1
|
Paradoski BT, Hou S, Mejia EM, Olayinka-Adefemi F, Fowke D, Hatch GM, Saleem A, Banerji V, Hay N, Zeng H, Marshall AJ. PI3K-dependent reprogramming of hexokinase isoforms controls glucose metabolism and functional responses of B lymphocytes. iScience 2024; 27:110939. [PMID: 39635128 PMCID: PMC11615188 DOI: 10.1016/j.isci.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024] Open
Abstract
B lymphocyte activation triggers metabolic reprogramming essential for B cell differentiation and mounting a healthy immune response. Here, we investigate the regulation and function of glucose-phosphorylating enzyme hexokinase 2 (HK2) in B cells. We report that both activation-dependent expression and mitochondrial localization of HK2 are regulated by the phosphatidylinositol 3-kinase (PI3K) signaling pathway. B cell-specific deletion of HK2 in mice caused mild perturbations in B cell development. HK2-deficient B cells show impaired functional responses in vitro and adapt to become less dependent on glucose and more dependent on glutamine. HK2 deficiency impairs glycolysis, alters metabolite profiles, and alters flux of labeled glucose carbons into downstream pathways. Upon immunization, HK2-deficient mice exhibit impaired germinal center, plasmablast, and antibody responses. HK2 expression in primary human chronic lymphocytic leukemia (CLL) cells was associated with recent proliferation and could be reduced by PI3K inhibition. Our study implicates PI3K-dependent modulation of HK2 in B cell metabolic reprogramming.
Collapse
Affiliation(s)
| | - Sen Hou
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
| | - Edgard M. Mejia
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
| | | | - Danielle Fowke
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
| | - Grant M. Hatch
- Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
- The Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Ayesha Saleem
- The Children’s Hospital Research Institute of Manitoba, Winnipeg, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | - Versha Banerji
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, Canada
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, USA
| | - Hu Zeng
- Department of Immunology and Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Aaron J. Marshall
- Departments of Immunology, University of Manitoba, Winnipeg, Canada
- Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada
- Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Paul Albrechtsen Research Institute, Cancer Care Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
3
|
Furment MM, Perl A. Immmunometabolism of systemic lupus erythematosus. Clin Immunol 2024; 261:109939. [PMID: 38382658 DOI: 10.1016/j.clim.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal chronic autoimmune disease which is underlain by complex dysfunction of the innate and adaptive immune systems. Although a series of well-defined genetic and environmental factors have been implicated in disease etiology, neither the development nor the persistence of SLE is well understood. Given that several disease susceptibility genes and environmental factors interact and influence inflammatory lineage specification through metabolism, the field of immunometabolism has become a forefront of cutting edge research. Along these lines, metabolic checkpoints of pathogenesis have been identified as targets of effective therapeutic interventions in mouse models and validated in clinical trials. Ongoing studies focus on mitochondrial oxidative stress, activation of the mechanistic target of rapamycin, calcium signaling, glucose utilization, tryptophan degradation, and metabolic cross-talk between gut microbiota and the host immune system.
Collapse
Affiliation(s)
- Marlene Marte Furment
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America
| | - Andras Perl
- Departments of Medicine, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America; Microbiology and Immunology, State University of New York, Upstate Medical University, Norton College of Medicine, Syracuse, New York 13210, United States of America.
| |
Collapse
|
4
|
Zhang T, Liu W, Yang YG. B cell development and antibody responses in human immune system mice: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:645-652. [PMID: 38270770 DOI: 10.1007/s11427-023-2462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 01/26/2024]
Abstract
Humanized immune system (HIS) mice have been developed and used as a small surrogate model to study human immune function under normal or disease conditions. Although variations are found between models, most HIS mice show robust human T cell responses. However, there has been unsuccessful in constructing HIS mice that produce high-affinity human antibodies, primarily due to defects in terminal B cell differentiation, antibody affinity maturation, and development of primary follicles and germinal centers. In this review, we elaborate on the current knowledge about and previous attempts to improve human B cell development in HIS mice, and propose a potential strategy for constructing HIS mice with improved humoral immunity by transplantation of human follicular dendritic cells (FDCs) to facilitate the development of secondary follicles.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
- International Center of Future Science, Jilin University, Changchun, 130061, China.
| |
Collapse
|
5
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H, Lu L. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute, Badalona, 08916, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center, East China Normal University, Shanghai, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
6
|
Ahluwalia P, Vaibhav K, Ahluwalia M, Mondal AK, Sahajpal N, Rojiani AM, Kolhe R. Infection and Immune Memory: Variables in Robust Protection by Vaccines Against SARS-CoV-2. Front Immunol 2021; 12:660019. [PMID: 34046033 PMCID: PMC8144450 DOI: 10.3389/fimmu.2021.660019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 is the cause of a recent pandemic that has led to more than 3 million deaths worldwide. Most individuals are asymptomatic or display mild symptoms, which raises an inherent question as to how does the immune response differs from patients manifesting severe disease? During the initial phase of infection, dysregulated effector immune cells such as neutrophils, macrophages, monocytes, megakaryocytes, basophils, eosinophils, erythroid progenitor cells, and Th17 cells can alter the trajectory of an infected patient to severe disease. On the other hand, properly functioning CD4+, CD8+ cells, NK cells, and DCs reduce the disease severity. Detailed understanding of the immune response of convalescent individuals transitioning from the effector phase to the immunogenic memory phase can provide vital clues to understanding essential variables to assess vaccine-induced protection. Although neutralizing antibodies can wane over time, long-lasting B and T memory cells can persist in recovered individuals. The natural immunological memory captures the diverse repertoire of SARS-CoV-2 epitopes after natural infection whereas, currently approved vaccines are based on a single epitope, spike protein. It is essential to understand the nature of the immune response to natural infection to better identify 'correlates of protection' against this disease. This article discusses recent findings regarding immune response against natural infection to SARS-CoV-2 and the nature of immunogenic memory. More precise knowledge of the acute phase of immune response and its transition to immunological memory will contribute to the future design of vaccines and the identification of variables essential to maintain immune protection across diverse populations.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Augusta University, Augusta, GA, United States
| | | | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Nikhil Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Bernardes JP, Mishra N, Tran F, Bahmer T, Best L, Blase JI, Bordoni D, Franzenburg J, Geisen U, Josephs-Spaulding J, Köhler P, Künstner A, Rosati E, Aschenbrenner AC, Bacher P, Baran N, Boysen T, Brandt B, Bruse N, Dörr J, Dräger A, Elke G, Ellinghaus D, Fischer J, Forster M, Franke A, Franzenburg S, Frey N, Friedrichs A, Fuß J, Glück A, Hamm J, Hinrichsen F, Hoeppner MP, Imm S, Junker R, Kaiser S, Kan YH, Knoll R, Lange C, Laue G, Lier C, Lindner M, Marinos G, Markewitz R, Nattermann J, Noth R, Pickkers P, Rabe KF, Renz A, Röcken C, Rupp J, Schaffarzyk A, Scheffold A, Schulte-Schrepping J, Schunk D, Skowasch D, Ulas T, Wandinger KP, Wittig M, Zimmermann J, Busch H, Hoyer BF, Kaleta C, Heyckendorf J, Kox M, Rybniker J, Schreiber S, Schultze JL, Rosenstiel P. Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity 2020; 53:1296-1314.e9. [PMID: 33296687 PMCID: PMC7689306 DOI: 10.1016/j.immuni.2020.11.017] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Temporal resolution of cellular features associated with a severe COVID-19 disease trajectory is needed for understanding skewed immune responses and defining predictors of outcome. Here, we performed a longitudinal multi-omics study using a two-center cohort of 14 patients. We analyzed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. Validation was performed in two independent cohorts of COVID-19 patients. Severe COVID-19 was characterized by an increase of proliferating, metabolically hyperactive plasmablasts. Coinciding with critical illness, we also identified an expansion of interferon-activated circulating megakaryocytes and increased erythropoiesis with features of hypoxic signaling. Megakaryocyte- and erythroid-cell-derived co-expression modules were predictive of fatal disease outcome. The study demonstrates broad cellular effects of SARS-CoV-2 infection beyond adaptive immune cells and provides an entry point toward developing biomarkers and targeted treatments of patients with COVID-19. SARS-CoV2 infection elicits dynamic changes of circulating cells in the blood Severe COVID-19 is characterized by increased metabolically active plasmablasts Elevation of IFN-activated megakaryocytes and erythroid cells in severe COVID-19 Cell-type-specific expression signatures are associated with a fatal COVID-19 outcome
Collapse
Affiliation(s)
- Joana P Bernardes
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Bahmer
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Lena Best
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Johanna I Blase
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Dora Bordoni
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jeanette Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Ulf Geisen
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jonathan Josephs-Spaulding
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Philipp Köhler
- Department I of Internal Medicine, University of Cologne and University Hospital Cologne; German Center for Infection Research, Partner Site Bonn-Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50937 Cologne, Germany
| | - Axel Künstner
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Elisa Rosati
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Anna C Aschenbrenner
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Departments of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Petra Bacher
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Institute of Immunology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Nathan Baran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Teide Boysen
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Burkhard Brandt
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Niklas Bruse
- Departments of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Jonathan Dörr
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andreas Dräger
- Department of Computer Science, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen and German Center for Infection Research (DZIF), Partner site Tübingen, 72076 Tübingen, Germany
| | - Gunnar Elke
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Julia Fischer
- Department I of Internal Medicine, University of Cologne and University Hospital Cologne; German Center for Infection Research, Partner Site Bonn-Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Anette Friedrichs
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Janina Fuß
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Andreas Glück
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Finn Hinrichsen
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Simon Imm
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Sina Kaiser
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Ying H Kan
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Rainer Knoll
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel and German Center for Infection Research (DZIF), TTU-TB, 23845 Borstel, Germany
| | - Georg Laue
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Clemens Lier
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Matthias Lindner
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Georgios Marinos
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I and German Center for Infection Research (DZIF), University of Bonn, 53217 Bonn, Germany
| | - Rainer Noth
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Peter Pickkers
- Departments of Intensive Care Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Klaus F Rabe
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, 22927 Grosshansdorf, Germany
| | - Alina Renz
- Department of Computer Science, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen and German Center for Infection Research (DZIF), Partner site Tübingen, 72076 Tübingen, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23562 Lübeck, Germany
| | - Annika Schaffarzyk
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jonas Schulte-Schrepping
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Domagoj Schunk
- Department for Emergency Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Dirk Skowasch
- Section of Pneumology, Department of Internal Medicine II, University Hospital Bonn, , 53127 Bonn, Germany
| | - Thomas Ulas
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein, 24105 Kiel and 23562 Lübeck, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Johannes Zimmermann
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Hauke Busch
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Bimba F Hoyer
- Section for Rheumatology, Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Christoph Kaleta
- Institute for Experimental Medicine, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Jan Heyckendorf
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthijs Kox
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, University of Cologne and University Hospital Cologne; German Center for Infection Research, Partner Site Bonn-Cologne and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; Department of Internal Medicine I, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Joachim L Schultze
- Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, and University of Bonn, 53127 Bonn, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany.
| |
Collapse
|
8
|
Sun (孙李哲) L, Yang (杨晓峰) X, Yuan (袁祖贻) Z, Wang (王虹) H. Metabolic Reprogramming in Immune Response and Tissue Inflammation. Arterioscler Thromb Vasc Biol 2020; 40:1990-2001. [PMID: 32698683 DOI: 10.1161/atvbaha.120.314037] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate and adaptive immunity participate in and regulate numerous human diseases. Increasing evidence implies that metabolic reprogramming mediates immune cell functional changes during immune responses. In this review, we present and discuss our current understanding of metabolic regulation in different immune cells and their subsets in response to pathological stimuli. An interactive biochemical and molecular model was established to characterize metabolic reprogramming and their functional implication in anti-inflammatory, immune resolution, and proinflammatory responses. We summarize 2 major features of metabolic reprogramming in inflammatory stages in innate and adaptive immune cells: (1) energy production and biosynthesis reprogramming, including increased glycolysis and decreased oxidative phosphorylation, to secure faster ATP production and biosynthesis for defense response and damage repair and (2) epigenetic reprogramming, including enhanced histone acetylation and suppressed DNA methylation, due to altered accessibility of acetyl/methyl group donor and metabolite-modulated enzymatic activity. Finally, we discuss current strategies of metabolic and epigenetic therapy in cardiovascular disease and recommend cell-specific metabolic and gene-targeted site-specific epigenetic alterations for future therapies.
Collapse
Affiliation(s)
- Lizhe Sun (孙李哲)
- From the Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, P.R. China (L.S., Z.Y.).,Center for Metabolic Disease Research (L.S., X.Y., H.W.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Xiaofeng Yang (杨晓峰)
- Center for Metabolic Disease Research (L.S., X.Y., H.W.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Microbiology and Immunology (X.Y., H.W.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Zuyi Yuan (袁祖贻)
- From the Department of Cardiovascular Medicine, the First Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, P.R. China (L.S., Z.Y.)
| | - Hong Wang (王虹)
- Center for Metabolic Disease Research (L.S., X.Y., H.W.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Microbiology and Immunology (X.Y., H.W.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
9
|
Zhang YN, Song J, Zhai GT, Wang H, Luo RZ, Li JX, Liao B, Ma J, Wang H, Lu X, Liu DB, Liu Z. Evidence for the Presence of Long-Lived Plasma Cells in Nasal Polyps. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:274-291. [PMID: 32009322 PMCID: PMC6997281 DOI: 10.4168/aair.2020.12.2.274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/21/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
Abstract
Purpose Plasma cells and immunoglobulins (Igs) play a pivotal role in the induction and maintenance of chronic inflammation in nasal polyps. During secondary immune responses, plasma cell survival and Ig production are regulated by the local environment. The purpose of the present study was to investigate the presence of long-lived plasma cells (LLPCs) and specific survival niches for LLPCs in human nasal polyps. Methods Nasal mucosal samples were cultured with an air-liquid interface system and the Ig levels in culture supernatants were analyzed by enzyme-linked immunosorbent assay. The characteristics of LLPCs in nasal polyps were determined by immunohistochemistry and immunofluorescence. The expression of neurotrophins as well as their receptors was detected by quantitative real-time polymerase chain reaction, immunohistochemistry, immunofluorescence, and Western blotting. Results The numbers of CD138+ total plasma cells and BCL2+ plasma cells were increased in both eosinophilic and non-eosinophilic nasal polyps compared with those in normal tissues. The production of IgG, IgA, and IgE was detected in culture supernatants even after a 32-day culture of nasal polyps. Although the total numbers of plasma cells were decreased in nasal polyps after culture, the numbers of BCL2+ plasma cells remained stable. The expression of nerve growth factor (NGF) as well as tropomyosin receptor kinase (Trk) A, a high-affinity receptor for NGF, was upregulated in both eosinophilic and non-eosinophilic nasal polyps. In addition, BCL2+ plasma cell numbers were positively correlated with NGF and TrkA mRNA expression in nasal mucosal tissues. Polyp plasma cells had the expression of TrkA. Conclusions Human nasal polyps harbor a population of LLPCs and NGF may be involved in their prolonged survival. LLPCs may be a novel therapeutic target for suppressing the local Ig production in nasal polyps.
Collapse
Affiliation(s)
- Ya Na Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan Ting Zhai
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Zhong Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jing Xian Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Ma
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Lu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da Bo Liu
- Department of Otolaryngology-Head and Neck Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Khodadadi L, Cheng Q, Radbruch A, Hiepe F. The Maintenance of Memory Plasma Cells. Front Immunol 2019; 10:721. [PMID: 31024553 PMCID: PMC6464033 DOI: 10.3389/fimmu.2019.00721] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
It is now well accepted that plasma cells can become long-lived (memory) plasma cells and secrete antibodies for months, years or a lifetime. However, the mechanisms involved in this process of humoral memory, which is crucial for both protective immunity and autoimmunity, still are not fully understood. This article will address a number of open questions. For example: Is longevity of plasma cells due to their intrinsic competence, extrinsic factors, or a combination of both? Which internal signals are involved in this process? What factors provide external support? What survival factors play a part in inflammation and autoreactive disease? Internal and external factors that contribute to the maintenance of memory long-lived plasma cells will be discussed. The aim is to provide useful additional information about the maintenance of protective and autoreactive memory plasma cells that will help researchers design effective vaccines for the induction of life-long protection against infectious diseases and to efficiently target pathogenic memory plasma cells.
Collapse
Affiliation(s)
- Laleh Khodadadi
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany
| | - Falk Hiepe
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| |
Collapse
|
11
|
ATP-degrading ENPP1 is required for survival (or persistence) of long-lived plasma cells. Sci Rep 2017; 7:17867. [PMID: 29259245 PMCID: PMC5736562 DOI: 10.1038/s41598-017-18028-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Survival of antibody-secreting plasma cells (PCs) is vital for sustained antibody production. However, it remains poorly understood how long-lived PCs (LLPCs) are generated and maintained. Here we report that ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is preferentially upregulated in bone marrow LLPCs compared with their splenic short-lived counterparts (SLPCs). We studied ENPP1-deficient mice (Enpp1−/−) to determine how the enzyme affects PC biology. Although Enpp1−/− mice generated normal levels of germinal center B cells and plasmablasts in periphery, they produced significantly reduced numbers of LLPCs following immunization with T-dependent antigens or infection with plasmodium C. chabaudi. Bone marrow chimeric mice showed B cell intrinsic effect of ENPP1 selectively on generation of bone marrow as well as splenic LLPCs. Moreover, Enpp1−/− PCs took up less glucose and had lower levels of glycolysis than those of wild-type controls. Thus, ENPP1 deficiency confers an energetic disadvantage to PCs for long-term survival and antibody production.
Collapse
|