1
|
Daly AE, Chang AB, Purbey PK, Williams KJ, Li S, Redelings BD, Yeh G, Wu Y, Pope SD, Venkatesh B, Li S, Nguyen K, Rodrigues J, Jorgensen K, Dasgupta A, Siggers T, Chen L, Smale ST. Stepwise neofunctionalization of the NF-κB family member Rel during vertebrate evolution. Nat Immunol 2025; 26:760-774. [PMID: 40307452 PMCID: PMC12043515 DOI: 10.1038/s41590-025-02138-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Adaptive immunity and the five vertebrate NF-κB family members first emerged in cartilaginous fish, suggesting that NF-κB family divergence helped to facilitate adaptive immunity. One specialized function of the NF-κB Rel protein in macrophages is activation of Il12b, which encodes a key regulator of T cell development. We found that Il12b exhibits much greater Rel dependence than inducible innate immunity genes in macrophages, with the unique function of Rel dimers depending on a heightened intrinsic DNA-binding affinity. Chromatin immunoprecipitation followed by sequencing experiments defined differential DNA-binding preferences of NF-κB family members genome-wide, and X-ray crystallography revealed a key residue that supports the heightened DNA-binding affinity of Rel dimers. Unexpectedly, this residue, the heightened affinity of Rel dimers, and the portion of the Il12b promoter bound by Rel dimers were largely restricted to mammals. Our findings reveal major structural transitions in an NF-κB family member and one of its key target promoters at a late stage of vertebrate evolution that apparently contributed to immunoregulatory rewiring in mammalian species.
Collapse
Affiliation(s)
- Allison E Daly
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Abraham B Chang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Prabhat K Purbey
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Medicine, UCLA, Los Angeles, CA, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Shuxing Li
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Benjamin D Redelings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - George Yeh
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Yongqing Wu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Scott D Pope
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Byrappa Venkatesh
- Comparative Genomics Lab, Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Sibon Li
- Department of Human Genetics, UCLA, Los Angeles, CA, USA
| | - Kaylin Nguyen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Joseph Rodrigues
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kelsey Jorgensen
- Department of Anthropology, University of Kansas, Lawrence, KS, USA
| | - Ananya Dasgupta
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Trevor Siggers
- Department of Biology, Boston University, Boston, MA, USA
| | - Lin Chen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- Department of Medicine, UCLA, Los Angeles, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Hirsch T, Neyens D, Duhamel C, Bayard A, Vanhaver C, Luyckx M, Sala de Oyanguren F, Wildmann C, Dauguet N, Squifflet JL, Montiel V, Deschamps M, van der Bruggen P. IRF4 impedes human CD8 T cell function and promotes cell proliferation and PD-1 expression. Cell Rep 2024; 43:114401. [PMID: 38943641 DOI: 10.1016/j.celrep.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Human CD8 tumor-infiltrating lymphocytes (TILs) with impaired effector functions and PD-1 expression are categorized as exhausted. However, the exhaustion-like features reported in TILs might stem from their activation rather than the consequence of T cell exhaustion itself. Using CRISPR-Cas9 and lentiviral overexpression in CD8 T cells from non-cancerous donors, we show that the T cell receptor (TCR)-induced transcription factor interferon regulatory factor 4 (IRF4) promotes cell proliferation and PD-1 expression and hampers effector functions and expression of nuclear factor κB (NF-κB)-regulated genes. While CD8 TILs with impaired interferon γ (IFNγ) production exhibit activation markers IRF4 and CD137 and exhaustion markers thymocyte selection associated high mobility group box (TOX) and PD-1, activated T cells in patients with COVID-19 do not demonstrate elevated levels of TOX and PD-1. These results confirm that IRF4+ TILs are exhausted rather than solely activated. Our study indicates, however, that PD-1 expression, low IFNγ production, and active cycling in TILs are all influenced by IRF4 upregulation after T cell activation.
Collapse
Affiliation(s)
- Thibault Hirsch
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Damien Neyens
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Céline Duhamel
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Alexandre Bayard
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Mathieu Luyckx
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Claude Wildmann
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Nicolas Dauguet
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Luc Squifflet
- Département de Gynécologie, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Virginie Montiel
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Mélanie Deschamps
- Unité de Soins Intensifs, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre van der Bruggen
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium; WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Singh A, Schurman SH, Bektas A, Kaileh M, Roy R, Wilson DM, Sen R, Ferrucci L. Aging and Inflammation. Cold Spring Harb Perspect Med 2024; 14:a041197. [PMID: 38052484 PMCID: PMC11146314 DOI: 10.1101/cshperspect.a041197] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Aging can be conceptualized as the progressive disequilibrium between stochastic damage accumulation and resilience mechanisms that continuously repair that damage, which eventually cause the development of chronic disease, frailty, and death. The immune system is at the forefront of these resilience mechanisms. Indeed, aging is associated with persistent activation of the immune system, witnessed by a high circulating level of inflammatory markers and activation of immune cells in the circulation and in tissue, a condition called "inflammaging." Like aging, inflammaging is associated with increased risk of many age-related pathologies and disabilities, as well as frailty and death. Herein we discuss recent advances in the understanding of the mechanisms leading to inflammaging and the intrinsic dysregulation of the immune function that occurs with aging. We focus on the underlying mechanisms of chronic inflammation, in particular the role of NF-κB and recent studies targeting proinflammatory mediators. We further explore the dysregulation of the immune response with age and immunosenescence as an important mechanistic immune response to acute stressors. We examine the role of the gastrointestinal microbiome, age-related dysbiosis, and the integrated stress response in modulating the inflammatory "response" to damage accumulation and stress. We conclude by focusing on the seminal question of whether reducing inflammation is useful and the results of related clinical trials. In summary, we propose that inflammation may be viewed both as a clinical biomarker of the failure of resilience mechanisms and as a causal factor in the rising burden of disease and disabilities with aging. The fact that inflammation can be reduced through nonpharmacological interventions such as diet and exercise suggests that a life course approach based on education may be a successful strategy to increase the health span with few adverse consequences.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Mary Kaileh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - David M Wilson
- Biomedical Research Institute, Hasselt University, Diepenbeek 3500, Belgium
| | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| |
Collapse
|
4
|
Daniels MA, Luera D, Teixeiro E. NFκB signaling in T cell memory. Front Immunol 2023; 14:1129191. [PMID: 36911729 PMCID: PMC9998984 DOI: 10.3389/fimmu.2023.1129191] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Memory T cells play an essential role in protecting against infectious diseases and cancer and contribute to autoimmunity and transplant rejection. Understanding how they are generated and maintained in the context of infection or vaccination holds promise to improve current immune-based therapies. At the beginning of any immune response, naïve T cells are activated and differentiate into cells with effector function capabilities. In the context of infection, most of these cells die once the pathogenic antigen has been cleared. Only a few of them persist and differentiate into memory T cells. These memory T cells are essential to host immunity because they are long-lived and can perform effector functions immediately upon re-infection. How a cell becomes a memory T cell and continues being one for months and even years past the initial infection is still not fully understood. Recent reviews have thoroughly discussed the transcriptional, epigenomic, and metabolic mechanisms that govern T cell memory differentiation. Yet much less is known of how signaling pathways that are common circuitries of multiple environmental signals regulate T cell outcome and, precisely, T cell memory. The function of the NFκB signaling system is perhaps best understood in innate cells. Recent findings suggest that NFκB signaling plays an essential and unique role in generating and maintaining CD8 T cell memory. This review aims to summarize these findings and discuss the remaining questions in the field.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Dezzarae Luera
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, School of Medicine, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Popescu I, Snyder ME, Iasella CJ, Hannan SJ, Koshy R, Burke R, Das A, Brown MJ, Lyons EJ, Lieber SC, Chen X, Sembrat JC, Bhatt P, Deng E, An X, Linstrum K, Kitsios G, Konstantinidis I, Saul M, Kass DJ, Alder JK, Chen BB, Lendermon EA, Kilaru S, Johnson B, Pilewski JM, Kiss JE, Wells AH, Morris A, McVerry BJ, McMahon DK, Triulzi DJ, Chen K, Sanchez PG, McDyer JF. CD4 + T-Cell Dysfunction in Severe COVID-19 Disease Is Tumor Necrosis Factor-α/Tumor Necrosis Factor Receptor 1-Dependent. Am J Respir Crit Care Med 2022; 205:1403-1418. [PMID: 35348444 PMCID: PMC9875894 DOI: 10.1164/rccm.202111-2493oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/24/2022] [Indexed: 01/29/2023] Open
Abstract
Rationale: Lymphopenia is common in severe coronavirus disease (COVID-19), yet the immune mechanisms are poorly understood. As inflammatory cytokines are increased in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, we hypothesized a role in contributing to reduced T-cell numbers. Objectives: We sought to characterize the functional SARS-CoV-2 T-cell responses in patients with severe versus recovered, mild COVID-19 to determine whether differences were detectable. Methods: Using flow cytometry and single-cell RNA sequence analyses, we assessed SARS-CoV-2-specific responses in our cohort. Measurements and Main Results: In 148 patients with severe COVID-19, we found lymphopenia was associated with worse survival. CD4+ lymphopenia predominated, with lower CD4+/CD8+ ratios in severe COVID-19 compared with patients with mild disease (P < 0.0001). In severe disease, immunodominant CD4+ T-cell responses to Spike-1 (S1) produced increased in vitro TNF-α (tumor necrosis factor-α) but demonstrated impaired S1-specific proliferation and increased susceptibility to activation-induced cell death after antigen exposure. CD4+TNF-α+ T-cell responses inversely correlated with absolute CD4+ counts from patients with severe COVID-19 (n = 76; R = -0.797; P < 0.0001). In vitro TNF-α blockade, including infliximab or anti-TNF receptor 1 antibodies, strikingly rescued S1-specific CD4+ T-cell proliferation and abrogated S1-specific activation-induced cell death in peripheral blood mononuclear cells from patients with severe COVID-19 (P < 0.001). Single-cell RNA sequencing demonstrated marked downregulation of type-1 cytokines and NFκB signaling in S1-stimulated CD4+ cells with infliximab treatment. We also evaluated BAL and lung explant CD4+ T cells recovered from patients with severe COVID-19 and observed that lung T cells produced higher TNF-α compared with peripheral blood mononuclear cells. Conclusions: Together, our findings show CD4+ dysfunction in severe COVID-19 is TNF-α/TNF receptor 1-dependent through immune mechanisms that may contribute to lymphopenia. TNF-α blockade may be beneficial in severe COVID-19.
Collapse
Affiliation(s)
- Iulia Popescu
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Carlo J. Iasella
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | | | - Ritchie Koshy
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Robin Burke
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Antu Das
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Mark J. Brown
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Emily J. Lyons
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Xiaoping Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Payal Bhatt
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Evan Deng
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania
| | - Xiaojing An
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | | | | | - Daniel J. Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | - Bill B. Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine
- Aging Institute
| | | | - Silpa Kilaru
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Bruce Johnson
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | - Alan H. Wells
- Division of Laboratory Medicine, Department of Pathology
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | | | | | | | - Kong Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Pablo G. Sanchez
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - John F. McDyer
- Division of Pulmonary, Allergy, and Critical Care Medicine
| |
Collapse
|
7
|
Carai P, Papageorgiou AP, Van Linthout S, Deckx S, Velthuis S, Lutgens E, Wijnands E, Tschöpe C, Schmuttermaier C, Kzhyshkowska J, Jones EAV, Heymans S. Stabilin-1 mediates beneficial monocyte recruitment and tolerogenic macrophage programming during CVB3-induced viral myocarditis. J Mol Cell Cardiol 2022; 165:31-39. [DOI: 10.1016/j.yjmcc.2021.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
|
8
|
Jeljeli M, Chêne C, Chouzenoux S, Thomas M, Segain B, Doridot L, Nicco C, Batteux F. LPS low-Macrophages Alleviate the Outcome of Graft- Versus-Host Disease Without Aggravating Lymphoma Growth in Mice. Front Immunol 2021; 12:670776. [PMID: 34413847 PMCID: PMC8369416 DOI: 10.3389/fimmu.2021.670776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Despite significant therapeutic advances, graft-versus-host disease (GvHD) remains the main life-threatening complication following allogeneic hematopoietic stem cell transplantation. The pathogenesis of GvHD is dominated by a dysregulated allogeneic immune response that drives fibrosis and autoimmunity in chronic forms. A multitude of cell therapy approaches, including infusion of myeloid cells, has been proposed to prevent GvHD through tolerance induction but yielded variable results. Myeloid cells like macrophages can be reprogrammed to develop adaptive-like features following antigenic challenge to reinforce or inhibit a subsequent immune response; a phenomenon termed ‘trained immunity’. Here we report that, whereas LPSlow-trained macrophages elicit a suppressor effect on allogeneic T cell proliferation and function in vitro in an IL-10-dependent manner, Bacille Calmette et Guérin (BCG)-trained macrophages exert an opposite effect. In a murine model of sclerodermatous chronic GvHD, LPSlow-trained macrophages attenuate clinical signs of GvHD with significant effects on T cell phenotype and function, autoantibodies production, and tissue fibrosis. Furthermore, infusion of LPSlow-macrophages significantly improves survival in mice with acute GvHD. Importantly, we also provide evidence that LPSlow-macrophages do not accelerate A20-lymphoma tumor growth, which is significantly reduced upon transfer of BCG-macrophages. Collectively, these data indicate that macrophages can be trained to significantly inhibit in vitro and in vivo allo-reactive T cell proliferation without exhibiting pro-tumoral effect, thereby opening the way to promising clinical applications.
Collapse
Affiliation(s)
- Mohamed Jeljeli
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| | - Charlotte Chêne
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Sandrine Chouzenoux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Marine Thomas
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Benjamin Segain
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Ludivine Doridot
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Carole Nicco
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France
| | - Frédéric Batteux
- Département 3I «Infection, Immunité et Inflammation», Institut Cochin, INSERM U1016, Université de Paris, Paris, France.,Université de Paris, Faculté de Médecine, AP-HP-Centre Université de Paris, Hôpital Cochin, Service d'immunologie biologique, Paris, France
| |
Collapse
|
9
|
Lisiero DN, Cheng Z, Tejera MM, Neldner BT, Warrick JW, Wuerzberger-Davis SM, Hoffmann A, Suresh M, Miyamoto S. IκBα Nuclear Export Enables 4-1BB-Induced cRel Activation and IL-2 Production to Promote CD8 T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:1540-1553. [PMID: 32817348 DOI: 10.4049/jimmunol.2000039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Optimal CD8 T cell immunity is orchestrated by signaling events initiated by TCR recognition of peptide Ag in concert with signals from molecules such as CD28 and 4-1BB. The molecular mechanisms underlying the temporal and spatial signaling dynamics in CD8 T cells remain incompletely understood. In this study, we show that stimulation of naive CD8 T cells with agonistic CD3 and CD28 Abs, mimicking TCR and costimulatory signals, coordinately induces 4-1BB and cRel to enable elevated cytosolic cRel:IκBα complex formation and subsequent 4-1BB-induced IκBα degradation, sustained cRel activation, heightened IL-2 production and T cell expansion. NfkbiaNES/NES CD8 T cells harboring a mutated IκBα nuclear export sequence abnormally accumulate inactive cRel:IκBα complexes in the nucleus following stimulation with agonistic anti-CD3 and anti-CD28 Abs, rendering them resistant to 4-1BB induced signaling and a disrupted chain of events necessary for efficient T cell expansion. Consequently, CD8 T cells in NfkbiaNES/NES mice poorly expand during viral infection, and this can be overcome by exogenous IL-2 administration. Consistent with cell-based data, adoptive transfer experiments demonstrated that the antiviral CD8 T cell defect in NfkbiaNES/NES mice was cell intrinsic. Thus, these results reveal that IκBα, via its unique nuclear export function, enables, rather than inhibits 4-1BB-induced cRel activation and IL-2 production to facilitate optimal CD8 T cell immunity.
Collapse
Affiliation(s)
- Dominique N Lisiero
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Zhang Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90025
| | - Melba M Tejera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Brandon T Neldner
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706
| | - Jay W Warrick
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705; and
| | - Shelly M Wuerzberger-Davis
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, Institute for Quantitative and Computational Biosciences and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90025
| | - M Suresh
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706;
| | - Shigeki Miyamoto
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705; .,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Wisconsin Institute for Medical Research, Madison, WI 53705
| |
Collapse
|
10
|
Carvalho-Sousa CE, Pereira EP, Kinker GS, Veras M, Ferreira ZS, Barbosa-Nunes FP, Martins JO, Saldiva PHN, Reiter RJ, Fernandes PA, da Silveira Cruz-Machado S, Markus RP. Immune-pineal axis protects rat lungs exposed to polluted air. J Pineal Res 2020; 68:e12636. [PMID: 32043640 DOI: 10.1111/jpi.12636] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Environmental pollution in the form of particulate matter <2.5 μm (PM2.5 ) is a major risk factor for diseases such as lung cancer, chronic respiratory infections, and major cardiovascular diseases. Our goal was to show that PM2.5 eliciting a proinflammatory response activates the immune-pineal axis, reducing the pineal synthesis and increasing the extrapineal synthesis of melatonin. Herein, we report that the exposure of rats to polluted air for 6 hours reduced nocturnal plasma melatonin levels and increased lung melatonin levels. Melatonin synthesis in the lung reduced lipid peroxidation and increased PM2.5 engulfment and cell viability by activating high-affinity melatonin receptors. Diesel exhaust particles (DEPs) promoted the synthesis of melatonin in a cultured cell line (RAW 264.7 cells) and rat alveolar macrophages via the expression of the gene encoding for AANAT through a mechanism dependent on activation of the NFκB pathway. Expression of the genes encoding AANAT, MT1, and MT2 was negatively correlated with cellular necroptosis, as disclosed by analysis of Gene Expression Omnibus (GEO) microarray data from the human alveolar macrophages of nonsmoking subjects. The enrichment score for antioxidant genes obtained from lung gene expression data (GTEx) was significantly correlated with the levels of AANAT and MT1 but not the MT2 melatonin receptor. Collectively, these data provide a systemic and mechanistic rationale for coordination of the pineal and extrapineal synthesis of melatonin by a standard damage-associated stimulus, which activates the immune-pineal axis and provides a new framework for understanding the effects of air pollution on lung diseases.
Collapse
Affiliation(s)
| | - Eliana P Pereira
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | - Mariana Veras
- Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Zulma S Ferreira
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | | | - Joilson O Martins
- Faculty of Pharmacy and Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | - Russel J Reiter
- Faculty of Medicine, University of Texas Health Center at San Antonio, San Antonio, Texas
| | - Pedro A Fernandes
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| | | | - Regina P Markus
- Laboratory of Chronopharmacology, Institute of Bioscience - University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Levring TB, Kongsbak-Wismann M, Rode AKO, Al-Jaberi FAH, Lopez DV, Met Ö, Woetmann A, Bonefeld CM, Ødum N, Geisler C. Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Sci Rep 2019; 9:16725. [PMID: 31723203 PMCID: PMC6853882 DOI: 10.1038/s41598-019-53234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
In addition to antigen-driven signals, T cells need co-stimulatory signals for robust activation. Several receptors, including members of the tumor necrosis factor receptor superfamily (TNFRSF), can deliver co-stimulatory signals to T cells. Thioredoxin interacting protein (TXNIP) is an important inhibitor of glucose uptake and cell proliferation, but it is unknown how TXNIP is regulated in T cells. The aim of this study was to determine expression levels and regulation of TXNIP in human T cells. We found that naïve T cells express high levels of TXNIP and that treatment of blood samples with TNF results in rapid down-regulation of TXNIP in the T cells. TNF-induced TXNIP down-regulation correlated with increased glucose uptake. Furthermore, we found that density gradient centrifugation (DGC) induced down-regulation of TXNIP. We demonstrate that DGC induced TNF production that paralleled the TXNIP down-regulation. Treatment of blood with toll-like receptor (TLR) ligands induced TNF production and TXNIP down-regulation, suggesting that damage-associated molecular patterns (DAMPs), such as endogenous TLR ligands, released during DGC play a role in DGC-induced TXNIP down-regulation. Finally, we demonstrate that TNF-induced TXNIP down-regulation is dependent on caspase activity and is caused by caspase-mediated cleavage of TXNIP.
Collapse
Affiliation(s)
- Trine B Levring
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kongsbak-Wismann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna K O Rode
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fatima A H Al-Jaberi
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel V Lopez
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Özcan Met
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anders Woetmann
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Bonefeld
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Ødum
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Chen EW, Tay NQ, Brzostek J, Gascoigne NRJ, Rybakin V. A Dual Inhibitor of Cdc7/Cdk9 Potently Suppresses T Cell Activation. Front Immunol 2019; 10:1718. [PMID: 31402912 PMCID: PMC6670834 DOI: 10.3389/fimmu.2019.01718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
T cell activation is mediated by signaling pathways originating from the T cell receptor (TCR). Propagation of signals downstream of the TCR involves a cascade of numerous kinases, some of which have yet to be identified. Through a screening strategy that we have previously introduced, PHA-767491, an inhibitor of the kinases Cdc7 and Cdk9, was identified to impede TCR signaling. PHA-767491 suppressed several T cell activation phenomena, including the expression of activation markers, proliferation, and effector functions. We also observed a defect in TCR signaling pathways upon PHA-767491 treatment. Inhibition of Cdc7/Cdk9 impairs T cell responses, which could potentially be detrimental for the immune response to tumors, and also compromises the ability to resist infections. The Cdc7/Cdk9 inhibitor is a strong candidate as a cancer therapeutic, but its effect on the immune system poses a problem for clinical applications.
Collapse
Affiliation(s)
- Elijah W Chen
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Neil Q Tay
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Centre for Life Sciences, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Joanna Brzostek
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas R J Gascoigne
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Centre for Life Sciences, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore, Singapore
| | - Vasily Rybakin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Perdomo-Celis F, Romero F, Salgado DM, Vega R, Rodríguez J, Angel J, Franco MA, Greenberg HB, Narváez CF. Identification and Characterization at the Single-Cell Level of Cytokine-Producing Circulating Cells in Children With Dengue. J Infect Dis 2019; 217:1472-1480. [PMID: 29390091 DOI: 10.1093/infdis/jiy053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/22/2018] [Indexed: 01/10/2023] Open
Abstract
In this study, we identified, at the single-cell level, naturally induced cytokine-producing circulating cells (CPCCs) in children with dengue virus (DENV) infection ranging clinically from mild to severe disease. Tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) CPCCs were detected in children with primary or secondary acute dengue virus (DENV) infection, and the pattern of these cytokines was similar to that seen in the supernatant of cultured peripheral blood mononuclear cells and partially comparable to that found in plasma. Monocytes, B cells, and myeloid dendritic cells (mDCs) were the primary CPCCs detected, and the frequency of mDCs was significantly higher in severe disease. B cells isolated from children with dengue spontaneously secreted TNF-α, IL-6, and interleukin 10, and supernatants from cultures of purified B cells induced activation of allogeneic T cells, supporting an antibody-independent function of these cells during DENV infection. Thus, CPCCs could be a new immune parameter with potential use to evaluate pathogenesis in this infection.
Collapse
Affiliation(s)
| | - Felipe Romero
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva.,Departamento de Pediatría, Hospital Universitario de Neiva, Bogotá, Colombia
| | - Doris M Salgado
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva.,Departamento de Pediatría, Hospital Universitario de Neiva, Bogotá, Colombia
| | - Rocío Vega
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva.,Departamento de Pediatría, Hospital Universitario de Neiva, Bogotá, Colombia
| | - Jairo Rodríguez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva.,Departamento de Pediatría, Hospital Universitario de Neiva, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel A Franco
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Harry B Greenberg
- Department of Medicine and Department of Microbiology and Immunology, Stanford University School of Medicine, California
| | - Carlos F Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva
| |
Collapse
|
14
|
Salerno F, Freen-van Heeren JJ, Guislain A, Nicolet BP, Wolkers MC. Costimulation through TLR2 Drives Polyfunctional CD8 + T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2018; 202:714-723. [PMID: 30578304 DOI: 10.4049/jimmunol.1801026] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 12/31/2022]
Abstract
Optimal T cell activation requires Ag recognition through the TCR, engagement of costimulatory molecules, and cytokines. T cells can also directly recognize danger signals through the expression of TLRs. Whether TLR ligands have the capacity to provide costimulatory signals and enhance Ag-driven T cell activation is not well understood. In this study, we show that TLR2 and TLR7 ligands potently lower the Ag threshold for cytokine production in T cells. To investigate how TLR triggering supports cytokine production, we adapted the protocol for flow cytometry-based fluorescence in situ hybridization to mouse T cells. The simultaneous detection of cytokine mRNA and protein with single-cell resolution revealed that TLR triggering primarily drives de novo mRNA transcription. Ifng mRNA stabilization only occurs when the TCR is engaged. TLR2-, but not TLR7-mediated costimulation, can enhance mRNA stability at low Ag levels. Importantly, TLR2 costimulation increases the percentage of polyfunctional T cells, a hallmark of potent T cell responses. In conclusion, TLR-mediated costimulation effectively potentiates T cell effector function to suboptimal Ag levels.
Collapse
Affiliation(s)
- Fiamma Salerno
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Julian J Freen-van Heeren
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Aurelie Guislain
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Benoit P Nicolet
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research-Amsterdam MC Landsteiner Laboratory, 1066 CX Amsterdam, the Netherlands
| |
Collapse
|
15
|
Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, Wang X, Zhang J, Zhang X, Zheng L, Du G, Xiao W, Tang B, Miao H, Li Y. A RIPK3-PGE 2 Circuit Mediates Myeloid-Derived Suppressor Cell-Potentiated Colorectal Carcinogenesis. Cancer Res 2018; 78:5586-5599. [PMID: 30012671 DOI: 10.1158/0008-5472.can-17-3962] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
Abstract
Receptor-interacting protein kinase 3 (RIPK3) is essential for mucosal repair in inflammatory bowel diseases (IBD) and colorectal cancer. However, its role in tumor immunity is unknown. Here, we report that decreased RIPK3 in colorectal cancer correlates with the accumulation of myeloid-derived suppressor cells (MDSC). Deficiency of RIPK3 boosted tumorigenesis via accumulation and immunosuppressive activity of MDSCs. Reduction of RIPK3 in MDSC and colorectal cancer cells elicited NFκB-transcribed COX-2, which catalyzed the synthesis of prostaglandin E2 (PGE2). PGE2 exacerbated the immunosuppressive activity of MDSCs and accelerated tumor growth. Moreover, PGE2 suppressed RIPK3 expression while enhancing expression of NFκB and COX-2 in MDSCs and colorectal cancer cells. Inhibition of COX-2 or PGE2 receptors reversed the immunosuppressive activity of MDSCs and dampened tumorigenesis. Patient databases also delineated the correlation of RIPK3 and COX-2 expression with colorectal cancer survival. Our findings demonstrate a novel signaling circuit by which RIPK3 and PGE2 regulate tumor immunity, providing potential ideas for immunotherapy against colorectal cancer.Significance: A novel signaling circuit involving RIPK3 and PGE2 enhances accumulation and immunosuppressive activity of MDSCs, implicating its potential as a therapeutic target in anticancer immunotherapy.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/19/5586/F1.large.jpg Cancer Res; 78(19); 5586-99. ©2018 AACR.
Collapse
Affiliation(s)
- Guifang Yan
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huakan Zhao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qi Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yu Zhou
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lei Wu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Juan Lei
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiang Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiangang Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Guangsheng Du
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, China.
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Clinical Medicine Research Center, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
16
|
Mitchell JP, Carmody RJ. NF-κB and the Transcriptional Control of Inflammation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:41-84. [PMID: 29305014 DOI: 10.1016/bs.ircmb.2017.07.007] [Citation(s) in RCA: 350] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The NF-κB transcription factor was discovered 30 years ago and has since emerged as the master regulator of inflammation and immune homeostasis. It achieves this status by means of the large number of important pro- and antiinflammatory factors under its transcriptional control. NF-κB has a central role in inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and autoimmunity, as well as diseases comprising a significant inflammatory component such as cancer and atherosclerosis. Here, we provide an overview of the studies that form the basis of our understanding of the role of NF-κB subunits and their regulators in controlling inflammation. We also describe the emerging importance of posttranslational modifications of NF-κB in the regulation of inflammation, and highlight the future challenges faced by researchers who aim to target NF-κB transcriptional activity for therapeutic benefit in treating chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jennifer P Mitchell
- Rheumatoid Arthritis Pathogenesis Centre of Excellence, Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ruaidhrí J Carmody
- Centre for Immunobiology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
17
|
TNF activity and T cells. Cytokine 2016; 101:14-18. [PMID: 27531077 DOI: 10.1016/j.cyto.2016.08.003] [Citation(s) in RCA: 274] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022]
Abstract
TNF (tumor necrosis factor) is both a pro-inflammatory and anti-inflammatory cytokine that is central to the development of autoimmune disease, cancer, and protection against infectious pathogens. As well as a myriad other activities, TNF can be a product of T cells and can act on T cells. Here we review old and new data on the importance of TNF produced by T cells and how TNF signaling via TNFR2 may directly impact alternate aspects of T cell biology. TNF can promote the activation and proliferation of naïve and effector T cells, but also can induce apoptosis of highly activated effector T cells, further determining the size of the pathogenic or protective conventional T cell pool. Moreover, TNF can have divergent effects on regulatory T cells. It can both downregulate their suppressive capacity, but also contribute in other instances to their development or accumulation. Biologics that block TNF or stimulate TNFR2 therefore have the potential to strongly modulate the balance between effector T cells and Treg cells which could impact disease in both positive and negative manners.
Collapse
|
18
|
Miller PG, Bonn MB, McKarns SC. Transmembrane TNF-TNFR2 Impairs Th17 Differentiation by Promoting Il2 Expression. THE JOURNAL OF IMMUNOLOGY 2015; 195:2633-47. [PMID: 26268655 DOI: 10.4049/jimmunol.1500286] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/14/2015] [Indexed: 01/02/2023]
Abstract
The double-edged sword nature by which IL-2 regulates autoimmunity and the unpredictable outcomes of anti-TNF therapy in autoimmunity highlight the importance for understanding how TNF regulates IL-2. Transmembrane TNF (tmTNF) preferentially binds TNFR2, whereas soluble TNF (sTNF) binds TNFR1. We previously showed reduced IL-2 production in TNFR1(-/-) TNFR2(-/-) CD4(+) T cells. In this study, we generated TNFR1(-/-), TNFR2(-/-), or TNFR1(-/-) TNFR2(-/-) 5C.C7 TCR Il2-GFP mice and report that CD4(+) T cell-intrinsic tmTNF/TNFR2 stimulates Il2 promoter activity and Il2 mRNA stability. We further used tmTNF Foxp3 gfp reporter mice and pharmacological TNF blockade in wild-type mice to report a tmTNF/TNFR2 interaction for Il2 expression. IL-17 is critical for host defense, but its overabundance promotes autoimmunity. IL-2 represses Th17 differentiation, but the role for TNFR2 in this process is not well understood. We report elevated expression of TNFR2 under Th17-polarization conditions. Genetic loss-of-function experimental models, as well as selective TNF blockade by etanercept and XPro1595 in wild-type mice, demonstrate that impaired tmTNF/TNFR2, but not sTNF/TNFR1, promotes Th17 differentiation in vivo and in vitro. Under Th17-polarizing conditions, elevated IL-17 production by TNFR2-knockout CD4(+) T cells was associated with increased STAT3 activity and decreased STAT5 activity. Increased IL-17 production in TNFR2-knockout T cells was prevented by adding exogenous IL-2. We conclude that CD4(+) T cell-intrinsic tmTNF/TNFR2 promotes IL-2 production that inhibits the generation of Th17 cells in a Foxp3-independent manner. Moreover, under Th17-polarizing conditions, selective blockade of CD4(+) T cell-intrinsic TNFR2 appears to be sufficient to promote Th17 differentiation.
Collapse
Affiliation(s)
- Patrick G Miller
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Center for Cellular and Molecular Immunology, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212; and
| | - Michael B Bonn
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Center for Cellular and Molecular Immunology, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212; and
| | - Susan C McKarns
- Laboratory of TGF-β Biology, Epigenetics, and Cytokine Regulation, Center for Cellular and Molecular Immunology, Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212; and Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO 65212
| |
Collapse
|
19
|
Das S, Li J, Hirano M, Sutoh Y, Herrin BR, Cooper MD. Evolution of two prototypic T cell lineages. Cell Immunol 2015; 296:87-94. [PMID: 25958271 DOI: 10.1016/j.cellimm.2015.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/14/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
Jawless vertebrates, which occupy a unique position in chordate phylogeny, employ leucine-rich repeat (LRR)-based variable lymphocyte receptors (VLR) for antigen recognition. During the assembly of the VLR genes (VLRA, VLRB and VLRC), donor LRR-encoding sequences are copied in a step-wise manner into the incomplete germ-line genes. The assembled VLR genes are differentially expressed by discrete lymphocyte lineages: VLRA- and VLRC-producing cells are T-cell like, whereas VLRB-producing cells are B-cell like. VLRA(+) and VLRC(+) lymphocytes resemble the two principal T-cell lineages of jawed vertebrates that express the αβ or γδ T-cell receptors (TCR). Reminiscent of the interspersed nature of the TCRα/TCRδ locus in jawed vertebrates, the close proximity of the VLRA and VLRC loci facilitates sharing of donor LRR sequences during VLRA and VLRC assembly. Here we discuss the insight these findings provide into vertebrate T- and B-cell evolution, and the alternative types of anticipatory receptors they use for adaptive immunity.
Collapse
Affiliation(s)
- Sabyasachi Das
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Jianxu Li
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Masayuki Hirano
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Yoichi Sutoh
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Brantley R Herrin
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States
| | - Max D Cooper
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, GA 30322, United States.
| |
Collapse
|
20
|
Bektas A, Zhang Y, Wood WH, Becker KG, Madara K, Ferrucci L, Sen R. Age-associated alterations in inducible gene transcription in human CD4+ T lymphocytes. Aging (Albany NY) 2013; 5:18-36. [PMID: 23385138 PMCID: PMC3616229 DOI: 10.18632/aging.100522] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Age associated immune dysregulation results in a pro-inflammatory state and increased susceptibility to infections and autoimmune diseases. Studies show that signaling initiated at the T cell antigen receptor (TCR) is impaired in CD4+ T cells from old compared to young mice. Here we examined TCR-inducible gene expression changes in CD4+ T cells during human aging. We reveal a dichotomy in gene expression mediated by the inducible transcription factor NF-κB. Most NF-κB target genes are not induced in a sustained manner in cells derived from older compared to younger individuals. However, a subset of NF-κB target genes including genes associated with chronic pro-inflammatory state in the elderly, such as interleukin 1 and 6, continue to be up-regulated even in the absence of NF-κB induction. In addition, we identify other widespread changes in gene expression between cells derived from older and younger individuals. Surprisingly, many of the most noteworthy age-associated changes in human CD4+ T cells differ from those seen in murine models. Our studies provide the first view of age-associated alteration of TCR-inducible gene expression in human CD4+ T cells.
Collapse
Affiliation(s)
- Arsun Bektas
- Laboratory of Molecular Biology and Immunology, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
22
|
Smale ST. Dimer-specific regulatory mechanisms within the NF-κB family of transcription factors. Immunol Rev 2012; 246:193-204. [PMID: 22435556 DOI: 10.1111/j.1600-065x.2011.01091.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental feature of the transcriptional response to an nuclear factor-κB (NF-κB)-inducing stimulus is that the response is highly selective and limited to the activation of only a subset of potential NF-κB target genes. One major contributor to selectivity of the response is likely to be the capacity of different NF-κB dimers to regulate different sets of target genes. The NF-κB family of transcription factors consists of five proteins, RelA, c-Rel, RelB, p50, and p52, which assemble into several homodimeric and heterodimeric species. Studies of mutant mouse strains have revealed that each family member, and perhaps each dimer, carries out unique functions in regulating transcription in cells of the immune system and in many other cell types. Dimer-specific functions can be conferred by selective protein-protein interactions with other transcription factors, coregulatory proteins, and chromatin proteins. Unique DNA-binding specificities and affinities make additional contributions to selectivity of the response, with growing evidence that some NF-κB dimers can adopt different conformations and thereby function differently when bound to different DNA sequences. Despite significant advances, our knowledge remains limited and many years of additional work will be needed to fully understand how the dimer-specific functions of NF-κB contribute to transcriptional selectivity.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
23
|
|
24
|
A key role for NF-κB transcription factor c-Rel in T-lymphocyte-differentiation and effector functions. Clin Dev Immunol 2012; 2012:239368. [PMID: 22481964 PMCID: PMC3310234 DOI: 10.1155/2012/239368] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 12/13/2011] [Accepted: 12/31/2011] [Indexed: 01/01/2023]
Abstract
The transcription factors of the Rel/NF-κB family function as key regulators of innate and adoptive immunity. Tightly and temporally controlled activation of NF-κB-signalling pathways ensures prevention of harmful immune cell dysregulation, whereas a loss of control leads to pathological conditions such as severe inflammation, autoimmune disease, and inflammation-associated oncogenesis. Five family members have been identified in mammals: RelA (p65), c-Rel, RelB, and the precursor proteins NF-κB1 (p105) and NF-κB2 (p100), that are processed into p50 and p52, respectively. While RelA-containing dimers are present in most cell types, c-Rel complexes are predominately found in cells of hematopoietic origin. In T-cell lymphocytes, certain genes essential for immune function such as Il2 and Foxp3 are directly regulated by c-Rel. Additionally, c-Rel-dependent IL-12 and IL-23 transcription by macrophages and dendritic cells is crucial for T-cell differentiation and effector functions. Accordingly, c-Rel expression in T cells and antigen-presenting cells (APCs) controls a delicate balance between tolerance and immunity. This review gives a selective overview on recent progress in understanding of diverse roles of c-Rel in regulating adaptive immunity.
Collapse
|
25
|
Jin W, Chang M, Sun SC. Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol Immunol 2012; 9:113-22. [PMID: 22307041 PMCID: PMC4002811 DOI: 10.1038/cmi.2011.60] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases play a crucial role in regulating immune receptor signaling and modulating immune homeostasis and activation. One emerging family of such E3s is the Pelle-interacting (Peli) proteins, characterized by the presence of a cryptic forkhead-associated domain involved in substrate binding and an atypical RING domain mediating formation of both lysine (K) 63- and K48-linked polyubiquitin chains. A well-recognized function of Peli family members is participation in the signal transduction mediated by Toll-like receptors (TLRs) and IL-1 receptor. Recent gene targeting studies have provided important insights into the in vivo functions of Peli1 in the regulation of TLR signaling and inflammation. These studies have also extended the biological functions of Peli1 to the regulation of T-cell tolerance. Consistent with its immunoregulatory functions, Peli1 responds to different immune stimuli for its gene expression and catalytic activation. In this review, we discuss the recent progress, as well as the historical perspectives in the regulation and biological functions of Peli.
Collapse
Affiliation(s)
- Wei Jin
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
26
|
Siegel R, Eskdale J, Gallagher G. Regulation of IFN-λ1 promoter activity (IFN-λ1/IL-29) in human airway epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5636-44. [PMID: 22058416 DOI: 10.4049/jimmunol.1003988] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The type III (λ) IFNs (IFN-λ1, IFN-λ2, and IFN-λ3) and their receptor are the most recently discovered IFN family. They are induced by viruses and mediate antiviral activity, but type III IFNs have an important, specific functional niche at the immune/epithelial interface, as well as in the regulation of Th2 cytokines. Their expression appears diminished in bronchial epithelial cells of rhinovirus-infected asthmatic individuals. We investigated the regulation of IFN-λ1 expression in human airway epithelial cells using reporter genes analysis, chromatin immunoprecipitation, small interfering RNA knockdown, and DNase footprinting. In this article, we define the c-REL/p65 NF-κB heterodimer and IRF-1 as key transcriptional activators and ZEB1, B lymphocyte-induced maturation protein 1, and the p50 NF-κB homodimer as key repressors of the IFN-λ1 gene. We further show that ZEB1 selectively regulates type III IFNs. To our knowledge, this study presents the first characterization of any type III IFN promoter in its native context and conformation in epithelial cells and can now be applied to understanding pathogenic dysregulation of IFN-λ1 in human disease.
Collapse
Affiliation(s)
- Rachael Siegel
- Genetic Immunology Laboratory, HUMIGEN LLC, Institute for Genetic Immunology, Genesis Biotechnology Group, Hamilton, NJ 08690, USA
| | | | | |
Collapse
|
27
|
Shindo H, Yasui K, Yamamoto K, Honma K, Yui K, Kohno T, Ma Y, Chua KJ, Kubo Y, Aihara H, Ito T, Nagayasu T, Matsuyama T, Hayashi H. Interferon regulatory factor-4 activates IL-2 and IL-4 promoters in cooperation with c-Rel. Cytokine 2011; 56:564-72. [DOI: 10.1016/j.cyto.2011.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 07/15/2011] [Accepted: 08/03/2011] [Indexed: 12/22/2022]
|
28
|
Chen X, Oppenheim JJ. Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity. FEBS Lett 2011; 585:3611-8. [PMID: 21513711 PMCID: PMC3164898 DOI: 10.1016/j.febslet.2011.04.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/23/2022]
Abstract
Anti-TNF treatment is effective in a majority of rheumatoid arthritis (RA), however, this treatment can unexpectedly trigger the onset or exacerbate multiple sclerosis (MS). Recent progress in cellular immunology research provides a new framework to analyze the possible mechanism underlying these puzzling contradictory effects. The delicate balance of protective CD4(+)FoxP3(+) regulatory T cells (Tregs) and pathogenic CD4(+)FoxP3(-) effector T cells (Teffs) is crucial for the outcome of anti-TNF treatment of autoimmune disease. There is convincing evidence that TNF, in addition to stimulating Teffs, is able to activate and expand Tregs through TNFR2, which is preferentially expressed by Tregs. Therefore, the contrasting effects of TNF on Tregs and Teffs are likely to determine the therapeutic effect of anti-TNF treatment. In this review, we discuss the current understanding of the general effect of TNF on the activation of T cells, and the impact of TNF on the function of Teffs and Tregs. Understanding the differential effects of TNF on Teffs and Tregs is fundamentally required for the design of more effective and safer anti-TNF or anti-TNF receptor(s) therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Xin Chen
- Basic Science Program, SAIC-Frederick, Inc., Laboratory of Molecular Immunoregulation, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
29
|
Hebel K, Rudolph M, Kosak B, Chang HD, Butzmann J, Brunner-Weinzierl MC. IL-1β and TGF-β Act Antagonistically in Induction and Differentially in Propagation of Human Proinflammatory Precursor CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:5627-35. [DOI: 10.4049/jimmunol.1003998] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Inhibitor of kappa B epsilon (IκBε) is a non-redundant regulator of c-Rel-dependent gene expression in murine T and B cells. PLoS One 2011; 6:e24504. [PMID: 21915344 PMCID: PMC3167847 DOI: 10.1371/journal.pone.0024504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 08/12/2011] [Indexed: 01/03/2023] Open
Abstract
Inhibitors of kappa B (IκBs) -α, -β and -ε effect selective regulation of specific nuclear factor of kappa B (NF-κB) dimers according to cell lineage, differentiation state or stimulus, in a manner that is not yet precisely defined. Lymphocyte antigen receptor ligation leads to degradation of all three IκBs but activation only of subsets of NF-κB-dependent genes, including those regulated by c-Rel, such as anti-apoptotic CD40 and BAFF-R on B cells, and interleukin-2 (IL-2) in T cells. We report that pre-culture of a mouse T cell line with tumour necrosis factor-α (TNF) inhibits IL-2 gene expression at the level of transcription through suppressive effects on NF-κB, AP-1 and NFAT transcription factor expression and function. Selective upregulation of IκBε and suppressed nuclear translocation of c-Rel were very marked in TNF-treated, compared to control cells, whether activated via T cell receptor (TCR) pathway or TNF receptor. IκBε associated with newly synthesised c-Rel in activated cells and, in contrast to IκBα and -β, showed enhanced association with p65/c-Rel in TNF-treated cells relative to controls. Studies in IκBε-deficient mice revealed that basal nuclear expression and nuclear translocation of c-Rel at early time-points of receptor ligation were higher in IκBε-/- T and B cells, compared to wild-type. IκBε-/- mice exhibited increased lymph node cellularity and enhanced basal thymidine incorporation by lymphoid cells ex vivo. IκBε-/- T cell blasts were primed for IL-2 expression, relative to wild-type. IκBε-/- splenic B cells showed enhanced survival ex vivo, compared to wild-type, and survival correlated with basal expression of CD40 and induced expression of CD40 and BAFF-R. Enhanced basal nuclear translocation of c-Rel, and upregulation of BAFF-R and CD40 occurred despite increased IκBα expression in IκBε-/- B cells. The data imply that regulation of these c-Rel-dependent lymphoid responses is a non-redundant function of IκBε.
Collapse
|
31
|
The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat Immunol 2011; 12:1002-9. [PMID: 21874024 PMCID: PMC3178748 DOI: 10.1038/ni.2090] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/19/2011] [Indexed: 02/03/2023]
Abstract
T cell activation is subject to tight regulation to avoid inappropriate responses to self antigens. Here we show that genetic deficiency in the ubiquitin ligase Peli1 caused hyperactivation of T cells and rendered T cells refractory to suppression by regulatory T cells and transforming growth factor-β (TGF-β). As a result, Peli1-deficient mice spontaneously developed autoimmunity characterized by multiorgan inflammation and autoantibody production. Peli1 deficiency resulted in the nuclear accumulation of c-Rel, a member of the NF-κB family of transcription factors with pivotal roles in T cell activation. Peli1 negatively regulated c-Rel by mediating its Lys48 (K48) ubiquitination. Our results identify Peli1 as a critical factor in the maintenance of peripheral T cell tolerance and demonstrate a previously unknown mechanism of c-Rel regulation.
Collapse
|
32
|
Abstract
NF-κB was first discovered and characterized 25 years ago as a key regulator of inducible gene expression in the immune system. Thus, it is not surprising that the clearest biological role of NF-κB is in the development and function of the immune system. Both innate and adaptive immune responses as well as the development and maintenance of the cells and tissues that comprise the immune system are, at multiple steps, under the control of the NF-κB family of transcription factors. Although this is a well-studied area of NF-κB research, new and significant findings continue to accumulate. This review will focus on these areas of recent progress while also providing a broad overview of the roles of NF-κB in mammalian immunobiology.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
33
|
Deenick EK, Po L, Chapatte L, Murakami K, Lu YC, Elford AR, Saibil SD, Ruland J, Gerondakis S, Mak TW, Ohashi PS. c-Rel phenocopies PKCtheta but not Bcl-10 in regulating CD8+ T-cell activation versus tolerance. Eur J Immunol 2010; 40:867-77. [PMID: 19950170 DOI: 10.1002/eji.200939445] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Elucidating the signaling events that promote T-cell tolerance versus activation provides important insights for manipulating immunity in vivo. Previous studies have suggested that the absence of PKCtheta results in the induction of anergy and that the balance between the induction of the transcription factors NFAT, AP1 and NF-kappaB plays a key role in determining whether T-cell anergy or activation is induced. Here, we examine whether Bcl-10 and specific family members of NF-kappaB act downstream of PKCtheta to alter CD8(+) T-cell activation and/or anergy. We showed that T cells from mice deficient in c-Rel but not NF-kappaB1 (p50) have increased susceptibility to the induction of anergy, similar to T cells from PKCtheta-deficient mice. Surprisingly T cells from Bcl-10-deficient mice showed a strikingly different phenotype to the PKCtheta-deficient T cells, with a severe block in TCR-mediated activation. Furthermore, we have also shown that survival signals downstream of NF-kappaB, are uncoupled from signals that mediate T-cell anergy. These results suggest that c-Rel plays a critical role downstream of PKCtheta in controlling CD8(+) T-cell anergy induction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Campbell Family Institute, Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
NF-kappaB is activated by many stimuli and NF-kappaB binding sites have been identified in a wide variety of genes. Yet, NF-kappaB-dependent gene expression must be stimulus- and cell-type-specific. In others words, the cellular response to different NF-kappaB activating stimuli, such as TNFalpha, IL-1, and LPS, must be different; and the response of different cell types, such as lymphocytes, fibroblasts, or epithelial cells, to the same NF-kappaB-inducing stimulus must also be different. Finally, kinetics of gene expression must be accounted for, so that all NF-kappaB-dependent genes are not activated simultaneously even if cell type and stimulus are constant. Here, we explore the mechanistic framework in which such regulatory aspects of NF-kappaB-dependent gene expression have been analyzed because they are likely to form the basis for physiological responses.
Collapse
Affiliation(s)
- Ranjan Sen
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21225, USA. <>
| | | |
Collapse
|
35
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
36
|
Huber SA. Depletion of gammadelta+ T cells increases CD4+ FoxP3 (T regulatory) cell response in coxsackievirus B3-induced myocarditis. Immunology 2009; 127:567-76. [PMID: 19604307 DOI: 10.1111/j.1365-2567.2008.03034.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coxsackievirus B3 (CVB3) causes severe myocarditis in BALB/c mice which depends upon CD4(+) T helper type 1 [Th1; i.e. interferon-gamma(+) (IFN-gamma(+))] and gammadelta(+) cells. Depleting gammadelta(+) cells using anti-gammadelta antibody suppresses myocarditis and CD4(+) IFN-gamma(+) cell numbers in the spleen and heart of infected mice while increasing CD4(+) FoxP3(+) cells. Mice deficient in gammadelta(+) cells have increased numbers of naïve (CD44(lo) CD62L(hi)) and fewer effector (CD44(hi) CD62(lo)) memory CD4(+) cells than infected gammadelta(+)-cell-sufficient mice. Virus neutralizing antibody titres are not significantly different between gammadelta(+) T-cell-sufficient and -deficient animals. To confirm that the memory cell response differs in acutely infected mice lacking gammadelta(+) cells, CD4(+) cells were purified and adoptively transferred into naïve recipients, which were rested for 4 weeks then infected with CVB3. Recipients given either 0.5 x 10(6) or 1.0 x 10(6) CD4(+) from infected donors developed over twice the severity myocarditis and 10-fold less cardiac virus titre compared with recipients given equivalent numbers of CD4(+) cells from infected and gammadelta(+)-cell-depleted donor animals. Additionally, to show that more functionally active T regulatory cells are present in gammadelta(+) T-cell-depleted mice, CD4(+) CD25(+) and CD4(+) CD25(-) cells were isolated and adoptively transferred into infected recipients. Mice receiving CD4(+) CD25(+) cells from gammadelta(+) T-cell-depleted donors developed significantly less myocarditis and CD4(+) Th1 cell responses compared with mice receiving equal numbers of CD4(+) CD25(+) cells from infected gammadelta(+) T-cell-sufficient animals. This study shows that gammadelta(+) cells promote CD4(+) IFN-gamma(+) acute and memory responses by limiting FoxP3(+) T regulatory cell activation.
Collapse
Affiliation(s)
- Sally A Huber
- Department of Pathology, University of Vermont, Colchester, VT 05446, USA.
| |
Collapse
|
37
|
Guo P, Hirano M, Herrin BR, Li J, Yu C, Sadlonova A, Cooper MD. Dual nature of the adaptive immune system in lampreys. Nature 2009; 459:796-801. [PMID: 19474790 PMCID: PMC2714547 DOI: 10.1038/nature08068] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/14/2009] [Indexed: 12/31/2022]
Abstract
Jawless vertebrates use variable lymphocyte receptors (VLR) comprised of leucine-rich-repeat (LRR) segments as counterparts of the immunoglobulin-based receptors that jawed vertebrates use for antigen recognition. Highly diverse VLR genes are somatically assembled by the insertion of variable LRR sequences into incomplete germline VLRA and VLRB genes. Here we show that in sea lampreys (Petromyzon marinus) VLRA and VLRB anticipatory receptors are expressed by separate lymphocyte populations by monoallelic VLRA or VLRB assembly, together with expression of cytosine deaminase 1 (CDA1) or 2 (CDA2), respectively. Distinctive gene expression profiles for VLRA(+) and VLRB(+) lymphocytes resemble those of mammalian T and B cells. Although both the VLRA and the VLRB cells proliferate in response to antigenic stimulation, only the VLRB lymphocytes bind native antigens and differentiate into VLR antibody-secreting cells. Conversely, VLRA lymphocytes respond preferentially to a classical T-cell mitogen and upregulate the expression of the pro-inflammatory cytokine genes interleukin-17 (IL-17) and macrophage migration inhibitory factor (MIF). The finding of T-like and B-like lymphocytes in lampreys offers new insight into the evolution of adaptive immunity.
Collapse
Affiliation(s)
- Peng Guo
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, 1462 Clifton Road North-East, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tian W, Liou HC. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS One 2009; 4:e5028. [PMID: 19347041 PMCID: PMC2661141 DOI: 10.1371/journal.pone.0005028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/05/2009] [Indexed: 12/13/2022] Open
Abstract
c-Rel is a member of the Rel/NF-κB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA) to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
|
40
|
Kmieciak M, Morales JK, Morales J, Bolesta E, Grimes M, Manjili MH. Danger signals and nonself entity of tumor antigen are both required for eliciting effective immune responses against HER-2/neu positive mammary carcinoma: implications for vaccine design. Cancer Immunol Immunother 2008; 57:1391-8. [PMID: 18278493 PMCID: PMC2465763 DOI: 10.1007/s00262-008-0475-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 01/30/2008] [Indexed: 11/28/2022]
Abstract
Using parental FVB mice and their neu transgenic counterparts, FVBN202, we showed for the first time that dangerous hyperplasia of mammary epithelial cells coincided with breaking immunological tolerance to the neu "self" tumor antigen, though such immune responses failed to prevent formation of spontaneous neu-overexpressing mammary carcinoma (MMC) or reject transplanted MMC in FVBN202 mice. On the other hand, neu-specific immune responses appeared to be effective against MMC in parental FVB mice because of the fact that rat neu protein was seen as "nonself" antigen in these animals and the protein was dangerously overexpressed in MMC. Interestingly, low/intermediate expression of the neu "nonself" protein in tumors induced immune responses but such immune responses failed to reject the tumor in FVB mice. Our results showed that self-nonself (SNS) entity of a tumor antigen or danger signal alone, while may equally induce an antigen-specific immune response, will not warrant the efficacy of immune responses against tumors. On the other hand, entity of antigen in the context of dangerous conditions, i.e. abnormal/dangerous overexpression of the neu nonself protein, will warrant effective anti-tumor immune responses in FVB mice. This unified "danger-SNS" model suggests focusing on identification of naturally processed cryptic or mutated epitopes, which are considered semi-nonself by the host immune system, along with novel dangerous adjuvant in vaccine design.
Collapse
Affiliation(s)
- Maciej Kmieciak
- Department of Microbiology and Immunology, VCU School of Medicine, Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA 23298 USA
| | - Johanna K. Morales
- Department of Microbiology and Immunology, VCU School of Medicine, Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA 23298 USA
| | - Joshua Morales
- Department of Microbiology and Immunology, VCU School of Medicine, Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA 23298 USA
| | - Elizabeth Bolesta
- Department of Microbiology and Immunology, VCU School of Medicine, Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA 23298 USA
| | - Margaret Grimes
- Department of Pathology, VCU School of Medicine, Massey Cancer Center, Richmond, VA USA
| | - Masoud H. Manjili
- Department of Microbiology and Immunology, VCU School of Medicine, Massey Cancer Center, 401 College Street, Box 980035, Richmond, VA 23298 USA
| |
Collapse
|
41
|
Genomic expression profiling of TNF-alpha-treated BDC2.5 diabetogenic CD4+ T cells. Proc Natl Acad Sci U S A 2008; 105:10107-12. [PMID: 18632574 DOI: 10.1073/pnas.0803336105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TNF-alpha plays an important role in immune regulation, inflammation, and autoimmunity. Chronic TNF exposure has been shown to down-modulate T cell responses. In a mouse T cell hybridoma model, TNF attenuated T cell receptor (TCR) signaling. We have confirmed that chronic TNF and anti-TNF exposure suppressed and increased T cell responses, respectively. In adult TCR (BDC2.5) transgenic nonobese diabetic mice, DNA microarray analysis of global gene expression in BDC2.5 CD4(+) T cells in response to chronic TNF or anti-TNF exposure showed that genes involved in functional categories including T cell signaling, cell cycle, proliferation, ubiquitination, cytokine synthesis, calcium signaling, and apoptosis were modulated. Genes such as ubiquitin family genes, cytokine inducible Src homology 2-containing genes, cyclin-dependent kinase inhibitors p21, p57, calmodulin family genes (calmodulin-1, -2, and -3) and calcium channel voltage-dependent, N type alpha1B subunit (CaV2.2) were induced by TNF, whereas Vav2, Rho GTPase-activating protein, calcium channel voltage-dependent, L type alpha1C subunit (CaV1.2), IL-1 receptor-associated kinase-1 and -2, and IL enhancer binding factor 3 were reduced by TNF. Genes such as CaV1.2 and proliferating cell nuclear antigen, repressed by TNF, were induced by anti-TNF treatment. Further, we showed that chronic TNF exposure impaired NF-kappaB and adaptor protein 1 transactivation activity, leading to T cell unresponsiveness. Thus, our results present a detailed picture of transcriptional programs affected by chronic TNF exposure and provide candidate target genes that may function to mediate TNF-induced T cell unresponsiveness.
Collapse
|
42
|
McKarns SC, Schwartz RH. Biphasic regulation of Il2 transcription in CD4+ T cells: roles for TNF-alpha receptor signaling and chromatin structure. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:1272-81. [PMID: 18606681 PMCID: PMC2484123 DOI: 10.4049/jimmunol.181.2.1272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We describe a novel biphasic regulation of Il2 transcription in naive CD4(+) T cells. Few ( approximately 5%) CD4(+) T cells transcribe Il2 within 6 h of anti-TCR-beta plus anti-CD28 stimulation (early phase). Most naive CD4(+) T cells do not initiate Il2 transcription until after an additional approximately 12 h of T cell stimulation (late phase). In comparison, essentially all previously activated (Pre-Ac) CD4(+) T cells that transcribe Il2 do so with an early-phase response. Late-phase Il2 expression mostly requires c-Rel, CD28, and TNFR signaling. In contrast, early-phase transcription is only partly c-Rel and CD28 dependent and TNFR independent. There was also increased stable DNA accessibility at the Il2 locus and elevated c-Rel expression in resting Pre-Ac CD4(+) cells. Upon T cell activation, a faster and greater increase in DNA accessibility as well as c-Rel nuclear expression were observed in Pre-Ac CD4(+) cells relative to naive CD4(+) T cells. In addition, both acetylated histone H3 and total H3 decreased at the Il2 locus upon rechallenge of Pre-Ac CD4(+) T cells, whereas increased acetylated histone H3 with no change in total H3 was observed following activation of naive CD4(+) T cells. We propose a model in which nucleosome disassembly facilitates rapid initiation of Il2 transcription in CD4(+) T cells, and suggest that a threshold level of c-Rel must be reached for Il2 promoter activity in both naive and Pre-Ac CD4(+) T cells. This is provided, at least partially, by TNFR signaling during priming, but not during recall.
Collapse
MESH Headings
- Acetylation
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Chromatin/metabolism
- Histones/metabolism
- Interleukin-2/genetics
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Lymphocyte Activation
- Mice
- Mice, Mutant Strains
- Nucleosomes/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-rel/genetics
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Signal Transduction
- Transcription, Genetic
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Susan C McKarns
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
43
|
Influencing the fates of CD4 T cells on the path to memory: lessons from influenza. Immunol Cell Biol 2008; 86:343-52. [PMID: 18362946 DOI: 10.1038/icb.2008.13] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the face of emerging infectious diseases caused by rapidly evolving and highly virulent pathogens, such as influenza, we are challenged to develop innovative vaccine strategies that can induce lasting protection. Since CD4 T cells are needed to generate and maintain protective B-cell and CD8 T-cell immunity, and can also mediate additional protective mechanisms, vaccines should ideally elicit efficient CD4 T cell, in addition to CD8 T and B-cell responses. We outline here the process of CD4 T-cell differentiation from naïve to effector and from effector to memory with an emphasis on how exposure to microbial products and variables in antigen presentation can impact the functional quality and heterogeneity of activation-based CD4 T-cell subsets in vitro and in vivo. We discuss the impact of different phases of antigen recognition, the inflammatory milieu, acute versus chronic antigen presentation, and the contribution of residual antigen depots on CD4 T-cell effector differentiation and the formation and maintenance of CD4 T-cell memory. We propose that novel vaccine strategies, which incorporate both microbial products and antigen targeting, may provide a flexible and long-lived memory CD4 T-cell pool.
Collapse
|
44
|
Haider AS, Cohen J, Fei J, Zaba LC, Cardinale I, Toyoko K, Ott J, Krueger JG. Insights into Gene Modulation by Therapeutic TNF and IFNγ Antibodies: TNF Regulates IFNγ Production by T Cells and TNF-Regulated Genes Linked to Psoriasis Transcriptome. J Invest Dermatol 2008; 128:655-66. [DOI: 10.1038/sj.jid.5701064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
45
|
Aspalter RM, Eibl MM, Wolf HM. Defective T-cell activation caused by impairment of the TNF receptor 2 costimulatory pathway in common variable immunodeficiency. J Allergy Clin Immunol 2007; 120:1193-200. [PMID: 17825894 DOI: 10.1016/j.jaci.2007.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 06/29/2007] [Accepted: 07/06/2007] [Indexed: 01/29/2023]
Abstract
BACKGROUND Patients with common variable immunodeficiency have defective T-cell activation after stimulation via T-cell receptor (TCR)/CD28 or by recall antigens. OBJECTIVE In the current study, we investigated whether TNF-receptor 2 (RII) costimulation, which is important for sufficient TCR/CD28 stimulation, was significantly impaired in common variable immunodeficiency (CVID). METHODS We studied T-cell activation events such as CD69 induction, calcium flux through store operated calcium channels, protein kinase C-theta translocation, and costimulation via TNF-RII compared with costimulation via CD28. RESULTS By measuring TNF receptor-associated factor 1 expression, which is induced by TCR alone and can be upregulated by either CD28 or TNF-RII costimulation, we show that costimulation via CD28 is intact, whereas costimulation via TNF-RII in these patients is impaired. The ras-activation pathway as tested by CD69 induction, calcium flux through store operated calcium channels, and protein kinase C-theta translocation were comparable in CVID and control T cells. CONCLUSION Taken together, these data indicate that the primary TCR signal as well as the signal derived from CD28 are normal but that TNF-RII-supported TCR costimulation is defective, most likely leading to impairment of an important amplification loop, such as TNF-RII augmented nuclear factor-kappaB activation. CLINICAL IMPLICATIONS The finding of defective TNF-RII cosignaling in patients with CVID may help to define the activation pathway affected, thus potentially leading to a characterization of the molecular defect and molecular diagnosis in at least some of these patients.
Collapse
|
46
|
Wietek C, O'Neill LAJ. Diversity and regulation in the NF-kappaB system. Trends Biochem Sci 2007; 32:311-9. [PMID: 17561400 DOI: 10.1016/j.tibs.2007.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/11/2007] [Accepted: 05/23/2007] [Indexed: 11/20/2022]
Abstract
The nuclear factor (NF)-kappaB family of transcription factors is a key participant in multiple biological processes, most notably in the immune and inflammatory response. Five proteins make up the NF-kappaB family, and these proteins can hetero- and homo-dimerize, giving rise to diversity. Recently, it has been shown that certain members can also interact directly with other transcription factors such as signal transducers of activated transcription, interferon regulatory factor family members and p53, providing further diversity. We propose that this promiscuity might help explain the many of roles of NF-kappaB in specialized cell function and fate. Furthermore, the state of a cell and its cellular background in addition to overall promoter structure and variations in the kappaB target sequence will all define the composition and activity of multimeric NF-kappaB complexes.
Collapse
Affiliation(s)
- Claudia Wietek
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
47
|
Aoki H, Nakamura K, Yoshimatsu Y, Tsuda Y, Irie M, Fukuda K, Hosoe N, Takada N, Shirai K, Suzuki Y. Adacolumn selective leukocyte adsorption apheresis in patients with active ulcerative colitis: clinical efficacy, effects on plasma IL-8, and expression of Toll-like receptor 2 on granulocytes. Dig Dis Sci 2007; 52:1427-33. [PMID: 17394078 DOI: 10.1007/s10620-006-9406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 04/23/2006] [Indexed: 12/12/2022]
Abstract
Adacolumn selective granulocyte and monocyte apheresis (GMA) depletes activated leukocytes in patients with ulcerative colitis (UC). However, this per se cannot fully explain the efficacy of GMA. We have investigated the effects of GMA on the expression of toll-like receptors (TLRs) and plasma interleukin-8 (IL-8). Twenty-two patients with clinical activity index (CAI) of 5-17, 15 with total colitis and 7 with left-sided colitis, were included. Each patient could receive up to 10 GMA sessions, at 1 or 2 sessions per week. GMA was added to the patients' ongoing medication following a relapse or worsening UC, but no additional medication was given. Further, at entry and pre-GMA, blood samples were taken for full blood cell count, expression of TLRs on leukocytes, and plasma IL-8. Seventy-five percent of patients achieved remission after the 10th session (CAI, < or =4; P < 0.005) and there was a marked fall in C-reactive protein (P < 0.01), plasma IL-8 (P < 0.001), and granulocytes (P < 0.05) but an increase in lymphocytes (P < 0.05). The expression of TLR2 on granulocytes was down-modulated (P < 0.05) together with suppression of inflammatory cytokines produced by peripheral blood leukocytes. In conclusion, GMA appears to be an effective adjunct therapy to induce remission in the majority of patients, who are then spared from excess drug therapy. The procedure is associated with sustained immunomodulation. Control studies should strengthen these findings.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Department of Internal of Medicine, Sakura Hospital, Toho University, 564-1 Shimoshizu, Sakura City, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chatzidakis I, Fousteri G, Tsoukatou D, Kollias G, Mamalaki C. An Essential Role for TNF in Modulating Thresholds for Survival, Activation, and Tolerance of CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6735-45. [PMID: 17513720 DOI: 10.4049/jimmunol.178.11.6735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TNF and its receptors p55 and p75 are known to be important in the homeostasis of the peripheral immune system. Previous studies have presented apparently contradictory evidence for an in vivo role of TNF in T cells. In this study, we analyzed TNF-deficient mice crossed with the F5 TCR-transgenic animals. We show that endogenous TNF modulates several aspects of homeostasis of peripheral F5 CD8 T cells. We found that F5/TNF(-/-)mice had reduced numbers of peripheral F5 T cells, F5/TNF(-/-) CD8 T cells exhibited reduced survival potential, and furthermore that T cell-derived TNF is required for optimum recovery of naive CD8 T cells in lymphopenic hosts, suggesting its involvement in the survival of peripheral CD8 T cells. Both peptide activation and ensuing Ag-induced apoptosis are quantitatively reduced in TNF(-/-) CD8 T cells. The latter observations can be related to decreased binding activities of NF-kappaB and NF-ATp observed in Ag-stimulated F5/TNF(-/-) T cells. Finally, in a CD8 T cell tolerance model, endogenous TNF was necessary for several parameters of CD8 T cell tolerance induction. Collectively, our results provide evidence that endogenous TNF modulates thresholds in several ligand-driven T cell responses.
Collapse
Affiliation(s)
- Ioannis Chatzidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Vassilika Vouton, Crete, Greece
| | | | | | | | | |
Collapse
|
49
|
Wang J, Wang X, Hussain S, Zheng Y, Sanjabi S, Ouaaz F, Beg AA. Distinct Roles of Different NF-κB Subunits in Regulating Inflammatory and T Cell Stimulatory Gene Expression in Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:6777-88. [PMID: 17513725 DOI: 10.4049/jimmunol.178.11.6777] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TLRs play a critical role in inducing inflammatory and immune responses against microbial agents. In this study, we have investigated the role of NF-kappaB transcription factors in regulating TLR-induced gene expression in dendritic cells, a key APC type. The p50 and cRel NF-kappaB subunits were found to be crucial for regulating genes important for dendritic cell-induced T cell responses (e.g., CD40, IL-12, and IL-18) but not for genes encoding inflammatory cytokines (e.g., TNF-alpha, IL-1alpha, and IL-6). In striking contrast, the RelA subunit was crucial for expression of inflammatory cytokine genes but not T cell stimulatory genes. These novel findings reveal a fundamentally important difference in biological function of genes regulated by different NF-kappaB subunits. Focusing on RelA target gene specificity mechanisms, we investigated whether the kappaB site and/or the unique composition of RelA played the most crucial role. Surprisingly, studies of IL-6 expression showed that the kappaB site is not a primary determinant of RelA target gene specificity. Instead, a major specificity mechanism is the unique ability of RelA to interact with the transcriptional coactivator CREB-binding protein, a function not shared with the closely related cRel subunit. Together, our findings indicate novel and critically important overall roles of NF-kappaB in TLR-induced gene expression that are mediated by unique functions of distinct subunits.
Collapse
Affiliation(s)
- Junmei Wang
- Department of Interdisciplinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
O'Sullivan B, Thompson A, Thomas R. NF-kappa B as a therapeutic target in autoimmune disease. Expert Opin Ther Targets 2007; 11:111-22. [PMID: 17227228 DOI: 10.1517/14728222.11.2.111] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
NF-kappaB transmits signals from the cell surface to the nucleus. Signaling through cell surface receptors to activate NF-kappaB and mitogen-activated protein kinases through adaptor molecules is of critical importance to survival and activation of all cells in the body, including those regulating innate and adaptive immunity. As such, NF-kappaB is a key signaling component in autoimmunity and an attractive target for autoimmune disease therapy. However, given its global importance, targeting NF-kappaB tends to be immunosuppressive. In this review, the authors discuss the roles played by NF-kappaB in autoimmunity, drugs which target it, and complexities which need to be addressed to improve the use of NF-kappaB as a target. Finally, the authors highlight some novel approaches that are likely to be important in the next generation of NF-kappaB therapies.
Collapse
Affiliation(s)
- Brendan O'Sullivan
- Centre for Immunology and Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, 4102, Australia
| | | | | |
Collapse
|