1
|
Feng S, Kong R, Wang C, Hao Q, Xie X, Wang H, Han J, Zhang Y, Elsner J, Mendy D, Haughey M, Krenitsky P, Plantevin-Krenitsky V, Papa P, Mercurio F, Xie W, Zhou X. A highly selective and orally bioavailable casein kinase 1 alpha degrader through p53 signaling pathway targets B-cell lymphoma cells. Leukemia 2025:10.1038/s41375-025-02647-x. [PMID: 40425803 DOI: 10.1038/s41375-025-02647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025]
Abstract
The modest reduction in casein kinase 1 alpha (CK1α) by lenalidomide contributes to its clinical effectiveness in treating del(5q) myelodysplastic syndrome. However, the mechanism by which CK1α impacts lymphoma survival remains inadequately defined. We developed INNO-220, a CRBN-dependent CK1α degrader, by leveraging cytokine expression profiling in T cells. Unlike lenalidomide, INNO-220 is a highly selective and potent degrader of CK1α without affecting IKZF1/3. Screening across lymphoma cell lines revealed that cells harboring wild-type p53 and exhibiting constitutive NF-κB signaling were particularly sensitive to CK1α degradation yet resistant to Bruton tyrosine kinase inhibitors. Moreover, INNO-220 suppresses NF-κB signaling and activates p53 pathway, leading to complete inhibition of lymphoma tumor growth in vivo. Mechanistically, INNO-220 disrupts the assembly and function of the CARD11/BCL10/MALT1 complex, thereby inhibiting NF-κB signaling in stimulated T cells and lymphoma cells that harbor an activating mutation in CARD11. Moreover, we observed that activation of wild-type p53 upon INNO-220 treatment was sufficient to induce potent cancer cell death even in the absence of constitutive NF-κB activity. In summary, our findings introduce a selective CK1α degrader as a novel therapeutic approach for lymphoma, providing both mechanistic insights and a potential patient selection strategy in treating lymphoma and possibly other cancers.
Collapse
Affiliation(s)
- Shi Feng
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ran Kong
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Cong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingbo Hao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaoyu Xie
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haiyang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingjing Han
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | - Weilin Xie
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Kang H, Maurer LM, Cheng J, Smyers M, Klei LR, Hu D, Hofstatter Azambuja J, Murai MJ, Mady A, Ahmad E, Trotta M, Klei HB, Liu M, Ekambaram P, Nikolovska-Coleska Z, Chen BB, McAllister-Lucas LM, Lucas PC. A small-molecule inhibitor of BCL10-MALT1 interaction abrogates progression of diffuse large B cell lymphoma. J Clin Invest 2025; 135:e164573. [PMID: 40231473 PMCID: PMC11996864 DOI: 10.1172/jci164573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/11/2025] [Indexed: 04/16/2025] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma, and the activated B cell-like subtype (ABC-DLBCL) is associated with particularly poor outcome. Many ABC-DLBCLs harbor gain-of-function mutations that cause inappropriate assembly of the CARMA1-BCL10-MALT1 (CBM) signalosome, a cytoplasmic complex that drives downstream NF-κB signaling. MALT1 is the effector protein of the CBM signalosome such that its recruitment to the signalosome via interaction with BCL10 allows it to exert both protease and scaffolding activities that together synergize in driving NF-κB. Here, we demonstrate that a molecular groove located between two adjacent immunoglobulin-like domains within MALT1 represents a binding pocket for BCL10. Leveraging this discovery, we performed an in silico screen to identify small molecules that dock within this MALT1 groove and act as BCL10-MALT1 protein-protein interaction (PPI) inhibitors. We report the identification of M1i-124 as a first-in-class compound that blocks BCL10-MALT1 interaction, abrogates MALT1 scaffolding and protease activities, promotes degradation of BCL10 and MALT1 proteins, and specifically targets ABC-DLBCLs characterized by dysregulated MALT1. Our findings demonstrate that small-molecule inhibitors of BCL10-MALT1 interaction can function as potent agents to block MALT1 signaling in selected lymphomas, and provide a road map for clinical development of a new class of precision-medicine therapeutics.
Collapse
Affiliation(s)
| | - Lisa M. Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mei Smyers
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda R. Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Hu
- Department of Pathology and
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Juliana Hofstatter Azambuja
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Marcelo J. Murai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ahmed Mady
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ejaz Ahmad
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew Trotta
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hanna B. Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Minda Liu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prasanna Ekambaram
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Bill B. Chen
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Linda M. McAllister-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Peter C. Lucas
- Department of Pathology and
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Zhang RY, Wang ZX, Zhang MY, Wang YF, Zhou SL, Xu JL, Lin WX, Ji TR, Chen YD, Lu T, Li NG, Shi ZH. MALT1 Inhibitors and Degraders: Strategies for NF-κB-Driven Malignancies. J Med Chem 2025; 68:5075-5096. [PMID: 39999563 DOI: 10.1021/acs.jmedchem.4c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Mucosa-associated lymphoid tissue protein 1 (MALT1), a cysteine protease and the sole paracaspase in humans, plays a pivotal role in the survival and proliferation of NF-κB-dependent malignant cancers, particularly MALT lymphoma and diffuse large B-cell lymphoma (DLBCL). Dysregulated MALT1 activity is implicated in various malignancies, highlighting its importance as a therapeutic target. This Perspective provides an overview of MALT1's structural and functional characteristics, summarizes recent advancements in small-molecule inhibitors and degraders targeting this protein, and discusses compound structures, structure-activity relationship (SAR) analyses, and biological activities. We aim to inform future research efforts to enhance the activity, selectivity, and pharmacological properties of MALT1-targeting compounds, establishing a foundational framework for drug development in this critical area of cancer therapy.
Collapse
Affiliation(s)
- Ru-Yue Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yu-Fan Wang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Si-Li Zhou
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Jia-Lu Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Wen-Xuan Lin
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Tian-Rui Ji
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Ya-Dong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
5
|
Isay SE, Vornholz L, Schnalzger T, Groll T, Magg T, Loll P, Weirich G, Steiger K, Hauck F, Ruland J. Enforced CARD11/MALT1 signaling in dendritic cells triggers hemophagocytic lymphohistiocytosis. Proc Natl Acad Sci U S A 2024; 121:e2413162121. [PMID: 39661061 DOI: 10.1073/pnas.2413162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening syndrome fueled by uncontrolled mononuclear phagocyte activity, yet the innate immune mechanisms driving HLH pathogenesis remain elusive. Germline gain-of-function (GOF) mutations in CARD11, a pivotal regulator of lymphocyte antigen receptor signaling, cause the lymphoproliferative disease B-cell expansion with NF-κB and T-cell anergy, which is frequently associated with HLH development. Given that CARD11 is physiologically expressed not only in lymphocytes but also in dendritic cells (DCs), we explored whether enforced CARD11 signaling in DCs contributes to immunopathology. We demonstrated that exclusive DC-intrinsic expression of CARD11-GOF in mice was sufficient to induce a lethal autoinflammatory syndrome that mimicked human HLH. Mechanistically, DC-intrinsic CARD11-GOF signaling triggered cell-autonomous inflammatory cytokine production via MALT1 paracaspase engagement. Genetic deletion of Malt1 in CARD11-GOF-expressing animals reversed the hyperinflammatory phenotype. These results highlight the significant role of enforced CARD11/MALT1 signaling in DCs as a contributor to HLH pathology and suggest potential therapeutic strategies for HLH treatment.
Collapse
Affiliation(s)
- Sophie E Isay
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Theresa Schnalzger
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Tanja Groll
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Patricia Loll
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
| | - Gregor Weirich
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine and Health, Technical University of Munich, Munich 81675, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich 81675, Germany
- German Cancer Consortium, Partner Site Munich, a Partnership between German Cancer Research Center and Hospital of the Technical University of Munich, Munich 81675, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| |
Collapse
|
6
|
Iliaki S, Kreike M, Ferreras Moreno N, De Meyer F, Aidarova A, Braun H, Libert C, Afonina IS, Beyaert R. Polo-like kinase 1 (PLK1) is a novel CARD14-binding protein in keratinocytes. Biochem Pharmacol 2024; 228:116316. [PMID: 38797267 DOI: 10.1016/j.bcp.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Caspase recruitment domain (CARD)-containing protein 14 (CARD14) is an intracellular protein that mediates nuclear factor-kappa B (NF-ĸB) signaling and proinflammatory gene expression in skin keratinocytes. Several hyperactivating CARD14 mutations have been associated with psoriasis and other inflammatory skin diseases. CARD14-induced NF-ĸB signaling is dependent on the formation of a CARD14-BCL10-MALT1 (CBM) signaling complex, but upstream receptors and molecular mechanisms that activate and regulate CARD14 signaling are still largely unclear. Using unbiased affinity purification and mass spectrometry (AP-MS) screening, we discover polo-like kinase 1 (PLK1) as a novel CARD14-binding protein. CARD14-PLK1 binding is independent of the CARD14 CARD domain but involves a consensus phospho-dependent PLK1-binding motif in the CARD14 linker region (LR). Expression of the psoriasis-associated CARD14(E138A) variant in human keratinocytes induces the recruitment of PLK1 to CARD14-containing signalosomes in interphase cells, but does not affect the specific location of PLK1 in mitotic cells. Finally, disruption of the PLK1-binding motif in CARD14(E138A) increases CARD14-induced proinflammatory signaling and gene expression. Together, our data identify PLK1 as a novel CARD14-binding protein and indicate a negative regulatory role for PLK1 in CARD14 signaling.
Collapse
Affiliation(s)
- Styliani Iliaki
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Marja Kreike
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Natalia Ferreras Moreno
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium; Center for Inflammation Research, Unit of Mouse Genetics and Inflammation, VIB, B-9052 Ghent, Belgium
| | - Femke De Meyer
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Aigerim Aidarova
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Harald Braun
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Claude Libert
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium; Center for Inflammation Research, Unit of Mouse Genetics and Inflammation, VIB, B-9052 Ghent, Belgium
| | - Inna S Afonina
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Rudi Beyaert
- Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|
7
|
Giordano A, Pignolet B, Mascia E, Clarelli F, Sorosina M, Misra K, Bucciarelli F, Ferrè L, Moiola L, Liblau R, Filippi M, Esposito F. DNA Methylation in the Anti-Mullerian Hormone Gene and the Risk of Disease Activity in Multiple Sclerosis. Ann Neurol 2024; 96:289-301. [PMID: 38747444 DOI: 10.1002/ana.26959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Multiple sclerosis (MS) has a complex pathobiology, with genetic and environmental factors being crucial players. Understanding the mechanisms underlying heterogeneity in disease activity is crucial for tailored treatment. We explored the impact of DNA methylation, a key mechanism in the genetics-environment interplay, on disease activity in MS. METHODS Peripheral immune methylome profiling using Illumina Infinium MethylationEPIC BeadChips was conducted on 249 untreated relapsing-remitting MS patients, sampled at the start of disease-modifying treatment (DMT). A differential methylation analysis compared patients with evidence of disease activity (EDA) to those with no evidence of disease activity (NEDA) over 2 years from DMT start. Utilizing causal inference testing (CIT) and Mendelian randomization (MR), we sought to elucidate the relationships between DNA methylation, gene expression, genetic variation, and disease activity. RESULTS Four differentially methylated regions (DMRs) were identified between EDA and NEDA. Examining the influence of single nucleotide polymorphisms (SNPs), 923 variants were found to account for the observed differences in the 4 DMRs. Importantly, 3 out of the 923 SNPs, affecting DNA methylation in a DMR linked to the anti-Mullerian hormone (AMH) gene, were associated with disease activity risk in an independent cohort of 1,408 MS patients. CIT and MR demonstrated that DNA methylation in AMH acts as a mediator for the genetic risk of disease activity. INTERPRETATION This study uncovered a novel molecular pathway implicating the interaction between DNA methylation and genetic variation in the risk of disease activity in MS, emphasizing the role of sex hormones, particularly the AMH, in MS pathobiology. ANN NEUROL 2024;96:289-301.
Collapse
Affiliation(s)
- Antonino Giordano
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology and MS Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Béatrice Pignolet
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
- Neurosciences Department, Toulouse University Hospital, Toulouse, France
| | - Elisabetta Mascia
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ferdinando Clarelli
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kaalindi Misra
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Florence Bucciarelli
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
| | - Laura Ferrè
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology and MS Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lucia Moiola
- Department of Neurology and MS Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roland Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, Toulouse, France
- Department of Immunology, Toulouse University Hospitals, Toulouse, France
| | - Massimo Filippi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology and MS Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Federica Esposito
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology and MS Center, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Kuo BJ, Lin SC, Tu YF, Huang PH, Lo YC. Study of individual domains contributing to MALT1 dimerization in BCL10-independent and dependent assembly. Biochem Biophys Res Commun 2024; 717:150029. [PMID: 38714015 DOI: 10.1016/j.bbrc.2024.150029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
The CARMA-BCL10-MALT1 (CBM) signalosome functions as a pivotal supramolecular module, integrating diverse receptor-induced signaling pathways to regulate BCL10-dependent NF-kB activation in innate and adaptive immunity. Conversely, the API2-MALT1 fusion protein in t(11; 18)(q21; q21) MALT lymphoma constitutively induces BCL10-independent NF-kB activation. MALT1 dimer formation is indispensable for the requisite proteolytic activity and is critical for NF-kB activation regulation in both scenarios. However, the molecular assembly of MALT1 individual domains in CBM activation remains elusive. Here we report the crystal structure of the MALT1 death domain (DD) at a resolution of 2.1 Å, incorporating reconstructed residues in previously disordered loops 1 and 2. Additionally, we observe a conformational regulation element (CRE) regulating stem-helix formation in NLRPs pyrin (PYD) within the MALT1 DD structure. The structure reveals a stem-helix-mediated dimer further corroborated in solution. To elucidate how the BCL10 filament facilitates MALT1 dimerization, we reconstitute a BCL10-CARD-MALT1-DD-IG1-IG2 complex model. We propose a N+7 rule for BCL10-dependent MALT1 dimerization via the IG1-IG2 domain and for MALT1-dependent cleavage in trans. Biochemical data further indicates concentration-dependent dimerization of the MALT1 IG1-IG2 domain, facilitating MALT1 dimerization in BCL10-independent manner. Our findings provide a structural and biochemical foundation for understanding MALT1 dimeric mechanisms, shedding light on potential BCL10-independent MALT1 dimer formation and high-order BCL10-MALT1 assembly.
Collapse
Affiliation(s)
- Bai-Jiun Kuo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Su-Chang Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Fan Tu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Po-Hui Huang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chih Lo
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
9
|
Staal J, Driege Y, Van Gaever F, Steels J, Beyaert R. Chimeric and mutant CARD9 constructs enable analyses of conserved and diverged autoinhibition mechanisms in the CARD-CC protein family. FEBS J 2024; 291:1220-1245. [PMID: 38098267 DOI: 10.1111/febs.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Femke Van Gaever
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jill Steels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
10
|
Kumar P, Rajasekaran K, Malarkannan S. Novel PI(3)K-p85α/p110δ-ITK-LAT-PLC-γ2 and Fyn-ADAP-Carma1-TAK1 Pathways Define Reverse Signaling via FasL. Crit Rev Immunol 2024; 44:55-77. [PMID: 37947072 DOI: 10.1615/critrevimmunol.2023049638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The role of FasL in initiating death signals through Fas is well characterized. However, the reverse signaling pathway downstream of FasL in effector lymphocytes is poorly understood. Here, we identify that FasL functions as an independent activation receptor in NK cells. Activation via FasL results in the production of LFN-γ, GM-CSF, RANTES, MIP-1α, and MIP1-β. Proximal signaling of FasL requires Lck and Fyn. Upon activation, FasL facilitates the phosphorylation of PI(3)K-p85α/p55α subunits. A catalytically inactive PI(3)K-p110δD910A mutation significantly impairs the cytokine and chemokine production by FasL. Activation of ITK and LAT downstream of FasL plays a central role in recruiting and phosphorylating PLC-γ2. Importantly, Fyn-mediated recruitment of ADAP links FasL to the Carmal/ Bcl10/Tak1 signalosome. Lack of Carma1, CARD domain of Carma1, or Tak1 significantly reduces FasL-mediated cytokine and chemokine production. These findings, for the first time, provide a detailed molecular blueprint that defines FasL-mediated reverse signaling.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI 53226; Departments of Pediatrics and Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
11
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
12
|
Zhang Y, Cheng K, Choi J. TCR Pathway Mutations in Mature T Cell Lymphomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1450-1458. [PMID: 37931208 PMCID: PMC10715708 DOI: 10.4049/jimmunol.2200682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/06/2023] [Indexed: 11/08/2023]
Abstract
Mature T cell lymphomas are heterogeneous neoplasms that are aggressive and resistant to treatment. Many of these cancers retain immunological properties of their cell of origin. They express cytokines, cytotoxic enzymes, and cell surface ligands normally induced by TCR signaling in untransformed T cells. Until recently, their molecular mechanisms were unclear. Recently, high-dimensional studies have transformed our understanding of their cellular and genetic characteristics. Somatic mutations in the TCR signaling pathway drive lymphomagenesis by disrupting autoinhibitory domains, increasing affinity to ligands, and/or inducing TCR-independent signaling. Collectively, most of these mutations augment signaling pathways downstream of the TCR. Emerging data suggest that these mutations not only drive proliferation but also determine lymphoma immunophenotypes. For example, RHOA mutations are sufficient to induce disease-relevant CD4+ T follicular helper cell phenotypes. In this review, we describe how mutations in the TCR signaling pathway elucidate lymphoma pathophysiology but also provide insights into broader T cell biology.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Cheng
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
O'Neill TJ, Tofaute MJ, Krappmann D. Function and targeting of MALT1 paracaspase in cancer. Cancer Treat Rev 2023; 117:102568. [PMID: 37126937 DOI: 10.1016/j.ctrv.2023.102568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
14
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
16
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Zhang X, Zhu B, Li L, Xu J, Han Y, Zhang J, Hua Z. The dephosphorylation of FADD at S191 induces an excessive expansion of TCRαβ + IELs in the intestinal mucosa. Immunology 2022; 167:233-246. [PMID: 35753028 DOI: 10.1111/imm.13533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) play a crucial role in host defence against pathogens in the intestinal mucosa. The development of intestinal IELs is distinct from peripheral T lymphocytes and remains elusive. Fas-associated protein with death domain (FADD) is important for T cell development in the thymus. Here we describe a novel function of FADD in the IEL development. FADD (S191A), a mouse FADD mutant at Ser191 to Ala mimicking constitutively unphosphorylated FADD, promoted a rapid expansion of TCRαβ+ IELs, not TCRγδ+ IELs. Mechanism investigation indicated that the dephosphorylation of FADD was required for cell activation mainly in TCRαβ+ CD8+ T cells. Consistently, FADD (S191A) as dephosphorylated FADD led to a high NF-κB activation in the TCR-dependent cell expansion. In addition, The FADD (S191A)-induced abnormal IEL populations resulted in the increased incidence and severity of colitis in mice. In summary, FADD signalling is involved in the intestinal IEL development and might be a regulator for intestinal mucosal homeostasis.
Collapse
Affiliation(s)
- Xuerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Pharmaceutical Sciences, Shandong First Medical University, Taian, China
| | - Banghui Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiahong Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuheng Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu Target Pharma Laboratories Inc., Changzhou, China
| |
Collapse
|
18
|
Mutations Affecting Genes in the Proximal T-Cell Receptor Signaling Pathway in Peripheral T-Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14153716. [PMID: 35954378 PMCID: PMC9367541 DOI: 10.3390/cancers14153716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary The advent of next-generation sequencing (NGS) has allowed rapid advances in genomic studies on the pathogenesis and biology of peripheral T-cell lymphoma (PTCL). Recurrent mutations and fusions in genes related to the proximal TCR signaling pathway have been identified and show an important pathogenic role in PTCL. In this review, we summarize the genomic alterations in TCR signaling identified in different subgroups of PTCL patients and the functional impact of these alterations on TCR signaling and downstream pathways. We also discuss novel agents that could target TCR-related mutations and may hold promise for improving the treatment of PTCL. Abstract Peripheral T-cell lymphoma (PTCL) comprises a heterogeneous group of mature T-cell malignancies. Recurrent activating mutations and fusions in genes related to the proximal TCR signaling pathway have been identified in preclinical and clinical studies. This review summarizes the genetic alterations affecting proximal TCR signaling identified from different subgroups of PTCL and the functional impact on TCR signaling and downstream pathways. These genetic abnormalities include mostly missense mutations, occasional indels, and gene fusions involving CD28, CARD11, the GTPase RHOA, the guanine nucleotide exchange factor VAV1, and kinases including FYN, ITK, PLCG1, PKCB, and PI3K subunits. Most of these aberrations are activating mutations that can potentially be targeted by inhibitors, some of which are being tested in clinical trials that are briefly outlined in this review. Finally, we focus on the molecular pathology of recently identified subgroups of PTCL-NOS and highlight the unique genetic profiles associated with PTCL-GATA3.
Collapse
|
19
|
Cunha C, Koike T, Seki Y, Yamamoto M, Iwashima M. Schnurri 3 promotes Th2 cytokine production during the late phase of T-cell antigen stimulation. Eur J Immunol 2022; 52:1077-1094. [PMID: 35490426 PMCID: PMC9276650 DOI: 10.1002/eji.202149633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Th1 and Th2 polarization is determined by the coordination of numerous factors including the affinity and strength of the antigen-receptor interaction, predominant cytokine environment, and costimulatory molecules present. Here, we show that Schnurri (SHN) proteins have distinct roles in Th1 and Th2 polarization. SHN2 was previously found to block the induction of GATA3 and Th2 differentiation. We found that, in contrast to SHN2, SHN3 is critical for IL-4 production and Th2 polarization. Strength of stimulation controls SHN2 and SHN3 expression patterns, where higher doses of antigen receptor stimulation promoted SHN3 expression and IL-4 production, along with repression of SHN2 expression. SHN3-deficient T cells showed a substantial defect in IL-4 production and expression of AP-1 components, particularly c-Jun and Jun B. This loss of early IL-4 production led to reduced GATA3 expression and impaired Th2 differentiation. Together, these findings uncover SHN3 as a novel, critical regulator of Th2 development.
Collapse
Affiliation(s)
- Christina Cunha
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Toru Koike
- Department of Biology, Faculty of ScienceShizuoka UniversityShizuokaJapan
| | - Yoichi Seki
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Mutsumi Yamamoto
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Makio Iwashima
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| |
Collapse
|
20
|
Rodriguez Gama A, Miller T, Lange JJ, Unruh JR, Halfmann R. A nucleation barrier spring-loads the CBM signalosome for binary activation. eLife 2022; 11:79826. [PMID: 35727133 PMCID: PMC9342958 DOI: 10.7554/elife.79826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
Immune cells activate in binary, switch-like fashion via large protein assemblies known as signalosomes, but the molecular mechanism of the switch is not yet understood. Here, we employed an in-cell biophysical approach to dissect the assembly mechanism of the CARD-BCL10-MALT1 (CBM) signalosome, which governs nuclear transcription factor-κB activation in both innate and adaptive immunity. We found that the switch consists of a sequence-encoded and deeply conserved nucleation barrier to ordered polymerization by the adaptor protein BCL10. The particular structure of the BCL10 polymers did not matter for activity. Using optogenetic tools and single-cell transcriptional reporters, we discovered that endogenous BCL10 is functionally supersaturated even in unstimulated human cells, and this results in a predetermined response to stimulation upon nucleation by activated CARD multimers. Our findings may inform on the progressive nature of age-associated inflammation, and suggest that signalosome structure has evolved via selection for kinetic rather than equilibrium properties of the proteins. The innate immune system is the body’s first line of defence against pathogens. Although innate immune cells do not recognize specific disease-causing agents, they can detect extremely low levels of harmful organisms or substances. In response, they activate signals that lead to inflammation, which tells other cells that there is an infection. Innate immune cells are turned on in a switch-like fashion, becoming active very quickly after interacting with a pathogen. This is due to the action of signalosomes, large complexes made up of several proteins that clump together to form long chains that activate the cell. But how do these large protein complexes assemble quick enough to create the switch-like activation observed in innate immune cells? To answer this question, Rodríguez Gama et al. focused on the CBM signalosome, which is involved in triggering inflammation through the activation of a protein called NF-kB. First, Rodríguez Gama et al. used genetic tools to determine that activating the CBM signalosome drives a switch-like activation of NF-kB in cells. This means that individual cells in a population either become fully activated or not at all in response to minute amounts of harmful substances. Once they had established this, Rodríguez Gama et al. wanted to know which protein in the CBM signalosome was responsible for the switch. They found that one of the proteins in the signalosome, called BCL10, has a ‘nucleation barrier’ encoded in its sequence. This means that it is very hard for BCL10 to start clumping together, but once it does, the clumps grow on their own. The nucleation barrier describes exactly how hard it is for these clumps to get started, and is determined by how disorganized the protein is. When a pathogen ‘stimulates’ an immune cell, a tiny template is formed that lowers the nucleation barrier so that BCL10 can then aggregate itself together, leading to the switch-like behaviour observed. The nucleation barrier allows there to be more than enough BCL10 present in the cell at all times – ready to clump together at a moment’s notice – and this permits the cell to detect very low levels of a pathogen. Rodríguez Gama et al. then tested whether BCL10 from other animals also has a nucleation barrier. They found that this feature is conserved from cnidarians, such as corals or jellyfish, to mammals, including humans. This suggests that the use of nucleation barriers to regulate innate immune signalling has existed for a long time throughout evolution. The work by Rodríguez Gama et al. broadens our understanding of how the innate immune system senses and responds to extremely low levels of pathogens. That BCL10 is always ready to clump together suggests it may be a driving force for chronic and age-associated inflammation. Additionally, the findings of Rodríguez Gama et al. also offer insights into how other signalosomes may become activated, and offer the possibility of new drugs aimed at modifying nucleation barriers.
Collapse
Affiliation(s)
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
21
|
Wind SS, Jansen MAA, Rijsbergen M, van Esdonk MJ, Ziagkos D, Cheng WC, Niemeyer-van der Kolk T, Korsten J, Gruszka A, Schmitz-Rohmer D, Bonnel D, Legouffe R, Barré F, Bekkenk MW, de Haas ERM, Quint KD, Rolli M, Streefkerk HJ, Burggraaf J, Vermeer MH, Rissmann R. Topical Bimiralisib Shows Meaningful Cutaneous Drug Levels in Healthy Volunteers and Mycosis Fungoides Patients but No Clinical Activity in a First-in-Human, Randomized Controlled Trial. Cancers (Basel) 2022; 14:1510. [PMID: 35326659 PMCID: PMC8946662 DOI: 10.3390/cancers14061510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Mycosis fungoides (MF) is a subtype of CTCL with a low incidence and high medical need for novel treatments. The objective of this randomized, placebo-controlled, double-blinded, first-in-human study was to evaluate safety, efficacy, cutaneous and systemic pharmacokinetics (PK) of topical bimiralisib in healthy volunteers (HVs) and MF patients. In this trial, a total of 6 HVs and 19 early-stage MF patients were treated with 2.0% bimiralisib gel and/or placebo. Drug efficacy was assessed by the Composite Assessment of Index Lesion Severity (CAILS) score, supported by objective measuring methods to quantify lesion severity. PK blood samples were collected frequently and cutaneous PK was investigated in skin punch biopsies on the last day of treatment. Local distribution of bimiralisib in HVs showed a mean exposure of 2.54 µg/g in the epidermis. A systemic concentration was observed after application of a target dose of 2 mg/cm2 on 400 cm2, with a mean Cavg of 0.96 ng/mL. Systemic exposure of bimiralisib was reached in all treated MF patients, and normalized plasma concentrations showed a 144% increased exposure compared to HVs, with an observed mean Cavg of 4.49 ng/mL and a mean cutaneous concentration of 5.3 µg/g. No difference in CAILS or objective lesion severity quantification upon 42 days of once-daily treatment was observed in the MF patient group. In general, the treatment was well tolerated in terms of local reactions as well as systemic adverse events. In conclusion, we showed that topical bimiralisib treatment leads to (i) meaningful cutaneous drug levels and (ii) well-tolerated systemic drug exposure in MF patients and (iii) a lack of clinical efficacy, in need of further exploration due to numerous unknown factors, before depreciation of topical bimiralisib as a novel therapeutic drug for CTCLs.
Collapse
Affiliation(s)
- Selinde S. Wind
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.D.Q.); (M.H.V.)
| | - Manon A. A. Jansen
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
| | - Melanie Rijsbergen
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
| | - Michiel J. van Esdonk
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
| | - Dimitrios Ziagkos
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
| | - Wing C. Cheng
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
| | - Tessa Niemeyer-van der Kolk
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
| | - John Korsten
- Charles River Laboratories Den Bosch B.V., 5231 DD Den Bosch, The Netherlands; (J.K.); (A.G.)
| | - Agnieszka Gruszka
- Charles River Laboratories Den Bosch B.V., 5231 DD Den Bosch, The Netherlands; (J.K.); (A.G.)
| | | | - David Bonnel
- MS Imaging Department, ImaBiotech, 59120 Lille, France; (D.B.); (R.L.); (F.B.)
| | - Raphael Legouffe
- MS Imaging Department, ImaBiotech, 59120 Lille, France; (D.B.); (R.L.); (F.B.)
| | - Florian Barré
- MS Imaging Department, ImaBiotech, 59120 Lille, France; (D.B.); (R.L.); (F.B.)
| | - Marcel W. Bekkenk
- Amsterdam University Medical Centers, 1105 AZ Amsterdam, The Netherlands;
| | | | - Koen D. Quint
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.D.Q.); (M.H.V.)
| | - Melanie Rolli
- PIQUR Therapeutics AG, 4057 Basel, Switzerland; (D.S.-R.); (M.R.); (H.J.S.)
| | | | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.D.Q.); (M.H.V.)
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Maarten H. Vermeer
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.D.Q.); (M.H.V.)
| | - Robert Rissmann
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands; (S.S.W.); (M.A.A.J.); (M.R.); (M.J.v.E.); (D.Z.); (W.C.C.); (T.N.-v.d.K.); (J.B.)
- Department of Dermatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.D.Q.); (M.H.V.)
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
22
|
Kutzner K, Woods S, Karayel O, Gehring T, Yin H, Flatley A, Graß C, Wimberger N, Tofaute MJ, Seeholzer T, Feederle R, Mann M, Krappmann D. Phosphorylation of serine-893 in CARD11 suppresses the formation and activity of the CARD11-BCL10-MALT1 complex in T and B cells. Sci Signal 2022; 15:eabk3083. [PMID: 35230873 DOI: 10.1126/scisignal.abk3083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CARD11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKCθ/β-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKCθ/β-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells. Through mass spectrometry-based proteomics analysis, we identified multiple constitutive and inducible CARD11 phosphorylation sites in T cells. We demonstrated that a single TCR- or BCR-inducible phosphorylation on Ser893 in the carboxyl terminus of CARD11 prevented the activation of the transcription factor NF-κB, the kinase JNK, and the protease MALT1. Moreover, CARD11 Ser893 phosphorylation sensitized BCR-addicted lymphoma cells to toxicity induced by Bruton's tyrosine kinase (BTK) inhibitors. Phosphorylation of Ser893 in CARD11 by PKCθ controlled the strength of CARD11 scaffolding by impairing the formation of the CBM complex. Thus, PKCθ simultaneously catalyzes both stimulatory and inhibitory CARD11 phosphorylation events, which shape the strength of CARD11 signaling in lymphocytes.
Collapse
Affiliation(s)
- Kerstin Kutzner
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Simone Woods
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Hongli Yin
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Nicole Wimberger
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Marie J Tofaute
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München-German Research Center for Environmental Health. Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
23
|
Genetic profiling and biomarkers in peripheral T-cell lymphomas: current role in the diagnostic work-up. Mod Pathol 2022; 35:306-318. [PMID: 34584212 DOI: 10.1038/s41379-021-00937-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022]
Abstract
Peripheral T-cell lymphomas are a heterogeneous, and usually aggressive, group of mature T-cell neoplasms with overlapping clinical, morphologic and immunologic features. A large subset of these neoplasms remains unclassifiable with current diagnostic methods ("not otherwise specified"). Genetic profiling and other molecular tools have emerged as widely applied and transformative technologies for discerning the biology of lymphomas and other hematopoietic neoplasms. Although the application of these technologies to peripheral T-cell lymphomas has lagged behind B-cell lymphomas and other cancers, molecular profiling has provided novel prognostic and diagnostic markers as well as an opportunity to understand the biologic mechanisms involved in the pathogenesis of these neoplasms. Some biomarkers are more prevalent in specific T-cell lymphoma subsets and are being used currently in the diagnosis and/or risk stratification of patients with peripheral T-cell lymphomas. Other biomarkers, while promising, need to be validated in larger clinical studies. In this review, we present a summary of our current understanding of the molecular profiles of the major types of peripheral T-cell lymphoma. We particularly focus on the use of biomarkers, including those that can be detected by conventional immunohistochemical studies and those that contribute to the diagnosis, classification, or risk stratification of these neoplasms.
Collapse
|
24
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
25
|
Bedsaul JR, Shah N, Hutcherson SM, Pomerantz JL. Mechanistic impact of oligomer poisoning by dominant-negative CARD11 variants. iScience 2022; 25:103810. [PMID: 35198875 PMCID: PMC8844825 DOI: 10.1016/j.isci.2022.103810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
The CARD11 scaffold controls antigen receptor signaling to NF-κB, JNK, and mTOR. Three classes of germline mutations in CARD11 cause Primary Immunodeficiency, including homozygous loss-of-function (LOF) mutations in CARD11 deficiency, heterozygous gain-of-function (GOF) mutations in BENTA disease, and heterozygous dominant-negative LOF mutations in CADINS. Here, we characterize LOF CARD11 mutants with a range of dominant-negative activities to identify the mechanistic properties that cause these variants to exert dominant effects when heterozygous. We find that strong dominant negatives can poison signaling from mixed wild-type:mutant oligomers at two steps in the CARD11 signaling cycle, at the Opening Step and at the Cofactor Association Step. Our findings provide evidence that CARD11 oligomer subunits cooperate in at least two steps during antigen receptor signaling and reveal how different LOF mutations in the same oligomeric signaling hub may cause disease with different inheritance patterns.
Collapse
Affiliation(s)
- Jacquelyn R. Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Shah
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shelby M. Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Nobari ST, Nojadeh JN, Talebi M. B-cell maturation antigen targeting strategies in multiple myeloma treatment, advantages and disadvantages. J Transl Med 2022; 20:82. [PMID: 35144648 PMCID: PMC8832753 DOI: 10.1186/s12967-022-03285-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/29/2022] [Indexed: 01/02/2023] Open
Abstract
B cell maturation antigen (BCMA), a transmembrane glycoprotein member of the tumor necrosis factor receptor superfamily 17 (TNFRSF17), highly expressed on the plasma cells of Multiple myeloma (MM) patients, as well as the normal population. BCMA is used as a biomarker for MM. Two members of the TNF superfamily proteins, including B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL), are closely related to BCMA and play an important role in plasma cell survival and progression of MM. Despite the maximum specificity of the monoclonal antibody technologies, introducing the tumor-specific antigen(s) is not applicable for all malignancies, such as MM that there plenty of relatively specific antigens such as GPCR5D, MUC1, SLAMF7 and etc., but higher expression of BCMA on these cells in comparison with normal ones can be regarded as a relatively exclusive marker. Currently, different monoclonal antibody (mAb) technologies applied in anti-MM therapies such as daratuzumab, SAR650984, GSK2857916, and CAR-T cell therapies are some of these tools that are reviewed in the present manuscript. By the way, the structure, function, and signaling of the BCMA and related molecule(s) role in normal plasma cells and MM development, evaluated as well as the potential side effects of its targeting by different CAR-T cells generations. In conclusion, BCMA can be regarded as an ideal molecule to be targeted in immunotherapeutic methods, regarding lower potential systemic and local side effects.
Collapse
Affiliation(s)
- Shirin Teymouri Nobari
- Department of Medical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Nouri Nojadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Department of Applied Cells Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Maier J, Lechel A, Marienfeld R, Barth TFE, Möller P, Mellert K. CARD9 Forms an Alternative CBM Complex in Richter Syndrome. Cancers (Basel) 2022; 14:cancers14030531. [PMID: 35158799 PMCID: PMC8833648 DOI: 10.3390/cancers14030531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary The transformation process of chronic lymphocytic leukemia into an aggressive lymphoma, called Richter syndrome (RS), is incompletely understood, and therapeutic options are limited. Here, we report CARD9 to be expressed in a subset of RS tissue specimen and in the first and only available RS cell line, U-RT1. In U-RT1, CARD9 attaches to BCL10 and MALT1, and knockdown of CARD9 leads to a significant reduction in cell viability. We hypothesized that CARD9 plays an oncogenic role in RS through the activation of NF-κB signaling. Our findings may help to extend the current knowledge about the pathogenesis of RS and promote the development of targeted therapies for this aggressive disease. Abstract Richter syndrome (RS) is defined as the transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, mostly diffuse large B-cell lymphoma (DLBCL). Despite intensive therapy, patients with RS have an unfavorable clinical outcome. The detailed pathobiology of Richter transformation still needs to be elucidated. Here, we report high mRNA and protein levels of CARD9 in the RS cell line U-RT1. Co-immunoprecipitation revealed the assembly of a CBM complex using CARD9 instead of CARD11. CARD9 is known to be an activator of NF-кB signaling in myeloid cells. U-RT1 Western blot analyses showed phosphorylation of IκB as well as IKK, indicating a constitutively active canonical NF-кB pathway. This was further supported by the significant reduction in cell viability and CYLD cleavage products after CARD9 siRNA knockdown. We also showed immunostaining for CARD9 in 53% of cases analyzed in a series of RS tissue specimens, whereas other lymphomas rarely show CARD9 expression. This is the first report on ectopic expression and function of CARD9 in an aggressive B-cell lymphoma. Our findings suggest that CARD9 may contribute to the pathogenesis of RS.
Collapse
Affiliation(s)
- Julia Maier
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| | - André Lechel
- Department of Internal Medicine I, University of Ulm, 89081 Ulm, Germany;
| | - Ralf Marienfeld
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| | - Thomas F. E. Barth
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| | - Peter Möller
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
- Correspondence:
| | - Kevin Mellert
- Institute of Pathology, University Hospital Ulm, 89081 Ulm, Germany; (J.M.); (R.M.); (T.F.E.B.); (K.M.)
| |
Collapse
|
28
|
Lu HY, Sharma M, Sharma AA, Lacson A, Szpurko A, Luider J, Dharmani-Khan P, Shameli A, Bell PA, Guilcher GMT, Lewis VA, Vasquez MR, Desai S, McGonigle L, Murguia-Favela L, Wright NAM, Sergi C, Wine E, Overall CM, Suresh S, Turvey SE. Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. J Allergy Clin Immunol 2021; 148:1559-1574.e13. [PMID: 33872653 DOI: 10.1016/j.jaci.2021.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Germline pathogenic variants impairing the caspase recruitment domain family member 11 (CARD11)-B cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) (CBM) complex are associated with diverse human diseases including combined immunodeficiency (CID), atopy, and lymphoproliferation. However, the impact of CARD11 deficiency on human B-cell development, signaling, and function is incompletely understood. OBJECTIVES This study sought to determine the cellular, immunological, and biochemical basis of disease for 2 unrelated patients who presented with profound CID associated with viral and fungal respiratory infections, interstitial lung disease, and severe colitis. METHODS Patients underwent next-generation sequencing, immunophenotyping by flow cytometry, signaling assays by immunoblot, and transcriptome profiling by RNA-sequencing. RESULTS Both patients carried identical novel pathogenic biallelic loss-of-function variants in CARD11 (c.2509C>T; p.Arg837∗) leading to undetectable protein expression. This variant prevented CBM complex formation, severely impairing the activation of nuclear factor-κB, c-Jun N-terminal kinase, and MALT1 paracaspase activity in B and T cells. This functional defect resulted in a developmental block in B cells at the naive and type 1 transitional B-cell stage and impaired circulating T follicular helper cell (cTFH) development, which was associated with impaired antibody responses and absent germinal center structures on lymph node histology. Transcriptomics indicated that CARD11-dependent signaling is essential for immune signaling pathways involved in the development of these cells. Both patients underwent hematopoietic stem cell transplantations, which led to functional normalization. CONCLUSIONS Complete human CARD11 deficiency causes profound CID by impairing naive/type 1 B-cell and cTFH cell development and abolishing activation of MALT1 paracaspase, NF-κB, and JNK activity. Hematopoietic stem cell transplantation functionally restores impaired signaling pathways.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Emory University, Atlanta, Ga
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashley Szpurko
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Joanne Luider
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Afshin Shameli
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Peter A Bell
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory M T Guilcher
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Victor A Lewis
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Marta Rojas Vasquez
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Sunil Desai
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Lyle McGonigle
- Department of Pediatrics, Division of General and Community Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Nicola A M Wright
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher M Overall
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sneha Suresh
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
29
|
Kurgyis Z, Vornholz L, Pechloff K, Kemény LV, Wartewig T, Muschaweckh A, Joshi A, Kranen K, Hartjes L, Möckel S, Steiger K, Hameister E, Volz T, Mellett M, French LE, Biedermann T, Korn T, Ruland J. Keratinocyte-intrinsic BCL10/MALT1 activity initiates and amplifies psoriasiform skin inflammation. Sci Immunol 2021; 6:eabi4425. [PMID: 34826258 DOI: 10.1126/sciimmunol.abi4425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zsuzsanna Kurgyis
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Larsen Vornholz
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Konstanze Pechloff
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and MGH Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Venereology, and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tim Wartewig
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Andreas Muschaweckh
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Abhinav Joshi
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Katja Kranen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Lara Hartjes
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Sigrid Möckel
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.,Institute of Pathology, Universität Würzburg, Würzburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Erik Hameister
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Thomas Volz
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Mark Mellett
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland
| | - Lars E French
- Department of Dermatology, University Hospital of Zürich, University of Zurich (UZH), Zürich, Switzerland.,Department of Dermatology and Allergy, University Hospital, LMU Munich Munich, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Thomas Korn
- Department of Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, School of Medicine, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Center for Infection Research (DZIF), Munich partner site, Munich Germany
| |
Collapse
|
30
|
Abstract
The activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) has an aggressive course and is associated with poor prognosis in the relapsed or refractory setting. ABC-DLBCL is characterized by chronic active signaling of NF-κB, which is dependent on the CARD11-BCL10-MALT1 (CBM) complex. MALT1 is a key effector of the CBM complex and activates canonical NF-κB and AP-1 among other transcription factors via distinct protease and scaffold functions. There is therefore growing interest in therapeutic targeting of MALT1 for B-cell malignancies. Here, we review recent advances in therapeutic targeting of MALT1 for ABC-DLBCL. Covalent and allosteric MALT1 protease inhibitors have been developed which inhibit growth of ABC-DLBCL in preclinical models, and two clinical MALT1 protease inhibitors are being developed in phase I clinical trials. Importantly, these compounds can overcome resistance to BTK inhibitors in preclinical models. Alternative compounds blocking the scaffold effect of MALT1 are also in early preclinical development. Blockade of MALT1 protease activity may have important implications for anti-lymphoma immunity by increasing immunogenicity of ABC-DLBCL cells and also by potentiating anti-lymphoma activity of other immune cells in the lymphoma microenvironment. Together, early data suggest that MALT1 is a promising target for ABC-DLBCL and possibly other B-cell malignancies, and can have lymphoma cell-intrinsic as well as immune-mediated therapeutic effects.
Collapse
Affiliation(s)
- Madhav R Seshadri
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Oncology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| |
Collapse
|
31
|
Wang W, Gao W, Zhu Q, Alasbahi A, Seki E, Yang L. TAK1: A Molecular Link Between Liver Inflammation, Fibrosis, Steatosis, and Carcinogenesis. Front Cell Dev Biol 2021; 9:734749. [PMID: 34722513 PMCID: PMC8551703 DOI: 10.3389/fcell.2021.734749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic insult and persistent injury can cause liver inflammation, fibrosis, and carcinogenesis; it can also be associated with metabolic disorders. Identification of critical molecules that link the process of inflammation and carcinogenesis will provide prospective therapeutic targets for liver diseases. Rapid advancements in gene engineering technology have allowed the elucidation of the underlying mechanism of transformation, from inflammation and metabolic disorders to carcinogenesis. Transforming growth factor-β-activated kinase 1 (TAK1) is an upstream intracellular protein kinase of nuclear factor kappa-B (NF-κB) and c-Jun N-terminal kinases, which are activated by numerous cytokines, growth factors, and microbial products. In this study, we highlighted the functional roles of TAK1 and its interaction with transforming growth factor-β, WNT, AMP-activated protein kinase, and NF-κB signaling pathways in liver inflammation, steatosis, fibrosis, and carcinogenesis based on previously published articles.
Collapse
Affiliation(s)
- Weijun Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjing Zhu
- Department of Liver Diseases, Wuhan Jinyintan Hospital, Wuhan, China
| | - Afnan Alasbahi
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai, Los Angeles, CA, United States
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
USP12 promotes CD4 + T cell responses through deubiquitinating and stabilizing BCL10. Cell Death Differ 2021; 28:2857-2870. [PMID: 33941870 PMCID: PMC8481463 DOI: 10.1038/s41418-021-00787-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Deubiquitinases (DUBs) regulate diverse biological processes and represent a novel class of drug targets. However, the biological function of only a small fraction of DUBs, especially in adaptive immune response regulation, is well-defined. In this study, we identified DUB ubiquitin-specific peptidase 12 (USP12) as a critical regulator of CD4+ T cell activation. USP12 plays an intrinsic role in promoting the CD4+ T cell phenotype, including differentiation, activation, and proliferation. Although USP12-deficient CD4+ T cells protected mice from autoimmune diseases, the immune response against bacterial infection was subdued. USP12 stabilized B cell lymphoma/leukemia 10 (BCL10) by deubiquitinating, and thereby activated the NF-κB signaling pathway. Interestingly, this USP12 regulatory mechanism was identified in CD4+ T cells, but not in CD8+ T cells. Our study results showed that USP12 activated CD4+ T cell signaling, and targeting USP12 might help develop therapeutic interventions for treating inflammatory diseases or pathogen infections.
Collapse
|
33
|
Hutcherson SM, Bedsaul JR, Pomerantz JL. Pathway-Specific Defects in T, B, and NK Cells and Age-Dependent Development of High IgE in Mice Heterozygous for a CADINS-Associated Dominant Negative CARD11 Allele. THE JOURNAL OF IMMUNOLOGY 2021; 207:1150-1164. [PMID: 34341167 DOI: 10.4049/jimmunol.2001233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
CARD11 is a multidomain scaffold protein required for normal activation of NF-κB, JNK, and mTOR during Ag receptor signaling. Germline CARD11 mutations cause at least three types of primary immunodeficiency including CARD11 deficiency, B cell expansion with NF-κB and T cell anergy (BENTA), and CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS). CADINS is uniquely caused by heterozygous loss-of-function CARD11 alleles that act as dominant negatives. CADINS patients present with frequent respiratory and skin infections, asthma, allergies, and atopic dermatitis. However, precisely how a heterozygous dominant negative CARD11 allele leads to the development of this CADINS-specific cluster of symptoms remains poorly understood. To address this, we generated mice expressing the CARD11 R30W allele originally identified in patients. We find that CARD11R30W/+ mice exhibit impaired signaling downstream of CARD11 that leads to defects in T, B, and NK cell function and immunodeficiency. CARD11R30W/+ mice develop elevated serum IgE levels with 50% penetrance that becomes more pronounced with age, but do not develop spontaneous atopic dermatitis. CARD11R30W/+ mice display reduced regulatory T cell numbers, but not the Th2 expansion observed in other mice with diminished CARD11 activity. Interestingly, the presence of mixed CARD11 oligomers in CARD11R30W/+ mice causes more severe signaling defects in T cells than in B cells, and specifically impacts IFN-γ production by NK cells, but not NK cell cytotoxicity. Our findings help explain the high susceptibility of CADINS patients to infection and suggest that the development of high serum IgE is not sufficient to induce overt atopic symptoms.
Collapse
Affiliation(s)
- Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacquelyn R Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
34
|
Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 2021; 138:1110-1119. [PMID: 34320160 DOI: 10.1182/blood.2020006784] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/09/2021] [Indexed: 11/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous diagnostic category comprising distinct molecular subtypes characterized by diverse genetic aberrations that dictate patient outcome. As roughly one-third of DLBCL patients are not cured by current standard chemo-immunotherapy a better understanding of the molecular pathogenesis is warranted to improve outcome. B-cell receptor (BCR) signaling is crucial for the development, growth and survival of both normal and a substantial fraction of malignant B-cells. Various analyses revealed genetic alterations of central components of the BCR or its downstream signaling effectors in some subtypes of DLBCL. Thus, BCR signaling and the downstream NF-κB and PI3K cascades have been proposed as potential targets for the treatment of DLBCL patients. As one of the main effectors of BCR activation, PI3K mediated signals play a crucial role in the pathogenesis and survival of DLBCL. In this review, we summarize our current understanding of BCR signaling with a special focus on the PI3K pathway in DLBCL and how to utilize this knowledge therapeutically.
Collapse
|
35
|
Smith CIE, Burger JA. Resistance Mutations to BTK Inhibitors Originate From the NF-κB but Not From the PI3K-RAS-MAPK Arm of the B Cell Receptor Signaling Pathway. Front Immunol 2021; 12:689472. [PMID: 34177947 PMCID: PMC8222783 DOI: 10.3389/fimmu.2021.689472] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Since the first clinical report in 2013, inhibitors of the intracellular kinase BTK (BTKi) have profoundly altered the treatment paradigm of B cell malignancies, replacing chemotherapy with targeted agents in patients with chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and Waldenström's macroglobulinemia. There are over 20 BTKi, both irreversible and reversible, in clinical development. While loss-of-function (LoF) mutations in the BTK gene cause the immunodeficiency X-linked agammaglobulinemia, neither inherited, nor somatic BTK driver mutations are known. Instead, BTKi-sensitive malignancies are addicted to BTK. BTK is activated by upstream surface receptors, especially the B cell receptor (BCR) but also by chemokine receptors, and adhesion molecules regulating B cell homing. Consequently, BTKi therapy abrogates BCR-driven proliferation and the tissue homing capacity of the malignant cells, which are being redistributed into peripheral blood. BTKi resistance can develop over time, especially in MCL and high-risk CLL patients. Frequently, resistance mutations affect the BTKi binding-site, cysteine 481, thereby reducing drug binding. Less common are gain-of-function (GoF) mutations in downstream signaling components, including phospholipase Cγ2 (PLCγ2). In a subset of patients, mechanisms outside of the BCR pathway, related e.g. to resistance to apoptosis were described. BCR signaling depends on many proteins including SYK, BTK, PI3K; still based on the resistance pattern, BTKi therapy only selects GoF alterations in the NF-κB arm, whereas an inhibitor of the p110δ subunit of PI3K instead selects resistance mutations in the RAS-MAP kinase pathway. BTK and PLCγ2 resistance mutations highlight BTK's non-redundant role in BCR-mediated NF-κB activation. Of note, mutations affecting BTK tend to generate clone sizes larger than alterations in PLCγ2. This infers that BTK signaling may go beyond the PLCγ2-regulated NF-κB and NFAT arms. Collectively, when comparing the primary and acquired mutation spectrum in BTKi-sensitive malignancies with the phenotype of the corresponding germline alterations, we find that certain observations do not readily fit with the existing models of BCR signaling.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Jan A. Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
36
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
37
|
Mycosis Fungoides and Sézary Syndrome: An Integrative Review of the Pathophysiology, Molecular Drivers, and Targeted Therapy. Cancers (Basel) 2021; 13:cancers13081931. [PMID: 33923722 PMCID: PMC8074086 DOI: 10.3390/cancers13081931] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary In the last few years, the field of cutaneous T-cell lymphomas has experienced major advances. In the context of an active translational and clinical research field, next-generation sequencing data have boosted our understanding of the main molecular mechanisms that govern the biology of these entities, thus enabling the development of novel tools for diagnosis and specific therapy. Here, we focus on mycosis fungoides and Sézary syndrome; we review essential aspects of their pathophysiology, provide a rational mechanistic interpretation of the genomic data, and discuss the current and upcoming therapies, including the potential crosstalk between genomic alterations and the microenvironment, offering opportunities for targeted therapies. Abstract Primary cutaneous T-cell lymphomas (CTCLs) constitute a heterogeneous group of diseases that affect the skin. Mycosis fungoides (MF) and Sézary syndrome (SS) account for the majority of these lesions and have recently been the focus of extensive translational research. This review describes and discusses the main pathobiological manifestations of MF/SS, the molecular and clinical features currently used for diagnosis and staging, and the different therapies already approved or under development. Furthermore, we highlight and discuss the main findings illuminating key molecular mechanisms that can act as drivers for the development and progression of MF/SS. These seem to make up an orchestrated constellation of genomic and environmental alterations generated around deregulated T-cell receptor (TCR)/phospholipase C, gamma 1, (PLCG1) and Janus kinase/ signal transducer and activator of transcription (JAK/STAT) activities that do indeed provide us with novel opportunities for diagnosis and therapy.
Collapse
|
38
|
CARD10 cleavage by MALT1 restricts lung carcinoma growth in vivo. Oncogenesis 2021; 10:32. [PMID: 33824280 PMCID: PMC8024357 DOI: 10.1038/s41389-021-00321-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
CARD-CC complexes involving BCL10 and MALT1 are major cellular signaling hubs. They govern NF-κB activation through their scaffolding properties as well as MALT1 paracaspase function, which cleaves substrates involved in NF-κB regulation. In human lymphocytes, gain-of-function defects in this pathway lead to lymphoproliferative disorders. CARD10, the prototypical CARD-CC protein in non-hematopoietic cells, is overexpressed in several cancers and has been associated with poor prognosis. However, regulation of CARD10 remains poorly understood. Here, we identified CARD10 as the first MALT1 substrate in non-hematopoietic cells and showed that CARD10 cleavage by MALT1 at R587 dampens its capacity to activate NF-κB. Preventing CARD10 cleavage in the lung tumor A549 cell line increased basal levels of IL-6 and extracellular matrix components in vitro, and led to increased tumor growth in a mouse xenograft model, suggesting that CARD10 cleavage by MALT1 might be a built-in mechanism controlling tumorigenicity.
Collapse
|
39
|
Oh H, Zhao J, Grinberg-Bleyer Y, Postler TS, Wang P, Park SG, Rabadan R, Hayden MS, Ghosh S. PDK1 Is Required for Maintenance of CD4 + Foxp3 + Regulatory T Cell Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:1776-1783. [PMID: 33789982 DOI: 10.4049/jimmunol.2000051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/10/2021] [Indexed: 01/22/2023]
Abstract
Regulatory T (Treg) cells have an essential role in maintaining immune homeostasis, in part by suppressing effector T cell functions. Phosphoinositide-dependent kinase 1 (PDK1) is a pleiotropic kinase that acts as a key effector downstream of PI3K in many cell types. In T cells, PDK1 has been shown to be critical for activation of NF-κB and AKT signaling upon TCR ligation and is therefore essential for effector T cell activation, proliferation, and cytokine production. Using Treg cell-specific conditional deletion, we now demonstrate that PDK1 is also essential for Treg cell suppressive activity in vivo. Ablation of Pdk1 specifically in Treg cells led to systemic, lethal, scurfy-like inflammation in mice. Genome-wide analysis confirmed that PDK1 is essential for the regulation of key Treg cell signature gene expression and, further, suggested that PDK1 acts primarily to control Treg cell gene expression through regulation of the canonical NF-κB pathway. Consistent with these results, the scurfy-like phenotype of mice lacking PDK1 in Treg cells was rescued by enforced activation of NF-κB downstream of PDK1. Therefore, PDK1-mediated activation of the NF-κB signaling pathway is essential for regulation of Treg cell signature gene expression and suppressor function.
Collapse
Affiliation(s)
- Hyunju Oh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Jingyao Zhao
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Yenkel Grinberg-Bleyer
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Pingzhang Wang
- Department of Systems Biology and Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032; and
| | - Sung-Gyoo Park
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032
| | - Raul Rabadan
- Department of Systems Biology and Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032; and
| | - Matthew S Hayden
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032.,Section of Dermatology, Department of Surgery, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH 03756
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032;
| |
Collapse
|
40
|
TRIM41 is required to innate antiviral response by polyubiquitinating BCL10 and recruiting NEMO. Signal Transduct Target Ther 2021; 6:90. [PMID: 33640899 PMCID: PMC7914255 DOI: 10.1038/s41392-021-00477-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sensing of pathogenic nucleic acids by pattern recognition receptors (PRR) not only initiates anti-microbe defense but causes inflammatory and autoimmune diseases. E3 ubiquitin ligase(s) critical in innate response need to be further identified. Here we report that the tripartite motif-containing E3 ubiquitin ligase TRIM41 is required to innate antiviral response through facilitating pathogenic nucleic acids-triggered signaling pathway. TRIM41 deficiency impairs the production of inflammatory cytokines and type I interferons in macrophages after transfection with nucleic acid-mimics and infection with both DNA and RNA viruses. In vivo, TRIM41 deficiency leads to impaired innate response against viruses. Mechanistically, TRIM41 directly interacts with BCL10 (B cell lymphoma 10), a core component of CARD proteins−BCL10 − MALT1 (CBM) complex, and modifies the Lys63-linked polyubiquitylation of BCL10, which, in turn, hubs NEMO for activation of NF-κB and TANK-binding kinase 1 (TBK1) − interferon regulatory factor 3 (IRF3) pathways. Our study suggests that TRIM41 is the potential universal E3 ubiquitin ligase responsible for Lys63 linkage of BCL10 during innate antiviral response, adding new insight into the molecular mechanism for the control of innate antiviral response.
Collapse
|
41
|
Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. Cellular CARD11 Inhibits the Fusogenic Activity of Newcastle Disease Virus via CBM Signalosome-Mediated Furin Reduction in Chicken Fibroblasts. Front Microbiol 2021; 12:607451. [PMID: 33603723 PMCID: PMC7884349 DOI: 10.3389/fmicb.2021.607451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongshan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhongyuan Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
42
|
Yang D, Zhao X, Lin X. Bcl10 is required for the development and suppressive function of Foxp3 + regulatory T cells. Cell Mol Immunol 2021; 18:206-218. [PMID: 31595055 PMCID: PMC7853095 DOI: 10.1038/s41423-019-0297-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/08/2019] [Indexed: 12/13/2022] Open
Abstract
Foxp3+ regulatory T (Treg) cells play a critical role in peripheral tolerance. Bcl10, acting as a scaffolding protein in the Carma1-Bcl10-Malt1 (CBM) complex, has a critical role in TCR-induced signaling, leading to NF-κB activation and is required for T-cell activation. The role of Bcl10 in conventional T (Tconv) cells has been well characterized; however, the role of Bcl10 in the development of Treg cells and the maintenance of the suppressive function and identity of these cells has not been well characterized. In this study, we found that Bcl10 was required for not only the development but also the function of Treg cells. After deleting Bcl10 in T cells, we found that the development of Treg cells was significantly impaired. When Bcl10 was specifically deleted in mature Treg cells, the suppressive function of the Treg cells was impaired, leading to lethal autoimmunity in Bcl10fl/flFoxp3cre mice. Consistently, in contrast to WT Treg cells, Bcl10-deficient Treg cells could not protect Rag1-deficient mice from T-cell transfer-induced colitis. Furthermore, Bcl10-deficient Treg cells downregulated the expression of a series of Treg-cell effector and suppressive genes and decreased effector Treg-cell populations. Moreover, Bcl10-deficient Treg cells were converted into IFNγ-producing proinflammatory cells with increased expression of the transcription factors T-bet and HIF-1α. Together, our study results provide genetic evidence, indicating that Bcl10 is required for the development and function of Treg cells.
Collapse
Affiliation(s)
- Dandan Yang
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xueqiang Zhao
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, 100084, China
| | - Xin Lin
- Department of Basic Medical Sciences and Institute for Immunology, Tsinghua University School of Medicine, Beijing, 100084, China.
- Tsinghua University-Peking University Jointed Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
43
|
Berditchevski F, Fennell E, Murray PG. Calcium-dependent signalling in B-cell lymphomas. Oncogene 2021; 40:6321-6328. [PMID: 34625709 PMCID: PMC8585665 DOI: 10.1038/s41388-021-02025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Induced waves of calcium fluxes initiate multiple signalling pathways that play an important role in the differentiation and maturation of B-cells. Finely tuned transient Ca+2 fluxes from the endoplasmic reticulum in response to B-cell receptor (BCR) or chemokine receptor activation are followed by more sustained calcium influxes from the extracellular environment and contribute to the mechanisms responsible for the proliferation of B-cells, their migration within lymphoid organs and their differentiation. Dysregulation of these well-balanced mechanisms in B-cell lymphomas results in uncontrolled cell proliferation and resistance to apoptosis. Consequently, several cytotoxic drugs (and anti-proliferative compounds) used in standard chemotherapy regimens for the treatment of people with lymphoma target calcium-dependent pathways. Furthermore, ~10% of lymphoma associated mutations are found in genes with functions in calcium-dependent signalling, including those affecting B-cell receptor signalling pathways. In this review, we provide an overview of the Ca2+-dependent signalling network and outline the contribution of its key components to B cell lymphomagenesis. We also consider how the oncogenic Epstein-Barr virus, which is causally linked to the pathogenesis of a number of B-cell lymphomas, can modify Ca2+-dependent signalling.
Collapse
Affiliation(s)
- Fedor Berditchevski
- grid.6572.60000 0004 1936 7486Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT UK
| | - Eanna Fennell
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland
| | - Paul G. Murray
- grid.10049.3c0000 0004 1936 9692Health Research Institute, University of Limerick, Castletroy, Limerick, V94 T9PX Ireland ,grid.6572.60000 0004 1936 7486Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
44
|
Pomerantz JL. Reconsidering phosphorylation in the control of inducible CARD11 scaffold activity during antigen receptor signaling. Adv Biol Regul 2021; 79:100775. [PMID: 33358178 PMCID: PMC7920944 DOI: 10.1016/j.jbior.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/01/2022]
Abstract
Protein phosphorylation is a commonly used regulatory step that controls signal transduction pathways in a wide array of biological contexts. The finding that a residue is phosphorylated, coupled with the observation that mutation of that residue impacts signaling, often forms the basis for concluding that the phosphorylation of that residue is a key signaling step. However, in certain cases, the situation is more complicated and warrants further study to obtain a clear mechanistic understanding of whether and how the kinase-mediated modification in question is important. CARD11 is a multi-domain signaling scaffold that functions as a hub in lymphocytes to transmit the engagement of antigen receptors into the activation of NF-κB, JNK and mTOR. The phosphorylation of the CARD11 autoinhibitory Inhibitory Domain in response to antigen receptor triggering has been proposed to control the signal-induced conversion of CARD11 from an inactive to an active scaffold in a step required for lymphocyte activation. In this review, I discuss recent data that suggests that this model should be reconsidered for certain phosphorylation events in CARD11 and propose possible experimental avenues for resolution of raised issues.
Collapse
Affiliation(s)
- Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Miller Research Building, Room 623, 733 N Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
45
|
Gehring T, Erdmann T, Rahm M, Graß C, Flatley A, O'Neill TJ, Woods S, Meininger I, Karayel O, Kutzner K, Grau M, Shinohara H, Lammens K, Feederle R, Hauck SM, Lenz G, Krappmann D. MALT1 Phosphorylation Controls Activation of T Lymphocytes and Survival of ABC-DLBCL Tumor Cells. Cell Rep 2020; 29:873-888.e10. [PMID: 31644910 DOI: 10.1016/j.celrep.2019.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/24/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor κB (NF-κB) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1α as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-κB signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-κB activation in lymphocytes and survival of lymphoma cells.
Collapse
Affiliation(s)
- Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Marco Rahm
- Research Unit Protein Science, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Thomas J O'Neill
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Simone Woods
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Isabel Meininger
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Kerstin Kutzner
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Hisaaki Shinohara
- Laboratory for Systems Immunology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University.1-1-1, Daigakudori, Sanyo-onoda City, Yamaguchi 756-0884, Japan
| | - Katja Lammens
- Gene Center, Ludwig-Maximilians University, Feodor-Lynen-Str. 25, 81377 München, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH) Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz-Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
46
|
Cheng J, Klei LR, Hubel NE, Zhang M, Schairer R, Maurer LM, Klei HB, Kang H, Concel VJ, Delekta PC, Dang EV, Mintz MA, Baens M, Cyster JG, Parameswaran N, Thome M, Lucas PC, McAllister-Lucas LM. GRK2 suppresses lymphomagenesis by inhibiting the MALT1 proto-oncoprotein. J Clin Invest 2020; 130:1036-1051. [PMID: 31961340 DOI: 10.1172/jci97040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Antigen receptor-dependent (AgR-dependent) stimulation of the NF-κB transcription factor in lymphocytes is a required event during adaptive immune response, but dysregulated activation of this signaling pathway can lead to lymphoma. AgR stimulation promotes assembly of the CARMA1-BCL10-MALT1 complex, wherein MALT1 acts as (a) a scaffold to recruit components of the canonical NF-κB machinery and (b) a protease to cleave and inactivate specific substrates, including negative regulators of NF-κB. In multiple lymphoma subtypes, malignant B cells hijack AgR signaling pathways to promote their own growth and survival, and inhibiting MALT1 reduces the viability and growth of these tumors. As such, MALT1 has emerged as a potential pharmaceutical target. Here, we identified G protein-coupled receptor kinase 2 (GRK2) as a new MALT1-interacting protein. We demonstrated that GRK2 binds the death domain of MALT1 and inhibits MALT1 scaffolding and proteolytic activities. We found that lower GRK2 levels in activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) are associated with reduced survival, and that GRK2 knockdown enhances ABC-DLBCL tumor growth in vitro and in vivo. Together, our findings suggest that GRK2 can function as a tumor suppressor by inhibiting MALT1 and provide a roadmap for developing new strategies to inhibit MALT1-dependent lymphomagenesis.
Collapse
Affiliation(s)
| | | | - Nathaniel E Hubel
- Department of Pediatrics and.,Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ming Zhang
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Rebekka Schairer
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | | | | | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Phillip C Delekta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Eric V Dang
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Michelle A Mintz
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA
| | - Mathijs Baens
- Human Genome Laboratory, VIB Center for the Biology of Disease, and.,Center for Human Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jason G Cyster
- Department of Biophysics and Biochemistry, UCSF, San Francisco, California, USA.,Howard Hughes Medical Institute and.,Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
| | | | - Margot Thome
- Department of Biochemistry, Center of Immunity and Infection, University of Lausanne, Epalinges, Switzerland
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
47
|
Staal J, Driege Y, Haegman M, Kreike M, Iliaki S, Vanneste D, Lork M, Afonina IS, Braun H, Beyaert R. Defining the combinatorial space of PKC::CARD‐CC signal transduction nodes. FEBS J 2020; 288:1630-1647. [DOI: 10.1111/febs.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Staal
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Yasmine Driege
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Mira Haegman
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marja Kreike
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Styliani Iliaki
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Domien Vanneste
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marie Lork
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Inna S. Afonina
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Harald Braun
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| |
Collapse
|
48
|
Kataoka K, Koya J. Clinical application of genomic aberrations in adult T-cell leukemia/lymphoma. J Clin Exp Hematop 2020; 60:66-72. [PMID: 32779615 PMCID: PMC7596910 DOI: 10.3960/jslrt.20019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive peripheral T-cell malignancy with a markedly poor prognosis. The low prevalence of ATL among human T-cell leukemia virus type-1 (HTLV-1) carriers and the long latency period before ATL onset suggest that additional genetic lesions are required for ATL leukemogenesis. Recently, a large-scale genetic analysis clarified the entire picture of genetic alterations, identified a number of novel driver genes, and delineated their characteristics. Frequent alterations are observed in the molecules belonging to T-cell receptor/NF-κB signaling and other T-cell-related pathways. A notable feature of the ATL genome is the predominance of gain-of-function alterations, including activating mutations in PLCG1, PRKCB, and CARD11. As many as one-fourth of all ATL cases harbor structural variations disrupting the 3'-untranslated region of the PD-L1 gene, leading to immune evasion of tumor cells. The frequency and pattern of these somatic alterations differ among clinical subtypes. Aggressive subtypes are associated with an increased burden of genetic alterations, and higher frequencies of TP53 and IRF4 mutations, PD-L1 amplifications, and CDKN2A deletions than indolent subtypes. In contrast, STAT3 mutations are more characteristic of indolent ATL. Furthermore, these subtypes are further classified into molecularly distinct subsets with a different prognosis by genetic alterations. We present an overview of the current understanding of somatic alterations in ATL, with specific focus on their utility in clinical settings. Furthermore, we highlight their genetic features by exploring their similarities and differences among peripheral T-cell lymphomas.
Collapse
Affiliation(s)
- Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Junji Koya
- Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
49
|
Mellett M. Regulation and dysregulation of CARD14 signalling and its physiological consequences in inflammatory skin disease. Cell Immunol 2020; 354:104147. [DOI: 10.1016/j.cellimm.2020.104147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
|
50
|
Wei Z, Zhang Y, Chen J, Hu Y, Jia P, Wang X, Zhao Q, Deng Y, Li N, Zang Y, Qin J, Wang X, Lu W. Pathogenic CARD11 mutations affect B cell development and differentiation through a noncanonical pathway. Sci Immunol 2020; 4:4/41/eaaw5618. [PMID: 31784498 DOI: 10.1126/sciimmunol.aaw5618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/29/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Pathogenic CARD11 mutations cause aberrant nuclear factor κB (NF-κB) activation, which is presumably responsible for multiple immunological disorders. However, whether there is an NF-κB-independent regulatory mechanism contributing to CARD11 mutations related to pathogenesis remains undefined. Using three distinct genetic mouse models, the Card11 knockout (KO) mouse model mimicking primary immunodeficiency, the CARD11 E134G point mutation mouse model representing BENTA (B cell expansion with NF-κB and T cell anergy) disease, and the mouse model bearing oncogenic K215M mutation, we show that CARD11 has a noncanonical function as a negative regulator of the AKT-FOXO1 signal axis, independent of NF-κB activation. Although BENTA disease-related E134G mutant elevates NF-κB activation, we find that E134G mutant mice phenotypically copy Card11 KO mice, in which NF-κB activation is disrupted. Mechanistically, the E134G mutant causes exacerbated AKT activation and reduced FOXO1 protein in B cells similar to that in Card11 KO cells. Moreover, the oncogenic CARD11 mutant K215M reinforces the importance of the noncanonical function of CARD11. In contrast to the E134G mutant, K215M shows a stronger inhibitory effect on AKT activation and more stabilized FOXO1. Likewise, E134G and K215M mutants have converse impacts on B cell development and differentiation. Our results demonstrate that, besides NF-κB, CARD11 also governs the AKT/FOXO1 signaling pathway in B cells. The critical role of CARD11 is further revealed by the effects of pathogenic CARD11 mutants on this noncanonical regulatory function on the AKT-FOXO1 signaling axis.
Collapse
Affiliation(s)
- Zheng Wei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology (IHV), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jingjing Chen
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China
| | - Yu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yicong Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|