase (MMP)-12, and tissue inhibitor of metalloproteinase (TIMP)-1, were determined (by ELISA quantitative PCR and flow cytometry) in the lungs of wild-type and Pirb(-/-) mice after bleomycin or IL-4 treatment. Bone marrow-derived wild-type and Pirb(-/-) macrophages were stimulated with IL-4 and assessed for Relm-α and MMP-12 expression. PIR-B was up-regulated in lung myeloid cells after bleomycin administration. Bleomycin-treated Pirb(-/-) mice displayed increased lung histopathology and an increased expression of collagen and of the IL-4-associated profibrogenic markers Relm-α, MMP-12, TIMP-1, and osteopontin, which were localized to alveolar macrophages. Increased profibrogenic mediator expression in Pirb(-/-) mice was not attributable to increased IL-4/IL-13 concentrations, suggesting that PIR-B negatively regulates IL-4-induced macrophage activation. Indeed, IL-4-treated Pirb(-/-) mice displayed increased Relm-α expression and Relm-α(+) macrophage concentrations. IL-4-activated Pirb(-/-) macrophages displayed increased Relm-α and MMP-12 induction. Finally, leukocyte immunoglobulin-like receptor subfamily B member 3 (LILRB3)/immunoglobulin-like transcript-5, the human PIR-B orthologue, was expressed and up-regulated in lung biopsies from patients with IPF. Our results establish a key role for PIR-B in IPF, likely via the regulation of macrophage activation. Therefore, PIR-B/LILRB3 may offer a possible target for suppressing macrophage profibrogenic activity in IPF.
Collapse
Affiliation(s)
- Danielle Karo-Atar
- Department of Microbiology and Clinical Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | |
Collapse
|
40
|
Wang J, Shiratori I, Uehori J, Ikawa M, Arase H. Neutrophil infiltration during inflammation is regulated by PILRα via modulation of integrin activation. Nat Immunol 2012; 14:34-40. [DOI: 10.1038/ni.2456] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/21/2012] [Indexed: 12/15/2022]
|
41
|
Séverin S, Nash CA, Mori J, Zhao Y, Abram C, Lowell CA, Senis YA, Watson SP. Distinct and overlapping functional roles of Src family kinases in mouse platelets. J Thromb Haemost 2012; 10:1631-45. [PMID: 22694307 PMCID: PMC4280098 DOI: 10.1111/j.1538-7836.2012.04814.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Src family kinases (SFKs) play a critical role in initiating and propagating signals in platelets. The aims of this study were to quantitate SFK members present in platelets and to analyze their contribution to platelet regulation using glycoprotein VI (GPVI) and intregrin αIIbβ3, and in vivo. METHODS AND RESULTS Mouse platelets express four SFKs, Fgr, Fyn, Lyn and Src, with Lyn expressed at a considerably higher level than the others. Using mutant mouse models, we demonstrate that platelet activation by collagen-related peptide (CRP) is delayed and then potentiated in the absence of Lyn, but only marginally reduced in the absence of Fyn or Fgr, and unaltered in the absence of Src. Compound deletions of Lyn/Src or Fyn/Lyn, but not of Fyn/Src or Fgr/Lyn, exhibit a greater delay in activation relative to Lyn-deficient platelets. Fibrinogen-adherent platelets show reduced spreading in the absence of Src, potentiation in the absence of Lyn, but no change in the absence of Fyn or Fgr. In mice double-deficient in Lyn/Src or Fgr/Lyn, the inhibitory role of Lyn on spreading on fibrinogen is lost. Lyn is the major SFK-mediating platelet aggregation on collagen at arterial shear and its absence leads to a reduction in thrombus size in a laser injury model. CONCLUSION These results demonstrate that SFKs share individual and overlapping roles in regulating platelet activation, with Lyn having a dual role in regulating GPVI signaling and an inhibitory role downstream of αIIbβ3, which requires prior signaling through Src.
Collapse
Affiliation(s)
- S Séverin
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Expression of PirB protein in intact and injured optic nerve and retina of mice. Neurochem Res 2011; 37:647-54. [PMID: 22102155 DOI: 10.1007/s11064-011-0656-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
The aim of this study was to investigate the expression of PirB protein in intact mice ON (optic nerve) and retina, and to evaluate its change after ON injury. The mouse ON crush model was established. The immunohistochemistry and western blot were used to detect PirB expression. We discovered PirB signals were located as beaded arrangement along the ON long axis in intact ON, disordered in injured ON, and distributed mainly in ganglion cell layer in intact and injured retina. Both PirB expression in injured ON and retina were significantly increased at 1-day post injury (1-dpi), nearly peaked at 7-dpi, but thereafter there was no significant change of them till at least 28-dpi. We concluded the expression of PirB was positive in intact ON and retina, and significantly increased after ON injury. These findings, coupled with previous studies, may imply that PirB is probably a critical molecule in inhibition of axonal regeneration by myelin inhibitors after ON injury.
Collapse
|
43
|
Zhu JW, Doan K, Park J, Chau AH, Zhang H, Lowell CA, Weiss A. Receptor-like tyrosine phosphatases CD45 and CD148 have distinct functions in chemoattractant-mediated neutrophil migration and response to S. aureus. Immunity 2011; 35:757-69. [PMID: 22078799 DOI: 10.1016/j.immuni.2011.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 08/02/2011] [Accepted: 09/28/2011] [Indexed: 11/29/2022]
Abstract
Neutrophils, critical innate immune effectors, use bacterial-derived chemoattractant-induced G protein-coupled receptor (GPCR) signaling for their pursuit of bacteria. Tyrosine phosphorylation pathways and receptor-like tyrosine phosphatases (RPTPs) are rarely considered in chemoattractant-mediated GPCR signaling. Here, we report that two RPTPs, CD45 and CD148, previously shown to share redundant roles in positively regulating Src family kinases (SFKs) in immunoreceptor signaling pathways in B cells and macrophages, are critical in the neutrophil response to S. aureus infection and, surprisingly, in chemoattractant-mediated chemotaxis. Remarkably, deficiency in either of these RPTPs influenced neutrophil GPCR responses in unique ways. Our results reveal that CD45 positively while CD148 positively and negatively regulate GPCR function and proximal signals including Ca(2+), phosphatidylinositol 3'OH kinase (PI3K), and phospho-extracellular regulated kinase (pERK) activity. Moreover, our results suggest that CD45 and CD148 preferentially target different SFK members (Hck and Fgr versus Lyn, respectively) to positively and negatively regulate GPCR pathways.
Collapse
Affiliation(s)
- Jing W Zhu
- Department of Medicine, Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res 2011; 21:1074-86. [PMID: 21628449 PMCID: PMC3129250 DOI: 10.1101/gr.118703.110] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/15/2011] [Indexed: 12/26/2022]
Abstract
Human and mouse genomes contain a similar number of CpG islands (CGIs), which are discrete CpG-rich DNA sequences associated with transcription start sites. In both species, ∼50% of all CGIs are remote from annotated promoters but, nevertheless, often have promoter-like features. To determine the role of CGI methylation in cell differentiation, we analyzed DNA methylation at a comprehensive CGI set in cells of the mouse hematopoietic lineage. Using a method that potentially detects ∼33% of genomic CpGs in the methylated state, we found that large differences in gene expression were accompanied by surprisingly few DNA methylation changes. There were, however, many DNA methylation differences between hematopoietic cells and a distantly related tissue, brain. Altered DNA methylation in the immune system occurred predominantly at CGIs within gene bodies, which have the properties of cell type-restricted promoters, but infrequently at annotated gene promoters or CGI flanking sequences (CGI "shores"). Unexpectedly, elevated intragenic CGI methylation correlated with silencing of the associated gene. Differentially methylated intragenic CGIs tended to lack H3K4me3 and associate with a transcriptionally repressive environment regardless of methylation state. Our results indicate that DNA methylation changes play a relatively minor role in the late stages of differentiation and suggest that intragenic CGIs represent regulatory sites of differential gene expression during the early stages of lineage specification.
Collapse
Affiliation(s)
- Aimée M. Deaton
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Alastair R.W. Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Robert S. Illingworth
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Jacky Guy
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Robert Andrews
- Wellcome Trust Sanger Centre, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Adrian Bird
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
45
|
Arita K, Endo S, Kaifu T, Kitaguchi K, Nakamura A, Ohmori H, Kohu K, Satake M, Takai T. Transcriptional Activation of thePirbGene in B Cells by PU.1 and Runx3. THE JOURNAL OF IMMUNOLOGY 2011; 186:7050-9. [DOI: 10.4049/jimmunol.1001302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Turnis ME, Rooney CM. Enhancement of dendritic cells as vaccines for cancer. Immunotherapy 2011; 2:847-62. [PMID: 21091116 DOI: 10.2217/imt.10.56] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells are the most potent antigen-presenting cells known; owing to their ability to stimulate antigen-specific cytolytic and memory T-cell responses, their use as cancer vaccines is rapidly increasing. While clinical trials provide evidence that dendritic cells vaccines are safe and elicit immunological responses in most patients, few complete tumor remissions have been reported and further technological advances are required. An effective dendritic cell vaccine must possess and maintain several characteristics: it must migrate to lymph nodes, have a mature, Th1-polarizing phenotype expressed stably after infusion and present antigen for sufficient time to produce a T-cell response capable of eliminating a tumor. While dendritic cells are readily matured ex vivo, their phenotype and fate after infusion are rarely evaluable; therefore, strategies to ensure that dendritic cells access lymphoid tissues and retain an immunostimulatory phenotype are required. In order to best exploit dendritic cells as vaccines, they may require genetic modification and combination with other strategies including adoptive T-cell transfer, inhibition of regulatory T cells or modulation of inflammatory pathways.
Collapse
|
47
|
Lowell CA. Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a002352. [PMID: 21068150 DOI: 10.1101/cshperspect.a002352] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The response of innate immune cells to growth factors, immune complexes, extracellular matrix proteins, cytokines, pathogens, cellular damage, and many other stimuli is regulated by a complex net of intracellular signal transduction pathways. The majority of these pathways are either initiated or modulated by Src-family or Syk tyrosine kinases present in innate cells. The Src-family kinases modulate the broadest range of signaling responses, including regulating immunoreceptors, C-type lectins, integrins, G-protein-coupled receptors, and many others. Src-family kinases also modulate the activity of other kinases, including the Tec-family members as well as FAK and Pyk2. Syk kinase is required for initiation of signaling involving receptors that utilize immunoreceptor tyrosine activation (ITAM) domains. This article reviews the major activating and inhibitory signaling pathways regulated by these cytoplasmic tyrosine kinases, illuminating the many examples of signaling cross talk between pathways.
Collapse
Affiliation(s)
- Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, 94143, USA.
| |
Collapse
|
48
|
Steevels TAM, Meyaard L. Immune inhibitory receptors: essential regulators of phagocyte function. Eur J Immunol 2011; 41:575-87. [PMID: 21312193 DOI: 10.1002/eji.201041179] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/06/2011] [Accepted: 01/20/2011] [Indexed: 01/21/2023]
Abstract
Phagocytes, including neutrophils, monocytes, and macrophages, play a crucial role in host defense by recognition and elimination of invading pathogens. Phagocytic cells produce reactive oxygen species (ROS), inflammatory cytokines, and chemokines, leading to bacterial killing and to recruitment and activation of additional immune cells. However, inflammatory mediators are potentially harmful for the host and their production is therefore tightly controlled by multiple regulatory mechanisms. One such mechanism is immune suppression by immune inhibitory receptors, which are increasingly acknowledged as potent regulators of the immune response. So far, research has focused on the role of these receptors in the regulation of NK cells, B cells, and T cells. Importantly, an accumulating number of inhibitory receptors have been identified on phagocytes. Here, we review the role of inhibitory receptors in the regulation of phagocyte cytokine production, migration, apoptosis, ROS production, and phagocytosis. Furthermore, we discuss the intracellular mechanisms utilized by distinct inhibitory receptors to regulate specific phagocyte functions. We demonstrate that inhibitory receptors are important regulators of the immune response, which bacteria can use to their advantage.
Collapse
Affiliation(s)
- Tessa A M Steevels
- Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
49
|
Role of PIR-B in autoimmune glomerulonephritis. J Biomed Biotechnol 2010; 2011:275302. [PMID: 20976309 PMCID: PMC2952822 DOI: 10.1155/2011/275302] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/07/2010] [Indexed: 02/07/2023] Open
Abstract
PIR-B, an inhibitory receptor expressed on murine B cells and myeloid cells, regulates humoral and cellular immune responses via its constitutive binding to the ligand, MHC class I molecules, on the same cells (cis) or on different cells (trans). Although it has been speculated that PIR-B is important for maintaining peripheral tolerance, PIR-B single deficiency does not cause overt autoimmune diseases. Recently, however, the combination of its deficiency with the Fas lpr mutation was found to result in augmented production of autoantibodies such as IgG rheumatoid factor and anti-DNA IgG, leading to glomerulonephritis in mice. Although the precise molecular mechanism for the overall scenario is unclear, PIR-B was found to suppress TLR9-mediated production of naturally autoreactive antibodies by innate B cells or B-1 cells by inhibiting the activation of Bruton's tyrosine kinase. Thus, PIR-B is an important regulator of innate immunity mediated by TLR9 in B-1 cells, which can otherwise provoke autoimmunity when overactivated.
Collapse
|
50
|
Abstract
An intricate network of activation and inhibitory signals tightly regulates immune responses. To date, multiple activation receptors have been described. These include receptors that mediate cellular functions such as adhesion, chemotaxis, cytokine signalling, mediator release, survival and phagocytosis. In contrast to these activation pathways, an opposing and suppressive receptor system has evolved. These receptors can override the signals elicited by the activation pathways and are broadly termed inhibitory receptors. Inhibitory receptors share unique intracellular signalling motifs and have key roles in various cellular and pathological conditions. Therefore, such receptors are potential targets for future therapeutics. In this review, we will discuss the structure and function of inhibitory receptors. In particular, we will focus on the expression and function of inhibitory receptors on mast cells and eosinophils and illustrate strategies for their inhibition in the settings of allergic inflammation.
Collapse
Affiliation(s)
- D Shik
- Department of Microbiology and Human Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|