1
|
Nieto-Patlán A, Ross J, Mohan S, Paczosa MK, Soliman R, Sarmento O, Aliu E, Thiyagarajan L, Chandra A, Picard C, Warnatz K, Jolles S, Lesmana H, Maglione PJ, Platt CD, Sediva A, Sullivan KE, Zhang K, Raval F, Tangye SG, Abraham RS. Curation of gene-disease relationships in primary antibody deficiencies using the ClinGen validation framework. J Allergy Clin Immunol 2025; 155:1647-1663. [PMID: 39826876 DOI: 10.1016/j.jaci.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND The Clinical Genome Resource (ClinGen) is an international collaborative effort among scientists and clinicians, diagnostic and research laboratories, and the patient community. Using a standardized framework, ClinGen has established guidelines to classify gene-disease relationships as definitive, strong, moderate, and limited on the basis of available scientific and clinical evidence. When the genetic and functional evidence for a gene-disease relationship has conflicting interpretations or contradictory evidence, they can be disputed or refuted. OBJECTIVE We assessed genes related to primary antibody deficiencies. METHODS The ClinGen Antibody Deficiencies Gene Curation Expert Panel, using the ClinGen framework, classified genes related to primary antibody deficiency that primarily affect B-cell development and/or function, and that account for the largest proportion of inborn errors of immunity or primary immunodeficiencies. RESULTS The expert panel curated a total of 65 genes associated with humoral immune defects to validate 74 gene-disease relationships. Of these, 40 were classified as definitive, 1 as strong, 16 as moderate, 15 as limited, and 2 as disputed. The curation process involved reviewing 490 patient records and 3546 associated human phenotype ontology entries. The 3 most frequently observed terms related to primary antibody deficiency were decreased circulating antibody level, pneumonia, and lymphadenopathy. CONCLUSIONS These curations (publicly available at ClinicalGenome.org) represent the first effort to provide a comprehensive genetic and phenotypic revision of genetic disorders affecting humoral immunity, as reviewed and approved by experts in the field.
Collapse
Affiliation(s)
- Alejandro Nieto-Patlán
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Allergy, Immunology and Rheumatology, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Departamento de Genética, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Justyne Ross
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | | | - Rasha Soliman
- Queen Mary University of London, London, United Kingdom
| | | | - Ermal Aliu
- Milton S. Hershey Medical Center, Hershey, Pa
| | - Lavvina Thiyagarajan
- Sydney Children's Hospitals Network, Sydney, Australia; School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Cité, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France; Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Harry Lesmana
- Department of Medical Genetics and Genomics, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Paul J Maglione
- Department of Medicine, Boston University Chobanian, and Avedisian School of Medicine, Boston, Mass
| | | | - Anna Sediva
- Motol University Hospital and the 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Kejian Zhang
- GoBroad Healthcare Group, GoBroad Clinical Research Center, Boren Hospital, Beijing, China
| | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | | |
Collapse
|
2
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
3
|
Shao P, Antonetti RM, Arkee T, Hornick EL, Xue HH, Bishop GA, Butler NS. TRAF3 is critical for initial T follicular helper cell specification via coordination of the IL-6R/IL-2R-BCL6 signaling nexus. Sci Immunol 2025; 10:eadr0517. [PMID: 39951546 DOI: 10.1126/sciimmunol.adr0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
CD4+ T follicular helper (TFH) cells are essential for orchestrating robust humoral immunity, yet the signals that initiate TFH cell differentiation are not fully understood. We identified that the adapter protein TRAF3 was required for TFH cell differentiation and function during systemic inflammatory infections. Loss of CD4+ T cell-intrinsic TRAF3 impaired chromatin remodeling and transcriptional programming essential for TFH cell initiation and instead augmented TH1 development and function. TRAF3-deficient CD4+ T cells exhibited altered interleukin-6 (IL-6) and IL-2 responsiveness, which were coupled to failures in BCL6 expression. Enforced expression of either IL-6 receptor or BCL6 or blockade of IL-2 signaling was sufficient to rescue TFH cell differentiation. Human CD4+ T cells lacking TRAF3 exhibited impaired TFH polarization, supporting a conserved mechanism by which TRAF3 regulates CD4+ T cell fate determination. Thus, TRAF3 functions at the nexus of cytokine, transcriptional, and epigenetic nodes that promote the TFH cell specification during infection.
Collapse
Affiliation(s)
- Peng Shao
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Regina M Antonetti
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Tina Arkee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Hai Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, USA
- New Jersey Veterans Affairs Health Care System, East Orange, NJ, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Veterans Affairs Medical Center, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Noah S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Yee TM, Wang LW. Metabolic Reprogramming in Epstein-Barr Virus Associated Diseases. J Med Virol 2025; 97:e70197. [PMID: 39895469 DOI: 10.1002/jmv.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Epstein-Barr virus (EBV) is the first human cancer-causing viral pathogen to be discovered; it has been epidemiologically associated with a wide range of diseases, including cancers, autoimmunity, and hyperinflammatory disorders. Its evolutionary success is underpinned by coordinated expression of viral transcription factors (EBV nuclear antigens), signaling proteins (EBV latent membrane proteins), and noncoding RNAs, which orchestrate cell transformation, immune evasion, and dissemination. Each of those activities entails significant metabolic rewiring, which is achieved by viral subversion of key host metabolic regulators such as the mammalian target of rapamycin (mTOR), MYC, and hypoxia-inducible factor (HIF). In this review, we systemically discuss how EBV-encoded factors regulate metabolism to achieve viral persistence and propagation, as well as potential research questions and directions in EBV-driven metabolism.
Collapse
Affiliation(s)
- Tiffany Melanie Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
5
|
Cao M, Yi L, Xu Y, Tian Y, Li Z, Bi Y, Guo M, Li Y, Liu Y, Xu X, Sun J, Li C, Duan W. Inhibiting NF-κB inducing kinase improved the motor performance of ALS animal model. Brain Res 2024; 1843:149124. [PMID: 39019135 DOI: 10.1016/j.brainres.2024.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a typical neurodegenerative disorder typically characterized by inflammation activation. However, the relationship between non-canonical NF-κB (ncNF-κB) pathway activation and ALS progression is not clear. METHODS We tested the ncNF-κB pathway in the ALS animal model including hSOD1-G93A transgenic mice and TBK1 deletion mice.We treated age-matched SOD1-G93A mice with B022 (a NIK inhibitor) to investigate the role of NIK in the ALS animal model. We also established a new mice model by crossing SOD1-G93A mice with NIK+/- mice to further evaluate the interrelationship between the NIK and the disease progression in ALS animal model. RESULTS In this study, we found the ncNF-κB pathway was activated in SOD1-G93A animal model and TBK1 deletion model. Inhibition of NIK activity by small molecule B022 significantly improved the motor performance of the ALS animal model. However, NIK deletion enhanced the mutant SOD1 toxicity by inflammatory infiltration. CONCLUSION TBK1 deletion and mutant SOD1 shared the common pathological feature possibly via effects on NIK activation and inhibitor of NIK could be a novel strategy for treating ALS.
Collapse
Affiliation(s)
- Mengjie Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yuyan Xu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yunyun Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiangyang Xu
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, China; Jiangsu Provincial Key Laboratory of Central Nervous System Drugs, Xuzhou, Jiangsu, China
| | - Jiaquan Sun
- Jiangsu Nhwa Pharmaceutical Co., Ltd., Xuzhou, Jiangsu, China; Jiangsu Provincial Key Laboratory of Central Nervous System Drugs, Xuzhou, Jiangsu, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei 050000, China.
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China; Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
6
|
Li W, Cai P, Xu Y, Tian W, Jing L, Lv Q, Zhao Y, Wang H, Shao Q. Mitochondrial Quality Control Orchestrates the Symphony of B Cells and Plays Critical Roles in B Cell-Related Diseases. J Immunol Res 2024; 2024:5577506. [PMID: 39449998 PMCID: PMC11502133 DOI: 10.1155/2024/5577506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
B cells are essential for humoral immune response due to their ability to secrete antibodies. The development of B cells from the bone marrow to the periphery is tightly regulated by a complex set of immune signals, and each subset of B cells has a unique metabolic profile. Mitochondria, which serve as cellular energy powerhouses, play an essential role in regulating cell survival and immune responses. To maintain metabolic homeostasis, mitochondria dynamically adjust their morphology, distribution, and mass via biogenesis, fusion and fission, translocation, and mitophagy. Despite its extreme importance, the role of mitochondrial quality control (MQC) in B cells has not been thoroughly summarized, unlike in T cells. This article aims to review the mechanism of MQC that shapes B cell fate and functions. In addition, we will discuss the physiological and pathological implications of MQC in B cells, providing new insights into potential therapeutic targets for diseases associated with B cell abnormalities.
Collapse
Affiliation(s)
- Wuhao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Peiyang Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ye Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weihong Tian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Licong Jing
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qiaoyi Lv
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yangjing Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qixiang Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, The Digestive and Reproductive System Cancers Precise Prevention Engineering Research Center of Jiangsu Province, Jiangsu College of Nursing, Huai'an 223002, Jiangsu, China
| |
Collapse
|
7
|
Arkee T, Hornick EL, Bishop GA. TRAF3 regulates STAT6 activation and T-helper cell differentiation by modulating the phosphatase PTP1B. J Biol Chem 2024; 300:107737. [PMID: 39233229 PMCID: PMC11462019 DOI: 10.1016/j.jbc.2024.107737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The adaptor protein tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifaceted regulator of lymphocyte biology that plays key roles in modulation of the molecular signals required for T-cell activation and function. TRAF3 regulates signals mediated by the T-cell receptor (TCR), costimulatory molecules, and cytokine receptors, which each drive activation of the serine/threonine kinase Akt. The impact of TRAF3 upon TCR-CD28-mediated activation of Akt, and thus on the diverse cellular processes regulated by Akt, including CD4 T-cell fate decisions, remains poorly understood. We show here that TRAF3 deficiency led to impaired Akt activation and thus to impaired in vitro skewing of CD4 T cells into the TH1 and TH2 fates. We investigated the role of TRAF3 in regulation of signaling pathways that drive TH1 and TH2 differentiation and found that TRAF3 enhanced activation of signal transducer and activator of transcription 6 (STAT6), thus promoting skewing toward the TH2 fate. TRAF3 promoted STAT6 activation by regulating recruitment of the inhibitory molecule protein tyrosine phosphatase 1B to the IL-4R signaling complex, in a manner that required integration of TCR-CD28- and IL-4R-mediated signals. This work reveals a new mechanism for TRAF3-mediated regulation of STAT6 activation in CD4 T cells and adds to our understanding of the diverse roles played by TRAF3 as an important regulator of T-cell biology.
Collapse
Affiliation(s)
- Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Emma L Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Office of Research and Development, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
8
|
Hao K, Nündel K. Traffic control on the toll road. J Leukoc Biol 2024; 116:207-209. [PMID: 38833592 DOI: 10.1093/jleuko/qiae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
In B cells, TRAF3 plays a central role in regulating the B cell receptor and the toll-like receptor signaling cascade by inhibiting Syk phospohorylation as well as its localization to the Myddosome.
Collapse
Affiliation(s)
- Kaiyuan Hao
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01606, United States
| | - Kerstin Nündel
- Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01606, United States
| |
Collapse
|
9
|
Ybarra TK, Bishop GA. TRAF3 regulation of proximal TLR signaling in B cells. J Leukoc Biol 2024; 116:210-223. [PMID: 38489541 PMCID: PMC11271984 DOI: 10.1093/jleuko/qiae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/24/2024] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Toll-like receptors are pattern recognition receptors that bridge the innate and adaptive immune responses and are critical for host defense. Most studies of Toll-like receptors have focused upon their roles in myeloid cells. B lymphocytes express most Toll-like receptors and are responsive to Toll-like receptor ligands, yet Toll-like receptor-mediated signaling in B cells is relatively understudied. This is an important knowledge gap, as Toll-like receptor functions can be cell type specific. In striking contrast to myeloid cells, TRAF3 inhibits TLR-mediated functions in B cells. TRAF3-deficient B cells display enhanced IRF3 and NFκB activation, cytokine production, immunoglobulin isotype switching, and antibody production in response to Toll-like receptors 3, 4, 7, and 9. Here, we address the question of how TRAF3 impacts initial B-cell Toll-like receptor signals to regulate downstream activation. We found that TRAF3 in B cells associated with proximal Toll-like receptor 4 and 7 signaling proteins, including MyD88, TRAF6, and the tyrosine kinase Syk. In the absence of TRAF3, TRAF6 showed a greater association with several Toll-like receptor signaling proteins, suggesting that TRAF3 may inhibit TRAF6 access to Toll-like receptor signaling complexes and thus early Toll-like receptor signaling. In addition, our results highlight a key role for Syk in Toll-like receptor signaling in B cells. In the absence of TRAF3, Syk activation was enhanced in response to ligands for Toll-like receptors 4 and 7, and Syk inhibition reduced downstream Toll-like receptor-mediated NFκB activation and proinflammatory cytokine production. This study reveals multiple mechanisms by which TRAF3 serves as a key negative regulator of early Toll-like receptor signaling events in B cells.
Collapse
Affiliation(s)
- Tiffany K Ybarra
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| | - Gail A Bishop
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- Departments of Microbiology and Immunology, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
- VA Medical Center, University of Iowa, 285 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
10
|
Chavan SV, Desikan S, Roman CAJ, Huan C. PKCδ Protects against Lupus Autoimmunity. Biomedicines 2024; 12:1364. [PMID: 38927570 PMCID: PMC11202175 DOI: 10.3390/biomedicines12061364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C delta (PKCδ) has emerged as a key protective molecule against systemic lupus erythematosus (SLE or lupus), an autoimmune disease characterized by anti-double stranded (ds) DNA IgGs. Although PKCδ-deficient mice and lupus patients with mutated PRKCD genes clearly demonstrate the requirement for PKCδ in preventing lupus autoimmunity, this critical tolerance mechanism remains poorly understood. We recently reported that PKCδ acts as a key regulator of B cell tolerance by selectively deleting anti-dsDNA B cells in the germinal center (GC). PKCδ's tolerance function is activated by sphingomyelin synthase 2 (SMS2), a lipid enzyme whose expression is generally reduced in B cells from lupus patients. Moreover, pharmacologic strengthening of the SMS2/PKCδ tolerance pathway alleviated lupus pathogenesis in mice. Here, we review relevant publications in order to provide mechanistic insights into PKCδ's tolerance activity and discuss the potential significance of therapeutically targeting PKCδ's tolerance activity in the GC for selectively inhibiting lupus autoimmunity.
Collapse
Affiliation(s)
- Sailee Vijay Chavan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Shreya Desikan
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; (S.V.C.); (S.D.)
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Chongmin Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| |
Collapse
|
11
|
Lu Y, Chiang J, Zhang R, Roche PA, Hodes RJ. TRAF6 and TRAF2/3 Binding Motifs in CD40 Differentially Regulate B Cell Function in T-Dependent Antibody Responses and Dendritic Cell Function in Experimental Autoimmune Encephalomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1814-1822. [PMID: 37921511 PMCID: PMC10694030 DOI: 10.4049/jimmunol.2300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Expression of the costimulatory molecule CD40 on both B cells and dendritic cells (DCs) is required for induction of experimental autoimmune encephalomyelitis (EAE), and cell-autonomous CD40 expression on B cells is required for primary T-dependent (TD) Ab responses. We now ask whether the function of CD40 expressed by different cell types in these responses is mediated by the same or different cytoplasmic domains. CD40 has been reported to possess multiple cytoplasmic domains, including distinct TRAF6 and TRAF2/3 binding motifs. To elucidate the in vivo function of these motifs in B cells and DCs involved in EAE and TD germinal center responses, we have generated knock-in mice containing distinct CD40 cytoplasmic domain TRAF-binding site mutations and have used these animals, together with bone marrow chimeric mice, to assess the roles that these motifs play in CD40 function. We found that both TRAF2/3 and TRAF6 motifs of CD40 are critically involved in EAE induction and demonstrated that this is mediated by a role of both motifs for priming of pathogenic T cells by DCs. In contrast, the TRAF2/3 binding motif, but not the TRAF6 binding motif, is required for B cell CD40 function in TD high-affinity Ab responses. These data demonstrate that the requirements for expression of specific TRAF-binding CD40 motifs differ for B cells or DCs that function in specific immune responses and thus identify targets for intervention to modulate these responses.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeffrey Chiang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
12
|
Vashisht M, Ge H, John J, McKelvey HA, Chen J, Chen Z, Wang JH. TRAF2/3 deficient B cells resist DNA damage-induced apoptosis via NF-κB2/XIAP/cIAP2 axis and IAP antagonist sensitizes mutant lymphomas to chemotherapeutic drugs. Cell Death Dis 2023; 14:599. [PMID: 37679334 PMCID: PMC10485046 DOI: 10.1038/s41419-023-06122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Deletion of TRAF2 or TRAF3 in B cells prolongs their survival. However, it remains unknown whether deletion of such factors affects B cells' ability to tolerate DNA damage, which can be induced by chemotherapeutics and cause apoptosis. Genetic alterations of TRAF2 or TRAF3 are observed in subsets of human B-cell lymphomas and B cell-specific deletion of TRAF3 led to lymphoma development in aged mice. However, it remains unknown whether double deficiency of TRAF2 and TRAF3 accelerates B-cell lymphomagenesis. Here, we showed that B cell-specific TRAF2/3 double deficient (B-TRAF2/3-DKO) B cells were remarkably more resistant to DNA damage-induced apoptosis via upregulating cIAP2 and XIAP, which in turn attenuates caspase-3 activation. Mechanistically, resistance to DNA damage-induced apoptosis required NF-κB2, which effects by upregulating XIAP and cIAP2 transcription. B-TRAF2/3-DKO mice exhibited a shorter lifespan and succumbed to splenomegaly and lymphadenopathy. Unexpectedly, the incidence of B-cell lymphoma development in B-TRAF2/3-DKO mice was relatively rare (∼10%). Sequencing B cell receptor repertoire of diseased B cells revealed that TRAF2/3 deficiency caused abnormal oligoclonal or clonal expansion of B cells. While a fraction of mutant B cells (25-43%) from aged diseased mice harbored recurrent chromosomal translocations, primary B cells isolated from young B-TRAF2/3-DKO mice had no detectable chromosomal alterations, suggesting that TRAF2/3 deficiency per se does not cause evident genomic instability in B cells. Chemo-resistant TRAF3-deficient B-cell lymphomas were sensitized to chemotherapeutic drugs by blocking IAP activity using IAP antagonist. We conclude that double deficiency of TRAF2 and TRAF3 does not accelerate B-cell lymphomagenesis. Our studies provide insight into mechanisms regulating DNA damage-induced apoptosis and may help develop effective therapies targeting mutant B-cell lymphomas using IAP antagonist.
Collapse
Affiliation(s)
- Monika Vashisht
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Huaibin Ge
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jessy John
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Harlie A McKelvey
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jingxin Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zhangguo Chen
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Li J, Zhao M, Luo W, Huang J, Zhao B, Zhou Z. B cell metabolism in autoimmune diseases: signaling pathways and interventions. Front Immunol 2023; 14:1232820. [PMID: 37680644 PMCID: PMC10481957 DOI: 10.3389/fimmu.2023.1232820] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Autoimmune diseases are heterogeneous disorders believed to stem from the immune system's inability to distinguish between auto- and foreign- antigens. B lymphocytes serve a crucial role in humoral immunity as they generate antibodies and present antigens. Dysregulation of B cell function induce the onset of autoimmune disorders by generating autoantibodies and pro-inflammatory cytokines, resulting in an imbalance in immune regulation. New research in immunometabolism shows that cellular metabolism plays an essential role in controlling B lymphocytes immune reactions by providing the energy and substrates for B lymphocytes activation, differentiation, and function. However, dysregulated immunometabolism lead to autoimmune diseases by disrupting self-tolerance mechanisms. This review summarizes the latest research on metabolic reprogramming of B lymphocytes in autoimmune diseases, identifying crucial pathways and regulatory factors. Moreover, we consider the potential of metabolic interventions as a promising therapeutic strategy. Understanding the metabolic mechanisms of B cells brings us closer to developing novel therapies for autoimmune disorders.
Collapse
Affiliation(s)
- Jingyue Li
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mingjiu Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenjun Luo
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Milan E, Gullà A. Editorial: Proteomic and metabolic reprogramming in myeloma cells within the tumor microenvironment. Front Oncol 2023; 13:1264740. [PMID: 37609386 PMCID: PMC10441542 DOI: 10.3389/fonc.2023.1264740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Enrico Milan
- Age Related Diseases Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Faculty of Medicine and Surgery, University Vita-Salute San Raffaele, Milano, Italy
| | - Annamaria Gullà
- Experimental Hematology and Immunology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
15
|
Li Y, Zhu L, Ko CJ, Yang JY, Wang H, Manyam G, Wang J, Cheng X, Zhao S, Jie Z. TRAF3-EWSR1 signaling axis acts as a checkpoint on germinal center responses. J Exp Med 2023; 220:e20221483. [PMID: 37097293 PMCID: PMC10130905 DOI: 10.1084/jem.20221483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/29/2022] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
The formation of germinal centers (GCs) is crucial for humoral immunity and vaccine efficacy. Constant stimulation through microbiota drives the formation of constitutive GCs in Peyer's patches (PPs), which generate B cells that produce antibodies against gut antigens derived from commensal bacteria and infectious pathogens. However, the molecular mechanism that regulates this persistent process is poorly understood. We report that Ewing Sarcoma Breakpoint Region 1 (EWSR1) is a brake to constitutive GC generation and immunoglobulin G (IgG) production in PPs, vaccination-induced GC formation, and IgG responses. Mechanistically, EWSR1 suppresses Bcl6 upregulation after antigen encounter, thereby negatively regulating induced GC B cell generation and IgG production. We further showed that tumor necrosis factor receptor-associated factor (TRAF) 3 serves as a negative regulator of EWSR1. These results established that the TRAF3-EWSR1 signaling axis acts as a checkpoint for Bcl6 expression and GC responses, indicating that this axis is a therapeutic target to tune GC responses and humoral immunity in infectious diseases.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lele Zhu
- Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Chun-Jung Ko
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Young Yang
- Department of Biological Sciences, Pusan National University, Busan, Korea
| | - Hongjiao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuhong Cheng
- Memorial Hermann-Texas Medical Center, Houston, TX, USA
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zuliang Jie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Gokhale S, Victor E, Tsai J, Spirollari E, Matracz B, Takatsuka S, Jung J, Kitamura D, Xie P. Upregulated Expression of the IL-9 Receptor on TRAF3-Deficient B Lymphocytes Confers Ig Isotype Switching Responsiveness to IL-9 in the Presence of Antigen Receptor Engagement and IL-4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1059-1073. [PMID: 36883978 PMCID: PMC10073299 DOI: 10.4049/jimmunol.2200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023]
Abstract
The pleiotropic cytokine IL-9 signals to target cells by binding to a heterodimeric receptor consisting of the unique subunit IL-9R and the common subunit γ-chain shared by multiple cytokines of the γ-chain family. In the current study, we found that the expression of IL-9R was strikingly upregulated in mouse naive follicular B cells genetically deficient in TNFR-associated factor 3 (TRAF3), a critical regulator of B cell survival and function. The highly upregulated IL-9R on Traf3-/- follicular B cells conferred responsiveness to IL-9, including IgM production and STAT3 phosphorylation. Interestingly, IL-9 significantly enhanced class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells, which was not observed in littermate control B cells. We further demonstrated that blocking the JAK-STAT3 signaling pathway abrogated the enhancing effect of IL-9 on class switch recombination to IgG1 induced by BCR crosslinking plus IL-4 in Traf3-/- B cells. Our study thus revealed, to our knowledge, a novel pathway that TRAF3 suppresses B cell activation and Ig isotype switching by inhibiting IL-9R-JAK-STAT3 signaling. Taken together, our findings provide (to our knowledge) new insights into the TRAF3-IL-9R axis in B cell function and have significant implications for the understanding and treatment of a variety of human diseases involving aberrant B cell activation such as autoimmune disorders.
Collapse
Affiliation(s)
- Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Eton Victor
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Jemmie Tsai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Eris Spirollari
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Brygida Matracz
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Rutgers Cancer Institute of New Jersey
| |
Collapse
|
17
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
18
|
Jung J, Gokhale S, Xie P. TRAF3: A novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes. Front Oncol 2023; 13:1081253. [PMID: 36776285 PMCID: PMC9911533 DOI: 10.3389/fonc.2023.1081253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Mitochondria, the organelle critical for cell survival and metabolism, are exploited by cancer cells and provide an important therapeutic target in cancers. Mitochondria dynamically undergo fission and fusion to maintain their diverse functions. Proteins controlling mitochondrial fission and fusion have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control, and cell survival. In a recent proteomic study, we identified the key mitochondrial fission factor, MFF, as a new interacting protein of TRAF3, a known tumor suppressor of multiple myeloma and other B cell malignancies. This interaction recruits the majority of cytoplasmic TRAF3 to mitochondria, allowing TRAF3 to regulate mitochondrial morphology, mitochondrial functions, and mitochondria-dependent apoptosis in resting B lymphocytes. Interestingly, recent transcriptomic, metabolic and lipidomic studies have revealed that TRAF3 also vitally regulates multiple metabolic pathways in B cells, including phospholipid metabolism, glucose metabolism, and ribonucleotide metabolism. Thus, TRAF3 emerges as a novel regulator of mitochondrial physiology and metabolic pathways in B lymphocytes and B cell malignancies. Here we review current knowledge in this area and discuss relevant clinical implications.
Collapse
Affiliation(s)
- Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Hornick EL, Bishop GA. TRAF3: Guardian of T lymphocyte functions. Front Immunol 2023; 14:1129251. [PMID: 36814922 PMCID: PMC9940752 DOI: 10.3389/fimmu.2023.1129251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) is an adapter protein with many context-specific functions. Early studies of lymphocyte TRAF3 hinted at TRAF3's importance for T cell function, but elucidation of specific mechanisms was delayed by early lethality of globally TRAF3-/- mice. Development of a conditional TRAF3-deficient mouse enabled important descriptive and mechanistic insights into how TRAF3 promotes optimal T cell function. Signaling through the T cell antigen receptor (TCR) fails to induce normal proliferation and survival in TRAF3 -/- T cells, and TCR-activated cells in vitro and in vivo have deficient cytokine production. These defects can be traced to incorrect localization and function of negative regulatory phosphatases acting at different parts of the signaling cascade, as can dysregulated effector responses and memory T cell homeostasis in vivo and an enlarged regulatory T cell (Treg) compartment. The important regulatory activity of TRAF3 is also evident at members of the TNFR superfamily and cytokine receptors. Here, we review significant advances in mechanistic understanding of how TRAF3 regulates T cell differentiation and function, through modulation of signaling through the TCR, costimulatory receptors, and cytokine receptors. Finally, we briefly discuss the recent identification of families carrying single allele loss-of-function mutations in TRAF3, and compare the findings in their T cells with the T cell defects identified in mice whose T cells completely lack T cell TRAF3. Together, the body of work describing TRAF3-mediated regulation of T cell effector function and differentiation frame TRAF3 as an important modulator of T cell signal integration.
Collapse
Affiliation(s)
- Emma L Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, The University of Iowa, Iowa City, IA, United States.,Research, Iowa City Veterans Affairs Medical Center, Iowa City, IA, United States
| |
Collapse
|
20
|
Hornick EL, Stunz LL, Sabree S, Wu X, Witzig TE, Bishop GA. The Tumor Suppressor Protein TRAF3 Modulates GSK3 Activity and Susceptibility of B Lymphoma Cells to GSK3 Inhibition. Cancers (Basel) 2022; 14:cancers14205029. [PMID: 36291813 PMCID: PMC9599470 DOI: 10.3390/cancers14205029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 01/28/2023] Open
Abstract
TNF receptor-associated factor 3 (TRAF3) is an adapter protein that inhibits many signals that promote B cell survival and activation. Mice with a B cell-specific TRAF3 deficiency and humans with a rare haploinsufficiency in TRAF3 have enhanced development of BCLs as they age. Loss-of-function mutations in TRAF3 are common in B cell malignancies. Recent studies show that pharmacological inhibition of the enzyme glycogen synthase kinase 3 (GSK3), which regulates cellular growth, survival, and metabolism, inhibits growth and survival of BCL-derived B cells. In this study, we found that TRAF3 and GSK3 associated in B cells. The relative levels of TRAF3 in BCL cell lines correlated positively with the ratio of inactive to total GSK3β, and negatively correlated with susceptibility to GSK3 inhibition by the GSK3 inhibitory drug 9-ING-41, currently in clinical trials. Uniquely in BCLs with low TRAF3, GSK3 inhibition caused increased loss of the TRAF3-regulated, anti-apoptotic protein Mcl-1. GSK3 inhibition also blocked hyperresponsiveness to IL-6 receptor signaling in TRAF3-deficient BCL cells. Together, these results support the utility of 9-ING-41 as a treatment for BCL, and suggest that a decrease or loss of TRAF3 in BCLs could act as a biomarker for increased susceptibility to GSK3 inhibitor treatment.
Collapse
Affiliation(s)
- Emma L. Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Laura L. Stunz
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Veterans Administration Medical Center, Iowa City, IA 52242, USA
| | - Shakoora Sabree
- Graduate Program in Immunology and MSTP Program, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiaosheng Wu
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas E. Witzig
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Gail A. Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Veterans Administration Medical Center, Iowa City, IA 52242, USA
- Graduate Program in Immunology and MSTP Program, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
21
|
Hornick EL, Wallis AM, Bishop GA. TRAF3 enhances type I interferon receptor signaling in T cells by modulating the phosphatase PTPN22. Sci Signal 2022; 15:eabn5507. [PMID: 36166512 PMCID: PMC9728096 DOI: 10.1126/scisignal.abn5507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type I interferons (IFNs) are among the most powerful tools that host cells deploy against intracellular pathogens. Their effectiveness is due both to the rapid, directly antiviral effects of IFN-stimulated gene products and to the effects of type I IFN on responding immune cells. Type I IFN signaling through its receptor, IFNAR, is tightly regulated at multiple steps in the signaling cascade, including at the level of IFNAR downstream effectors, which include the kinase JAK1 and the transcriptional regulator STAT1. Here, we found that tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) enhanced the activation of JAK1 and STAT1 specifically in CD4+ T cells by preventing recruitment of the negative regulatory phosphatase PTPN22 to the IFNAR complex. The balance between signals through IFNAR and other cytokine receptors influences CD4+ T cell differentiation and function during infections. Our work reveals TRAF3 and PTPN22 as key regulators of CD4+ T cell activation by type I IFNs.
Collapse
Affiliation(s)
- Emma L. Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Alicia M. Wallis
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gail A. Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Iowa City VA Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
22
|
Kuhn LB, Valentin S, Stojanovic K, Strobl DC, Babushku T, Wang Y, Rambold U, Scheffler L, Grath S, John-Robbert D, Blum H, Feuchtinger A, Blutke A, Weih F, Kitamura D, Rad R, Strobl LJ, Zimber-Strobl U. RelB contributes to the survival, migration and lymphomagenesis of B cells with constitutively active CD40 signaling. Front Immunol 2022; 13:913275. [PMID: 36110848 PMCID: PMC9468873 DOI: 10.3389/fimmu.2022.913275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Activation of CD40-signaling contributes to the initiation, progression and drug resistance of B cell lymphomas. We contributed to this knowledge by showing that constitutive CD40-signaling in B cells induces B cell hyperplasia and finally B cell lymphoma development in transgenic mice. CD40 activates, among others, the non-canonical NF-ĸB signaling, which is constitutively activated in several human B cell lymphomas and is therefore presumed to contribute to lymphopathogenesis. This prompted us to study the regulatory role of the non-canonical NF-ĸB transcription factor RelB in lymphomagenesis. To this end, we crossed mice expressing a constitutively active CD40 receptor in B cells with conditional RelB-KO mice. Ablation of RelB attenuated pre-malignant B cell expansion, and resulted in an impaired survival and activation of long-term CD40-stimulated B cells. Furthermore, we found that hyperactivation of non-canonical NF-кB signaling enhances the retention of B cells in the follicles of secondary lymphoid organs. RNA-Seq-analysis revealed that several genes involved in B-cell migration, survival, proliferation and cytokine signaling govern the transcriptional differences modulated by the ablation of RelB in long-term CD40-stimulated B cells. Inactivation of RelB did not abrogate lymphoma development. However, lymphomas occurred with a lower incidence and had a longer latency period. In summary, our data suggest that RelB, although it is not strictly required for malignant transformation, accelerates the lymphomagenesis of long-term CD40-stimulated B cells by regulating genes involved in migration, survival and cytokine signaling.
Collapse
Affiliation(s)
- Laura B. Kuhn
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Valentin
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kristina Stojanovic
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel C. Strobl
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tea Babushku
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Yan Wang
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ursula Rambold
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health., Munich, Germany
| | - Laura Scheffler
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sonja Grath
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Dorothy John-Robbert
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität (LMU), Planegg-Martinsried, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene-Center, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Falk Weih
- Research Group Immunology, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Technical University of Munich (TUM) School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
- Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lothar J. Strobl
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ursula Zimber-Strobl
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- *Correspondence: Ursula Zimber-Strobl,
| |
Collapse
|
23
|
Siegmund D, Wagner J, Wajant H. TNF Receptor Associated Factor 2 (TRAF2) Signaling in Cancer. Cancers (Basel) 2022; 14:cancers14164055. [PMID: 36011046 PMCID: PMC9406534 DOI: 10.3390/cancers14164055] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intracellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deubiquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor development and its potential usefulness as a therapeutic target in cancer therapy. Abstract Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors (TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling. Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2 for therapeutic purposes.
Collapse
|
24
|
Rae W, Sowerby JM, Verhoeven D, Youssef M, Kotagiri P, Savinykh N, Coomber EL, Boneparth A, Chan A, Gong C, Jansen MH, du Long R, Santilli G, Simeoni I, Stephens J, Wu K, Zinicola M, Allen HL, Baxendale H, Kumararatne D, Gkrania-Klotsas E, Scheffler Mendoza SC, Yamazaki-Nakashimada MA, Ruiz LB, Rojas-Maruri CM, Lugo Reyes SO, Lyons PA, Williams AP, Hodson DJ, Bishop GA, Thrasher AJ, Thomas DC, Murphy MP, Vyse TJ, Milner JD, Kuijpers TW, Smith KGC. Immunodeficiency, autoimmunity, and increased risk of B cell malignancy in humans with TRAF3 mutations. Sci Immunol 2022; 7:eabn3800. [PMID: 35960817 DOI: 10.1126/sciimmunol.abn3800] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a central regulator of immunity. TRAF3 is often somatically mutated in B cell malignancies, but its role in human immunity is not defined. Here, in five unrelated families, we describe an immune dysregulation syndrome of recurrent bacterial infections, autoimmunity, systemic inflammation, B cell lymphoproliferation, and hypergammaglobulinemia. Affected individuals each had monoallelic mutations in TRAF3 that reduced TRAF3 expression. Immunophenotyping showed that patients' B cells were dysregulated, exhibiting increased nuclear factor-κB 2 activation, elevated mitochondrial respiration, and heightened inflammatory responses. Patients had mild CD4+ T cell lymphopenia, with a reduced proportion of naïve T cells but increased regulatory T cells and circulating T follicular helper cells. Guided by this clinical phenotype, targeted analyses demonstrated that common genetic variants, which also reduce TRAF3 expression, are associated with an increased risk of B cell malignancies, systemic lupus erythematosus, higher immunoglobulin levels, and bacterial infections in the wider population. Reduced TRAF3 conveys disease risks by driving B cell hyperactivity via intrinsic activation of multiple intracellular proinflammatory pathways and increased mitochondrial respiration, with a likely contribution from dysregulated T cell help. Thus, we define monogenic TRAF3 haploinsufficiency syndrome and demonstrate how common TRAF3 variants affect a range of human diseases.
Collapse
Affiliation(s)
- William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - John M Sowerby
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Dorit Verhoeven
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Mariam Youssef
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Prasanti Kotagiri
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Natalia Savinykh
- NIHR Cambridge BRC Cell Phenotyping Hub, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Eve L Coomber
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alexis Boneparth
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Angela Chan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Machiel H Jansen
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Romy du Long
- Amsterdam University Center (AUMC), University of Amsterdam, Department of Pathology, Amsterdam, Netherlands
| | | | - Ilenia Simeoni
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Jonathan Stephens
- Department of Hematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
| | - Kejia Wu
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Marta Zinicola
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hana Lango Allen
- NIHR Bioresource-Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Helen Baxendale
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Dinakantha Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Effrossyni Gkrania-Klotsas
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Selma C Scheffler Mendoza
- Clinical Immunology Service, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | | | - Laura Berrón Ruiz
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | | | - Saul O Lugo Reyes
- Immune Deficiencies Laboratory, National Institute of Pediatrics, Secretariat of Health, Mexico City, Mexico
| | - Paul A Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Williams
- Wessex Investigational Sciences Hub, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gail A Bishop
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, IA, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Adrian J Thrasher
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - David C Thomas
- Department of Immunology and Inflammation, Center for Inflammatory Diseases, Imperial College London, London, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Timothy J Vyse
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Taco W Kuijpers
- Emma Children's Hospital, Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Amsterdam, Netherlands
- Amsterdam University Medical Center (AUMC), University of Amsterdam, Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Kenneth G C Smith
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Li Y, Xie X, Jie Z, Zhu L, Yang JY, Ko CJ, Gao T, Jain A, Jung SY, Baran N, Konopleva MY, Cheng X, Sun SC. DYRK1a mediates BAFF-induced noncanonical NF-κB activation to promote autoimmunity and B-cell leukemogenesis. Blood 2021; 138:2360-2371. [PMID: 34255829 PMCID: PMC8832461 DOI: 10.1182/blood.2021011247] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022] Open
Abstract
B-cell-activating factor (BAFF) mediates B-cell survival and, when deregulated, contributes to autoimmune diseases and B-cell malignancies. The mechanism connecting BAFF receptor (BAFFR) signal to downstream pathways and pathophysiological functions is not well understood. Here we identified DYRK1a as a kinase that responds to BAFF stimulation and mediates BAFF-induced B-cell survival. B-cell-specific DYRK1a deficiency causes peripheral B-cell reduction and ameliorates autoimmunity in a mouse model of lupus. An unbiased screen identified DYRK1a as a protein that interacts with TRAF3, a ubiquitin ligase component mediating degradation of the noncanonical nuclear factor (NF)-κB-inducing kinase (NIK). DYRK1a phosphorylates TRAF3 at serine-29 to interfere with its function in mediating NIK degradation, thereby facilitating BAFF-induced NIK accumulation and noncanonical NF-κB activation. Interestingly, B-cell acute lymphoblastic leukemia (B-ALL) cells express high levels of BAFFR and respond to BAFF for noncanonical NF-κB activation and survival in a DYRK1a-dependent manner. Furthermore, DYRK1a promotes a mouse model of B-ALL through activation of the noncanonical NF-κB pathway. These results establish DYRK1a as a critical BAFFR signaling mediator and provide novel insight into B-ALL pathogenesis.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Lele Zhu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Biological Sciences, Pusan National University, Busan, South Korea
| | - Chun-Jung Ko
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tianxiao Gao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX
| | - Natalia Baran
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX; and
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| |
Collapse
|
26
|
Manou-Stathopoulou S, Lewis MJ. Diversity of NF-κB signalling and inflammatory heterogeneity in Rheumatic Autoimmune Disease. Semin Immunol 2021; 58:101649. [PMID: 36064646 DOI: 10.1016/j.smim.2022.101649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic Autoimmune Rheumatic Diseases, including Rheumatoid Arthritis, Systemic Lupus Erythematosus and Sjogren's syndrome, are characterised by a loss of immune tolerance and chronic inflammation. There is marked heterogeneity in clinical and molecular phenotypes in each condition, and the aetiology of these is unclear. NF-κB is an inducible transcription factor that is critical in the physiological inflammatory response, and which has been implicated in chronic inflammation. Genome-wide association studies have linked risk alleles related to the NF-κB pathway to the pathogenesis of multiple Systemic Autoimmune Rheumatic Diseases. This review describes how cell- and pathway-specific NF-κB activation contribute to the spectrum of clinical phenotypes and molecular pathotypes in rheumatic disease. Potential clinical applications are explored, including therapeutic interventions and utilisation of NF-κB as a biomarker of disease subtypes and treatment response.
Collapse
Affiliation(s)
- Sotiria Manou-Stathopoulou
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
27
|
Kim S, Park K, Oh JM, Kim H. RNF126 is a positive regulator of TRAF3 ubiquitination. Biosci Biotechnol Biochem 2021; 85:2420-2428. [PMID: 34643674 DOI: 10.1093/bbb/zbab177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 11/14/2022]
Abstract
Ubiquitination and deubiquitination of signaling molecules are critical regulatory mechanisms in various biological contexts such as inflammatory signaling and the DNA damage response. Thus, finely tuned regulation of protein ubiquitination is essential for maintaining cellular homeostasis. Here, we showed that the RING finger protein RNF126 interacts with TRAF3 and promotes its K63-linked polyubiquitination, which is a crucial step in the TRAF3-dependent antiviral response. We found that RNF126 also interacts with OTUB1, a deubiquitinating enzyme that negatively regulates K63-linked ubiquitination of TRAF3. RNF126 promotes ubiquitination of OTUB1, leading to reduced deubiquitinating activity toward TRAF3. Moreover, RNF126 promotes ubiquitination of OTUB1 on cysteine 91, which is reportedly required for its catalytic activity. Taken together, our results suggest that RNF126 positively regulates the antiviral response by directly promoting K63-linked polyubiquitination of TRAF3 and by reducing OTUB1 activity.
Collapse
Affiliation(s)
- Soomi Kim
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Kibeom Park
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Jung-Min Oh
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hongtae Kim
- Department of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Center for Genomic Integrity Institute for Basic Science (IBS), UNIST, Ulsan, Republic of Korea
| |
Collapse
|
28
|
Liu Y, Gokhale S, Jung J, Zhu S, Luo C, Saha D, Guo JY, Zhang H, Kyin S, Zong WX, White E, Xie P. Mitochondrial Fission Factor Is a Novel Interacting Protein of the Critical B Cell Survival Regulator TRAF3 in B Lymphocytes. Front Immunol 2021; 12:670338. [PMID: 34745083 PMCID: PMC8564014 DOI: 10.3389/fimmu.2021.670338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Proteins controlling mitochondrial fission have been recognized as essential regulators of mitochondrial functions, mitochondrial quality control and cell apoptosis. In the present study, we identified the critical B cell survival regulator TRAF3 as a novel binding partner of the key mitochondrial fission factor, MFF, in B lymphocytes. Elicited by our unexpected finding that the majority of cytoplasmic TRAF3 proteins were localized at the mitochondria in resting splenic B cells after ex vivo culture for 2 days, we found that TRAF3 specifically interacted with MFF as demonstrated by co-immunoprecipitation and GST pull-down assays. We further found that in the absence of stimulation, increased protein levels of mitochondrial TRAF3 were associated with altered mitochondrial morphology, decreased mitochondrial respiration, increased mitochondrial ROS production and membrane permeabilization, which eventually culminated in mitochondria-dependent apoptosis in resting B cells. Loss of TRAF3 had the opposite effects on the morphology and function of mitochondria as well as mitochondria-dependent apoptosis in resting B cells. Interestingly, co-expression of TRAF3 and MFF resulted in decreased phosphorylation and ubiquitination of MFF as well as decreased ubiquitination of TRAF3. Moreover, lentivirus-mediated overexpression of MFF restored mitochondria-dependent apoptosis in TRAF3-deficient malignant B cells. Taken together, our findings provide novel insights into the apoptosis-inducing mechanisms of TRAF3 in B cells: as a result of survival factor deprivation or under other types of stress, TRAF3 is mobilized to the mitochondria through its interaction with MFF, where it triggers mitochondria-dependent apoptosis. This new role of TRAF3 in controlling mitochondrial homeostasis might have key implications in TRAF3-mediated regulation of B cell transformation in different cellular contexts. Our findings also suggest that mitochondrial fission is an actionable therapeutic target in human B cell malignancies, including those with TRAF3 deletion or relevant mutations.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Jaeyong Jung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Chang Luo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Debanjan Saha
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, United States
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
29
|
Iperi C, Bordron A, Dueymes M, Pers JO, Jamin C. Metabolic Program of Regulatory B Lymphocytes and Influence in the Control of Malignant and Autoimmune Situations. Front Immunol 2021; 12:735463. [PMID: 34650560 PMCID: PMC8505885 DOI: 10.3389/fimmu.2021.735463] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolic pathways have been studied for a while in eukaryotic cells. During glycolysis, glucose enters into the cells through the Glut1 transporter to be phosphorylated and metabolized generating ATP molecules. Immune cells can use additional pathways to adapt their energetic needs. The pentose phosphate pathway, the glutaminolysis, the fatty acid oxidation and the oxidative phosphorylation generate additional metabolites to respond to the physiological requirements. Specifically, in B lymphocytes, these pathways are activated to meet energetic demands in relation to their maturation status and their functional orientation (tolerance, effector or regulatory activities). These metabolic programs are differentially involved depending on the receptors and the co-activation molecules stimulated. Their induction may also vary according to the influence of the microenvironment, i.e. the presence of T cells, cytokines … promoting the expression of particular transcription factors that direct the energetic program and modulate the number of ATP molecule produced. The current review provides recent advances showing the underestimated influence of the metabolic pathways in the control of the B cell physiology, with a particular focus on the regulatory B cells, but also in the oncogenic and autoimmune evolution of the B cells.
Collapse
Affiliation(s)
| | - Anne Bordron
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | - Maryvonne Dueymes
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Jacques-Olivier Pers
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Service d'Odontologie, CHU de Brest, Brest, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France.,Laboratoire d'Immunologie et Immunothérapie, CHU de Brest, Brest, France
| |
Collapse
|
30
|
Defining the structure of the NF-ĸB pathway in human immune cells using quantitative proteomic data. Cell Signal 2021; 88:110154. [PMID: 34562606 PMCID: PMC8573605 DOI: 10.1016/j.cellsig.2021.110154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
The NF-ĸB transcription factor is a critical regulator of immune homeostasis and inflammatory responses and is a critical factor in the pathogenesis of inflammatory disease. The pathways to NF-ĸB activation are paradigms for signal-induced ubiquitination and proteasomal degradation, control of transcription factor function by subcellular localisation, and the control of gene transcription and physiological processes by signal transduction mechanisms. Despite the importance of NF-ĸB in disease, the NF-ĸB pathway remains unexploited for the treatment of inflammatory disease. Our understanding of NF-ĸB comes mostly from studies of transgenic mice and cell lines where components of the pathway have been deleted or over expressed. Recent advances in quantitative proteomics offer new opportunities to understand the NF-ĸB pathway using the absolute abundance of individual pathway components. We have analysed available quantitative proteomic datasets to establish the structure of the NF-ĸB pathway in human immune cells under both steady state and activated conditions. This reveals a conserved NF-κB pathway structure across different immune cell lineages and identifies important differences to the current model of the NF-ĸB pathway. These include the findings that the IKK complex in most cells is likely to consist predominantly of IKKβ homodimers, that the relative abundancies of IκB proteins show strong cell type variation, and that the components of the non-canonical NF-ĸB pathway are significantly increased in activated immune cells. These findings challenge aspects of our current view of the NF-κB pathway and identify outstanding questions important for defining the role of key components in regulating inflammation and immunity. Quantitative proteomic datasets offer new insights into the NF-κB pathway. The structure of the NF-κB pathway is highly conserved in human immune cells. The IKK complex is likely composed mainly of IKKβ homodimers. The relative abundancies of IκBα, −β and -ε show strong cell type variation. Components of the non-canonical NF-ĸB pathway are greatly increased by activation.
Collapse
|
31
|
Li H, Hostager BS, Arkee T, Bishop GA. Multiple mechanisms for TRAF3-mediated regulation of the T cell costimulatory receptor GITR. J Biol Chem 2021; 297:101097. [PMID: 34418432 PMCID: PMC8441216 DOI: 10.1016/j.jbc.2021.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) plays context-specific roles in multiple receptor-mediated signaling pathways in different cell types. Mice lacking TRAF3 in T cells display defective T-cell-mediated immune responses to immunization and infection and demonstrate defective early signaling via the TCR complex. However, the role of TRAF3 in the function of GITR/TNFRSF18, an important costimulatory member of the TNFR superfamily, is unclear. Here we investigated the impact of T cell TRAF3 status on both GITR expression and activation of specific kinases in the GITR signaling pathway in T cells. Our results indicate that TRAF3 negatively regulates GITR functions in several ways. First, expression of GITR protein was elevated in TRAF3-deficient T cells, resulting from both transcriptional and posttranslational regulation that led to greater GITR transcript levels, as well as enhanced GITR protein stability. TRAF3 associated with T cell GITR in a manner dependent upon GITR ligation. TRAF3 also inhibited several events of the GITR mediated early signaling cascade, in a manner independent of recruitment of phosphatases, a mechanism by which TRAF3 inhibits signaling through several other cytokine receptors. These results add new information to our understanding of GITR signaling and function in T cells, which is relevant to the potential use of GITR to enhance immune therapies.
Collapse
Affiliation(s)
- Hanzeng Li
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Bruce S Hostager
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA; Research, Iowa City VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
32
|
Ou P, Stanek A, Huan Z, Roman CAJ, Huan C. SMS2 deficiency impairs PKCδ-regulated B cell tolerance in the germinal center. Cell Rep 2021; 36:109624. [PMID: 34469734 DOI: 10.1016/j.celrep.2021.109624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/14/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
B cell tolerance prevents autoimmunity by deleting or deactivating autoreactive B cells that otherwise may cause autoantibody-driven disorders, including systemic lupus erythematosus (lupus). Lupus is characterized by immunoglobulin Gs carrying a double-stranded (ds)-DNA autospecificity derived mainly from somatic hypermutation in the germinal center (GC), pointing to a checkpoint breach of GC B cell tolerance that leads to lupus. However, tolerance mechanisms in the GC remain poorly understood. Here, we show that upregulated sphingomyelin synthase 2 (SMS2) in anti-dsDNA GC B cells induces apoptosis by directly activating protein kinase C δ (PKCδ)'s pro-apoptotic activity. This tolerance mechanism prevents lupus autoimmunity in C57/BL6 mice and can be stimulated pharmacologically to inhibit lupus pathogenesis in lupus-prone NZBWF1 mice. Patients with lupus consistently have substantially reduced SMS2 expression in B cells and to an even greater extent in autoimmune-prone, age-associated B cells, suggesting that patients with lupus have insufficient SMS2-regulated B cell tolerance.
Collapse
Affiliation(s)
- Peiqi Ou
- Program in Molecular and Cellular Biology, The School of Graduate Studies, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Albert Stanek
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Zack Huan
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher A J Roman
- Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| | - Chongmin Huan
- Department of Surgery, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA; Department of Cell Biology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY 11203, USA.
| |
Collapse
|
33
|
Gurley JM, Gmyrek GB, Hargis EA, Bishop GA, Carr DJJ, Elliott MH. The Chx10-Traf3 Knockout Mouse as a Viable Model to Study Neuronal Immune Regulation. Cells 2021; 10:cells10082068. [PMID: 34440839 PMCID: PMC8391412 DOI: 10.3390/cells10082068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Uncontrolled inflammation is associated with neurodegenerative conditions in central nervous system tissues, including the retina and brain. We previously found that the neural retina (NR) plays an important role in retinal immunity. Tumor necrosis factor Receptor-Associated Factor 3 (TRAF3) is a known immune regulator expressed in the retina; however, whether TRAF3 regulates retinal immunity is unknown. We have generated the first conditional NR-Traf3 knockout mouse model (Chx10-Cre/Traf3f/f) to enable studies of neuronal TRAF3 function. Here, we evaluated NR-Traf3 depletion effects on whole retinal TRAF3 protein expression, visual acuity, and retinal structure and function. Additionally, to determine if NR-Traf3 plays a role in retinal immune regulation, we used flow cytometry to assess immune cell infiltration following acute local lipopolysaccharide (LPS) administration. Our results show that TRAF3 protein is highly expressed in the NR and establish that NR-Traf3 depletion does not affect basal retinal structure or function. Importantly, NR-Traf3 promoted LPS-stimulated retinal immune infiltration. Thus, our findings propose NR-Traf3 as a positive regulator of retinal immunity. Further, the NR-Traf3 mouse provides a tool for investigations of neuronal TRAF3 as a novel potential target for therapeutic interventions aimed at suppressing retinal inflammatory disease and may also inform treatment approaches for inflammatory neurodegenerative brain conditions.
Collapse
Affiliation(s)
- Jami M. Gurley
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
- Correspondence:
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
| | - Elizabeth A. Hargis
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
| | - Gail A. Bishop
- Department of Microbiology and Immunology, University of Iowa and VAMC, Iowa City, IA 52242, USA;
| | - Daniel J. J. Carr
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center (OUHSC), 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA; (G.B.G.); (E.A.H.); (D.J.J.C.); (M.H.E.)
| |
Collapse
|
34
|
McAllister E, Jellusova J. BAFF signaling in B cell metabolism. Curr Opin Immunol 2021; 71:69-74. [PMID: 34174517 DOI: 10.1016/j.coi.2021.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022]
Abstract
BAFF is an essential cytokine primarily known for its role in maintaining B cell homeostasis via induction of a pro-survival gene expression profile. Additionally, recent evidence suggests that BAFF induced signaling also drives a metabolic program that is needed for homeostatic cell mass maintenance in resting B cells and which increases the cells' capacity to divide. Many components of the signaling cascades initiated by BAFF, the alternative NFκB pathway and the PI3K/AKT/mTOR pathway, are active in roles beyond their classically assigned function. These components can directly or indirectly impact metabolic reprogramming. Further exploration of the role BAFF signaling plays in B cell metabolism could help to identify metabolic vulnerabilities of hyperactive B cells in the context of autoimmunity.
Collapse
Affiliation(s)
- Ellen McAllister
- Institute of Biology III at the Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Julia Jellusova
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University Munich, Ismaningerstr. 22, 81675 Munich, Germany; TranslaTUM, Center for Translational Cancer Research, Technical University Munich, Einsteinstr.25, 81675 Munich, Germany.
| |
Collapse
|
35
|
ChoK-Full of Potential: Choline Kinase in B Cell and T Cell Malignancies. Pharmaceutics 2021; 13:pharmaceutics13060911. [PMID: 34202989 PMCID: PMC8234087 DOI: 10.3390/pharmaceutics13060911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Aberrant choline metabolism, characterized by an increase in total choline-containing compounds, phosphocholine and phosphatidylcholine (PC), is a metabolic hallmark of carcinogenesis and tumor progression. This aberration arises from alterations in metabolic enzymes that control PC biosynthesis and catabolism. Among these enzymes, choline kinase α (CHKα) exhibits the most frequent alterations and is commonly overexpressed in human cancers. CHKα catalyzes the phosphorylation of choline to generate phosphocholine, the first step in de novo PC biosynthesis. CHKα overexpression is associated with the malignant phenotype, metastatic capability and drug resistance in human cancers, and thus has been recognized as a robust biomarker and therapeutic target of cancer. Of clinical importance, increased choline metabolism and CHKα activity can be detected by non-invasive magnetic resonance spectroscopy (MRS) or positron emission tomography/computed tomography (PET/CT) imaging with radiolabeled choline analogs for diagnosis and treatment monitoring of cancer patients. Both choline-based MRS and PET/CT imaging have also been clinically applied for lymphoid malignancies, including non-Hodgkin lymphoma, multiple myeloma and central nervous system lymphoma. However, information on how choline kinase is dysregulated in lymphoid malignancies is very limited and has just begun to be unraveled. In this review, we provide an overview of the current understanding of choline kinase in B cell and T cell malignancies with the goal of promoting future investigation in this area.
Collapse
|
36
|
Arkee T, Hostager BS, Houtman JCD, Bishop GA. TRAF3 in T Cells Restrains Negative Regulators of LAT to Promote TCR/CD28 Signaling. THE JOURNAL OF IMMUNOLOGY 2021; 207:322-332. [PMID: 34145060 DOI: 10.4049/jimmunol.2001220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
The adaptor protein TNFR-associated factor 3 (TRAF3) is required for in vivo T cell effector functions and for normal TCR/CD28 signaling. TRAF3-mediated enhancement of TCR function requires engagement of both CD3 and CD28, but the molecular mechanisms underlying how TRAF3 interacts with and impacts TCR/CD28-mediated complexes to enhance their signaling remains an important knowledge gap. We investigated how TRAF3 is recruited to, and regulates, CD28 as a TCR costimulator. Direct association with known signaling motifs in CD28 was dispensable for TRAF3 recruitment; rather, TRAF3 associated with the CD28-interacting protein linker of activated T cells (LAT) in human and mouse T cells. TRAF3-LAT association required the TRAF3 TRAF-C domain and a newly identified TRAF2/3 binding motif in LAT. TRAF3 inhibited function of the LAT-associated negative regulatory protein Dok1, which is phosphorylated at an inhibitory tyrosine residue by the tyrosine kinase breast tumor kinase (Brk/PTK6). TRAF3 regulated Brk activation in T cells, limiting the association of protein tyrosine phosphatase 1B (PTP1B) with the LAT complex. In TRAF3-deficient cells, LAT complex-associated PTP1B was associated with dephosphorylation of Brk at an activating tyrosine residue, potentially reducing its ability to inhibit Dok1. Consistent with these findings, inhibiting PTP1B activity in TRAF3-deficient T cells rescued basal and TCR/CD28-mediated activation of Src family kinases. These results reveal a new mechanism for promotion of TCR/CD28-mediated signaling through restraint of negative regulation of LAT by TRAF3, enhancing the understanding of regulation of the TCR complex.
Collapse
Affiliation(s)
- Tina Arkee
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA.,Graduate Program in Immunology, The University of Iowa, Iowa City, IA.,Medical Scientist Training Program, The University of Iowa, Iowa City, IA
| | - Bruce S Hostager
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA
| | - Jon C D Houtman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA.,Graduate Program in Immunology, The University of Iowa, Iowa City, IA.,Medical Scientist Training Program, The University of Iowa, Iowa City, IA
| | - Gail A Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA; .,Graduate Program in Immunology, The University of Iowa, Iowa City, IA.,Medical Scientist Training Program, The University of Iowa, Iowa City, IA.,Department of Internal Medicine, The University of Iowa, Iowa City, IA; and.,Iowa City VA Medical Center, Iowa City, IA
| |
Collapse
|
37
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Adv 2021; 5:745-755. [PMID: 33560391 DOI: 10.1182/bloodadvances.2020002932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.
Collapse
|
39
|
Klintman J, Appleby N, Stamatopoulos B, Ridout K, Eyre TA, Robbe P, Pascua LL, Knight SJL, Dreau H, Cabes M, Popitsch N, Ehinger M, Martín-Subero JI, Campo E, Månsson R, Rossi D, Taylor JC, Vavoulis DV, Schuh A. Genomic and transcriptomic correlates of Richter transformation in chronic lymphocytic leukemia. Blood 2021; 137:2800-2816. [PMID: 33206936 PMCID: PMC8163497 DOI: 10.1182/blood.2020005650] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The transformation of chronic lymphocytic leukemia (CLL) to high-grade B-cell lymphoma is known as Richter syndrome (RS), a rare event with dismal prognosis. In this study, we conducted whole-genome sequencing (WGS) of paired circulating CLL (PB-CLL) and RS biopsies (tissue-RS) from 17 patients recruited into a clinical trial (CHOP-O). We found that tissue-RS was enriched for mutations in poor-risk CLL drivers and genes in the DNA damage response (DDR) pathway. In addition, we identified genomic aberrations not previously implicated in RS, including the protein tyrosine phosphatase receptor (PTPRD) and tumor necrosis factor receptor-associated factor 3 (TRAF3). In the noncoding genome, we discovered activation-induced cytidine deaminase-related and unrelated kataegis in tissue-RS affecting regulatory regions of key immune-regulatory genes. These include BTG2, CXCR4, NFATC1, PAX5, NOTCH-1, SLC44A5, FCRL3, SELL, TNIP2, and TRIM13. Furthermore, differences between the global mutation signatures of pairs of PB-CLL and tissue-RS samples implicate DDR as the dominant mechanism driving transformation. Pathway-based clonal deconvolution analysis showed that genes in the MAPK and DDR pathways demonstrate high clonal-expansion probability. Direct comparison of nodal-CLL and tissue-RS pairs from an independent cohort confirmed differential expression of the same pathways by RNA expression profiling. Our integrated analysis of WGS and RNA expression data significantly extends previous targeted approaches, which were limited by the lack of germline samples, and it facilitates the identification of novel genomic correlates implicated in RS transformation, which could be targeted therapeutically. Our results inform the future selection of investigative agents for a UK clinical platform study. This trial was registered at www.clinicaltrials.gov as #NCT03899337.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Base Sequence
- Clonal Evolution/genetics
- Clone Cells/pathology
- Combined Modality Therapy
- Cyclophosphamide/administration & dosage
- DNA Repair
- Disease Progression
- Doxorubicin/administration & dosage
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Regulatory Networks
- Genes, Neoplasm
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/genetics
- Prednisone/administration & dosage
- Prospective Studies
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Syndrome
- Transcriptome
- Vincristine/administration & dosage
- Whole Genome Sequencing
Collapse
Affiliation(s)
- Jenny Klintman
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Translational Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Niamh Appleby
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals National Health Service (NHS) Trust, Oxford, United Kingdom
| | - Basile Stamatopoulos
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Katie Ridout
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Toby A Eyre
- Department of Hematology, Oxford University Hospitals National Health Service (NHS) Trust, Oxford, United Kingdom
| | - Pauline Robbe
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Laura Lopez Pascua
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Samantha J L Knight
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helene Dreau
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Maite Cabes
- Department of Hematology, Oxford University Hospitals National Health Service (NHS) Trust, Oxford, United Kingdom
| | - Niko Popitsch
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- The Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Mats Ehinger
- Pathology, Department of Clinical Sciences, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jose I Martín-Subero
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Hematology Center, Karolinska University Hospital, Stockholm, Sweden; and
| | - Davide Rossi
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | - Jenny C Taylor
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Dimitrios V Vavoulis
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals National Health Service (NHS) Trust, Oxford, United Kingdom
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Zheng L, Wang X, Hu L, Gao W, Zhang W, Zhang X, Hu C, Rong R, Yang C, Zhu D. Cyclic Helix B Peptide Prolongs Skin Allograft Survival via Inhibition of B Cell Immune Responses in a Murine Model. Front Immunol 2021; 12:682749. [PMID: 34054874 PMCID: PMC8149941 DOI: 10.3389/fimmu.2021.682749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 12/03/2022] Open
Abstract
Antibody-mediated rejection (AMR) represents a major cause of allograft dysfunction and results in allograft failure in solid organ transplantation. Cyclic helix B peptide (CHBP) is a novel erythropoietin-derived peptide that ameliorated renal allograft rejection in a renal transplantation model. However, its effect on AMR remains unknown. This study aimed to investigate the effect of CHBP on AMR using a secondary allogeneic skin transplantation model, which was created by transplanting skin from BALB/c mice to C57BL/6 mice with or without CHBP treatment. A secondary syngeneic skin transplantation model, involving transplantation from C57BL/6 mice to C57BL/6 mice, was also created to act as a control. Skin graft rejection, CD19+ B cell infiltration in the skin allograft, the percentages of splenic plasma cells, germinal center (GC) B cells, and Tfh cells, the serum levels of donor specific antibodies (DSAs), and NF-κB signaling in splenocytes were analyzed. Skin allograft survival was significantly prolonged in the CHBP group compared to the allogeneic group. CHBP treatment also significantly reduced the CD19+ B cell infiltration in the skin allograft, decreased the percentages of splenic plasma cells, GC B cells, and Tfh cells, and ameliorated the increase in the serum DSA level. At a molecular level, CHBP downregulated P100, RelB, and P52 in splenocytes. CHBP prolonged skin allograft survival by inhibiting AMR, which may be mediated by inhibition of NF-κB signaling to suppress B cell immune responses, thereby decreasing the DSA level.
Collapse
Affiliation(s)
- Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Linkun Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjun Gao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Xuepeng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Blood Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Zhangjiang Institute of Fudan University, Shanghai, China
| | - Dong Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
41
|
Chen Z, Wang JH. How the Signaling Crosstalk of B Cell Receptor (BCR) and Co-Receptors Regulates Antibody Class Switch Recombination: A New Perspective of Checkpoints of BCR Signaling. Front Immunol 2021; 12:663443. [PMID: 33841447 PMCID: PMC8027318 DOI: 10.3389/fimmu.2021.663443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/11/2021] [Indexed: 11/21/2022] Open
Abstract
Mature B cells express B cell antigen receptor (BCR), toll-like receptors (TLR) and TNF family receptors including CD40 and B-cell activating factor receptor (BAFFR). These receptors transduce cellular signals to govern the physiological and pathological processes in B cells including B cell development and differentiation, survival, proliferation, and antibody-mediated immune responses as well as autoimmune diseases and B cell lymphomagenesis. Effective antibody-mediated immune responses require class switch recombination (CSR), a somatic DNA recombination event occurring at the immunoglobulin heavy chain (Igh) gene locus. Mature B cells initially express IgM as their BCR, and CSR enables the B cells to switch from expressing IgM to expressing different classes of antibodies including IgG, IgA or IgE that exhibit distinct effector functions. Here, we briefly review recent findings about how the signaling crosstalk of the BCR with TLRs, CD40 and BAFFR regulates CSR, antibody-mediate immune responses, and B cell anergy.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | - Jing H. Wang
- Department of Medicine, Division of Hematology and Oncology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
42
|
Chen Q, Lu X, Zhang X. Noncanonical NF-κB Signaling Pathway in Liver Diseases. J Clin Transl Hepatol 2021; 9:81-89. [PMID: 33604258 PMCID: PMC7868705 DOI: 10.14218/jcth.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The noncanonical NF-κB signaling pathway is an important branch of NF-κB signaling. It is involved in regulating multiple important biological processes, including inflammation and host immune response. A central adaptor protein of the noncanonical NF-κB pathway is NF-κB-inducing kinase (NIK), which activates the downstream kinase IKKα to process p100 to p52, thereby forming the RelB/p52 heterodimer to initiate the expression of target genes. Currently, many specific inhibitors and monoclonal antibodies targeting or triggering this pathway are being developed and tested for various diseases, including cancers, autoimmune diseases, and virus infection. Given that aberrant activation of the noncanonical NF-κB pathway is frequently observed in various liver diseases, targeting this pathway may be a promising therapeutic strategy to alleviate liver inflammation. Moreover, activation of this pathway may contribute to the antiviral immune response and promote the clearance of persistent hepatotropic virus infection. Here, we review the role of the noncanonical NF-κB pathway in the occurrence and development of different liver diseases, and discuss the potency and application of modulating the noncanonical NF-κB pathway for treatment of these liver diseases.
Collapse
Affiliation(s)
- Qianhui Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou,Guangdong, China
- Hepatology Unit, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
- Correspondence to: Xiaoyong Zhang, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, Guangzhou, Guangdong 510515, China. Tel: +86-20-62787830, E-mail:
| |
Collapse
|
43
|
Whillock AL, Ybarra TK, Bishop GA. TNF receptor-associated factor 3 restrains B-cell receptor signaling in normal and malignant B cells. J Biol Chem 2021; 296:100465. [PMID: 33639170 PMCID: PMC8042179 DOI: 10.1016/j.jbc.2021.100465] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
TRAF3 has diverse signaling functions, which vary by cell type. Uniquely in B lymphocytes, TRAF3 inhibits homeostatic survival. Highlighting the role of TRAF3 as a tumor suppressor, loss-of-function TRAF3 mutations are associated with human B-cell malignancies, while B-cell-specific deletion of TRAF3 in mice leads to autoimmunity and lymphoma development. The role of TRAF3 in inhibiting noncanonical NF-κB activation, CD40 and BAFF-R signaling to B cells is well documented. In contrast, TRAF3 enhances many T-cell effector functions, through associating with and enhancing signaling by the T-cell receptor (TCR)-CD28 complex. The present study was designed to determine the role of TRAF3 in signaling via the B-cell antigen receptor (BCR). The BCR is crucial for antigen recognition, survival, proliferation, and antibody production, and defects in BCR signaling can promote abnormal survival of malignant B cells. Here, we show that TRAF3 is associated with both CD79B and the BCR-activated kinases Syk and Btk following BCR stimulation. BCR-induced phosphorylation of Syk and additional downstream kinases was increased in TRAF3−/− B cells, with regulation observed in both follicular and marginal zone B-cell subsets. BCR stimulation of TRAF3−/− B cells resulted in increased surface expression of MHC-II, CD80, and CD86 molecules. Interestingly, increased survival of TRAF3−/− primary B cells was resistant to inhibition of Btk, while TRAF3-deficient malignant B-cell lines showed enhanced sensitivity. TRAF3 serves to restrain normal and malignant BCR signaling, with important implications for its role in normal B-cell biology and abnormal survival of malignant B cells.
Collapse
Affiliation(s)
- Amy L Whillock
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA; Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Tiffany K Ybarra
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA; Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, Iowa, USA; Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA; Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; VA Medical Center, Iowa City, Iowa, USA.
| |
Collapse
|
44
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1196] [Impact Index Per Article: 239.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
45
|
Lv Y, Xu Q, Mao Y, Xu Y, Zhang R, Zhong H, Zhou Y, Xiao J, Du M, Song H, Liang Y, Yan J. TRAF3 of blunt snout bream participates in host innate immune response to pathogenic bacteria via NF-κB signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2020; 104:592-604. [PMID: 32589928 DOI: 10.1016/j.fsi.2020.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifunctional adaptor protein primarily involved in both bacterial defense and antiviral immunity in living organisms. However, the knowledge on TRAF3 in blunt snout bream (Megalobrama amblycephala), a freshwater fish with economic values, remained unclear. In the present study, we identified and characterized successfully Traf3 gene from M. amblycephala (maTraf3). The maTraf3 cDNA contained a 1722 bp open reading frame that encoded a protein of 573 amino acid residues. The deduced amino acid sequence comprised of a RING finger domain, two zinc finger motifs, a coiled-coil region and a MATH domain. Analysis of the transcriptional patterns of maTraf3 revealed that it was ubiquitously distributed in various tissues tested from M. amblycephala, with the abundance of expression in spleen and muscle. Following a challenge with Aeromonas hydrophila and lipopolysaccharide stimulation, the expression of maTraf3 was strongly enhanced at different time points in vitro and in vivo. MaTRAF3 was identified as a cytosolic protein and suggested to form aggregates or be associated with vesicles scattering in the cytoplasm. NF-κB transcription was activated by maTraf3 in reporter assay. The overexpression of maTraf3 produced high levels of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8 and TNF-α, implying its immune-regulatory role in M. amblycephala. Taken together, our results obtained in this study demonstrated the crucial role of maTraf3 in mediating host innate immune response to pathogen invasion via NF-κB signaling pathway, which might indicate a novel therapeutic approach to combat bacterial infection in fish.
Collapse
Affiliation(s)
- Yina Lv
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China; Department of Biology, Zhaoqing University, Zhaoqing, 526061, China
| | - Qian Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Ying Mao
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Yandong Xu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Ru Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi, 530021, China
| | - Mengke Du
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Huiyang Song
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China
| | - Yinhua Liang
- Department of Operation, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410017, China.
| |
Collapse
|
46
|
Wong AHH, Shin EM, Tergaonkar V, Chng WJ. Targeting NF-κB Signaling for Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12082203. [PMID: 32781681 PMCID: PMC7463546 DOI: 10.3390/cancers12082203] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematologic malignancy in the world. Even though survival rates have significantly risen over the past years, MM remains incurable, and is also far from reaching the point of being managed as a chronic disease. This paper reviews the evolution of MM therapies, focusing on anti-MM drugs that target the molecular mechanisms of nuclear factor kappa B (NF-κB) signaling. We also provide our perspectives on contemporary research findings and insights for future drug development.
Collapse
Affiliation(s)
- Ada Hang-Heng Wong
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- AW Medical Company Limited, Macau, China
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| | - Eun Myoung Shin
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore; (E.M.S.); (V.T.)
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Department of Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119074, Singapore
- Correspondence: (A.H.-H.W.); (W.-J.C.); Tel.: +65-6586-9709 (A.H.-H.W.); +65-6772-4612 (W.-J.C.)
| |
Collapse
|
47
|
Chen Z, Krinsky A, Woolaver RA, Wang X, Chen SMY, Popolizio V, Xie P, Wang JH. TRAF3 Acts as a Checkpoint of B Cell Receptor Signaling to Control Antibody Class Switch Recombination and Anergy. THE JOURNAL OF IMMUNOLOGY 2020; 205:830-841. [PMID: 32591397 DOI: 10.4049/jimmunol.2000322] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
The BCR recognizes foreign Ags to initiate humoral immunity that needs isotype-switched Abs generated via class switch recombination (CSR); however, stimulating the BCR in the absence of costimulation (e.g., CD40) does not induce CSR; thus, it remains elusive whether and how the BCR induces CSR mechanistically. Autoreactive B cells can maintain anergy via unresponsiveness of their BCRs to self-antigens. However, it remains unknown what molecule(s) restrict BCR signaling strength for licensing BCR-induced CSR and whether deficiency of such molecule(s) disrupts autoreactive B cell anergy and causes B cell-mediated diseases by modulating BCR signaling. In this study, we employ mouse models to show that the BCR's capacity to induce CSR is restrained by B cell-intrinsic checkpoints TRAF3 and TRAF2, whose deletion in B cells enables the BCR to induce CSR in the absence of costimulation. TRAF3 deficiency permits BCR-induced CSR by elevating BCR-proximal signaling intensity. Furthermore, NF-κB2 is required for BCR-induced CSR in TRAF3-deficient B cells but not for CD40-induced or LPS-induced CSR, suggesting that TRAF3 restricts NF-κB2 activation to specifically limit the BCR's ability to induce CSR. TRAF3 deficiency also disrupts autoreactive B cell anergy by elevating calcium influx in response to BCR stimulation, leading to lymphoid organ disorders and autoimmune manifestations. We showed that TRAF3 deficiency-associated autoimmune phenotypes can be rectified by limiting BCR repertoires or attenuating BCR signaling strength. Thus, our studies highlight the importance of TRAF3-mediated restraint on BCR signaling strength for controlling CSR, B cell homeostasis, and B cell-mediated disorders.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| | - Alexandra Krinsky
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Samantha M Y Chen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Vince Popolizio
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854; and.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
48
|
Liu Z, Liu Y, Li T, Wang P, Mo X, Lv P, Ge Q, Ma D, Han W. Cmtm7 knockout inhibits B-1a cell development at the transitional (TrB-1a) stage. Int Immunol 2020; 31:715-728. [PMID: 31081901 DOI: 10.1093/intimm/dxz041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/11/2019] [Indexed: 01/19/2023] Open
Abstract
Innate-like B-1a cells are an important cell population for production of natural IgM and interleukin-10 (IL-10), and act as the first line against pathogens. We determined that CMTM7 is essential for B-1a cell development. Following Cmtm7 (CKLF-like MARVEL transmembrane domain-containing 7) knockout, B-1a cell numbers decreased markedly in all investigated tissues. Using a bone marrow and fetal liver adoptive transfer model and conditional knockout mice, we showed that the reduction of B-1a cells resulted from B-cell-intrinsic defects. Because of B-1a cell loss, Cmtm7-deficient mice produced less IgM and IL-10, and were more susceptible to microbial sepsis. Self-renewal and homeostasis of mature B-1a cells in Cmtm7-/- mice were not impaired, suggesting the effect of Cmtm7 on B-1a cell development. Further investigations demonstrated that the function of Cmtm7 in B-1a cell development occurred at the specific transitional B-1a (TrB-1a) stage. Cmtm7 deficiency resulted in a slow proliferation and high cell death rate of TrB-1a cells. Thus, Cmtm7 controls B-1a cell development at the transitional stage.
Collapse
Affiliation(s)
- Zhengyang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Yuan Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center; NHC Key Laboratory of Medical Immunology, Beijing, China.,Peking University Center for Human Disease Genomics, Beijing, China
| |
Collapse
|
49
|
Liu Z, Liu Y, Li T, Wang P, Mo X, Lv P, Ma D, Han W. Essential role for Cmtm7 in cell-surface phenotype, BCR signaling, survival and Igμ repertoire of splenic B-1a cells. Cell Immunol 2020; 352:104100. [PMID: 32305130 DOI: 10.1016/j.cellimm.2020.104100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/26/2022]
Abstract
B-1a cells represent a distinct B cell population with unique phenotype, self-renewing capacity and restricted Igμ repertoire. They primarily locate in body cavity and also exist in spleen. The different subpopulations of B-1a cells are heavily affected by local environment. Our previous studies revealed that MARVEL-domain-containing membrane protein, CMTM7, was involved in B-1a cell development. Here, we focused its influence on peritoneal and splenic B-1a cells. Unlike peritoneal B-1a cells, we found that splenic Cmtm7-/- B-1a cells expressed higher level of CD5, CD80 and CD86 compared with WT counterparts. They also exhibited an enhanced tonic BCR signals in steady state. Though the cell viability was unaffected in vitro, Cmtm7 knockout markedly promoted splenic B-1a cell apoptosis in situ, which was likely associated with down-regulation of Il-5rα. With regard to Igμ repertoire, peritoneal and splenic Cmtm7-/- B-1a cells exhibit similar changes exemplified by the loss of VH11 and gain of VH12, whereas an increase in VH1 usage and skewed J segments from JH1 to JH2 and JH4 families could only be detected within splenic Cmtm7-/- B-1a cells. Overall, these data indicate that Cmtm7 functions differently in peritoneal and splenic B-1a cells and plays a more important role in splenic cells.
Collapse
Affiliation(s)
- Zhengyang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Yuan Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Ting Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Ping Lv
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China
| | - Wenling Han
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, NHC Key Laboratory of Medical Immunology, Beijing, China; Peking University Center for Human Disease Genomics, Beijing, China.
| |
Collapse
|
50
|
Chen B, Li C, Yao J, Shi L, Liu W, Wang F, Huo S, Zhang Y, Lu Y, Ashraf U, Ye J, Liu X. Zebrafish NIK Mediates IFN Induction by Regulating Activation of IRF3 and NF-κB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1881-1891. [PMID: 32066597 DOI: 10.4049/jimmunol.1900561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Type I IFN mediates the innate immune system to provide defense against viral infections. NF-κB-inducing kinase (NIK) potentiates the basal activation of endogenous STING, which facilitates the recruitment of TBK1 with the ectopically expressed IRF3 to induce IFN production. Moreover, NIK phosphorylates IKKα and confers its ability to phosphorylate p100 (also known as NF-κB2) in mammals. Our study demonstrated that NIK plays a critical role in IFN production in teleost fish. It was found that NIK interacts with IKKα in the cytoplasm and that IKKα phosphorylates the NIK at the residue Thr432, which is different from the mammals. Overexpression of NIK caused the activation of IRF3 and NF-κB, which in turn led to the production of IFN and IFN-stimulated genes (ISGs). Furthermore, the ectopic expression of NIK was observed to be associated with a reduced replication of the fish virus, whereas silencing of endogenous NIK had an opposite effect in vitro. Furthermore, NIK knockdown significantly reduced the expression of IFN and key ISGs in zebrafish larvae after spring viremia of carp virus infection. Additionally, the replication of spring viremia of carp virus was enhanced in NIK knockdown zebrafish larvae, leading to a lower survival rate. In summary, our findings revealed a previously undescribed function of NIK in activating IFN and ISGs as a host antiviral response. These findings may facilitate the establishment of antiviral therapy to combat fish viruses.
Collapse
Affiliation(s)
- Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Jian Yao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822; and
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| |
Collapse
|