1
|
Wang Q, Boccalatte F, Xu J, Gambi G, Nadorp B, Akter F, Mullin C, Melnick AF, Choe E, McCarter AC, Jerome NA, Chen S, Lin K, Khan S, Kodgule R, Sussman JH, Pölönen P, Rodriguez-Hernaez J, Narang S, Avrampou K, King B, Tsirigos A, Ryan RJ, Mullighan CG, Teachey DT, Tan K, Aifantis I, Chiang MY. Native stem cell transcriptional circuits define cardinal features of high-risk leukemia. J Exp Med 2025; 222:e20231349. [PMID: 39969525 PMCID: PMC11837855 DOI: 10.1084/jem.20231349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/11/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Abstract
While the mutational landscape across early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) and ETP-like leukemia is known, establishing a unified framework that activates stem cell genes characteristic of these tumors remains elusive. Using complementary mouse and human models, chromatin mapping, and enhancer profiling, we show that the coactivator ZMIZ1 promotes normal and malignant ETP population growth by inducing the transcription factor MYB in feedforward circuits to convergently activate oncogenes (MEF2C, MYCN, and BCL2) through essential enhancers. A key superenhancer, the N-Myc regulating enhancer (NMRE), drives malignant ETP population growth but is dispensable for normal lymphopoiesis. This network of stem cell superenhancers identifies treatment-resistant tumors and poor survival outcomes; unifies diverse ETP-ALLs; and contributes to cardinal features of the recently genomically identified high-risk bone marrow progenitor-like (BMP-like) ETP-ALL tumor-stem cell/myeloid gene expression, inhibited NOTCH1-induced T-cell development, aggressive clinical behavior, and venetoclax sensitivity. Since ZMIZ1 is dispensable for essential homeostasis, it might be possible to safely target this network to treat high-risk diseases.
Collapse
Affiliation(s)
- Qing Wang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Gambi
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Fatema Akter
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Carea Mullin
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ashley F. Melnick
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Elizabeth Choe
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Anna C. McCarter
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nicole A. Jerome
- Cancer Biology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Siyi Chen
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Karena Lin
- Cellular and Molecular Biology Program, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Sarah Khan
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rohan Kodgule
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan H. Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Petri Pölönen
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Javier Rodriguez-Hernaez
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sonali Narang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Kleopatra Avrampou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Bryan King
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - David T. Teachey
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kai Tan
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Mark Y. Chiang
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Abe S, Kagao M, Asahi T, Kato R, Tani-Ichi S, Shimba A, Ishibashi R, Miyachi H, Kitano S, Miyazaki M, Rodewald HR, Toyoshima F, Ikuta K. The transcription factor RORα is required for the development of type 1 innate lymphoid cells in adult bone marrow. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:575-581. [PMID: 40079843 DOI: 10.1093/jimmun/vkaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2025] [Indexed: 03/15/2025]
Abstract
Type 1 innate lymphoid cells (ILC1s) respond to infections and tumors by producing IFN-γ. Although RAR-related orphan receptor α (RORα) is required for ILC2s and some ILC3s, its role in ILC1 development remains controversial. To investigate the role of RORα in ILC1s, we analyzed bone marrow (BM) chimeras of RORα-deficient mice. ILC1s derived from RORα-deficient BM cells were significantly reduced in various tissues, including the intestine, indicating a hematopoietic cell-intrinsic need for RORα in ILC1 development. Developmental stage-specific RORα-deficient mice showed a decrease in adult liver and BM IL-7R+ ILC1s and an increase in BM NK cells, whereas fetal liver ILC1s and adult liver IL-7R- ILC1s remained unchanged. Furthermore, RORα is primarily required for IL-7R+ precursor stages and partially affects small intestine ILC1 after differentiation. This study suggests that RORα promotes ILC1 differentiation while suppressing NK cell differentiation at the ILC precursor stage in the adult BM.
Collapse
MESH Headings
- Animals
- Mice
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 1/immunology
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Immunity, Innate
- Cell Differentiation/immunology
- Mice, Knockout
- Mice, Inbred C57BL
- Lymphocytes/immunology
- Killer Cells, Natural/immunology
- Bone Marrow Cells/immunology
- Liver/immunology
- Bone Marrow/immunology
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Homeostatic Medicine, Medical Research Laboratory, Institute for Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Moe Kagao
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryoma Kato
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Riki Ishibashi
- Laboratory of Tissue Homeostasis, Department of Biosystem Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Fumiko Toyoshima
- Department of Homeostatic Medicine, Medical Research Laboratory, Institute for Integrated Research, Institute of Science Tokyo, Tokyo, Japan
- Laboratory of Tissue Homeostasis, Department of Biosystem Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Miyazaki K, Horie K, Watanabe H, Hidaka R, Hayashi R, Hayatsu N, Fujiwara K, Kuwata R, Uehata T, Ochi Y, Takenaka M, Kawaguchi RK, Ikuta K, Takeuchi O, Ogawa S, Hozumi K, Holländer GA, Kondoh G, Akiyama T, Miyazaki M. A feedback amplifier circuit with Notch and E2A orchestrates T-cell fate and suppresses the innate lymphoid cell lineages during thymic ontogeny. Genes Dev 2025; 39:384-400. [PMID: 39904558 PMCID: PMC11874989 DOI: 10.1101/gad.352111.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025]
Abstract
External signals from the thymic microenvironment and the activities of lineage-specific transcription factors (TFs) instruct T-cell versus innate lymphoid cell (ILC) fates. However, mechanistic insights into how factors such as Notch1-Delta-like-4 (Dll4) signaling and E-protein TFs collaborate to establish T-cell identity remain rudimentary. Using multiple in vivo approaches and single-cell multiome analysis, we identified a feedback amplifier circuit that specifies fetal and adult T-cell fates. In early T progenitors (ETPs) in the fetal thymus, Notch signaling minimally lowered E-protein antagonist Id2 levels, and high Id2 abundance favored the differentiation of ETPs into ILCs. Conversely, in the adult thymus, Notch signaling markedly decreased Id2 abundance in ETPs, substantially elevating E-protein DNA binding and in turn promoting the activation of a T-cell lineage-specific gene expression program linked with V(D)J gene recombination and T-cell receptor signaling. Our findings indicate that, in the fetal versus the adult thymus, a simple feedback amplifier circuit dictated by Notch-mediated signals and Id2 abundance enforces T-cell identity and suppresses ILC development.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Reiko Hidaka
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rinako Hayashi
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Kentaro Fujiwara
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Rei Kuwata
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Takenaka
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | - Koichi Ikuta
- Laboratory of Immune Regulation, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI ASHBi), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm 171 77, Sweden
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Georg A Holländer
- Department of Pediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford OX3 7TY, United Kingdom
- Pediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel 4056, Switzerland
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel 4056, Switzerland
| | - Gen Kondoh
- Laboratory of Integrative Biological Sciences, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
4
|
Kadel S, Miller RAJ, Karlik A, Turner S, Williams AP, Ainsua-Enrich E, Hatipoglu I, Bagavant H, Alberola-Ila J, Garton JW, Pelikan R, Kovats S. ANDROGENS PROTECT ILC2S FROM FUNCTIONAL SUPPRESSION DURING INFLUENZA VIRUS INFECTION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634583. [PMID: 39896545 PMCID: PMC11785168 DOI: 10.1101/2025.01.23.634583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Biological sex differences in morbidity upon influenza A virus (IAV) infection are linked to stronger IFN-centered immune responses in females, yet the regulatory role of sex hormone receptors in immune cell subsets is incompletely understood. Lung-resident group 2 innate lymphoid cells (ILC2s) express notably high levels of androgen receptors (AR). In IAV infection, ILC2s produce type 2 cytokines and facilitate tissue repair, but they also may be functionally suppressed by type 1 cytokines. Here we report sex differences in the magnitude of lung ILC2 functional suppression at the peak of sublethal IAV infection. Relative to males, ILC2s in females show attenuated proliferation, decreased propensity for IL-5 and amphiregulin production and reduced expression of GATA3 and IL-33R, features supported by divergent transcriptomes. Equivalent inflammatory cytokine levels and viral load suggested sex differences in ILC2-intrinsic factors. Indeed, naïve female ILC2s showed elevated IFNGR expression and higher phospho-STAT1 levels following IFNγ stimulation, and lymphocyte-restricted STAT1 deficiency reversed IAV-induced suppression of female ILC2s. Lymphocyte-restricted AR deficiency or loss of androgens via orchiectomy led to increased IFNGR expression and suppression of male ILC2s. These data support the hypothesis that intrinsic AR activity regulates IFNGR-STAT1 signaling pathways to preserve canonical ILC2 function in males during IAV infection.
Collapse
|
5
|
Šestan M, Raposo B, Rendas M, Brea D, Pirzgalska R, Rasteiro A, Aliseychik M, Godinho I, Ribeiro H, Carvalho T, Wueest S, Konrad D, Veiga-Fernandes H. Neuronal-ILC2 interactions regulate pancreatic glucagon and glucose homeostasis. Science 2025; 387:eadi3624. [PMID: 39818880 DOI: 10.1126/science.adi3624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/02/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
The immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis. Additionally, intestinal ILC2s were found in the pancreas, which was dependent on their expression of the adrenergic beta 2 receptor. Targeted activation of catecholaminergic intestinal neurons promoted the accumulation of ILC2s in the pancreas. Our work provides evidence that immune cells can be regulated by neuronal signals in response to fasting, activating an inter-organ communication route that promotes pancreatic endocrine function and regulation of blood glucose levels.
Collapse
Affiliation(s)
- Marko Šestan
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Bruno Raposo
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Miguel Rendas
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - David Brea
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Roksana Pirzgalska
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Ana Rasteiro
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Maria Aliseychik
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Inês Godinho
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Hélder Ribeiro
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Tania Carvalho
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, University of Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Henrique Veiga-Fernandes
- Champalimaud Foundation. Champalimaud Centre for the Unknown. Champalimaud Research. Lisbon, Portugal
| |
Collapse
|
6
|
Sorkhdini P, Klubock-Shukla K, Sheth S, Yang D, Yang AX, Norbrun C, Introne WJ, Gochuico BR, Zhou Y. Type 2 innate immunity promotes the development of pulmonary fibrosis in Hermansky-Pudlak syndrome. JCI Insight 2024; 9:e178381. [PMID: 39405112 PMCID: PMC11601950 DOI: 10.1172/jci.insight.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Hermansky-Pudlak syndrome (HPS), particularly types 1 and 4, is characterized by progressive pulmonary fibrosis, a major cause of morbidity and mortality. However, the precise mechanisms driving pulmonary fibrosis in HPS are not fully elucidated. Our previous studies suggested that CHI3L1-driven fibroproliferation may be a notable factor in HPS-associated fibrosis. This study aimed to explore the role of CHI3L1-CRTH2 interaction on type 2 innate lymphoid cells (ILC2s) and explored the potential contribution of ILC2-fibroblast crosstalk in the development of pulmonary fibrosis in HPS. We identified ILC2s in lung tissues from patients with idiopathic pulmonary fibrosis and HPS. Using bleomycin-challenged WT and Hps1-/- mice, we observed that ILC2s were recruited and appeared to contribute to fibrosis development in the Hps1-/- mice, with CRTH2 playing a notable role in ILC2 accumulation. We sorted ILC2s, profiled fibrosis-related genes and mediators, and conducted coculture experiments with primary lung ILC2s and fibroblasts. Our findings suggest that ILC2s may directly stimulate the proliferation and differentiation of primary lung fibroblasts partially through amphiregulin-EGFR-dependent mechanisms. Additionally, specific overexpression of CHI3L1 in the ILC2 population using the IL-7Rcre driver, which was associated with increased fibroproliferation, indicates that ILC2-mediated, CRTH2-dependent mechanisms might contribute to optimal CHI3L1-induced fibroproliferative repair in HPS-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Kiran Klubock-Shukla
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Selena Sheth
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Dongqin Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Alina Xiaoyu Yang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Carmelissa Norbrun
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Wendy J. Introne
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
7
|
Ruiz Pérez M, Vandenabeele P, Tougaard P. The thymus road to a T cell: migration, selection, and atrophy. Front Immunol 2024; 15:1443910. [PMID: 39257583 PMCID: PMC11384998 DOI: 10.3389/fimmu.2024.1443910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
The thymus plays a pivotal role in generating a highly-diverse repertoire of T lymphocytes while preventing autoimmunity. Thymus seeding progenitors (TSPs) are a heterogeneous group of multipotent progenitors that migrate to the thymus via CCR7 and CCR9 receptors. While NOTCH guides thymus progenitors toward T cell fate, the absence or disruption of NOTCH signaling renders the thymus microenvironment permissive to other cell fates. Following T cell commitment, developing T cells undergo multiple selection checkpoints by engaging with the extracellular matrix, and interacting with thymic epithelial cells (TECs) and other immune subsets across the different compartments of the thymus. The different selection checkpoints assess the T cell receptor (TCR) performance, with failure resulting in either repurposing (agonist selection), or cell death. Additionally, environmental cues such as inflammation and endocrine signaling induce acute thymus atrophy, contributing to the demise of most developing T cells during thymic selection. We discuss the occurrence of acute thymus atrophy in response to systemic inflammation. The thymus demonstrates high plasticity, shaping inflammation by abrogating T cell development and undergoing profound structural changes, and facilitating regeneration and restoration of T cell development once inflammation is resolved. Despite the challenges, thymic selection ensures a highly diverse T cell repertoire capable of discerning between self and non-self antigens, ultimately egressing to secondary lymphoid organs where they complete their maturation and exert their functions.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent, Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| |
Collapse
|
8
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
9
|
Gogoi M, Clark PA, Ferreira ACF, Rodriguez Rodriguez N, Heycock M, Ko M, Murphy JE, Chen V, Luan SL, Jolin HE, McKenzie ANJ. ILC2-derived LIF licences progress from tissue to systemic immunity. Nature 2024; 632:885-892. [PMID: 39112698 PMCID: PMC11338826 DOI: 10.1038/s41586-024-07746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Collapse
Affiliation(s)
- Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Victor Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shi-Lu Luan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
10
|
Rodrigues PF, Trsan T, Cvijetic G, Khantakova D, Panda SK, Liu Z, Ginhoux F, Cella M, Colonna M. Progenitors of distinct lineages shape the diversity of mature type 2 conventional dendritic cells. Immunity 2024; 57:1567-1585.e5. [PMID: 38821051 DOI: 10.1016/j.immuni.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/15/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Conventional dendritic cells (cDC) are antigen-presenting cells comprising cDC1 and cDC2, responsible for priming naive CD8+ and CD4+ T cells, respectively. Recent studies have unveiled cDC2 heterogeneity and identified various cDC2 progenitors beyond the common DC progenitor (CDP), hinting at distinct cDC2 lineages. By generating Cd300ciCre-hCD2R26tdTomato reporter mice, we identified a bone marrow pro-cDC2 progenitor exclusively generating cDC2 in vitro and in vivo. Single-cell analyses and multiparametric flow cytometry demonstrated that pro-cDC2 encompasses myeloid-derived pre-cDC2 and lymphoid-derived plasmacytoid DC (pDC)-like precursors differentiating into a transcriptionally convergent cDC2 phenotype. Cd300c-traced cDC2 had distinct transcriptomic profiles, phenotypes, and tissue distributions compared with Ms4a3CreR26tdTomato lineage-traced DC3, a monocyte-DC progenitor (MDP)-derived subset that bypasses CDP. Mice with reduced Cd300c-traced cDC2 showed impaired humoral responses to T cell-dependent antigens. We conclude that progenitors of distinct lineages shape the diversity of mature cDC2 across tissues. Thus, ontogenesis may impact tissue immune responses.
Collapse
Affiliation(s)
- Patrick Fernandes Rodrigues
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Grozdan Cvijetic
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Darya Khantakova
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800 Villejuif, France; Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos Building, Level 3, Singapore 138648, Singapore
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Ding Y, Lavaert M, Grassmann S, Band VI, Chi L, Das A, Das S, Harly C, Shissler SC, Malin J, Peng D, Zhao Y, Zhu J, Belkaid Y, Sun JC, Bhandoola A. Distinct developmental pathways generate functionally distinct populations of natural killer cells. Nat Immunol 2024; 25:1183-1192. [PMID: 38872000 DOI: 10.1038/s41590-024-01865-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Natural killer (NK) cells function by eliminating virus-infected or tumor cells. Here we identified an NK-lineage-biased progenitor population, referred to as early NK progenitors (ENKPs), which developed into NK cells independently of common precursors for innate lymphoid cells (ILCPs). ENKP-derived NK cells (ENKP_NK cells) and ILCP-derived NK cells (ILCP_NK cells) were transcriptionally different. We devised combinations of surface markers that identified highly enriched ENKP_NK and ILCP_NK cell populations in wild-type mice. Furthermore, Ly49H+ NK cells that responded to mouse cytomegalovirus infection primarily developed from ENKPs, whereas ILCP_NK cells were better IFNγ producers after infection with Salmonella and herpes simplex virus. Human CD56dim and CD56bright NK cells were transcriptionally similar to ENKP_NK cells and ILCP_NK cells, respectively. Our findings establish the existence of two pathways of NK cell development that generate functionally distinct NK cell subsets in mice and further suggest these pathways may be conserved in humans.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marieke Lavaert
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Grassmann
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor I Band
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sumit Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christelle Harly
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, France
- LabEx IGO "Immunotherapy, Graft Oncology", Nantes, France
| | - Susannah C Shissler
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin Malin
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dingkang Peng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yongge Zhao
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
13
|
Reches G, Khoon L, Ghanayiem N, Malka A, Piran R. Controlling autoimmune diabetes onset by targeting Protease-Activated Receptor 2. Biomed Pharmacother 2024; 175:116622. [PMID: 38653114 DOI: 10.1016/j.biopha.2024.116622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a challenging autoimmune disease, characterized by an immune system assault on insulin-producing β-cells. As insulin facilitates glucose absorption into cells and tissues, β-cell deficiency leads to elevated blood glucose levels on one hand and target-tissues starvation on the other. Despite efforts to halt β-cell destruction and stimulate recovery, success has been limited. Our recent investigations identified Protease-Activated Receptor 2 (Par2) as a promising target in the battle against autoimmunity. We discovered that Par2 activation's effects depend on its initial activation site: exacerbating the disease within the immune system but fostering regeneration in affected tissue. METHODS We utilized tissue-specific Par2 knockout mice strains with targeted Par2 mutations in β-cells, lymphocytes, and the eye retina (as a control) in the NOD autoimmune diabetes model, examining T1D onset and β-cell survival. RESULTS We discovered that Par2 expression within the immune system accelerates autoimmune processes, while its presence in β-cells offers protection against β-cell destruction and T1D onset. This suggests a dual-strategy treatment for T1D: inhibiting Par2 in the immune system while activating it in β-cells, offering a promising strategy for T1D. CONCLUSIONS This study highlights Par2's potential as a drug target for autoimmune diseases, particularly T1D. Our results pave the way for precision medicine approaches in treating autoimmune conditions through targeted Par2 modulation.
Collapse
Affiliation(s)
- Gal Reches
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Lynn Khoon
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Assaf Malka
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ron Piran
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
14
|
Huang Q, H J Cao W, Curio S, Yu H, Denman R, Chen E, Schreuder J, Dight J, Chaudhry M, Jacquelot N, Wimmer VC, Seillet C, Möröy T, Belz GT. GFI1B specifies developmental potential of innate lymphoid cell progenitors in the lungs. Sci Immunol 2024; 9:eadj2654. [PMID: 38820141 DOI: 10.1126/sciimmunol.adj2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tissue-resident innate lymphoid cells (ILCs) play a vital role in the frontline defense of various tissues, including the lung. The development of type 2 ILCs (ILC2s) depends on transcription factors such as GATA3, RORα, GFI1, and Bcl11b; however, the factors regulating lung-resident ILC2s remain unclear. Through fate mapping analysis of the paralog transcription factors GFI1 and GFI1B, we show that GFI1 is consistently expressed during the transition from progenitor to mature ILC2s. In contrast, GFI1B expression is limited to specific subsets of bone marrow progenitors and lung-resident ILC progenitors. We found that GFI1B+ lung ILC progenitors represent a multi-lineage subset with tissue-resident characteristics and the potential to form lung-derived ILC subsets and liver-resident ILC1s. Loss of GFI1B in bone marrow progenitors led to the selective loss of lung-resident IL-18R+ ILCs and mature ILC2, subsequently preventing the emergence of effector ILCs that could protect the lung against inflammatory or tumor challenge.
Collapse
Affiliation(s)
- Qiutong Huang
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Wang H J Cao
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sophie Curio
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Huiyang Yu
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Renae Denman
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Evelyn Chen
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Jaring Schreuder
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - James Dight
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - M Chaudhry
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Nicolas Jacquelot
- Department of Biochemistry and Molecular Biology; Department of Microbiology, Immunology and Infectious Diseases; Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Verena C Wimmer
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tarik Möröy
- Institut de recherches cliniques de Montreal, Université de Montréal, Montreal, QC H2W 1R7, Canada
| | - Gabrielle T Belz
- University of Queensland Frazer Institute, University of Queensland, Woolloongabba, QLD 4102, Australia
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
15
|
Das A, Martinez-Ruiz GU, Bouladoux N, Stacy A, Moraly J, Vega-Sendino M, Zhao Y, Lavaert M, Ding Y, Morales-Sanchez A, Harly C, Seedhom MO, Chari R, Awasthi P, Ikeuchi T, Wang Y, Zhu J, Moutsopoulos NM, Chen W, Yewdell JW, Shapiro VS, Ruiz S, Taylor N, Belkaid Y, Bhandoola A. Transcription factor Tox2 is required for metabolic adaptation and tissue residency of ILC3 in the gut. Immunity 2024; 57:1019-1036.e9. [PMID: 38677292 PMCID: PMC11096055 DOI: 10.1016/j.immuni.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Group 3 innate lymphoid cells (ILC3) are the major subset of gut-resident ILC with essential roles in infections and tissue repair, but how they adapt to the gut environment to maintain tissue residency is unclear. We report that Tox2 is critical for gut ILC3 maintenance and function. Gut ILC3 highly expressed Tox2, and depletion of Tox2 markedly decreased ILC3 in gut but not at central sites, resulting in defective control of Citrobacter rodentium infection. Single-cell transcriptional profiling revealed decreased expression of Hexokinase-2 in Tox2-deficient gut ILC3. Consistent with the requirement for hexokinases in glycolysis, Tox2-/- ILC3 displayed decreased ability to utilize glycolysis for protein translation. Ectopic expression of Hexokinase-2 rescued Tox2-/- gut ILC3 defects. Hypoxia and interleukin (IL)-17A each induced Tox2 expression in ILC3, suggesting a mechanism by which ILC3 adjusts to fluctuating environments by programming glycolytic metabolism. Our results reveal the requirement for Tox2 to support the metabolic adaptation of ILC3 within the gastrointestinal tract.
Collapse
Affiliation(s)
- Arundhoti Das
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Gustavo Ulises Martinez-Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Faculty of Medicine, Research Division, National Autonomous University of Mexico, Mexico City, Mexico; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA; Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Maria Vega-Sendino
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yongge Zhao
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Marieke Lavaert
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Yi Ding
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Abigail Morales-Sanchez
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA; Children's Hospital of Mexico Federico Gomez, Mexico City, Mexico
| | - Christelle Harly
- Université de Nantes, CNRS, Inserm, CRCINA, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes, France
| | - Mina O Seedhom
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Parirokh Awasthi
- Mouse Modeling Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, NIDCR, NIH, Bethesda, MD, USA
| | - Yueqiang Wang
- Shenzhen Typhoon HealthCare, Shenzhen, Guangdong, China
| | - Jinfang Zhu
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | | | - WanJun Chen
- Mucosal Immunology Section, NIDCR, NIH, Bethesda, MD, USA
| | | | | | - Sergio Ruiz
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, NIAID, NIH, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Stankiewicz LN, Rossi FMV, Zandstra PW. Rebuilding and rebooting immunity with stem cells. Cell Stem Cell 2024; 31:597-616. [PMID: 38593798 DOI: 10.1016/j.stem.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
Advances in modern medicine have enabled a rapid increase in lifespan and, consequently, have highlighted the immune system as a key driver of age-related disease. Immune regeneration therapies present exciting strategies to address age-related diseases by rebooting the host's primary lymphoid tissues or rebuilding the immune system directly via biomaterials or artificial tissue. Here, we identify important, unanswered questions regarding the safety and feasibility of these therapies. Further, we identify key design parameters that should be primary considerations guiding technology design, including timing of application, interaction with the host immune system, and functional characterization of the target patient population.
Collapse
Affiliation(s)
- Laura N Stankiewicz
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Fabio M V Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Peter W Zandstra
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
17
|
Shaforostova I, Call S, Evers G, Reicherts C, Angenendt L, Stelljes M, Berdel WE, Pohlmann A, Mikesch J, Rosenbauer F, Lenz G, Schliemann C, Wethmar K. Prevalence and clinical impact of CD56 and T-cell marker expression in acute myeloid leukaemia: A single-centre retrospective analysis. EJHAEM 2024; 5:93-104. [PMID: 38406551 PMCID: PMC10887264 DOI: 10.1002/jha2.827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 02/27/2024]
Abstract
Flow cytometry-based immunophenotyping is a mainstay of diagnostics in acute myeloid leukaemia (AML). Aberrant CD56 and T-cell antigen expression is observed in a fraction subset of AML cases, but the clinical relevance remains incompletely understood. Here, we retrospectively investigated the association of CD56 and T-cell marker expression with disease-specific characteristics and outcome of 324 AML patients who received intensive induction therapy at our centre between 2011 and 2019. We found that CD2 expression was associated with abnormal non-complex karyotype, NPM1 wild-type status and TP53 mutation. CD2 also correlated with a lower complete remission (CR) rate (47.8% vs. 71.6%, p = 0.03). CyTdT and CD2 were associated with inferior 3-year event-free-survival (EFS) (5.3% vs. 33.5%, p = 0.003 and 17.4% vs. 33.1%, p = 0.02, respectively). CyTdT expression was also correlated with inferior relapse-free survival (27.3% vs. 48.8%, p = 0.04). In multivariable analyses CD2 positivity was an independent adverse factor for EFS (HR 1.72, p = 0.03). These results indicate a biological relevance of aberrant T-cell marker expression in AML and provide a rationale to further characterise the molecular origin in T-lineage-associated AML.
Collapse
Affiliation(s)
| | - Simon Call
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | - Georg Evers
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | | | - Linus Angenendt
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
- Department of Biosystems Science and EngineeringETH ZurichZürichSwitzerland
| | | | | | | | | | - Frank Rosenbauer
- Institute of Molecular Tumor BiologyFaculty of MedicineUniversity of MünsterMünsterGermany
| | - Georg Lenz
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| | | | - Klaus Wethmar
- Department of Medicine AUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
18
|
Miyazaki M, Miyazaki K. The Function of E2A in B-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:97-113. [PMID: 39017841 DOI: 10.1007/978-3-031-62731-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Filipp D, Manning J, Petrusová J. Extrathymic AIRE-Expressing Cells: A Historical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:33-49. [PMID: 38467971 DOI: 10.1007/978-981-99-9781-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Since its discovery, Aire has been the topic of numerous studies in its role as a transcriptional regulator in the thymus where it promotes the "promiscuous" expression of a large repertoire of tissue-restricted antigens (TRAs) that are normally expressed only in the immune periphery. This process occurs in specialized medullary thymic epithelial cells (mTECs) and mediates the elimination of self-reactive T cells or promotes their conversion to the Foxp3+ regulatory T cell lineage, both of which are required for the prevention of autoimmunity. In recent years, there has been increasing interest in the role of extrathymic Aire expression in peripheral organs. The focus has primarily been on the identification of the cellular source(s) and mechanism(s) by which extrathymic AIRE affects tolerance-related or other physiological processes. A cadre of OMICs tools including single cell RNA sequencing and novel transgenic models to trace Aire expression to perform lineage tracing experiments have shed light on a phenomenon that is more complex than previously thought. In this chapter, we provide a deeper analysis of how extrathymic Aire research has developed and progressed, how cellular sources were identified, and how the function of AIRE was determined. Current data suggests that extrathymic AIRE fulfills a function that differs from what has been observed in the thymus and strongly argues that its main purpose is to regulate transcriptional programs in a cell content-dependent manner. Surprisingly, there is data that also suggests a non-transcriptional role of extrathymic AIRE in the cytoplasm. We have arrived at a potential turning point that will take the field from the classical understanding of AIRE as a transcription factor in control of TRA expression to its role in immunological and non-immunological processes in the periphery.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Jasper Manning
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Petrusová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Abramson J, Dobeš J, Lyu M, Sonnenberg GF. The emerging family of RORγt + antigen-presenting cells. Nat Rev Immunol 2024; 24:64-77. [PMID: 37479834 PMCID: PMC10844842 DOI: 10.1038/s41577-023-00906-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/23/2023]
Abstract
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Jan Dobeš
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
21
|
Cosway EJ, James KD, White AJ, Parnell SM, Bacon A, McKenzie ANJ, Jenkinson WE, Anderson G. The alarmin IL33 orchestrates type 2 immune-mediated control of thymus regeneration. Nat Commun 2023; 14:7201. [PMID: 37938566 PMCID: PMC10632327 DOI: 10.1038/s41467-023-43072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
As the primary site of T-cell development, the thymus dictates immune competency of the host. The rates of thymus function are not constant, and thymus regeneration is essential to restore new T-cell production following tissue damage from environmental factors and therapeutic interventions. Here, we show the alarmin interleukin (IL) 33 is a product of Sca1+ thymic mesenchyme both necessary and sufficient for thymus regeneration via a type 2 innate immune network. IL33 stimulates expansion of IL5-producing type 2 innate lymphoid cells (ILC2), which triggers a cellular switch in the intrathymic availability of IL4. This enables eosinophil production of IL4 to re-establish thymic mesenchyme prior to recovery of thymopoiesis-inducing epithelial compartments. Collectively, we identify a positive feedback mechanism of type 2 innate immunity that regulates the recovery of thymus function following tissue injury.
Collapse
Affiliation(s)
- Emilie J Cosway
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrea J White
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Sonia M Parnell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Andrea Bacon
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - W E Jenkinson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
22
|
Roberts J, Chevalier A, Hawerkamp HC, Yeow A, Matarazzo L, Schwartz C, Hams E, Fallon PG. Retinoic Acid-Related Orphan Receptor α Is Required for Generation of Th2 Cells in Type 2 Pulmonary Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:626-632. [PMID: 37387671 PMCID: PMC10404816 DOI: 10.4049/jimmunol.2200896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
The transcription factor retinoic acid-related orphan receptor α (RORα) is important in regulating several physiological functions, such as cellular development, circadian rhythm, metabolism, and immunity. In two in vivo animal models of type 2 lung inflammation, Nippostrongylus brasiliensis infection and house dust mite (HDM) sensitization, we show a role for Rora in Th2 cellular development during pulmonary inflammation. N. brasiliensis infection and HDM challenge induced an increase in frequency of Rora-expressing GATA3+CD4 T cells in the lung. Using staggerer mice, which have a ubiquitous deletion of functional RORα, we generated bone marrow chimera mice, and we observed a delayed worm expulsion and reduced frequency in the expansion of Th2 cells and innate lymphoid type 2 cells (ILC2s) in the lungs after N. brasiliensis infection. ILC2-deficient mouse (Rorafl/flIl7raCre) also had delayed worm expulsion with associated reduced frequency of Th2 cells and ILC2s in the lungs after N. brasiliensis infection. To further define the role for Rora-expressing Th2 cells, we used a CD4-specific Rora-deficient mouse (Rorafl/flCD4Cre), with significantly reduced frequency of lung Th2 cells, but not ILC2, after N. brasiliensis infection and HDM challenge. Interestingly, despite the reduction in pulmonary Th2 cells in Rorafl/flCD4Cre mice, this did not impact the expulsion of N. brasiliensis after primary and secondary infection, or the generation of lung inflammation after HDM challenge. This study demonstrates a role for RORα in Th2 cellular development during pulmonary inflammation that could be relevant to the range of inflammatory diseases in which RORα is implicated.
Collapse
Affiliation(s)
- Joseph Roberts
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Anne Chevalier
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Heike C. Hawerkamp
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aoife Yeow
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Laura Matarazzo
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Emily Hams
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
23
|
Ferreira ACF, Szeto ACH, Clark PA, Crisp A, Kozik P, Jolin HE, McKenzie ANJ. Neuroprotective protein ADNP-dependent histone remodeling complex promotes T helper 2 immune cell differentiation. Immunity 2023; 56:1468-1484.e7. [PMID: 37285842 PMCID: PMC10501989 DOI: 10.1016/j.immuni.2023.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/31/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023]
Abstract
Type 2 immune responses are critical in tissue homeostasis, anti-helminth immunity, and allergy. T helper 2 (Th2) cells produce interleukin-4 (IL-4), IL-5, and IL-13 from the type 2 gene cluster under regulation by transcription factors (TFs) including GATA3. To better understand transcriptional regulation of Th2 cell differentiation, we performed CRISPR-Cas9 screens targeting 1,131 TFs. We discovered that activity-dependent neuroprotector homeobox protein (ADNP) was indispensable for immune reactions to allergen. Mechanistically, ADNP performed a previously unappreciated role in gene activation, forming a critical bridge in the transition from pioneer TFs to chromatin remodeling by recruiting the helicase CHD4 and ATPase BRG1. Although GATA3 and AP-1 bound the type 2 cytokine locus in the absence of ADNP, they were unable to initiate histone acetylation or DNA accessibility, resulting in highly impaired type 2 cytokine expression. Our results demonstrate an important role for ADNP in promoting immune cell specialization.
Collapse
Affiliation(s)
| | | | - Paula A Clark
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alastair Crisp
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helen E Jolin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | |
Collapse
|
24
|
Martin EW, Rodriguez y Baena A, Reggiardo RE, Worthington AK, Mattingly CS, Poscablo DM, Krietsch J, McManus MT, Carpenter S, Kim DH, Forsberg EC. Dynamics of Chromatin Accessibility During Hematopoietic Stem Cell Differentiation Into Progressively Lineage-Committed Progeny. Stem Cells 2023; 41:520-539. [PMID: 36945732 PMCID: PMC10183972 DOI: 10.1093/stmcls/sxad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
Epigenetic mechanisms regulate the multilineage differentiation capacity of hematopoietic stem cells (HSCs) into a variety of blood and immune cells. Mapping the chromatin dynamics of functionally defined cell populations will shed mechanistic insight into 2 major, unanswered questions in stem cell biology: how does epigenetic identity contribute to a cell type's lineage potential, and how do cascades of chromatin remodeling dictate ensuing fate decisions? Our recent work revealed evidence of multilineage gene priming in HSCs, where open cis-regulatory elements (CREs) exclusively shared between HSCs and unipotent lineage cells were enriched for DNA binding motifs of known lineage-specific transcription factors. Oligopotent progenitor populations operating between the HSCs and unipotent cells play essential roles in effecting hematopoietic homeostasis. To test the hypothesis that selective HSC-primed lineage-specific CREs remain accessible throughout differentiation, we used ATAC-seq to map the temporal dynamics of chromatin remodeling during progenitor differentiation. We observed epigenetic-driven clustering of oligopotent and unipotent progenitors into distinct erythromyeloid and lymphoid branches, with multipotent HSCs and MPPs associating with the erythromyeloid lineage. We mapped the dynamics of lineage-primed CREs throughout hematopoiesis and identified both unique and shared CREs as potential lineage reinforcement mechanisms at fate branch points. Additionally, quantification of genome-wide peak count and size revealed overall greater chromatin accessibility in HSCs, allowing us to identify HSC-unique peaks as putative regulators of self-renewal and multilineage potential. Finally, CRISPRi-mediated targeting of ATACseq-identified putative CREs in HSCs allowed us to demonstrate the functional role of selective CREs in lineage-specific gene expression. These findings provide insight into the regulation of stem cell multipotency and lineage commitment throughout hematopoiesis and serve as a resource to test functional drivers of hematopoietic lineage fate.
Collapse
Affiliation(s)
- Eric W Martin
- Institute for the Biology of Stem Cells, Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Alessandra Rodriguez y Baena
- Institute for the Biology of Stem Cells, Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Roman E Reggiardo
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Atesh K Worthington
- Institute for the Biology of Stem Cells, Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Connor S Mattingly
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donna M Poscablo
- Institute for the Biology of Stem Cells, Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, Diabetes Center, W.M. Keck Center for Noncoding RNAs, University of California San Francisco, San Francisco, CA, USA
| | - Susan Carpenter
- Institute for the Biology of Stem Cells, Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniel H Kim
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
25
|
Asahi T, Abe S, Tajika Y, Rodewald HR, Sexl V, Takeshima H, Ikuta K. Retinoic acid receptor activity is required for the maintenance of type 1 innate lymphoid cells. Int Immunol 2023; 35:147-155. [PMID: 36480702 DOI: 10.1093/intimm/dxac057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Group 1 innate lymphoid cells (G1-ILCs) are innate immune effectors critical for the response to intracellular pathogens and tumors. G1-ILCs comprise circulating natural killer (NK) cells and tissue-resident type 1 ILCs (ILC1s). ILC1s mainly reside in barrier tissues and provide the initial sources of interferon-γ (IFN-γ) to prime the protecting responses against infections, which are followed by the response of recruited NK cells. Despite such distribution differences, whether local environmental factors influence the behavior of NK cells and ILC1s is unclear. Here, we show that the signaling of retinoic acid (RA), active metabolites of vitamin A, is essential for the maintenance of ILC1s in the periphery. Mice expressing RARα403, a truncated form of retinoic acid receptor α (RARα) that exerts dominant negative activity, in a lymphoid cell- or G1-ILC-specific manner showed remarkable reductions of peripheral ILC1s while NK cells were unaffected. Lymphoid cell-specific inhibition of RAR activity resulted in the reduction of PD-1+ ILC progenitors (ILCPs), but not of common lymphoid progenitors (CLPs), suggesting the impaired commitment and differentiation of ILC1s. Transcriptome analysis revealed that RARα403-expressing ILC1s exhibited impaired proliferative states and declined expression of effector molecules. Thus, our findings demonstrate that cell-intrinsic RA signaling is required for the homeostasis and the functionality of ILC1s, which may present RA as critical environmental cue targeting local type 1 immunity against infection and cancer.
Collapse
Affiliation(s)
- Takuma Asahi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yuya Tajika
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
26
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
27
|
Muro R, Narita T, Nitta T, Takayanagi H. Spleen tyrosine kinase mediates the γδTCR signaling required for γδT cell commitment and γδT17 differentiation. Front Immunol 2023; 13:1045881. [PMID: 36713401 PMCID: PMC9878111 DOI: 10.3389/fimmu.2022.1045881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The γδT cells that produce IL-17 (γδT17 cells) play a key role in various pathophysiologic processes in host defense and homeostasis. The development of γδT cells in the thymus requires γδT cell receptor (γδTCR) signaling mediated by the spleen tyrosine kinase (Syk) family proteins, Syk and Zap70. Here, we show a critical role of Syk in the early phase of γδT cell development using mice deficient for Syk specifically in lymphoid lineage cells (Syk-conditional knockout (cKO) mice). The development of γδT cells in the Syk-cKO mice was arrested at the precursor stage where the expression of Rag genes and αβT-lineage-associated genes were retained, indicating that Syk is required for γδT-cell lineage commitment. Loss of Syk in γδT cells weakened TCR signal-induced phosphorylation of Erk and Akt, which is mandatory for the thymic development of γδT17 cells. Syk-cKO mice exhibited a loss of γδT17 cells in the thymus as well as throughout the body, and thereby are protected from γδT17-dependent psoriasis-like skin inflammation. Collectively, our results indicate that Syk is a key player in the lineage commitment of γδT cells and the priming of γδT17 cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoya Narita
- Department of Pharmacotherapeutics, Research Institute of Pharmaceutical Sciences and Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Takeshi Nitta,
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Bosselut R. Genetic Strategies to Study T Cell Development. Methods Mol Biol 2023; 2580:117-130. [PMID: 36374453 PMCID: PMC10803070 DOI: 10.1007/978-1-0716-2740-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetics approaches have been instrumental to deciphering T cell development in the thymus, including gene disruption by homologous recombination and more recently Crispr-based gene editing and transgenic gene expression, especially of specific T cell antigen receptors (TCR). This brief chapter describes commonly used tools and strategies to modify the genome of thymocytes, including mouse strains with lineage- and stage-specific expression of the Cre recombinase used for conditional allele inactivation or expressing unique antigen receptor specificities.
Collapse
Affiliation(s)
- Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
29
|
Kenney D, Harly C. Purification of Bone Marrow Precursors to T Cells and ILCs. Methods Mol Biol 2023; 2580:211-232. [PMID: 36374460 DOI: 10.1007/978-1-0716-2740-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).
Collapse
Affiliation(s)
- Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Christelle Harly
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
30
|
Medina S, Ihrie RA, Irish JM. Learning cell identity in immunology, neuroscience, and cancer. Semin Immunopathol 2023; 45:3-16. [PMID: 36534139 PMCID: PMC9762661 DOI: 10.1007/s00281-022-00976-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
Suspension and imaging cytometry techniques that simultaneously measure hundreds of cellular features are powering a new era of cell biology and transforming our understanding of human tissues and tumors. However, a central challenge remains in learning the identities of unexpected or novel cell types. Cell identification rubrics that could assist trainees, whether human or machine, are not always rigorously defined, vary greatly by field, and differentially rely on cell intrinsic measurements, cell extrinsic tissue measurements, or external contextual information such as clinical outcomes. This challenge is especially acute in the context of tumors, where cells aberrantly express developmental programs that are normally time, location, or cell-type restricted. Well-established fields have contrasting practices for cell identity that have emerged from convention and convenience as much as design. For example, early immunology focused on identifying minimal sets of protein features that mark individual, functionally distinct cells. In neuroscience, features including morphology, development, and anatomical location were typical starting points for defining cell types. Both immunology and neuroscience now aim to link standardized measurements of protein or RNA to informative cell functions such as electrophysiology, connectivity, lineage potential, phospho-protein signaling, cell suppression, and tumor cell killing ability. The expansion of automated, machine-driven methods for learning cell identity has further created an urgent need for a harmonized framework for distinguishing cell identity across fields and technology platforms. Here, we compare practices in the fields of immunology and neuroscience, highlight concepts from each that might work well in the other, and propose ways to implement these ideas to study neural and immune cell interactions in brain tumors and associated model systems.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
31
|
Tsou AM, Yano H, Parkhurst CN, Mahlakõiv T, Chu C, Zhang W, He Z, Jarick KJ, Zhong C, Putzel GG, Hatazaki M, Lorenz IC, Andrew D, Balderes P, Klose CSN, Lira SA, Artis D. Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces. Nature 2022; 611:787-793. [PMID: 36323781 PMCID: PMC10225046 DOI: 10.1038/s41586-022-05297-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.
Collapse
Affiliation(s)
- Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tanel Mahlakõiv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katja J Jarick
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Connie Zhong
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Mai Hatazaki
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Paul Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Christoph S N Klose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
32
|
Lyu M, Suzuki H, Kang L, Gaspal F, Zhou W, Goc J, Zhou L, Zhou J, Zhang W, Shen Z, Fox JG, Sockolow RE, Laufer TM, Fan Y, Eberl G, Withers DR, Sonnenberg GF. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 2022; 610:744-751. [PMID: 36071169 PMCID: PMC9613541 DOI: 10.1038/s41586-022-05141-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
Microbial colonization of the mammalian intestine elicits inflammatory or tolerogenic T cell responses, but the mechanisms controlling these distinct outcomes remain poorly understood, and accumulating evidence indicates that aberrant immunity to intestinal microbiota is causally associated with infectious, inflammatory and malignant diseases1-8. Here we define a critical pathway controlling the fate of inflammatory versus tolerogenic T cells that respond to the microbiota and express the transcription factor RORγt. We profiled all RORγt+ immune cells at single-cell resolution from the intestine-draining lymph nodes of mice and reveal a dominant presence of T regulatory (Treg) cells and lymphoid tissue inducer-like group 3 innate lymphoid cells (ILC3s), which co-localize at interfollicular regions. These ILC3s are distinct from extrathymic AIRE-expressing cells, abundantly express major histocompatibility complex class II, and are necessary and sufficient to promote microbiota-specific RORγt+ Treg cells and prevent their expansion as inflammatory T helper 17 cells. This occurs through ILC3-mediated antigen presentation, αV integrin and competition for interleukin-2. Finally, single-cell analyses suggest that interactions between ILC3s and RORγt+ Treg cells are impaired in inflammatory bowel disease. Our results define a paradigm whereby ILC3s select for antigen-specific RORγt+ Treg cells, and against T helper 17 cells, to establish immune tolerance to the microbiota and intestinal health.
Collapse
Affiliation(s)
- Mengze Lyu
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hiroaki Suzuki
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- EA Pharma, Kanagawa, Japan
| | - Lan Kang
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Fabrina Gaspal
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jeremy Goc
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lei Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jordan Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Wen Zhang
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robbyn E Sockolow
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Terri M Laufer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Gerard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
33
|
Zhou W, Zhou L, Zhou J, Chu C, Zhang C, Sockolow RE, Eberl G, Sonnenberg GF. ZBTB46 defines and regulates ILC3s that protect the intestine. Nature 2022; 609:159-165. [PMID: 35831503 PMCID: PMC9528687 DOI: 10.1038/s41586-022-04934-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/06/2022] [Indexed: 12/28/2022]
Abstract
RORγt is a lineage-specifying transcription factor that is expressed by immune cells that are enriched in the gastrointestinal tract and promote immunity, inflammation and tissue homeostasis1-15. However, fundamental questions remain with regard to the cellular heterogeneity among these cell types, the mechanisms that control protective versus inflammatory properties and their functional redundancy. Here we define all RORγt+ immune cells in the intestine at single-cell resolution and identify a subset of group 3 innate lymphoid cells (ILC3s) that expresses ZBTB46, a transcription factor specifying conventional dendritic cells16-20. ZBTB46 is robustly expressed by CCR6+ lymphoid-tissue-inducer-like ILC3s that are developmentally and phenotypically distinct from conventional dendritic cells, and its expression is imprinted by RORγt, fine-tuned by microbiota-derived signals and increased by pro-inflammatory cytokines. ZBTB46 restrains the inflammatory properties of ILC3s, including the OX40L-dependent expansion of T helper 17 cells and the exacerbated intestinal inflammation that occurs after enteric infection. Finally, ZBTB46+ ILC3s are a major source of IL-22, and selective depletion of this population renders mice susceptible to enteric infection and associated intestinal inflammation. These results show that ZBTB46 is a transcription factor that is shared between conventional dendritic cells and ILC3s, and identify a cell-intrinsic function for ZBTB46 in restraining the pro-inflammatory properties of ILC3s and a non-redundant role for ZBTB46+ ILC3s in orchestrating intestinal health.
Collapse
Affiliation(s)
- Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lei Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jordan Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chao Zhang
- Department of Medicine, Division of Computational Biomedicine, Boston University, Boston, MA, USA
| | - Robbyn E Sockolow
- Department of Pediatrics, Division of Gastroenterology and Nutrition, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gerard Eberl
- Microenvironment and Immunity Unit, Institut Pasteur, Paris, France
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
34
|
Shi Z, Takeuchi T, Nakanishi Y, Kato T, Beck K, Nagata R, Kageyama T, Ito A, Ohno H, Satoh-Takayama N. A Japanese Herbal Formula, Daikenchuto, Alleviates Experimental Colitis by Reshaping Microbial Profiles and Enhancing Group 3 Innate Lymphoid Cells. Front Immunol 2022; 13:903459. [PMID: 35720414 PMCID: PMC9201393 DOI: 10.3389/fimmu.2022.903459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Daikenchuto (DKT) is one of the most widely used Japanese herbal formulae for various gastrointestinal disorders. It consists of Zanthoxylum Fructus (Japanese pepper), Zingiberis Siccatum Rhizoma (processed ginger), Ginseng radix, and maltose powder. However, the use of DKT in clinical settings is still controversial due to the limited molecular evidence and largely unknown therapeutic effects. Here, we investigated the anti-inflammatory actions of DKT in the dextran sodium sulfate (DSS)-induced colitis model in mice. We observed that DKT remarkably attenuated the severity of experimental colitis while maintaining the members of the symbiotic microbiota such as family Lactobacillaceae and increasing levels of propionate, an immunomodulatory microbial metabolite, in the colon. DKT also protected colonic epithelial integrity by upregulating the fucosyltransferase gene Fut2 and the antimicrobial peptide gene Reg3g. More remarkably, DKT restored the reduced colonic group 3 innate lymphoid cells (ILC3s), mainly RORγthigh-ILC3s, in DSS-induced colitis. We further demonstrated that ILC3-deficient mice showed increased mortality during experimental colitis, suggesting that ILC3s play a protective function on colonic inflammation. These findings demonstrate that DKT possesses anti-inflammatory activity, partly via ILC3 function, to maintain the colonic microenvironment. Our study also provides insights into the molecular basis of herbal medicine effects, promotes more profound mechanistic studies towards herbal formulae and contributes to future drug development.
Collapse
Affiliation(s)
- Zhengzheng Shi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tadashi Takeuchi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yumiko Nakanishi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Katharina Beck
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Ritsu Nagata
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Tomoko Kageyama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Ayumi Ito
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
35
|
Ly6D +Siglec-H + precursors contribute to conventional dendritic cells via a Zbtb46 +Ly6D + intermediary stage. Nat Commun 2022; 13:3456. [PMID: 35705536 PMCID: PMC9200809 DOI: 10.1038/s41467-022-31054-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2022] [Indexed: 11/09/2022] Open
Abstract
Plasmacytoid and conventional dendritic cells (pDC and cDC) are generated from progenitor cells in the bone marrow and commitment to pDCs or cDC subtypes may occur in earlier and later progenitor stages. Cells within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor fraction of the mouse bone marrow generate both pDCs and cDCs. Here we investigate the heterogeneity and commitment of subsets in this compartment by single-cell transcriptomics and high-dimensional flow cytometry combined with cell fate analysis: Within the CD11c+MHCII-/loSiglec-H+CCR9lo DC precursor pool cells expressing high levels of Ly6D and lacking expression of transcription factor Zbtb46 contain CCR9loB220hi immediate pDC precursors and CCR9loB220lo (lo-lo) cells which still generate pDCs and cDCs in vitro and in vivo under steady state conditions. cDC-primed cells within the Ly6DhiZbtb46- lo-lo precursors rapidly upregulate Zbtb46 and pass through a Zbtb46+Ly6D+ intermediate stage before acquiring cDC phenotype after cell division. Type I IFN stimulation limits cDC and promotes pDC output from this precursor fraction by arresting cDC-primed cells in the Zbtb46+Ly6D+ stage preventing their expansion and differentiation into cDCs. Modulation of pDC versus cDC output from precursors by external factors may allow for adaptation of DC subset composition at later differentiation stages.
Collapse
|
36
|
Jou E, Rodriguez-Rodriguez N, Ferreira ACF, Jolin HE, Clark PA, Sawmynaden K, Ko M, Murphy JE, Mannion J, Ward C, Matthews DJ, Buczacki SJA, McKenzie ANJ. An innate IL-25-ILC2-MDSC axis creates a cancer-permissive microenvironment for Apc mutation-driven intestinal tumorigenesis. Sci Immunol 2022; 7:eabn0175. [PMID: 35658010 PMCID: PMC7612821 DOI: 10.1126/sciimmunol.abn0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Interleukin-25 (IL-25) and group 2 innate lymphoid cells (ILC2s) defend the host against intestinal helminth infection and are associated with inappropriate allergic reactions. IL-33-activated ILC2s were previously found to augment protective tissue-specific pancreatic cancer immunity. Here, we showed that intestinal IL-25-activated ILC2s created an innate cancer-permissive microenvironment. Colorectal cancer (CRC) patients with higher tumor IL25 expression had reduced survival and increased IL-25R-expressing tumor-resident ILC2s and myeloid-derived suppressor cells (MDSCs) associated with impaired antitumor responses. Ablation of IL-25 signaling reduced tumors, virtually doubling life expectancy in an Apc mutation-driven model of spontaneous intestinal tumorigenesis. Mechanistically, IL-25 promoted intratumoral ILC2s, which sustained tumor-infiltrating MDSCs to suppress antitumor immunity. Therapeutic antibody-mediated blockade of IL-25 signaling decreased intratumoral ILC2s, MDSCs, and adenoma/adenocarcinoma while increasing antitumor adaptive T cell and interferon-γ (IFN-γ)-mediated immunity. Thus, the roles of innate epithelium-derived cytokines IL-25 and IL-33 as well as ILC2s in cancer cannot be generalized. The protumoral nature of the IL-25-ILC2 axis in CRC highlights this pathway as a potential therapeutic target against CRC.
Collapse
Affiliation(s)
- Eric Jou
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | | | - Helen E. Jolin
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jane E. Murphy
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Christopher Ward
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW United Kingdom
| | | | - Simon J. A. Buczacki
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, CB2 0AW United Kingdom
| | | |
Collapse
|
37
|
Huseby ES, Teixeiro E. The perception and response of T cells to a changing environment are based on the law of initial value. Sci Signal 2022; 15:eabj9842. [PMID: 35639856 PMCID: PMC9290192 DOI: 10.1126/scisignal.abj9842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
αβ T cells are critical components of the adaptive immune system and are capable of inducing sterilizing immunity after pathogen infection and eliminating transformed tumor cells. The development and function of T cells are controlled through the T cell antigen receptor, which recognizes peptides displayed on major histocompatibility complex (MHC) molecules. Here, we review how T cells generate the ability to recognize self-peptide-bound MHC molecules and use signals derived from these interactions to instruct cellular development, activation thresholds, and functional specialization in the steady state and during immune responses. We argue that the basic tenants of T cell development and function follow Weber-Fetcher's law of just noticeable differences and Wilder's law of initial value. Together, these laws argue that the ability of a system to respond and the quality of that response are scalable to the basal state of that system. Manifestation of these laws in T cells generates clone-specific activation thresholds that are based on perceivable differences between homeostasis and pathogen encounter (self versus nonself discrimination), as well as poised states for subsequent differentiation into specific effector cell lineages.
Collapse
Affiliation(s)
- Eric S. Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
38
|
Worthington AK, Cool T, Poscablo DM, Hussaini A, Beaudin AE, Forsberg EC. IL7Rα, but not Flk2, is required for hematopoietic stem cell reconstitution of tissue-resident lymphoid cells. Development 2022; 149:274067. [PMID: 35072209 PMCID: PMC8917444 DOI: 10.1242/dev.200139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα−/− environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment. Summary: Tissue-resident lymphoid cells develop via IL7Rα-positive progenitors and are repopulated by transplanted adult hematopoietic stem cells; however, such TLC lymphopoiesis cannot be fully rescued in IL7Rα−/− recipient mice.
Collapse
Affiliation(s)
- Atesh K Worthington
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Program in Biomedical Science and Engineering: Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Taylor Cool
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Program in Biomedical Science and Engineering: Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Donna M Poscablo
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Program in Biomedical Science and Engineering: Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Adeel Hussaini
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anna E Beaudin
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
39
|
Wang H, Zúñiga-Pflücker JC. Thymic Microenvironment: Interactions Between Innate Immune Cells and Developing Thymocytes. Front Immunol 2022; 13:885280. [PMID: 35464404 PMCID: PMC9024034 DOI: 10.3389/fimmu.2022.885280] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022] Open
Abstract
The thymus is a crucial organ for the development of T cells. T cell progenitors first migrate from the bone marrow into the thymus. During the journey to become a mature T cell, progenitors require interactions with many different cell types within the thymic microenvironment, such as stromal cells, which include epithelial, mesenchymal and other non-T-lineage immune cells. There are two crucial decision steps that are required for generating mature T cells: positive and negative selection. Each of these two processes needs to be performed efficiently to produce functional MHC-restricted T cells, while simultaneously restricting the production of auto-reactive T cells. In each step, there are various cell types that are required for the process to be carried out suitably, such as scavengers to clean up apoptotic thymocytes that fail positive or negative selection, and antigen presenting cells to display self-antigens during positive and negative selection. In this review, we will focus on thymic non-T-lineage immune cells, particularly dendritic cells and macrophages, and the role they play in positive and negative selection. We will also examine recent advances in the understanding of their participation in thymus homeostasis and T cell development. This review will provide a perspective on how the thymic microenvironment contributes to thymocyte differentiation and T cell maturation.
Collapse
Affiliation(s)
- Helen Wang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
40
|
Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes. Nat Immunol 2022; 23:619-631. [PMID: 35332328 PMCID: PMC8989654 DOI: 10.1038/s41590-022-01164-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/18/2022] [Indexed: 12/11/2022]
Abstract
Innate lymphocytes encompass a diverse array of phenotypic identities with specialized functions. DNA methylation and hydroxymethylation are essential for epigenetic fidelity and fate commitment. The landscapes of these modifications are unknown in innate lymphocytes. Here, we characterized the whole-genome distribution of methyl-CpG and 5-hydroxymethylcytosine in mouse ILC3, ILC2, and NK cells. We identified differentially methylated and hydroxymethylated DNA regions between ILC-NK subsets and correlated them with transcriptional signatures. We associated lineage-determining transcription factors with demethylation and demonstrated unique patterns of DNA methylation/hydroxymethylation in relationship to open chromatin regions, histone modifications, and transcription factor binding sites. We further discovered a novel association between hydroxymethylation and NK cell super-enhancers. Using mice lacking DNA hydroxymethylase TET2, we showed its requirement for optimal production of hallmark cytokines by ILC3 and IL-17A by inflammatory ILC2. These findings provide a powerful resource for studying innate lymphocyte epigenetic regulation and decode the regulatory logic governing their identity.
Collapse
|
41
|
Schwartz C, Schmidt V, Deinzer A, Hawerkamp HC, Hams E, Bayerlein J, Röger O, Bailer M, Krautz C, El Gendy A, Elshafei M, Heneghan HM, Hogan AE, O'Shea D, Fallon PG. Innate PD-L1 limits T cell-mediated adipose tissue inflammation and ameliorates diet-induced obesity. Sci Transl Med 2022; 14:eabj6879. [PMID: 35263149 DOI: 10.1126/scitranslmed.abj6879] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity has become a major health problem in the industrialized world. Immune regulation plays an important role in adipose tissue homeostasis; however, the initial events that shift the balance from a noninflammatory homeostatic environment toward inflammation leading to obesity are poorly understood. Here, we report a role for the costimulatory molecule programmed death-ligand 1 (PD-L1) in the limitation of diet-induced obesity. Functional ablation of PD-L1 on dendritic cells (DCs) using conditional knockout mice increased weight gain and metabolic syndrome during diet-induced obesity, whereas PD-L1 expression on type 2 innate lymphoid cells (ILC2s), T cells, and macrophages was dispensable for obesity control. Using in vitro cocultures, DCs interacted with T cells and ILC2s via the PD-L1:PD-1 axis to inhibit T helper type 1 proliferation and promote type 2 polarization, respectively. A role for PD-L1 in adipose tissue regulation was also shown in humans, with a positive correlation between PD-L1 expression in visceral fat of people with obesity and elevated body weight. Thus, we define a mechanism of adipose tissue homeostasis controlled by the expression of PD-L1 by DCs, which may be a clinically relevant finding with regard to immune-related adverse events during immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany.,Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, D02R590 Dublin 2, Ireland
| | - Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Andrea Deinzer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Heike C Hawerkamp
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, D02R590 Dublin 2, Ireland
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, D02R590 Dublin 2, Ireland
| | - Jasmin Bayerlein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Ole Röger
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Moritz Bailer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Christian Krautz
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Amr El Gendy
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Moustafa Elshafei
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Helen M Heneghan
- Department of Surgery, St. Vincent's University Hospital and University College Dublin, D04T6F4 Dublin 4, Ireland
| | - Andrew E Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland.,Obesity Immunology Research, St. Vincent's University Hospital and University College Dublin, D04T6F4 Dublin 4, Ireland
| | - Donal O'Shea
- Obesity Immunology Research, St. Vincent's University Hospital and University College Dublin, D04T6F4 Dublin 4, Ireland
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, D02R590 Dublin 2, Ireland
| |
Collapse
|
42
|
Feng J, Pucella JN, Jang G, Alcántara-Hernández M, Upadhaya S, Adams NM, Khodadadi-Jamayran A, Lau CM, Stoeckius M, Hao S, Smibert P, Tsirigos A, Idoyaga J, Reizis B. Clonal lineage tracing reveals shared origin of conventional and plasmacytoid dendritic cells. Immunity 2022; 55:405-422.e11. [PMID: 35180378 PMCID: PMC9344860 DOI: 10.1016/j.immuni.2022.01.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/23/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Developmental origins of dendritic cells (DCs) including conventional DCs (cDCs, comprising cDC1 and cDC2 subsets) and plasmacytoid DCs (pDCs) remain unclear. We studied DC development in unmanipulated adult mice using inducible lineage tracing combined with clonal DNA "barcoding" and single-cell transcriptome and phenotype analysis (CITE-seq). Inducible tracing of Cx3cr1+ hematopoietic progenitors in the bone marrow showed that they simultaneously produce all DC subsets including pDCs, cDC1s, and cDC2s. Clonal tracing of hematopoietic stem cells (HSCs) and of Cx3cr1+ progenitors revealed clone sharing between cDC1s and pDCs, but not between the two cDC subsets or between pDCs and B cells. Accordingly, CITE-seq analyses of differentiating HSCs and Cx3cr1+ progenitors identified progressive stages of pDC development including Cx3cr1+ Ly-6D+ pro-pDCs that were distinct from lymphoid progenitors. These results reveal the shared origin of pDCs and cDCs and suggest a revised scheme of DC development whereby pDCs share clonal relationship with cDC1s.
Collapse
Affiliation(s)
- Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| | - Joseph N Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Geunhyo Jang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Samik Upadhaya
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Colleen M Lau
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Marlon Stoeckius
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Stephanie Hao
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Peter Smibert
- Technology Innovation Laboratory, New York Genome Center, New York, NY 10013, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Juliana Idoyaga
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
43
|
Anderson DA, Ou F, Kim S, Murphy TL, Murphy KM. Transition from cMyc to L-Myc during dendritic cell development coordinated by rising levels of IRF8. J Exp Med 2022; 219:e20211483. [PMID: 34958351 PMCID: PMC8713298 DOI: 10.1084/jem.20211483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/25/2021] [Accepted: 12/02/2021] [Indexed: 01/01/2023] Open
Abstract
During dendritic cell (DC) development, Myc expression in progenitors is replaced by Mycl in mature DCs, but when and how this transition occurs is unknown. We evaluated DC development using reporters for MYC, MYCL, and cell cycle proteins Geminin and CDT1 in wild-type and various mutant mice. For classical type 1 dendritic cells (cDC1s) and plasmacytoid DCs (pDCs), the transition occurred upon their initial specification from common dendritic cell progenitors (CDPs) or common lymphoid progenitors (CLPs), respectively. This transition required high levels of IRF8 and interaction with PU.1, suggesting the use of EICEs within Mycl enhancers. In pDCs, maximal MYCL induction also required the +41kb Irf8 enhancer that controls pDC IRF8 expression. IRF8 also contributed to repression of MYC. While MYC is expressed only in rapidly dividing DC progenitors, MYCL is most highly expressed in DCs that have exited the cell cycle. Thus, IRF8 levels coordinate the Myc-Mycl transition during DC development.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO
| |
Collapse
|
44
|
Sinha S, Rosin NL, Arora R, Labit E, Jaffer A, Cao L, Farias R, Nguyen AP, de Almeida LGN, Dufour A, Bromley A, McDonald B, Gillrie MR, Fritzler MJ, Yipp BG, Biernaskie J. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat Med 2022; 28:201-211. [PMID: 34782790 PMCID: PMC8799469 DOI: 10.1038/s41591-021-01576-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.
Collapse
Affiliation(s)
- Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nicole L Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| | - Rohit Arora
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Elodie Labit
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Arzina Jaffer
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Leslie Cao
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Raquel Farias
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Angela P Nguyen
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luiz G N de Almeida
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Amy Bromley
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark R Gillrie
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marvin J Fritzler
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
45
|
Zhou TA, Hsu HP, Tu YH, Cheng HK, Lin CY, Chen NJ, Tsai JW, Robey EA, Huang HC, Hsu CL, Dzhagalov IL. Thymic macrophages consist of two populations with distinct localization and origin. eLife 2022; 11:75148. [PMID: 36449334 PMCID: PMC9754631 DOI: 10.7554/elife.75148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue-resident macrophages are essential to protect from pathogen invasion and maintain organ homeostasis. The ability of thymic macrophages to engulf apoptotic thymocytes is well appreciated, but little is known about their ontogeny, maintenance, and diversity. Here, we characterized the surface phenotype and transcriptional profile of these cells and defined their expression signature. Thymic macrophages were most closely related to spleen red pulp macrophages and Kupffer cells and shared the expression of the transcription factor (TF) SpiC with these cells. Single-cell RNA sequencing (scRNA-Seq) showed that the macrophages in the adult thymus are composed of two populations distinguished by the expression of Timd4 and Cx3cr1. Remarkably, Timd4+ cells were located in the cortex, while Cx3cr1+ macrophages were restricted to the medulla and the cortico-medullary junction. Using shield chimeras, transplantation of embryonic thymuses, and genetic fate mapping, we found that the two populations have distinct origins. Timd4+ thymic macrophages are of embryonic origin, while Cx3cr1+ macrophages are derived from adult hematopoietic stem cells. Aging has a profound effect on the macrophages in the thymus. Timd4+ cells underwent gradual attrition, while Cx3cr1+ cells slowly accumulated with age and, in older mice, were the dominant macrophage population in the thymus. Altogether, our work defines the phenotype, origin, and diversity of thymic macrophages.
Collapse
Affiliation(s)
- Tyng-An Zhou
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Hsuan-Po Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yueh-Hua Tu
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia SinicaTaipeiTaiwan,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan UniversityTaipeiTaiwan
| | - Hui-Kuei Cheng
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chih-Yu Lin
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Jin-Wu Tsai
- Brain Research Center, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Hsuan-Cheng Huang
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia SinicaTaipeiTaiwan,Institute of Biomedical Informatics, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
46
|
Stehle C, Rückert T, Fiancette R, Gajdasik DW, Willis C, Ulbricht C, Durek P, Mashreghi MF, Finke D, Hauser AE, Withers DR, Chang HD, Zimmermann J, Romagnani C. T-bet and RORα control lymph node formation by regulating embryonic innate lymphoid cell differentiation. Nat Immunol 2021; 22:1231-1244. [PMID: 34556887 PMCID: PMC7614953 DOI: 10.1038/s41590-021-01029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.
Collapse
Affiliation(s)
- Christina Stehle
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Pawel Durek
- Cell Biology, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Daniela Finke
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Anja Erika Hauser
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Department of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany.
- Leibniz-Science Campus Chronic Inflammation, Berlin, Germany.
| |
Collapse
|
47
|
Yu X, Newland SA, Zhao TX, Lu Y, Sage AS, Sun Y, Sriranjan RS, Ma MKL, Lam BYH, Nus M, Harrison JE, Bond SJ, Cheng X, Silvestre JS, Rudd JHF, Cheriyan J, Mallat Z. Innate Lymphoid Cells Promote Recovery of Ventricular Function After Myocardial Infarction. J Am Coll Cardiol 2021; 78:1127-1142. [PMID: 34503682 PMCID: PMC8434674 DOI: 10.1016/j.jacc.2021.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Innate lymphoid cells type 2 (ILC2s) play critical homeostatic functions in peripheral tissues. ILC2s reside in perivascular niches and limit atherosclerosis development. OBJECTIVES ILC2s also reside in the pericardium but their role in postischemic injury is unknown. METHODS We examined the role of ILC2 in a mouse model of myocardial infarction (MI), and compared mice with or without genetic deletion of ILC2. We determined infarct size using histology and heart function using echocardiography. We assessed cardiac ILC2 using flow cytometry and RNA sequencing. Based on these data, we devised a therapeutic strategy to activate ILC2 in mice with acute MI, using exogenous interleukin (IL)-2. We also assessed the ability of low-dose IL-2 to activate ILC2 in a double-blind randomized clinical trial of patients with acute coronary syndromes (ACS). RESULTS We found that ILC2 levels were increased in pericardial adipose tissue after experimental MI, and genetic ablation of ILC2 impeded the recovery of heart function. RNA sequencing revealed distinct transcript signatures in ILC2, and pointed to IL-2 axis as a major upstream regulator. Treatment of T-cell-deficient mice with IL-2 (to activate ILC2) significantly improved the recovery of heart function post-MI. Administration of low-dose IL-2 to patients with ACS led to activation of circulating ILC2, with significant increase in circulating IL-5, a prototypic ILC2-derived cytokine. CONCLUSIONS ILC2s promote cardiac healing and improve the recovery of heart function after MI in mice. Activation of ILC2 using low-dose IL-2 could be a novel therapeutic strategy to promote a reparative response after MI.
Collapse
Affiliation(s)
- Xian Yu
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Cardiology, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stephen A Newland
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tian X Zhao
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yuning Lu
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew S Sage
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yanyi Sun
- Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Rouchelle S Sriranjan
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marcella K L Ma
- The Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Brian Y H Lam
- The Wellcome Trust-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - James E Harrison
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon J Bond
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - James H F Rudd
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Cheriyan
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom; Cambridge Clinical Trials Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; Université de Paris, PARCC, INSERM, F-75015 Paris, France.
| |
Collapse
|
48
|
Cardoso F, Klein Wolterink RGJ, Godinho-Silva C, Domingues RG, Ribeiro H, da Silva JA, Mahú I, Domingos AI, Veiga-Fernandes H. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 2021; 597:410-414. [PMID: 34408322 PMCID: PMC7614847 DOI: 10.1038/s41586-021-03830-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the β2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.
Collapse
Affiliation(s)
- Filipa Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Rita G Domingues
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hélder Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Inês Mahú
- Max Planck Institute for Metabolism Research, Köln, Germany
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | | |
Collapse
|
49
|
Chin HS, Fu NY. Physiological Functions of Mcl-1: Insights From Genetic Mouse Models. Front Cell Dev Biol 2021; 9:704547. [PMID: 34336857 PMCID: PMC8322662 DOI: 10.3389/fcell.2021.704547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/14/2021] [Indexed: 01/27/2023] Open
Abstract
The ability to regulate the survival and death of a cell is paramount throughout the lifespan of a multicellular organism. Apoptosis, a main physiological form of programmed cell death, is regulated by the Bcl-2 family proteins that are either pro-apoptotic or pro-survival. The in vivo functions of distinct Bcl-2 family members are largely unmasked by genetically engineered murine models. Mcl-1 is one of the two Bcl-2 like pro-survival genes whose germline deletion causes embryonic lethality in mice. Its requisite for the survival of a broad range of cell types has been further unraveled by using conditional and inducible deletion murine model systems in different tissues or cell lineages and at distinct developmental stages. Moreover, genetic mouse cancer models have also demonstrated that Mcl-1 is essential for the survival of multiple tumor types. The MCL-1 locus is commonly amplified across various cancer types in humans. Small molecule inhibitors with high affinity and specificity to human MCL-1 have been developed and explored for the treatment of certain cancers. To facilitate the pre-clinical studies of MCL-1 in cancer and other diseases, transgenic mouse models over-expressing human MCL-1 as well as humanized MCL-1 mouse models have been recently engineered. This review discusses the current advances in understanding the physiological roles of Mcl-1 based on studies using genetic murine models and its critical implications in pathology and treatment of human diseases.
Collapse
Affiliation(s)
- Hui San Chin
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Nai Yang Fu
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore.,Department of Physiology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
50
|
Rajput C, Han M, Ishikawa T, Lei J, Goldsmith AM, Jazaeri S, Stroupe CC, Bentley JK, Hershenson MB. Rhinovirus C Infection Induces Type 2 Innate Lymphoid Cell Expansion and Eosinophilic Airway Inflammation. Front Immunol 2021; 12:649520. [PMID: 33968043 PMCID: PMC8100319 DOI: 10.3389/fimmu.2021.649520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Rhinovirus C (RV-C) infection is associated with severe asthma exacerbations. Since type 2 inflammation is an important disease mechanism in asthma, we hypothesized that RV-C infection, in contrast to RV-A, preferentially stimulates type 2 inflammation, leading to exacerbated eosinophilic inflammation. To test this, we developed a mouse model of RV-C15 airways disease. RV-C15 was generated from the full-length cDNA clone and grown in HeLa-E8 cells expressing human CDHR3. BALB/c mice were inoculated intranasally with 5 x 106 ePFU RV-C15, RV-A1B or sham. Mice inoculated with RV-C15 showed lung viral titers of 1 x 105 TCID50 units 24 h after infection, with levels declining thereafter. IFN-α, β, γ and λ2 mRNAs peaked 24-72 hrs post-infection. Immunofluorescence verified colocalization of RV-C15, CDHR3 and acetyl-α-tubulin in mouse ciliated airway epithelial cells. Compared to RV-A1B, mice infected with RV-C15 demonstrated higher bronchoalveolar eosinophils, mRNA expression of IL-5, IL-13, IL-25, Muc5ac and Gob5/Clca, protein production of IL-5, IL-13, IL-25, IL-33 and TSLP, and expansion of type 2 innate lymphoid cells. Analogous results were found in mice treated with house dust mite before infection, including increased airway responsiveness. In contrast to Rorafl/fl littermates, RV-C-infected Rorafl/flIl7rcre mice deficient in ILC2s failed to show eosinophilic inflammation or mRNA expression of IL-13, Muc5ac and Muc5b. We conclude that, compared to RV-A1B, RV-C15 infection induces ILC2-dependent type 2 airway inflammation, providing insight into the mechanism of RV-C-induced asthma exacerbations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marc B. Hershenson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|