1
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
2
|
Miyazaki K, Horie K, Watanabe H, Hidaka R, Hayashi R, Hayatsu N, Fujiwara K, Kuwata R, Uehata T, Ochi Y, Takenaka M, Kawaguchi RK, Ikuta K, Takeuchi O, Ogawa S, Hozumi K, Holländer GA, Kondoh G, Akiyama T, Miyazaki M. A feedback amplifier circuit with Notch and E2A orchestrates T-cell fate and suppresses the innate lymphoid cell lineages during thymic ontogeny. Genes Dev 2025; 39:384-400. [PMID: 39904558 PMCID: PMC11874989 DOI: 10.1101/gad.352111.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
External signals from the thymic microenvironment and the activities of lineage-specific transcription factors (TFs) instruct T-cell versus innate lymphoid cell (ILC) fates. However, mechanistic insights into how factors such as Notch1-Delta-like-4 (Dll4) signaling and E-protein TFs collaborate to establish T-cell identity remain rudimentary. Using multiple in vivo approaches and single-cell multiome analysis, we identified a feedback amplifier circuit that specifies fetal and adult T-cell fates. In early T progenitors (ETPs) in the fetal thymus, Notch signaling minimally lowered E-protein antagonist Id2 levels, and high Id2 abundance favored the differentiation of ETPs into ILCs. Conversely, in the adult thymus, Notch signaling markedly decreased Id2 abundance in ETPs, substantially elevating E-protein DNA binding and in turn promoting the activation of a T-cell lineage-specific gene expression program linked with V(D)J gene recombination and T-cell receptor signaling. Our findings indicate that, in the fetal versus the adult thymus, a simple feedback amplifier circuit dictated by Notch-mediated signals and Id2 abundance enforces T-cell identity and suppresses ILC development.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Reiko Hidaka
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rinako Hayashi
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Kentaro Fujiwara
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rei Kuwata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Takenaka
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Koichi Ikuta
- Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI ASHBi), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Georg A Holländer
- Department of Pediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7TY, United Kingdom
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel 4056, Switzerland
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4056, Switzerland
| | - Gen Kondoh
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
3
|
Golzari-Sorkheh M, Yoganathan K, Chen ELY, Singh J, Zúñiga-Pflücker JC. T Cell Development: From T-Lineage Specification to Intrathymic Maturation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1471:81-137. [PMID: 40067585 DOI: 10.1007/978-3-031-77921-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
T cell development occurs in the thymus in both mice and humans. Upon entry into the thymus, bone marrow-derived blood-borne progenitors receive instructive signals, including Notch signaling, to eliminate their potential to develop into alternative immune lineages while committing to the T cell fate. Upon T-lineage commitment, developing T cells receive further instructional cues to generate different T cell sublineages, which together possess diverse immunological functions to provide host immunity. Over the years, numerous studies have contributed to a greater understanding of key thymic signals that govern T cell differentiation and subset generation. Here, we review these critical signaling factors that govern the different stages of both mouse and human T cell development, while also focusing on the transcriptional changes that mediate T cell identity and diversity.
Collapse
Affiliation(s)
- Mahdieh Golzari-Sorkheh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kogulan Yoganathan
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Edward L Y Chen
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto & Sunnybrook Research Institute, Toronto, ON, Canada
| | | |
Collapse
|
4
|
Shimba A, Tani-Ichi S, Masuda K, Cui G, Munakata S, Abe S, Kitano S, Miyachi H, Kawamoto H, Ikuta K. A Chimeric IL-7Rα/IL-2Rβ Receptor Promotes the Differentiation of T Cell Progenitors into B Cells and Type 2 Innate Lymphoid Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:952-964. [PMID: 39140896 DOI: 10.4049/jimmunol.2300483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
IL-7 and IL-2 are evolutionarily related cytokines that play critical roles in the development and expansion of immune cells. Although both IL-7R and IL-2R activate similar signaling molecules, whether their signals have specific or overlapping functions during lymphocyte differentiation remains unclear. To address this question, we generated IL-7R α-chain (IL-7Rα)/IL-2R β-chain (IL-24β) (72R) knock-in mice expressing a chimeric receptor consisting of the extracellular domain of IL-7Rα and the intracellular domain of IL-2Rβ under the control of the endogenous IL-7Rα promoter. Notably, this 72R receptor induced higher levels of STAT5 and Akt phosphorylation in T cells. In the periphery of 72R mice, the number of T cells, B cells, and type 2 innate lymphoid cells (ILC2s) was increased, whereas early T cell progenitors and double-negative 2 thymocytes were reduced in the thymus. In addition, cell proliferation and Notch signaling were impaired in the early thymocytes of 72R mice, leading to their differentiation into thymic B cells. Interestingly, ILC2s were increased in the thymus of 72R mice. Early T cell progenitors from 72R mice, but not from wild-type mice, differentiated into NK cells and ILC2-like cells when cocultured with a thymic stromal cell line. Thus, this study indicates that the chimeric 72R receptor transduces more robust signals than the authentic IL-7Rα, thereby inducing the alternative differentiation of T cell progenitors into other cell lineages. This suggests that cytokine receptors may provide instructive signals for cell fate decisions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kyoko Masuda
- Laboratory of Immunology, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoru Munakata
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Shirafkan F, Hensel L, Rattay K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front Immunol 2024; 15:1339714. [PMID: 38571951 PMCID: PMC10987875 DOI: 10.3389/fimmu.2024.1339714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.
Collapse
|
6
|
Tanwar A, Stanley P. Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis. Front Immunol 2023; 14:1097332. [PMID: 37795096 PMCID: PMC10546201 DOI: 10.3389/fimmu.2023.1097332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Glycosylation of Notch receptors by O-fucose glycans regulates Notch ligand binding and Notch signaling during hematopoiesis. However, roles in hematopoiesis for other O-glycans that modify Notch receptors have not been determined. Here we show that the EGF domain specific GlcNAc transferase EOGT is required in mice for the optimal production of lymphoid and myeloid cells. The phenotype of Eogt null mice was largely cell-autonomous, and Notch target gene expression was reduced in T cell progenitors. Moreover, EOGT supported residual Notch signaling following conditional deletion of Pofut1 in hematopoietic stem cells (HSC). Eogt : Pofut1 double mutant HSC had more severe defects in bone marrow and in T and B cell development in thymus and spleen, compared to deletion of Pofut1 alone. The combined results show that EOGT and O-GlcNAc glycans are required for optimal hematopoiesis and T and B cell development, and that they act synergistically with POFUT1 and O-fucose glycans to promote Notch signaling in lymphoid and myeloid differentiation.
Collapse
Affiliation(s)
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
7
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
8
|
Bhansali RS, Barta SK. Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas. Cancers (Basel) 2023; 15:925. [PMID: 36765882 PMCID: PMC9913807 DOI: 10.3390/cancers15030925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Non-Hodgkin lymphomas (NHL) are cancers of mature B-, T-, and NK-cells which display marked biological heterogeneity between different subtypes. Mature T- and NK-cell neoplasms are an often-aggressive subgroup of NHL and make up approximately 15% of all NHL. Long-term follow up studies have demonstrated that patients with relapsed/refractory disease have dismal outcomes; in particular, secondary central nervous system (CNS) involvement is associated with higher mortality, though it remains controversial whether this independently confers worse outcomes or if it simply reflects more aggressive systemic disease. Possible risk factors predictive of CNS involvement, such as an elevated lactate dehydrogenase and more than two sites of extranodal involvement, may suggest the latter, though several studies have suggested that discrete sites of anatomic involvement or tumor histology may be independent risk factors as well. Ultimately, small retrospective case series form the basis of our understanding of this rare but devastating event but have not yet demonstrated a consistent benefit of CNS-directed prophylaxis in preventing this outcome. Nonetheless, ongoing efforts are working to establish the epidemiology of CNS progression/relapse in mature T- and NK-cell lymphomas with the goal of identifying clinicopathologic risk factors, which may potentially help discern which patients may benefit from CNS-directed prophylactic therapy or more aggressive systemic therapy.
Collapse
Affiliation(s)
| | - Stefan K. Barta
- Department of Medicine, Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Toribio ML, González-García S. Notch Partners in the Long Journey of T-ALL Pathogenesis. Int J Mol Sci 2023; 24:1383. [PMID: 36674902 PMCID: PMC9866461 DOI: 10.3390/ijms24021383] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disease that arises from the oncogenic transformation of developing T cells during T-lymphopoiesis. Although T-ALL prognosis has improved markedly in recent years, relapsing and refractory patients with dismal outcomes still represent a major clinical issue. Consequently, understanding the pathological mechanisms that lead to the appearance of this malignancy and developing novel and more effective targeted therapies is an urgent need. Since the discovery in 2004 that a major proportion of T-ALL patients carry activating mutations that turn NOTCH1 into an oncogene, great efforts have been made to decipher the mechanisms underlying constitutive NOTCH1 activation, with the aim of understanding how NOTCH1 dysregulation converts the physiological NOTCH1-dependent T-cell developmental program into a pathological T-cell transformation process. Several molecular players have so far been shown to cooperate with NOTCH1 in this oncogenic process, and different therapeutic strategies have been developed to specifically target NOTCH1-dependent T-ALLs. Here, we comprehensively analyze the molecular bases of the cross-talk between NOTCH1 and cooperating partners critically involved in the generation and/or maintenance and progression of T-ALL and discuss novel opportunities and therapeutic approaches that current knowledge may open for future treatment of T-ALL patients.
Collapse
Affiliation(s)
- María Luisa Toribio
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | |
Collapse
|
10
|
Notch gives early T cell progenitors time to grow up. Nat Immunol 2022; 23:1523-1524. [DOI: 10.1038/s41590-022-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Stanley P, Tanwar A. Regulation of myeloid and lymphoid cell development by O-glycans on Notch. Front Mol Biosci 2022; 9:979724. [PMID: 36406268 PMCID: PMC9672378 DOI: 10.3389/fmolb.2022.979724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/13/2022] [Indexed: 10/06/2023] Open
Abstract
Notch signaling via NOTCH1 stimulated by Delta-like ligand 4 (DLL4) is required for the development of T cells in thymus, and NOTCH2 stimulated by Notch ligand DLL1 is required for the development of marginal zone (MZ) B cells in spleen. Notch signaling also regulates myeloid cell production in bone marrow and is an essential contributor to the generation of early hematopoietic stem cells (HSC). The differentiation program in each of these cellular contexts is optimized by the regulation of Notch signaling strength by O-glycans attached to epidermal growth factor-like (EGF) repeats in the extracellular domain of Notch receptors. There are three major types of O-glycan on NOTCH1 and NOTCH2 - O-fucose, O-glucose and O-GlcNAc. The initiating sugar of each O-glycan is added in the endoplasmic reticulum (ER) by glycosyltransferases POFUT1 (fucose), POGLUT1/2/3 (glucose) or EOGT (GlcNAc), respectively. Additional sugars are added in the Golgi compartment during passage through the secretory pathway to the plasma membrane. Of particular significance for Notch signaling is the addition of GlcNAc to O-fucose on an EGF repeat by the Fringe GlcNAc-transferases LFNG, MFNG or RFNG. Canonical Notch ligands (DLL1, DLL4, JAG1, JAG2) expressed in stromal cells bind to the extracellular domain of Notch receptors expressed in hematopoietic stem cells and myeloid and lymphoid progenitors to activate Notch signaling. Ligand-receptor binding is differentially regulated by the O-glycans on Notch. This review will summarize our understanding of the regulation of Notch signaling in myeloid and lymphoid cell development by specific O-glycans in mice with dysregulated expression of a particular glycosyltransferase and discuss how this may impact immune system development and malignancy in general, and in individuals with a congenital defect in the synthesis of the O-glycans attached to EGF repeats.
Collapse
Affiliation(s)
- Pamela Stanley
- Department of Cell Biology, Albert Einstein College Medicine, New York, NY, United States
| | | |
Collapse
|
12
|
Kashiwagi M, Figueroa DS, Ay F, Morgan BA, Georgopoulos K. A double-negative thymocyte-specific enhancer augments Notch1 signaling to direct early T cell progenitor expansion, lineage restriction and β-selection. Nat Immunol 2022; 23:1628-1643. [PMID: 36316479 PMCID: PMC10187983 DOI: 10.1038/s41590-022-01322-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
T cell differentiation requires Notch1 signaling. In the present study, we show that an enhancer upstream of Notch1 active in double-negative (DN) mouse thymocytes is responsible for raising Notch1 signaling intrathymically. This enhancer is required to expand multipotent progenitors intrathymically while delaying early differentiation until lineage restrictions have been established. Early thymic progenitors lacking the enhancer show accelerated differentiation through the DN stages and increased frequency of B, innate lymphoid (IL) and natural killer (NK) cell differentiation. Transcription regulators for T cell lineage restriction and commitment are expressed normally, but IL and NK cell gene expression persists after T cell lineage commitment and T cell receptor β VDJ recombination, Cd3 expression and β-selection have been impaired. This Notch1 enhancer is inactive in double-positive (DP) thymocytes. Its aberrant reactivation at this stage in Ikaros mutants is required for leukemogenesis. Thus, the DN-specific Notch1 enhancer harnesses the regulatory architecture of DN and DP thymocytes to achieve carefully orchestrated changes in Notch1 signaling required for early lineage restrictions and normal T cell differentiation.
Collapse
|
13
|
Bayer M, Boller S, Ramamoothy S, Zolotarev N, Cauchy P, Iwanami N, Mittler G, Boehm T, Grosschedl R. Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling. Genes Dev 2022; 36:901-915. [PMID: 36167471 PMCID: PMC9575695 DOI: 10.1101/gad.349696.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023]
Abstract
Transcription factor EBF1 (early B cell factor 1) acts as a key regulator of B cell specification. The transcriptional network in which EBF1 operates has been extensively studied; however, the regulation of EBF1 function remains poorly defined. By mass spectrometric analysis of proteins associated with endogenous EBF1 in pro-B cells, we identified the nuclear import receptor Transportin-3 (Tnpo3) and found that it interacts with the immunoglobulin-like fold domain of EBF1. We delineated glutamic acid 271 of EBF1 as a critical residue for the association with Tnpo3. EBF1E271A showed normal nuclear localization; however, it had an impaired B cell programming ability in conditions of Notch signaling, as determined by retroviral transduction of Ebf1 -/- progenitors. By RNA-seq analysis of EBF1E271A-expressing progenitors, we found an up-regulation of T lineage determinants and down-regulation of early B genes, although similar chromatin binding of EBF1E271A and EBF1wt was detected in pro-B cells expressing activated Notch1. B lineage-specific inactivation of Tnpo3 in mice resulted in a block of early B cell differentiation, accompanied by a down-regulation of B lineage genes and up-regulation of T and NK lineage genes. Taken together, our observations suggest that Tnpo3 ensures B cell programming by EBF1 in nonpermissive conditions.
Collapse
Affiliation(s)
- Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoothy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
14
|
Láinez-González D, Serrano-López J, Alonso-Dominguez JM. Understanding the Notch Signaling Pathway in Acute Myeloid Leukemia Stem Cells: From Hematopoiesis to Neoplasia. Cancers (Basel) 2022; 14:cancers14061459. [PMID: 35326610 PMCID: PMC8946707 DOI: 10.3390/cancers14061459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The Notch signaling pathway is fundamental to early fetal development, but its role in acute myeloid leukemia is still unclear. It is important to elucidate the function that contains Notch, not only in acute myeloid leukemia, but in leukemic stem cells (LSCs). LSCs seem to be the principal cause of patient relapse. This population is in a quiescent state. Signaling pathways that govern this process must be understood to increase the chemosensitivity of this compartment. In this review, we focus on the conserved Notch signaling pathway, and its repercussions in hematopoiesis and hematological neoplasia. We found in the literature both visions regarding Notch activity in acute myeloid leukemia. On one hand, the activation of Notch leads to cell proliferation, on the other hand, the activation of Notch leads to cell cycle arrest. This dilemma requires further experiments to be answered, in order to understand the role of Notch not only in acute myeloid leukemia, but especially in LSCs.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juana Serrano-López
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, 28040 Madrid, Spain; (D.L.-G.); (J.S.-L.)
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-918488100-2673
| |
Collapse
|
15
|
Greaves RB, Chen D, Green EA. Thymic B Cells as a New Player in the Type 1 Diabetes Response. Front Immunol 2021; 12:772017. [PMID: 34745148 PMCID: PMC8566354 DOI: 10.3389/fimmu.2021.772017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Richard B Greaves
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Dawei Chen
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
16
|
Castañeda J, Hidalgo Y, Sauma D, Rosemblatt M, Bono MR, Núñez S. The Multifaceted Roles of B Cells in the Thymus: From Immune Tolerance to Autoimmunity. Front Immunol 2021; 12:766698. [PMID: 34790201 PMCID: PMC8591215 DOI: 10.3389/fimmu.2021.766698] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
The thymus is home to a significant number of resident B cells which possess several unique characteristics regarding their origin, phenotype and function. Evidence shows that they originate both from precursors that mature intrathymically and as the entry of recirculating mature B cells. Under steady-state conditions they exhibit hallmark signatures of activated B cells, undergo immunoglobulin class-switch, and express the Aire transcription factor. These features are imprinted within the thymus and enable B cells to act as specialized antigen-presenting cells in the thymic medulla that contribute negative selection of self-reactive T cells. Though, most studies have focused on B cells located in the medulla, a second contingent of B cells is also present in non-epithelial perivascular spaces of the thymus. This latter group of B cells, which includes memory B cells and plasma cells, is not readily detected in the thymus of infants or young mice but gradually accumulates during normal aging. Remarkably, in many autoimmune diseases the thymus suffers severe structural atrophy and infiltration of B cells in the perivascular spaces, which organize into follicles similar to those typically found in secondary lymphoid organs. This review provides an overview of the pathways involved in thymic B cell origin and presents an integrated view of both thymic medullary and perivascular B cells and their respective physiological and pathological roles in central tolerance and autoimmune diseases.
Collapse
Affiliation(s)
- Justine Castañeda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Yessia Hidalgo
- Cells for cells-Consorcio Regenero, Universidad de Los Andes, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Fundación Ciencia y Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
17
|
Vollmann EH, Rattay K, Barreiro O, Thiriot A, Fuhlbrigge RA, Vrbanac V, Kim KW, Jung S, Tager AM, von Andrian UH. Specialized transendothelial dendritic cells mediate thymic T-cell selection against blood-borne macromolecules. Nat Commun 2021; 12:6230. [PMID: 34711828 PMCID: PMC8553756 DOI: 10.1038/s41467-021-26446-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
T cells undergo rigorous selection in the thymus to ensure self-tolerance and prevent autoimmunity, with this process requiring innocuous self-antigens (Ags) to be presented to thymocytes. Self-Ags are either expressed by thymic stroma cells or transported to the thymus from the periphery by migratory dendritic cells (DCs); meanwhile, small blood-borne peptides can access the thymic parenchyma by diffusing across the vascular lining. Here we describe an additional pathway of thymic Ag acquisition that enables circulating antigenic macromolecules to access both murine and human thymi. This pathway depends on a subset of thymus-resident DCs, distinct from both parenchymal and circulating migratory DCs, that are positioned in immediate proximity to thymic microvessels where they extend cellular processes across the endothelial barrier into the blood stream. Transendothelial positioning of DCs depends on DC-expressed CX3CR1 and its endothelial ligand, CX3CL1, and disrupting this chemokine pathway prevents thymic acquisition of circulating proteins and compromises negative selection of Ag-reactive thymocytes. Thus, transendothelial DCs represent a mechanism by which the thymus can actively acquire blood-borne Ags to induce and maintain central tolerance.
Collapse
Affiliation(s)
- Elisabeth H Vollmann
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
- Merck Research Laboratories, Boston, MA, 02115, USA
| | - Kristin Rattay
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, Marburg, Germany
| | - Olga Barreiro
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Aude Thiriot
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca A Fuhlbrigge
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA
| | - Vladimir Vrbanac
- Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Humanized Immune System Mouse Program (HISMP), Boston, MA, 02114, USA
| | - Ki-Wook Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ulrich H von Andrian
- Department of Immunology & HMS Center for Immune Imaging, Harvard Medical School, Boston, MA, 02115, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Aggarwal V, Tuli HS, Varol M, Tuorkey M, Sak K, Parashar NC, Barwal TS, Sharma U, Iqubal A, Parashar G, Jain A. NOTCH signaling: Journey of an evolutionarily conserved pathway in driving tumor progression and its modulation as a therapeutic target. Crit Rev Oncol Hematol 2021; 164:103403. [PMID: 34214610 DOI: 10.1016/j.critrevonc.2021.103403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade, is critical for normal biological processes of cell differentiation, development, and homeostasis. Deregulation of the Notch signaling pathway has been associated with tumor progression. Thus, Notch presents as an interesting target for a variety of cancer subtypes and its signaling mechanisms have been actively explored from the therapeutic viewpoint. However, besides acting as an oncogene, Notch pathway can possess also tumor suppressive functions, being implicated in inhibition of cancer development. Given such interesting dual and dynamic role of Notch, in this review, we discuss how the evolutionarily conserved Notch signaling pathway drives hallmarks of tumor progression and how it could be targeted for a promising treatment and management of cancer. In addition, the up-to-date information on the inhibitors currently under clinical trials for Notch targets is presented along with how NOTCH inhibitors can be used in conjunction with established chemotherapy/radiotherapy regimes.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, USA.
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey.
| | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt.
| | | | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India.
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Village-Ghudda, 151 401, Punjab, India.
| |
Collapse
|
19
|
Pohlmeier L, Sonar SS, Rodewald H, Kopf M, Tortola L. Comparative analysis of the role of mast cells in murine asthma models using Kit-sufficient mast cell-deficient animals. Allergy 2021; 76:2030-2043. [PMID: 33559884 DOI: 10.1111/all.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is a frequent chronic disease that can potentially severely affect the respiratory capacity and well-being of patients. Mast cells (MCs) are regarded as major players in human asthma due to their capacity to release crucial inflammatory mediators following allergen exposure. However, unambiguous characterization of their role in animal models has long been hindered by the unavailability of specific MC-deficient models lacking confounding MC-unrelated effects. This study aims to examine the role of MCs in Kit-sufficient MC-deficient Cpa3Cre /+ mice. METHODS We used a variety of models of acute and chronic asthma employing distinct routes and regimes of sensitization. These sensitizations were done via the peritoneal cavity, the skin, or the lung. Additionally, different allergens, i.e. ovalbumin and house dust mite extract, were used. RESULTS Our results show that the absence of MCs had no impact on the severity of allergic airway inflammation in any of the tested mouse models, as measured by leukocyte infiltration in the airways, cytokine expression, antibody production, airway hyper-responsiveness and mucus production. CONCLUSION This indicates that MCs do not play a major role in murine allergic airway inflammation.
Collapse
Affiliation(s)
- Lea Pohlmeier
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | | | - Hans‐Reimer Rodewald
- Division for Cellular Immunology German Cancer Research Center Heidelberg Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| | - Luigi Tortola
- Institute of Molecular Health Sciences ETH Zurich Zurich Switzerland
| |
Collapse
|
20
|
Ng HL, Quail E, Cruickshank MN, Ulgiati D. To Be, or Notch to Be: Mediating Cell Fate from Embryogenesis to Lymphopoiesis. Biomolecules 2021; 11:biom11060849. [PMID: 34200313 PMCID: PMC8227657 DOI: 10.3390/biom11060849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Notch signaling forms an evolutionarily conserved juxtacrine pathway crucial for cellular development. Initially identified in Drosophila wing morphogenesis, Notch signaling has since been demonstrated to play pivotal roles in governing mammalian cellular development in a large variety of cell types. Indeed, abolishing Notch constituents in mouse models result in embryonic lethality, demonstrating that Notch signaling is critical for development and differentiation. In this review, we focus on the crucial role of Notch signaling in governing embryogenesis and differentiation of multiple progenitor cell types. Using hematopoiesis as a diverse cellular model, we highlight the role of Notch in regulating the cell fate of common lymphoid progenitors. Additionally, the influence of Notch through microenvironment interplay with lymphoid cells and how dysregulation influences disease processes is explored. Furthermore, bi-directional and lateral Notch signaling between ligand expressing source cells and target cells are investigated, indicating potentially novel therapeutic options for treatment of Notch-mediated diseases. Finally, we discuss the role of cis-inhibition in regulating Notch signaling in mammalian development.
Collapse
Affiliation(s)
- Han Leng Ng
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK;
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Elizabeth Quail
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark N. Cruickshank
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
| | - Daniela Ulgiati
- School of Biomedical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia; (E.Q.); (M.N.C.)
- Correspondence: ; Tel.: +61-8-6457-1076
| |
Collapse
|
21
|
Romero-Wolf M, Shin B, Zhou W, Koizumi M, Rothenberg EV, Hosokawa H. Notch2 complements Notch1 to mediate inductive signaling that initiates early T cell development. J Cell Biol 2021; 219:152003. [PMID: 32756905 PMCID: PMC7659720 DOI: 10.1083/jcb.202005093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is the dominant intercellular signaling input during the earliest stages of T cell development in the thymus. Although Notch1 is known to be indispensable, we show that it does not mediate all Notch signaling in precommitment stages: Notch2 initially works in parallel to promote early murine T cell development and antagonize other fates. Notch-regulated target genes before and after T lineage commitment change dynamically, and we show that this partially reflects shifts in genome-wide DNA binding by RBPJ, the transcription factor activated by complex formation with the Notch intracellular domain. Although Notch signaling and transcription factor PU.1 can activate some common targets in precommitment T progenitors, Notch signaling and PU.1 activity have functionally antagonistic effects on multiple targets, delineating separation of pro-T cells from alternative PU.1-dependent fates. These results define a distinct mechanism of Notch signal response that distinguishes the initial stages of murine T cell development.
Collapse
Affiliation(s)
- Maile Romero-Wolf
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Boyoung Shin
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Wen Zhou
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Maria Koizumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA
| | - Hiroyuki Hosokawa
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.,Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
22
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
23
|
De Decker M, Lavaert M, Roels J, Tilleman L, Vandekerckhove B, Leclercq G, Van Nieuwerburgh F, Van Vlierberghe P, Taghon T. HES1 and HES4 have non-redundant roles downstream of Notch during early human T-cell development. Haematologica 2021; 106:130-141. [PMID: 31919081 PMCID: PMC7776241 DOI: 10.3324/haematol.2019.226126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
In both mouse and human, Notch1 activation is the main initial driver to induce T-cell development in hematopoietic progenitor cells. The initiation of this developmental process coincides with Notch1-dependent repression of differentiation towards other hematopoietic lineages. Although well described in mice, the role of the individual Notch1 target genes during these hematopoietic developmental choices is still unclear in human, particularly for HES4 since no orthologous gene is present in the mouse. Here, we investigated the functional capacity of the Notch1 target genes HES1 and HES4 to modulate human Notch1-dependent hematopoietic lineage decisions and their requirement during early T-cell development. We show that both genes are upregulated in a Notch-dependent manner during early T-cell development and that HES1 acts as a repressor of differentiation by maintaining a quiescent stem cell signature in CD34+ hematopoietic progenitor cells. While HES4 can also inhibit natural killer and myeloid cell development like HES1, it acts differently on the T- versus B-cell lineage choice. Surprisingly, HES4 is not capable of repressing B-cell development, the most sensitive hematopoietic lineage with respect to Notch-mediated repression. In contrast to HES1, HES4 promotes initiation of early T-cell development, but ectopic expression of HES4, or HES1 and HES4 combined, is not sufficient to induce T-lineage differentiation. Importantly, knockdown of HES1 or HES4 significantly reduces human T-cell development. Overall, we show that the Notch1 target genes HES1 and HES4 have non-redundant roles during early human T-cell development which may relate to differences in mediating Notch-dependent human hematopoietic lineage decisions.
Collapse
Affiliation(s)
| | - Marieke Lavaert
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Juliette Roels
- Department of Diagnostic Sciences and of Bimolecular Medicine, Ghent University, Ghent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG),Dept of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent (CRIG),Dept of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Dept of Biomolecular Medicine, Ghent University, Belgium
| | - Tom Taghon
- Cancer Research Institute Ghent (CRIG),Dept of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Transcription Factor RBPJ as a Molecular Switch in Regulating the Notch Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:9-30. [PMID: 33034023 DOI: 10.1007/978-3-030-55031-8_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signal transduction cascade requires cell-to-cell contact and results in the proteolytic processing of the Notch receptor and subsequent assembly of a transcriptional coactivator complex containing the Notch intracellular domain (NICD) and transcription factor RBPJ. In the absence of a Notch signal, RBPJ remains at Notch target genes and dampens transcriptional output. Like in other signaling pathways, RBPJ is able to switch from activation to repression by associating with corepressor complexes containing several chromatin-modifying enzymes. Here, we focus on the recent advances concerning RBPJ-corepressor functions, especially in regard to chromatin regulation. We put this into the context of one of the best-studied model systems for Notch, blood cell development. Alterations in the RBPJ-corepressor functions can contribute to the development of leukemia, especially in the case of acute myeloid leukemia (AML). The versatile role of transcription factor RBPJ in regulating pivotal target genes like c-MYC and HES1 may contribute to the better understanding of the development of leukemia.
Collapse
|
25
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
26
|
Parmigiani E, Taylor V, Giachino C. Oncogenic and Tumor-Suppressive Functions of NOTCH Signaling in Glioma. Cells 2020; 9:cells9102304. [PMID: 33076453 PMCID: PMC7602630 DOI: 10.3390/cells9102304] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Although the role of NOTCH signaling has been extensively studied in health and disease, many questions still remain unresolved. Being crucial for tissue homeostasis, NOTCH signaling is also implicated in multiple cancers by either promoting or suppressing tumor development. In this review we illustrate the context-dependent role of NOTCH signaling during tumorigenesis with a particular focus on gliomas, the most frequent and aggressive brain tumors in adults. For a long time, NOTCH has been considered an oncogene in glioma mainly by virtue of its neural stem cell-promoting activity. However, the recent identification of NOTCH-inactivating mutations in some glioma patients has challenged this notion, prompting a re-examination of the function of NOTCH in brain tumor subtypes. We discuss recent findings that might help to reconcile the controversial role of NOTCH signaling in this disease, and pose outstanding questions that still remain to be addressed.
Collapse
|
27
|
Shin DY, Huang X, Gil CH, Aljoufi A, Ropa J, Broxmeyer HE. Physioxia enhances T-cell development ex vivo from human hematopoietic stem and progenitor cells. Stem Cells 2020; 38:1454-1466. [PMID: 32761664 DOI: 10.1002/stem.3259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022]
Abstract
Understanding physiologic T-cell development from hematopoietic stem (HSCs) and progenitor cells (HPCs) is essential for development of improved hematopoietic cell transplantation (HCT) and emerging T-cell therapies. Factors in the thymic niche, including Notch 1 receptor ligand, guide HSCs and HPCs through T-cell development in vitro. We report that physiologically relevant oxygen concentration (5% O2 , physioxia), an important environmental thymic factor, promotes differentiation of cord blood CD34+ cells into progenitor T (proT) cells in serum-free and feeder-free culture system. This effect is enhanced by a potent reducing and antioxidant agent, ascorbic acid. Human CD34+ cell-derived proT cells in suspension cultures maturate into CD3+ T cells in an artificial thymic organoid (ATO) culture system more efficiently when maintained under physioxia, compared to ambient air. Low oxygen tension acts as a positive regulator of HSC commitment and HPC differentiation toward proT cells in the feeder-free culture system and for further maturation into T cells in the ATO. Culturing HSCs/HPCs in physioxia is an enhanced method of effective progenitor T and mature T-cell production ex vivo and may be of future use for HCT and T-cell immunotherapies.
Collapse
Affiliation(s)
- Dong-Yeop Shin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Division of Hematology and Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Xinxin Huang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chang-Hyun Gil
- Division of Vascular Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Pucella JN, Upadhaya S, Reizis B. The Source and Dynamics of Adult Hematopoiesis: Insights from Lineage Tracing. Annu Rev Cell Dev Biol 2020; 36:529-550. [PMID: 32580566 DOI: 10.1146/annurev-cellbio-020520-114601] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of all blood cell lineages (hematopoiesis) is sustained throughout the entire life span of adult mammals. Studies using cell transplantation identified the self-renewing, multipotent hematopoietic stem cells (HSCs) as the source of hematopoiesis in adoptive hosts and delineated a hierarchy of HSC-derived progenitors that ultimately yield mature blood cells. However, much less is known about adult hematopoiesis as it occurs in native hosts, i.e., without transplantation. Here we review recent advances in our understanding of native hematopoiesis, focusing in particular on the application of genetic lineage tracing in mice. The emerging evidence has established HSCs as the major source of native hematopoiesis, helped to define the kinetics of HSC differentiation, and begun exploring native hematopoiesis in stress conditions such as aging and inflammation. Major outstanding questions about native hematopoiesis still remain, such as its clonal composition, the nature of lineage commitment, and the dynamics of the process in humans.
Collapse
Affiliation(s)
- Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; , ,
| |
Collapse
|
29
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Guha I, Bhuniya A, Shukla D, Patidar A, Nandi P, Saha A, Dasgupta S, Ganguly N, Ghosh S, Nair A, Majumdar S, Saha B, Storkus WJ, Baral R, Bose A. Tumor Arrests DN2 to DN3 Pro T Cell Transition and Promotes Its Conversion to Thymic Dendritic Cells by Reciprocally Regulating Notch1 and Ikaros Signaling. Front Immunol 2020; 11:898. [PMID: 32582141 PMCID: PMC7292239 DOI: 10.3389/fimmu.2020.00898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/17/2020] [Indexed: 11/13/2022] Open
Abstract
Tumor progression in the host leads to severe impairment of intrathymic T-cell differentiation/maturation, leading to the paralysis of cellular anti-tumor immunity. Such suppression manifests the erosion of CD4+CD8+ double-positive (DP) immature thymocytes and a gradual increase in CD4-CD8- double negative (DN) early T-cell progenitors. The impact of such changes on the T-cell progenitor pool in the context of cancer remains poorly investigated. Here, we show that tumor progression blocks the transition of Lin-Thy1.2+CD25+CD44+c-KitlowDN2b to Lin-Thy1.2+CD25+CD44-c-Kit-DN3 in T-cell maturation, instead leading to DN2-T-cell differentiation into dendritic cells (DC). We observed that thymic IL-10 expression is upregulated, particularly at cortico-medullary junctions (CMJ), under conditions of progressive disease, resulting in the termination of IL-10Rhigh DN2-T-cell maturation due to dysregulated expression of Notch1 and its target, CCR7 (thus restricting these cells to the CMJ). Intrathymic differentiation of T-cell precursors in IL-10-/- mice and in vitro fetal thymic organ cultures revealed that IL-10 promotes the interaction between thymic stromal cells and Notch1low DN2-T cells, thus facilitating these DN2-T cells to differentiate toward CD45+CD11c+MHC-II+ thymic DCs as a consequence of activating the Ikaros/IRF8 signaling axis. We conclude that a novel function of thymically-expressed IL-10 in the tumor-bearing host diverts T-cell differentiation toward a DC pathway, thus limiting the protective adaptive immune repertoire.
Collapse
Affiliation(s)
- Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Divanshu Shukla
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Ashok Patidar
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Sweta Ghosh
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Arathi Nair
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Subrata Majumdar
- Department of Molecular Medicine, Bose Institute, Kolkata, India
| | - Bhaskar Saha
- Department of Pathogenesis and Cell Responses, National Centre for Cell Sciences, Pune, India
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
31
|
Lavaert M, Liang KL, Vandamme N, Park JE, Roels J, Kowalczyk MS, Li B, Ashenberg O, Tabaka M, Dionne D, Tickle TL, Slyper M, Rozenblatt-Rosen O, Vandekerckhove B, Leclercq G, Regev A, Van Vlierberghe P, Guilliams M, Teichmann SA, Saeys Y, Taghon T. Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity 2020; 52:1088-1104.e6. [PMID: 32304633 DOI: 10.1016/j.immuni.2020.03.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.
Collapse
Affiliation(s)
- Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Kai Ling Liang
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Juliette Roels
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Monica S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Haematology Department, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Bart Vandekerckhove
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium; Faculty of Sciences, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
32
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
33
|
Logical modeling of cell fate specification—Application to T cell commitment. Curr Top Dev Biol 2020; 139:205-238. [DOI: 10.1016/bs.ctdb.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Abstract
The evolutionarily conserved Notch signalling pathway regulates the differentiation and function of mature T lymphocytes with major context-dependent consequences in host defence, autoimmunity and alloimmunity. The emerging effects of Notch signalling in T cell responses build upon a more established role for Notch in T cell development. Here, we provide a critical review of this burgeoning literature to make sense of what has been learned so far and highlight the experimental strategies that have been most useful in gleaning physiologically relevant information. We outline the functional consequences of Notch signalling in mature T cells in addition to key specific Notch ligand–receptor interactions and downstream molecular signalling pathways. Our goal is to help clarify future directions for this expanding body of work and the best approaches to answer important open questions.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Chen ELY, Thompson PK, Zúñiga-Pflücker JC. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat Immunol 2019; 20:1456-1468. [PMID: 31636466 PMCID: PMC6858571 DOI: 10.1038/s41590-019-0518-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
T cell specification and commitment require Notch signaling. Although the requirement for Notch signaling during intrathymic T cell development is known, it is still unclear whether the onset of T cell priming can occur in a prethymic niche and whether RBPJ-dependent Notch signaling has a role during this event. Here, we established an Rbpj-inducible system that allowed temporal and tissue-specific control of the responsiveness to Notch in all hematopoietic cells. Using this system, we found that Notch signaling was required before the early T cell progenitor stage in the thymus. Lymphoid-primed multipotent progenitors in the bone marrow underwent Notch signaling with Rbpj induction, which inhibited development towards the myeloid lineage in thymus-seeding progenitors. Thus, our results indicated that the onset of T cell differentiation occurred in a prethymic setting, and that Notch played an important role during this event.
Collapse
Affiliation(s)
- Edward L Y Chen
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Patrycja K Thompson
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Sunnybrook Research Institute, Toronto, Ontario, Canada. .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Insights into Thymus Development and Viral Thymic Infections. Viruses 2019; 11:v11090836. [PMID: 31505755 PMCID: PMC6784209 DOI: 10.3390/v11090836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell development in the thymus is a complex and highly regulated process, involving a wide variety of cells and molecules which orchestrate thymocyte maturation into either CD4+ or CD8+ single-positive (SP) T cells. Here, we briefly review the process regulating T-cell differentiation, which includes the latest advances in this field. In particular, we highlight how, starting from a pool of hematopoietic stem cells in the bone marrow, the sequential action of transcriptional factors and cytokines dictates the proliferation, restriction of lineage potential, T-cell antigen receptors (TCR) gene rearrangements, and selection events on the T-cell progenitors, ultimately leading to the generation of mature T cells. Moreover, this review discusses paradigmatic examples of viral infections affecting the thymus that, by inducing functional changes within this lymphoid gland, consequently influence the behavior of peripheral mature T-lymphocytes.
Collapse
|
37
|
The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nat Immunol 2019; 20:1150-1160. [PMID: 31358996 PMCID: PMC6707869 DOI: 10.1038/s41590-019-0445-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/12/2019] [Indexed: 01/25/2023]
Abstract
Innate lymphoid cells (ILCs) play important functions in immunity and tissue homeostasis, but their development is poorly understood. Through the use of single-cell approaches, we examined the transcriptional and functional heterogeneity of ILC progenitors, and studied the precursor-product relationships that link the subsets identified. This analysis identified two successive stages of ILC development within T cell factor 1-positive (TCF-1+) early innate lymphoid progenitors (EILPs), which we named 'specified EILPs' and 'committed EILPs'. Specified EILPs generated dendritic cells, whereas this potential was greatly decreased in committed EILPs. TCF-1 was dispensable for the generation of specified EILPs, but required for the generation of committed EILPs. TCF-1 used a pre-existing regulatory landscape established in upstream lymphoid precursors to bind chromatin in EILPs. Our results provide insight into the mechanisms by which TCF-1 promotes developmental progression of ILC precursors, while constraining their dendritic cell lineage potential and enforcing commitment to ILC fate.
Collapse
|
38
|
Chaves P, Zriwil A, Wittmann L, Boukarabila H, Peitzsch C, Jacobsen SEW, Sitnicka E. Loss of Canonical Notch Signaling Affects Multiple Steps in NK Cell Development in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:3307-3319. [PMID: 30366956 DOI: 10.4049/jimmunol.1701675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
Within the hematopoietic system, the Notch pathway is critical for promoting thymic T cell development and suppressing the B and myeloid lineage fates; however, its impact on NK lymphopoiesis is less understood. To study the role of Notch during NK cell development in vivo, we investigated different NK cell compartments and function in Rbp-Jkfl/flVav-Cretg/+ mice, in which Rbp-Jk, the major transcriptional effector of canonical Notch signaling, was specifically deleted in all hematopoietic cells. Peripheral conventional cytotoxic NK cells in Rbp-Jk-deleted mice were significantly reduced and had an activated phenotype. Furthermore, the pool of early NK cell progenitors in the bone marrow was decreased, whereas immature NK cells were increased, leading to a block in NK cell maturation. These changes were cell intrinsic as the hematopoietic chimeras generated after transplantation of Rbp-Jk-deficient bone marrow cells had the same NK cell phenotype as the Rbp-Jk-deleted donor mice, whereas the wild-type competitors did not. The expression of several crucial NK cell regulatory pathways was significantly altered after Rbp-Jk deletion. Together, these results demonstrate the involvement of canonical Notch signaling in regulation of multiple stages of NK cell development.
Collapse
Affiliation(s)
- Patricia Chaves
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden.,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Alya Zriwil
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden.,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Lilian Wittmann
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden.,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Hanane Boukarabila
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Claudia Peitzsch
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden
| | - Sten Eirik W Jacobsen
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom.,Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden; and.,Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Ewa Sitnicka
- Lund Research Center for Stem Cell Biology and Cell Therapy, Lund University, 221 84 Lund, Sweden; .,Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
39
|
Gaudenzio N, Marichal T, Galli SJ, Reber LL. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity. Front Immunol 2018; 9:1275. [PMID: 29922295 PMCID: PMC5996070 DOI: 10.3389/fimmu.2018.01275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/22/2018] [Indexed: 01/31/2023] Open
Abstract
Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo. This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo. Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Nicolas Gaudenzio
- Unité de Différenciation Epithéliale et Autoimmunité Rhumatoïde (UDEAR), UMR 1056, INSERM, Université de Toulouse, Toulouse, France
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, GIGA Institute, Liege University, Liège, Belgium
- Faculty of Veterinary Medicine, Liege University, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Stephen J. Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Immunology and Microbiology, Stanford University School of Medicine, Stanford, CA, United States
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, United States
| | - Laurent L. Reber
- Unit of Antibodies in Therapy and Pathology, INSERM Unit 1222, Department of Immunology, Institut Pasteur, Paris, France
| |
Collapse
|
40
|
Krueger A. Thymus Colonization: Who, How, How Many? Arch Immunol Ther Exp (Warsz) 2017; 66:81-88. [PMID: 29288431 DOI: 10.1007/s00005-017-0503-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
De novo generation of T cells depends on continual colonization of the thymus by bone marrow-derived progenitors. Thymus seeding progenitors (TSPs) constitute a heterogeneous population comprising multipotent and lineage-restricted cell types. Entry into the thymic microenvironment is tightly controlled and recent quantitative studies have revealed that the adult murine thymus only contains approximately 160 niches to accommodate TSPs. Of these niches only about 6% are open for seeding on average at steady-state. Here, I review the state of understanding of colonization of the adult murine thymus with a particular focus on past and current controversies in the field. Improving thymus colonization and/or maintaining intact TSP niches during the course of pre-conditioning regimens are likely to be critical for efficient T-cell regeneration after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt am Main, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Martín-Gayo E, González-García S, García-León MJ, Murcia-Ceballos A, Alcain J, García-Peydró M, Allende L, de Andrés B, Gaspar ML, Toribio ML. Spatially restricted JAG1-Notch signaling in human thymus provides suitable DC developmental niches. J Exp Med 2017; 214:3361-3379. [PMID: 28947612 PMCID: PMC5679173 DOI: 10.1084/jem.20161564] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 06/18/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023] Open
Abstract
Martín-Gayo et al. report that human early thymic progenitors can undergo a GATA2-dependent myeloid developmental program leading to resident dendritic cells (DCs) upon JAG1-Notch activation. The identification of JAG1+ DC-permissive intrathymic niches validates the human thymus as a DC-poietic organ. A key unsolved question regarding the developmental origin of conventional and plasmacytoid dendritic cells (cDCs and pDCs, respectively) resident in the steady-state thymus is whether early thymic progenitors (ETPs) could escape T cell fate constraints imposed normally by a Notch-inductive microenvironment and undergo DC development. By modeling DC generation in bulk and clonal cultures, we show here that Jagged1 (JAG1)-mediated Notch signaling allows human ETPs to undertake a myeloid transcriptional program, resulting in GATA2-dependent generation of CD34+ CD123+ progenitors with restricted pDC, cDC, and monocyte potential, whereas Delta-like1 signaling down-regulates GATA2 and impairs myeloid development. Progressive commitment to the DC lineage also occurs intrathymically, as myeloid-primed CD123+ monocyte/DC and common DC progenitors, equivalent to those previously identified in the bone marrow, are resident in the normal human thymus. The identification of a discrete JAG1+ thymic medullary niche enriched for DC-lineage cells expressing Notch receptors further validates the human thymus as a DC-poietic organ, which provides selective microenvironments permissive for DC development.
Collapse
Affiliation(s)
- Enrique Martín-Gayo
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sara González-García
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María J García-León
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alba Murcia-Ceballos
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Alcain
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina García-Peydró
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Allende
- Immunology Department, i+12 Research Institute, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Belén de Andrés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Gaspar
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María L Toribio
- Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
42
|
Moore AJ, In TS, Trotman-Grant A, Yoganathan K, Montpellier B, Guidos CJ, Zúñiga-Pflücker JC, Anderson MK. A key role for IL-7R in the generation of microenvironments required for thymic dendritic cells. Immunol Cell Biol 2017; 95:933-942. [PMID: 28890536 PMCID: PMC5698111 DOI: 10.1038/icb.2017.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 08/10/2017] [Accepted: 08/24/2017] [Indexed: 11/21/2022]
Abstract
Interleukin-7 receptor (IL-7R) signaling is critical for multiple stages of T-cell development, but a role in the establishment of the mature thymic architecture needed for T-cell development and thymocyte selection has not been established. Crosstalk signals between developing thymocytes and thymic epithelial cell (TEC) precursors are critical for their differentiation into cortical TECs (cTECs) and medullary TECs (mTECs). In addition, mTEC-derived factors have been implicated in the recruitment of thymic dendritic cells (DCs) and intrathymic DC development. We therefore examined corticomedullary structure and DC populations in the thymus of Il7r−/− mice. Analysis of TEC phenotype and spatial organization revealed a striking shift in the mTEC to cTEC ratio, accompanied by disorganized corticomedullary structure. Several of the thymic subsets known to have DC potential were nearly absent, accompanied by reductions in DC cell numbers. We also examined chemokine expression in the Il7r−/− thymus, and found a significant decrease in mTEC-derived CCR7 ligand expression, and high levels of cTEC-derived chemokines, including CCL25 and CXCL12. Although splenic DCs were similarly affected, bone marrow (BM) precursors capable of giving rise to DCs were unperturbed. Finally, BM chimeras showed that there was no intrinsic need for IL-7R signaling in the development or recruitment of thymic DCs, but that the provision of wild-type progenitors enhanced reconstitution of thymic DCs from Il7r−/− progenitors. Our results are therefore supportive of a model in which Il7r-dependent cells are required to set up the microenvironments that allow accumulation of thymic DCs.
Collapse
Affiliation(s)
- Amanda J Moore
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tracy Sh In
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ashton Trotman-Grant
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kogulan Yoganathan
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Bertrand Montpellier
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Cynthia J Guidos
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev 2017; 278:246-262. [DOI: 10.1111/imr.12545] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Atsushi Otsuka
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Takashi Nomura
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Pawinee Rerknimitr
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Division of Dermatology; Department of Medicine; Faculty of Medicine, Allergy and Clinical Immunology Research Group; Chulalongkorn University; Bangkok Thailand
| | - Judith A. Seidel
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tetsuya Honda
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Singapore Immunology Network (SIgN) and Institute of Medical Biology; Agency for Science, Technology and Research (A*STAR); Biopolis; Singapore
| |
Collapse
|
44
|
Roles of basophils and mast cells in cutaneous inflammation. Semin Immunopathol 2016; 38:563-70. [PMID: 27170045 DOI: 10.1007/s00281-016-0570-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
Mast cells and basophils are associated with T helper 2 (Th2) immune responses. Newly developed mast cell-deficient mice have provided evidence that mast cells initiate contact hypersensitivity via activating dendritic cells. Studies using basophil-deficient mice have also revealed that basophils are responsible for cutaneous Th2 skewing to haptens and peptide antigens but not to protein antigens. Recently, several studies reported the existence of innate lymphoid cells (ILCs), which differ from classic T cells in that they lack the T cell receptor. Mast cells and basophils can interact with ILCs and play some roles in the pathogenesis of Th2 responses. Basophil-derived interleukin (IL)-4 enhances the expression of the chemokine CCL11, as well as IL-5, IL-9, and IL-13 in ILC2s, leading to the accumulation of eosinophils in allergic reactions. IL-33-stimulated mast cells can play a regulatory role in the development of ILC2-mediated non-antigen-specific protease-induced acute inflammation. In this review, we discuss the recent advances in our understanding of mast cells and basophils in immunity and inflammation.
Collapse
|
45
|
Zhou Y, Yu X, Chen H, Sjöberg S, Roux J, Zhang L, Ivoulsou AH, Bensaid F, Liu CL, Liu J, Tordjman J, Clement K, Lee CH, Hotamisligil GS, Libby P, Shi GP. Leptin Deficiency Shifts Mast Cells toward Anti-Inflammatory Actions and Protects Mice from Obesity and Diabetes by Polarizing M2 Macrophages. Cell Metab 2015; 22:1045-58. [PMID: 26481668 PMCID: PMC4670585 DOI: 10.1016/j.cmet.2015.09.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/09/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) contribute to the pathogenesis of obesity and diabetes. This study demonstrates that leptin deficiency slants MCs toward anti-inflammatory functions. MCs in the white adipose tissue (WAT) of lean humans and mice express negligible leptin. Adoptive transfer of leptin-deficient MCs expanded ex vivo mitigates diet-induced and pre-established obesity and diabetes in mice. Mechanistic studies show that leptin-deficient MCs polarize macrophages from M1 to M2 functions because of impaired cell signaling and an altered balance between pro- and anti-inflammatory cytokines, but do not affect T cell differentiation. Rampant body weight gain in ob/ob mice, a strain that lacks leptin, associates with reduced MC content in WAT. In ob/ob mice, genetic depletion of MCs exacerbates obesity and diabetes, and repopulation of ex vivo expanded ob/ob MCs ameliorates these diseases.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xueqing Yu
- Department of Nephrology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Huimei Chen
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Research Institute of Nephrology, Nanjing University School of Medicine, Nanjing 210002, China
| | - Sara Sjöberg
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joséphine Roux
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lijun Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Al-Habib Ivoulsou
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Farid Bensaid
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cong-Lin Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jian Liu
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Biological Sciences, School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Joan Tordjman
- INSERM, U 872, Paris, F-75006 France, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMRS 872, Paris, F-75006 France; Université Paris Descartes, UMRS 872, Paris, F-75006 France
| | - Karine Clement
- INSERM, U 872, Paris, F-75006 France, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris6, UMRS 872, Paris, F-75006 France; Université Paris Descartes, UMRS 872, Paris, F-75006 France
| | - Chih-Hao Lee
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Gokhan S Hotamisligil
- Department of Genetics and Complex Diseases, School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Yamano T, Steinert M, Klein L. Thymic B Cells and Central T Cell Tolerance. Front Immunol 2015; 6:376. [PMID: 26257742 PMCID: PMC4510420 DOI: 10.3389/fimmu.2015.00376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/09/2015] [Indexed: 11/29/2022] Open
Abstract
Central T cell tolerance is believed to be mainly induced by thymic dendritic cells and medullary thymic epithelial cells. The thymus also harbors substantial numbers of B cells. These may arise though intrathymic B lymphopoiesis or immigration from the bloodstream. Importantly, and in contrast to resting “mainstream” B cells in the periphery, thymic B cells display elevated levels of MHC class II and constitutively express CD80. Arguably, their most unexpected feature is the expression of autoimmune regulator. These unique features of thymic B cells result from a licensing process that involves cross-talk with CD4 single-positive T cells and CD40 signaling. Together, these recent findings suggest that B cells play a more prominent role as thymic APCs than previously appreciated.
Collapse
Affiliation(s)
- Tomoyoshi Yamano
- Institute for Immunology, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Madlen Steinert
- Institute for Immunology, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Ludger Klein
- Institute for Immunology, Ludwig-Maximilians-University Munich , Munich , Germany
| |
Collapse
|
47
|
The development and function of thymic B cells. Cell Mol Life Sci 2015; 72:2657-63. [PMID: 25837998 DOI: 10.1007/s00018-015-1895-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/04/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Thymic B cells are a unique population of B lymphocytes that reside at the cortico-medullary junction of the thymus, an organ that is specialized for the development and selection of T cells. These B cells are distinct from peripheral B cells both in terms of their origin and phenotype. Multiple lines of evidence suggest that they develop within the thymus from B lineage-committed progenitors and are not recirculating peripheral B cells. Furthermore, thymic B cells have a highly activated phenotype. Because of their location in the thymic medulla, they have been thought to play a role in T cell negative selection. Thymic B cells are capable of inducing negative selection in a number of model antigen systems, including viral super antigen, peptides from immunoglobulin, and cognate self antigen presented by B cell receptor-mediated uptake. These findings establish thymic B cells as a novel and important population to study; however, much work remains to be done to understand how all of these unique aspects of thymic B cell biology inform their function.
Collapse
|
48
|
Baker CN, Gidus SA, Price GF, Peoples JNR, Ebert SN. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation. Am J Physiol Endocrinol Metab 2015; 308:E402-13. [PMID: 25516547 PMCID: PMC4346738 DOI: 10.1152/ajpendo.00267.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development.
Collapse
Affiliation(s)
- Candice N Baker
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| | - Sarah A Gidus
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| | - George F Price
- Department of Electron Microscopy, Department of Pathology, Orlando Regional Medical Center, Orlando, Florida
| | - Jessica N R Peoples
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| | - Steven N Ebert
- Burnett School of Biomedical Sciences, University of Central Florida, College of Medicine, Orlando, Florida; and
| |
Collapse
|
49
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
50
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|