1
|
Shalata W, Gothelf I, Dudnik Y, Cohen AY, Abu Jama A, Liba T, Dan O, Tourkey L, Shalata S, Agbarya A, Meirovitz A, Yakobson A. Correlation Between Body Mass Index and Immunotherapy Response in Advanced NSCLC. Cancers (Basel) 2025; 17:1149. [PMID: 40227730 PMCID: PMC11988004 DOI: 10.3390/cancers17071149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the management of advanced non-small cell lung cancer (NSCLC). Emerging evidence suggests a potential association between elevated body mass index (BMI) and enhanced ICI efficacy, yet this relationship remains inconclusive and warrants further investigation. This study aims to evaluate the impact of BMI on treatment efficacy and survival outcomes in advanced NSCLC patients treated with first-line ICI therapy. METHODS A retrospective study was conducted at a multi-center registry to evaluate the impact of baseline BMI on overall survival (OS) and progression-free survival (PFS) in patients with stage IV NSCLC who received first-line ICI therapies. Treatment regimens included pembrolizumab or the combination of ipilimumab and nivolumab, administered either as monotherapy or in combination with chemotherapy, at the oncology department between January 2018 and December 2023. BMI was categorized according to the World Health Organization (WHO) classification, and OS and PFS were evaluated using Kaplan-Meier survival analysis and the Cox proportional hazards regression model. RESULTS Among 346 patients, 12.72% were underweight, 45.38% normal weight, 29.19% overweight, and 12.72% obese. Overweight and obese patients were more likely to receive pembrolizumab (p = 0.039) and less likely to undergo chemotherapy (p = 0.012). No significant differences in median overall survival (OS, log-rank: p = 0.155) or progression-free survival (PFS, log-rank: p = 0.370) were observed across BMI categories. However, differences emerged upon further analysis of PD-L1 levels (OS, log-rank: p = 0.029; PFS, log-rank: p = 0.044), additional chemotherapy (OS, log-rank: p = 0.009; PFS, log-rank: p = 0.021), type of immune checkpoint inhibitor (OS, log-rank: p < 0.001; PFS, log-rank: p < 0.001), and histologic diagnosis (OS, log-rank: p = 0.011; PFS, log-rank: p = 0.003). CONCLUSIONS BMI was not an independent predictor of survival outcomes in advanced NSCLC treated with ICI. Incorporating BMI with other patient-specific factors into personalized immunotherapy strategies highlights the importance of tailored approaches to improve patient care and clinical outcomes.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Gothelf
- Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yulia Dudnik
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ahron Yehonatan Cohen
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ashraf Abu Jama
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Tom Liba
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed 5290002, Israel
| | - Ofir Dan
- Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lena Tourkey
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 2210006, Israel
| | - Abed Agbarya
- Oncology Department, Bnai Zion Medical Center, Haifa 3104701, Israel
| | - Amichay Meirovitz
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center, Dr. Larry Norton Institute, Soroka Medical Center, Beer-Sheva 8410501, Israel
- Medical School for International Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
2
|
Li Y, Yu Y, Lv K, Ge R, Xie X. Prognostic value of body adipose tissue parameters in cancer patients treated with immune checkpoint inhibitors. Front Immunol 2025; 16:1557726. [PMID: 40013137 PMCID: PMC11861556 DOI: 10.3389/fimmu.2025.1557726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025] Open
Abstract
Objective This study aims to explore the relationship between body adipose tissue characteristics and clinical outcomes in cancer patients receiving immune checkpoint inhibitor (ICI) therapy. Methods We conducted an extensive literature search across three major online databases-Embase, PubMed, and the Cochrane Library-to identify studies examining the link between body adipose tissue and treatment outcomes in cancer patients undergoing ICI therapy, from the inception of each database until February 20, 2024. The quality of the included studies was evaluated using the Newcastle-Ottawa Scale. The primary outcomes analyzed were hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS), as well as odds ratios (ORs) for disease control rate (DCR). Pooled estimates and 95% confidence intervals (CIs) were calculated. Results A total of 23 studies were included, encompassing 2741 cancer patients. The analysis revealed that patients with higher levels of visceral adipose tissue (VAT) exhibited significantly improved OS (HR: 0.72, 95% CI: 0.59-0.89, p < 0.001) and PFS (HR: 0.80, 95% CI: 0.67-0.96, p = 0.015), along with a higher DCR (OR: 1.81, 95% CI: 1.26-2.60, p = 0.001), compared to those with lower VAT levels. Additionally, increased subcutaneous adipose tissue (SAT) levels were associated with significantly better OS (HR: 0.69, 95% CI: 0.58-0.82, p < 0.001) and PFS (HR: 0.82, 95% CI: 0.68-1.00, p = 0.049), and a higher DCR (OR: 1.99, 95% CI: 1.15-3.44, p = 0.014). Elevated total adipose tissue (TAT) levels were also linked to longer OS (HR: 0.73, 95% CI: 0.55-0.97, p = 0.028). However, a higher visceral-to-subcutaneous adipose tissue ratio (VSR) was associated with a shorter OS (HR: 1.43, 95% CI: 1.09-1.87, p = 0.010). No significant relationship was found between TAT (HR: 0.81, 95% CI: 0.54-1.23, p = 0.332) and VSR (HR: 1.20, 95% CI: 0.95-1.51, p = 0.131) with PFS in ICI-treated patients. Conclusion This study highlights the prognostic relevance of VAT and SAT in predicting treatment response and survival outcomes in cancer patients receiving ICIs. These findings suggest that assessments of VAT and SAT should be incorporated into prognostic evaluations for this patient population.
Collapse
Affiliation(s)
- Yan Li
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yean Yu
- Department of Nephrology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Lv
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Rongjuan Ge
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xie Xie
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Jiang Y, Zhang R, Xu X, Wang X, Tian Y, Zhang W, Ma X, Man C. Chicken adipose tissue is differentially involved in primary and secondary regional immune response to NDV through miR-20a-5p-NR4A3 pathway. Vet Immunol Immunopathol 2025; 280:110884. [PMID: 39813891 DOI: 10.1016/j.vetimm.2025.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
The mammalian adipose tissue (AT) plays a key role in regulating immune function and anti-infective protection to maintain tissue regional homeostasis. However, it is still unclear whether there are differences in the participation of AT in primary and secondary immune response, and whether avian AT has the similar immune function characteristics to mammals. In this study, we used Newcastle disease virus (NDV) attenuated vaccine to induce primary and secondary immune response in chickens, and the changes of the key regulatory gene NR4A3 (nuclear receptor subfamily 4 group A member 3) of T cells activation and its targeted miR-20a-5p were detected by quantitative real-time PCR (qRT-PCR). The results showed that NR4A3 actively participated in immune response of AT, and showed significant differences in expression activities between the two immune processes. "MiR-20a-5p/NR4A3" pathway was a potential molecular mechanism involved in the regulation of immune function in AT. Moreover, AT responded differently to the primary and secondary immune response possibly through the different patterns of source, apoptosis and migration for lymphocytes (such as CD8β+ T cells). This study can provide directional guidance for further studying immune functions of avian AT.
Collapse
Affiliation(s)
- Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
4
|
Garcia JN, Cottam MA, Rodriguez AS, Agha AFH, Winn NC, Hasty AH. Interrupting T cell memory ameliorates exaggerated metabolic response to weight cycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633599. [PMID: 39896598 PMCID: PMC11785015 DOI: 10.1101/2025.01.17.633599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
People frequently experience cycles of weight gain and loss. This weight cycling has been demonstrated, in humans and animal models, to increase cardiometabolic disease and disrupt glucose homeostasis. Obesity itself - and to an even greater extent weight regain - causes adipose tissue inflammation, resulting in metabolic dysfunction. Studies show that even after weight loss, increased numbers of lipid associated macrophages and memory T cells persist in adipose tissue and become more inflammatory upon weight regain. These findings suggest that the immune system retains a "memory" of obesity, which may contribute to the elevated inflammation and metabolic dysfunction associated with weight cycling. Here, we show that blocking the CD70-CD27 axis, critical for formation of immunological memory, decreases the number of memory T cells and reduces T cell clonality within adipose tissue after weight loss and weight cycling. Furthermore, while mice with impaired ability to create obesogenic immune memory have similar metabolic responses as wildtype mice to stable obesity, they are protected from the worsened glucose tolerance associated with weight cycling. Our data are the first to target metabolic consequences of weight cycling through an immunomodulatory mechanism. Thus, we propose a new avenue of therapeutic intervention by which targeting memory T cells can be leveraged to minimize the adverse consequences of weight cycling. These findings are particularly timely given the increasing use of efficacious weight loss drugs, which will likely lead to more instances of human weight cycling.
Collapse
Affiliation(s)
- Jamie N. Garcia
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Matthew A. Cottam
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alec S. Rodriguez
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Anwar F. Hussein Agha
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathan C. Winn
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
5
|
Sun DY, Hu YJ, Li X, Peng J, Dai ZJ, Wang S. Unlocking the full potential of memory T cells in adoptive T cell therapy for hematologic malignancies. Int Immunopharmacol 2025; 144:113392. [PMID: 39608170 DOI: 10.1016/j.intimp.2024.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 11/30/2024]
Abstract
In recent years, immune cell therapy, particularly adoptive cell therapy (ACT), has shown superior therapeutic effects on hematologic malignancies. However, a challenge lies in ensuring that genetically engineered specific T cells maintain lasting anti-tumor effects within the host. The enduring success of ACT therapy hinges on the persistence of memory T (TM) cells, a diverse cell subset crucial for tumor immune response and immune memory upkeep. Notably, TM cell subsets at varying differentiation stages exhibit distinct biological traits and anti-tumor capabilities. Poorly differentiated TM cells are pivotal for favorable clinical outcomes in ACT. The differentiation of TM cells is influenced by multiple factors, including metabolism and cytokines. Consequently, current research focuses on investigating the differentiation patterns of TM cells and enhancing the production of poorly differentiated TM cells with potent anti-tumor properties in vitro, which is a prominent area of interest globally. This review delves into the differentiation features of TM cells, outlining their distribution in patients and their impact on ACT treatment. It comprehensively explores cutting-edge strategies to boost ACT efficacy through TM cell differentiation induction, aiming to unlock the full potential of TM cells in treating hematologic malignancies and offering novel insights for tumor immune cell therapy.
Collapse
Affiliation(s)
- Ding-Ya Sun
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China
| | - Yi-Jie Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xin Li
- International Medicine Institute, Changsha Medical University, Changsha, China
| | - Jun Peng
- Xiangya School of Pharmaceutical Sciences, Department of Pharmacology, Central South University, Changsha, China.
| | - Zhi-Jie Dai
- National Clinical Research Center for Metabolic Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
6
|
Jiang Z, Tabuchi C, Gayer SG, Bapat SP. Immune Dysregulation in Obesity. ANNUAL REVIEW OF PATHOLOGY 2025; 20:483-509. [PMID: 39854190 DOI: 10.1146/annurev-pathmechdis-051222-015350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.
Collapse
Affiliation(s)
- Zewen Jiang
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Chihiro Tabuchi
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sarah G Gayer
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
7
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
8
|
Wang X, Jiang Y, Zhang Y, Xia M, Li J, Man C. Adipose tissue responds to stress-induced immunosuppression affecting immune response partially by miR-145-5p/S1PR1 pathway. Poult Sci 2024; 103:104431. [PMID: 39418791 PMCID: PMC11530903 DOI: 10.1016/j.psj.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024] Open
Abstract
Stress-induced immunosuppression (SIIS) is one of the most common problems in intensive poultry production, which can cause immunized chickens to still develop diseases and bring huge losses to production. Recently, adipose tissue, as an immunomodulatory organ, has become a hot topic of attention. However, the function and mechanism of adipose tissue involved in SIIS and its influence on the immune response are still unclear. In this study, we dynamically analyzed the correlations between the T cells migration and change of sphingosine-1-phosphate receptor 1(S1PR1) gene in adipose tissue using chicken models with different immune states, and further explored the regulatory mechanisms and application. The results showed that SIIS could significantly change the expressions of lymphocytes migration related S1PR1 gene, and SIIS could inhibit the Newcastle disease virus (NDV) immune response partially by affecting the migration and proliferation of TCRα+ T cells in adipose tissue. Moreover, the miR-145-5p/S1PR1 pathway was a potential key mechanism to regulate T cells migration in adipose tissue, and circulating miR-145-5p had potential value as a molecular marker. This research can provide innovative reference for in-depth studying the immunoregulatory function and mechanism of adipose tissue.
Collapse
Affiliation(s)
- Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Yuxin Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Meiqi Xia
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Jia Li
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, PR China.
| |
Collapse
|
9
|
Raynor JL, Collins N, Shi H, Guy C, Saravia J, Ah Lim S, Chapman NM, Zhou P, Wang Y, Sun Y, Risch I, Hu H, Kc A, Sun R, Shrestha S, Huang H, Connelly JP, Pruett-Miller SM, Reina-Campos M, Goldrath AW, Belkaid Y, Chi H. CRISPR screens unveil nutrient-dependent lysosomal and mitochondrial nodes impacting intestinal tissue-resident memory CD8 + T cell formation. Immunity 2024; 57:2597-2614.e13. [PMID: 39406246 PMCID: PMC11590283 DOI: 10.1016/j.immuni.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2024] [Accepted: 09/16/2024] [Indexed: 11/15/2024]
Abstract
Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor β (TGF-β)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yan Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yu Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Isabel Risch
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Haoran Hu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Renqiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharad Shrestha
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
10
|
Collins TJC, Morgan PK, Man K, Lancaster GI, Murphy AJ. The influence of metabolic disorders on adaptive immunity. Cell Mol Immunol 2024; 21:1109-1119. [PMID: 39134802 PMCID: PMC11442657 DOI: 10.1038/s41423-024-01206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/19/2024] [Indexed: 10/02/2024] Open
Abstract
The immune system plays a crucial role in protecting the body from invading pathogens and maintaining tissue homoeostasis. Maintaining homoeostatic lipid metabolism is an important aspect of efficient immune cell function and when disrupted immune cell function is impaired. There are numerous metabolic diseases whereby systemic lipid metabolism and cellular function is impaired. In the context of metabolic disorders, chronic inflammation is suggested to be a major contributor to disease progression. A major contributor to tissue dysfunction in metabolic disease is ectopic lipid deposition, which is generally caused by diet and genetic factors. Thus, we propose the idea, that similar to tissue and organ damage in metabolic disorders, excessive accumulation of lipid in immune cells promotes a dysfunctional immune system (beyond the classical foam cell) and contributes to disease pathology. Herein, we review the evidence that lipid accumulation through diet can modulate the production and function of immune cells by altering cellular lipid content. This can impact immune cell signalling, activation, migration, and death, ultimately affecting key aspects of the immune system such as neutralising pathogens, antigen presentation, effector cell activation and resolving inflammation.
Collapse
Affiliation(s)
- Thomas J C Collins
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Pooranee K Morgan
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kevin Man
- Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, 3000, Australia
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Graeme I Lancaster
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
11
|
Jang IH, Kruglov V, Cholensky SH, Smith DM, Carey A, Bai S, Nottoli T, Bernlohr DA, Camell CD. GDF3 promotes adipose tissue macrophage-mediated inflammation via altered chromatin accessibility during aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614375. [PMID: 39386655 PMCID: PMC11463477 DOI: 10.1101/2024.09.23.614375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Age-related susceptibility to sepsis and endotoxemia is poorly defined, although hyperactivation of the immune system and the expansion of the visceral adipose as an immunological reservoir are underlying features. Macrophages from older organisms exhibit substantial changes, including chronic NLRP3 inflammasome activation, genomic remodeling and a dysfunctional, amplified inflammatory response upon new exposure to pathogen. However, the mechanisms by which old macrophages maintain their inflammatory phenotype during endotoxemia remains elusive. We previously identified Gdf3 , a TGFβ superfamily cytokine, as a top-regulated gene by age and the NLRP3 inflammasome in adipose tissue macrophages (ATMs). Here, we demonstrate that endotoxemia increases inflammatory (CD11c + ) ATMs in a Gdf3- dependent manner in old mice. Lifelong systemic or myeloid-specific deletion of Gdf3 leads to reduced endotoxemia- induced inflammation, with decreased CD11c + ATMs and inflammatory cytokines, and protection from hypothermia. Moreover, acute blockade of Gdf3 using JQ1, a BRD4 inhibitor, phenocopies old mice with lifelong Gdf3- deficiency. We show that GDF3 promotes the inflammatory phenotype in ATMs by phosphorylating SMAD2/3. Mechanistically, the differential chromatin landscape of ATMs from old mice with or without myeloid-driven Gdf3 indicates that GDF3- SMAD2/3 signaling axis shifts the chromatin accessibility of ATMs towards an inflammatory state during aging. Furthermore, pharmaceutical inhibition of SMAD3 with a specific inhibitor of SMAD3 (SIS3) mimics Gdf3 deletion. SIS3 reduces endotoxemia-mediated inflammation with fewer CD11c + ATMs and less severe hypothermia in old, but not young mice, as well as reduced mortality. In human adipose tissue, age positively correlates with GDF3 level, while inflammation correlates with pSMAD2/3 level. Overall, these results highlight the importance of GDF3-SMAD2/3 axis in driving inflammation in older organisms and identify this signaling axis as a promising therapeutic target for mitigating endotoxemia-related inflammation in the aged.
Collapse
|
12
|
Greene J, Snyder RA, Cotten KL, Huiszoon RC, Chu S, Braza RED, Chapin AA, Stine JM, Bentley WE, Ghodssi R, Davis KM. Yersinia pseudotuberculosis growth arrest during type-III secretion system expression is associated with altered ribosomal protein expression and decreased gentamicin susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610769. [PMID: 39282321 PMCID: PMC11398311 DOI: 10.1101/2024.09.02.610769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
It has been long appreciated that expression of the Yersinia type-III secretion system (T3SS) in culture is associated with growth arrest. Here we sought to understand whether this impacts expression of ribosomal protein genes, which were among the most highly abundant transcripts in exponential phase Yersinia pseudotuberculosis based on RNA-seq analysis. To visualize changes in ribosomal protein expression, we generated a fluorescent transcriptional reporter with the promoter upstream of rpsJ/S10 fused to a destabilized gfp variant. We confirmed reporter expression significantly increases in exponential phase and decreases as cells transition to stationary phase. We then utilized a mouse model of systemic Y. pseudotuberculosis infection to compare T3SS and S10 reporter expression during clustered bacterial growth in the spleen, and found that cells expressing high levels of the T3SS had decreased S10 levels, while cells with lower T3SS expression retained higher S10 expression. In bacteriological media, growth inhibition with T3SS induction and a reduction in S10 expression were observed in subsets of cells, while cells with high expression of both T3SS and S10 were also observed. Loss of T3SS genes resulted in rescued growth and heightened S10 expression. To understand if clustered growth impacted bacterial gene expression, we utilized droplet-based microfluidics to encapsulate bacteria in spherical agarose droplets, and also observed growth inhibition with high expression of T3SS and reduced S10 levels that better mirrored phenotypes observed in the mouse spleen. Finally, we show that T3SS expression is sufficient to promote tolerance to the ribosome-targeting antibiotic, gentamicin. Collectively, these data indicate that the growth arrest associated with T3SS induction leads to decreased expression of ribosomal protein genes, and this results in reduced antibiotic susceptibility.
Collapse
Affiliation(s)
- Justin Greene
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rhett A. Snyder
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Katherine L. Cotten
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ryan C. Huiszoon
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Sangwook Chu
- Institute for Systems Research, University of Maryland, College Park, MD, USA
| | - Rezia Era D. Braza
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ashley A. Chapin
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Justin M. Stine
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Reza Ghodssi
- Institute for Systems Research, University of Maryland, College Park, MD, USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
13
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
14
|
Vyas V, Sandhar B, Keane JM, Wood EG, Blythe H, Jones A, Shahaj E, Fanti S, Williams J, Metic N, Efremova M, Ng HL, Nageswaran G, Byrne S, Feldhahn N, Marelli-Berg F, Chain B, Tinker A, Finlay MC, Longhi MP. Tissue-resident memory T cells in epicardial adipose tissue comprise transcriptionally distinct subsets that are modulated in atrial fibrillation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1067-1082. [PMID: 39271815 PMCID: PMC11399095 DOI: 10.1038/s44161-024-00532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/29/2024] [Indexed: 09/15/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and carries an increased risk of stroke and heart failure. Here we investigated how the immune infiltrate of human epicardial adipose tissue (EAT), which directly overlies the myocardium, contributes to AF. Flow cytometry analysis revealed an enrichment of tissue-resident memory T (TRM) cells in patients with AF. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell T cell receptor (TCR) sequencing identified two transcriptionally distinct CD8+ TRM cells that are modulated in AF. Spatial transcriptomic analysis of EAT and atrial tissue identified the border region between the tissues to be a region of intense inflammatory and fibrotic activity, and the addition of TRM populations to atrial cardiomyocytes demonstrated their ability to differentially alter calcium flux as well as activate inflammatory and apoptotic signaling pathways. This study identified EAT as a reservoir of TRM cells that can directly modulate vulnerability to cardiac arrhythmia.
Collapse
Affiliation(s)
- Vishal Vyas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Balraj Sandhar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jack M Keane
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Elizabeth G Wood
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hazel Blythe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aled Jones
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jack Williams
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nasrine Metic
- Cancer Research UK, Barts Centre, Queen Mary University of London, London, UK
| | - Mirjana Efremova
- Cancer Research UK, Barts Centre, Queen Mary University of London, London, UK
| | - Han Leng Ng
- Department of Immunology and Inflammation, Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Gayathri Nageswaran
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Suzanne Byrne
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Niklas Feldhahn
- Department of Immunology and Inflammation, Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Benny Chain
- UCL Division of Infection and Immunity, University College London, London, UK
| | - Andrew Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Malcolm C Finlay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Cardiology, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
15
|
Yang X, Tang H, Sun X, Gui Q. M6A modification and T cells in adipose tissue inflammation. Cell Biochem Funct 2024; 42:e4089. [PMID: 38978329 DOI: 10.1002/cbf.4089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Adipose tissue in the obese state can lead to low-grade chronic inflammation while inducing or exacerbating obesity-related metabolic diseases and impairing overall health.T cells, which are essential immune cells similar to macrophages, are widely distributed in adipose tissue and perform their immunomodulatory function; they also cross-talk with other cells in the vascular stromal fraction. Based on a large number of studies, it has been found that N6 methyl adenine (m6A) is one of the most representative of epigenetic modifications, which affects the crosstalk between T cells, as well as other immune cells, in several ways and plays an important role in the development of adipose tissue inflammation and related metabolic diseases. In this review, we first provide an overview of the widespread presence of T cells in adipose tissue and summarize the key role of T cells in adipose tissue inflammation. Next, we explored the effects of m6A modifications on T cells in adipose tissue from the perspective of adipose tissue inflammation. Finally, we discuss the impact of m6a-regulated crosstalk between T cells and immune cells on the prospects for improving adipose tissue inflammation research, providing additional new ideas for the treatment of obesity.
Collapse
Affiliation(s)
- Xiaoting Yang
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haojun Tang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xuan Sun
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingjun Gui
- Institute of Translational Medicine, Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
16
|
Sun Y, Dang Q, Ge Y, Zhang J, Cheng Q, Sun H, Wang L, Gao A, Sun Y, Li J. Prognostic value of body mass index for first-line chemoimmunotherapy combinations in advanced non-small cell lung cancer in Chinese population. Heliyon 2024; 10:e31863. [PMID: 38841444 PMCID: PMC11152932 DOI: 10.1016/j.heliyon.2024.e31863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Background Few studies have examined the correlation between body mass index (BMI) and effectiveness of first-line chemoimmunotherapy in patients with advanced non-small cell lung cancer (NSCLC); moreover, the conclusion remains elusive and no such studies have been conducted in the Chinese population. Our study aimed to validate the predictive significance of BMI in Chinese patients with advanced NSCLC receiving first-line chemoimmunotherapy combinations. Methods Data of patients with advanced NSCLC treated with first-line chemoimmunotherapy between June 2018 and February 2022 at three centers were retrieved retrospectively. The association between baseline BMI with progression-free survival (PFS) and overall survival (OS) was evaluated using the Kaplan-Meier method and Cox regression models. BMI was categorized according to the World Health Organization criteria. Results Of the included 805 patients, 5.3 % were underweight, 63.4 % had normal weight, 27.8 % were overweight, and 3.5 % were obese. Survival analysis showed that patients in the high BMI group had significantly better PFS (p = 0.012) and OS (p = 0.014) than those in the low BMI group. Further, patients in the overweight subgroup had better PFS (p = 0.036) and OS (p = 0.043) compared to the normal weight population. The results of Cox regression analysis confirmed the correlations between BMI and prognosis of advanced NSCLC patients receiving first-line chemoimmunotherapy combinations. Conclusions Baseline BMI affected the clinical outcomes of first-line chemoimmunotherapy combinations in patients with advanced NSCLC, and was especially favorable for the overweight subgroup.
Collapse
Affiliation(s)
- Yanxin Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qi Dang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihui Ge
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Phase I Clinical Research Center, Shandong University Cancer Center, Jinan, Shandong, China
| | - Jian Zhang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qinglei Cheng
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haifeng Sun
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leirong Wang
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Aiqin Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Juan Li
- Phase I Clinical Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
17
|
Vick LV, Rosario S, Riess JW, Canter RJ, Mukherjee S, Monjazeb AM, Murphy WJ. Potential roles of sex-linked differences in obesity and cancer immunotherapy: revisiting the obesity paradox. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:5. [PMID: 38800540 PMCID: PMC11116109 DOI: 10.1038/s44324-024-00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
Obesity, a condition of excess adiposity usually defined by a BMI > 30, can have profound effects on both metabolism and immunity, connecting the condition with a broad range of diseases, including cancer and negative outcomes. Obesity and cancer have been associated with increased incidence, progression, and poorer outcomes of multiple cancer types in part due to the pro-inflammatory state that arises. Surprisingly, obesity has also recently been demonstrated in both preclinical models and clinical outcomes to be associated with improved response to immune checkpoint inhibition (ICI). These observations have laid the foundation for what has been termed the "obesity paradox". The mechanisms underlying these augmented immunotherapy responses are still unclear given the pleiotropic effects obesity exerts on cells and tissues. Other important variables such as age and sex are being examined as further affecting the obesity effect. Sex-linked factors exert significant influences on obesity biology, metabolism as well as differential effects of different immune cell-types. Age can be another confounding factor contributing to the effects on both sex-linked changes, immune status, and obesity. This review aims to revisit the current body of literature describing the immune and metabolic changes mediated by obesity, the role of obesity on cancer immunotherapy, and to highlight questions on how sex-linked differences may influence obesity and immunotherapy outcome.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Jonathan W. Riess
- Department of Medicine, Division of Hematology/Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA USA
| | - Robert J. Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA USA
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA USA
- Department of Internal Medicine, Division of Malignant Hematology, Cellular Therapy and Transplantation, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
18
|
Zhang C, Dong X, Chen J, Liu F. Association between lipid accumulation product and psoriasis among adults: a nationally representative cross-sectional study. Lipids Health Dis 2024; 23:143. [PMID: 38760661 PMCID: PMC11100150 DOI: 10.1186/s12944-024-02123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Lipid accumulation product (LAP) is an accessible and relatively comprehensive assessment of obesity that represents both anatomical and physiological lipid accumulation. Obesity and psoriasis are potentially related, according to previous research. Investigating the relationship between adult psoriasis and the LAP index was the goal of this study. METHODS This is a cross-sectional study based on data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006 and 2009-2014. The association between LAP and psoriasis was examined using multivariate logistic regression and smoothed curve fitting. To verify whether this relationship was stable across populations, subgroup analyses and interaction tests were performed. RESULTS The LAP index showed a positive correlation with psoriasis in 9,781 adult participants who were 20 years of age or older. A 27% elevated probability of psoriasis was linked to every unit increase in ln LAP in the fully adjusted model (Model 3: OR 1.27, 95% CI 1.06-1.52). In comparison with participants in the lowest ln LAP quartile, those in the highest quartile had an 83% greater likelihood of psoriasis (Model 3: OR 1.83, 95% CI 1.08-3.11). This positive correlation was more pronounced for young males, participants who had never smoked, non-drinkers, participants who exercised little, as well as non-hypertensive and non-diabetic participants. CONCLUSIONS This study found that the LAP index and adult psoriasis were positively correlated, especially in young males without comorbidities. Therefore, it is proposed that LAP may serve as a biomarker for early diagnosis of psoriasis and tracking the effectiveness of treatment.
Collapse
Affiliation(s)
- Caiyun Zhang
- Department of Medical Cosmetology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, China
| | - Xiaoping Dong
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Jun Chen
- Department of Dermatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, China.
| | - Fang Liu
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
19
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
20
|
Oliveira BM, Sidónio B, Correia A, Pinto A, Azevedo MM, Sampaio P, Ferreira PG, Vilanova M, Teixeira L. Cytokine production by bovine adipose tissue stromal vascular fraction cells upon Neospora caninum stimulation. Sci Rep 2024; 14:8444. [PMID: 38600105 PMCID: PMC11006870 DOI: 10.1038/s41598-024-58885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
In bovines few studies addressed the contribution of adipose tissue to the host immune response to infection. Here we evaluated the in vitro response of bovine adipose tissue stromal vascular fraction (SVF) cells to the protozoan parasite Neospora caninum, using live and freeze-killed tachyzoites. Live N. caninum induced the production of IL-6, IL-1β and IL-10 by SVF cells isolated from subcutaneous adipose tissue (SAT), while in mesenteric adipose tissue (MAT) SVF cell cultures only IL-1β and IL-10 production was increased, showing slight distinct responses between adipose tissue depots. Whereas a clear IL-8 increase was detected in peripheral blood leucocytes (PBL) culture supernatants in response to live N. caninum, no such increase was observed in SAT or MAT SVF cell cultures. Nevertheless, in response to LPS, increased IL-8 levels were detected in all cell cultures. IL-10 levels were always increased in response to stimulation (live, freeze-killed N. caninum and LPS). Overall, our results show that bovine adipose tissue SVF cells produce cytokines in response to N. caninum and can therefore be putative contributors to the host immune response against this parasite.
Collapse
Affiliation(s)
- Bárbara M Oliveira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Beatriz Sidónio
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Alexandra Correia
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Ana Pinto
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
| | - Maria M Azevedo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Paula Sampaio
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
| | - Paula G Ferreira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal
| | - Manuel Vilanova
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal
| | - Luzia Teixeira
- UMIB-Unidade Multidisciplinar de Investigação Biomédica, ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313, Porto, Portugal.
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-290, Porto, Portugal.
| |
Collapse
|
21
|
Raynor JL, Chi H. Nutrients: Signal 4 in T cell immunity. J Exp Med 2024; 221:e20221839. [PMID: 38411744 PMCID: PMC10899091 DOI: 10.1084/jem.20221839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/28/2024] Open
Abstract
T cells are integral in mediating adaptive immunity to infection, autoimmunity, and cancer. Upon immune challenge, T cells exit from a quiescent state, followed by clonal expansion and effector differentiation. These processes are shaped by three established immune signals, namely antigen stimulation (Signal 1), costimulation (Signal 2), and cytokines (Signal 3). Emerging findings reveal that nutrients, including glucose, amino acids, and lipids, are crucial regulators of T cell responses and interplay with Signals 1-3, highlighting nutrients as Signal 4 to license T cell immunity. Here, we first summarize the functional importance of Signal 4 and the underlying mechanisms of nutrient transport, sensing, and signaling in orchestrating T cell activation and quiescence exit. We also discuss the roles of nutrients in programming T cell differentiation and functional fitness and how nutrients can be targeted to improve disease therapy. Understanding how T cells respond to Signal 4 nutrients in microenvironments will provide insights into context-dependent functions of adaptive immunity and therapeutic interventions.
Collapse
Affiliation(s)
- Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
22
|
Kim K, Park S, Lee Y, Baek J, Kim Y, Hwang SW, Lee JL, Park SH, Yang SK, Han B, Song K, Yoon YS, Lee HS, Ye BD. Transcriptomic Profiling and Cellular Composition of Creeping Fat in Crohn's disease. J Crohns Colitis 2024; 18:223-232. [PMID: 37594364 DOI: 10.1093/ecco-jcc/jjad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND AND AIMS Creeping fat [CF] is a poorly understood feature of Crohn's disease [CD], characterized by the wrapping of mesenteric adipose tissue [MAT] around the inflamed intestine. The aim of this study was to investigate the transcriptional profile and compositional features of CF. METHODS We collected 59 MAT samples: 23 paired samples from patients with CD (CF [CD-CF] and MAT around the uninflamed intestine [CD-MAT]) and 13 MAT samples from non-CD patients [Con-MAT]. Differentially expressed gene [DEG], functional pathway, cell deconvolution, and gene co-expression network analyses were performed. RESULTS By comparing three different MAT samples, we identified a total of 529 DEGs [|log2FoldChange| > 1.5; false discovery rate < 0.05]. Of these, 323 genes showed an incremental pattern from Con-MAT to CD-MAT, and to CD-CF, while 105 genes displayed a decremental pattern. Genes with an incremental pattern were related to immune cell responses, including B- and T-cell activation, while genes with a decremental pattern were involved in cell trafficking and migration. Cell deconvolution analysis revealed significant changes in cellular composition between the CD-CF and Con-MAT groups, with increased proportions of B-cells/plasma cells [p = 1.16 × 10-4], T-cells [p = 3.66 × 10-3], and mononuclear phagocytes [p = 3.53 × 10-2] in the CD-CF group. In contrast, only the B-cell/plasma cell component showed a significant increase [p = 1.62 × 10-2] in the CD-MAT group compared to Con-MAT. CONCLUSION The distinct transcriptional profiles and altered cellular components of each MAT found in our study provide insight into the mechanisms behind CF and highlight its possible role in the pathogenesis of CD.
Collapse
Affiliation(s)
- Kyuwon Kim
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sojung Park
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yoonho Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jiwon Baek
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yongjae Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sung Wook Hwang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Lyul Lee
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Hyoung Park
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Suk-Kyun Yang
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Buhm Han
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| | - Kyuyoung Song
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Yong Sik Yoon
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Division of Colon and Rectal Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ho-Su Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Byong Duk Ye
- Department of Gastroenterology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Inflammatory Bowel Disease Center, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
23
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
24
|
Marchesini Tovar G, Gallen C, Bergsbaken T. CD8+ Tissue-Resident Memory T Cells: Versatile Guardians of the Tissue. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:361-368. [PMID: 38227907 PMCID: PMC10794029 DOI: 10.4049/jimmunol.2300399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 01/18/2024]
Abstract
Tissue-resident memory T (Trm) cells are a subset of T cells maintained throughout life within nonlymphoid tissues without significant contribution from circulating memory T cells. CD8+ Trm cells contribute to both tissue surveillance and direct elimination of pathogens through a variety of mechanisms. Reactivation of these Trm cells during infection drives systematic changes within the tissue, including altering the state of the epithelium, activating local immune cells, and contributing to the permissiveness of the tissue for circulating immune cell entry. Trm cells can be further classified by their functional outputs, which can be either subset- or tissue-specific, and include proliferation, tissue egress, and modulation of tissue physiology. These functional outputs of Trm cells are linked to the heterogeneity and plasticity of this population, and uncovering the unique responses of different Trm cell subsets and their role in immunity will allow us to modulate Trm cell responses for optimal control of disease.
Collapse
Affiliation(s)
- Giuseppina Marchesini Tovar
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Corey Gallen
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
25
|
Jacks RD, Lumeng CN. Macrophage and T cell networks in adipose tissue. Nat Rev Endocrinol 2024; 20:50-61. [PMID: 37872302 DOI: 10.1038/s41574-023-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.
Collapse
Affiliation(s)
- Ramiah D Jacks
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carey N Lumeng
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Han SJ, Stacy A, Corral D, Link VM, De Siqueira MK, Chi L, Teijeiro A, Yong DS, Perez-Chaparro PJ, Bouladoux N, Lim AI, Enamorado M, Belkaid Y, Collins N. Microbiota configuration determines nutritional immune optimization. Proc Natl Acad Sci U S A 2023; 120:e2304905120. [PMID: 38011570 PMCID: PMC10710091 DOI: 10.1073/pnas.2304905120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/25/2023] [Indexed: 11/29/2023] Open
Abstract
Mild or transient dietary restriction (DR) improves many aspects of health and aging. Emerging evidence from us and others has demonstrated that DR also optimizes the development and quality of immune responses. However, the factors and mechanisms involved remain to be elucidated. Here, we propose that DR-induced optimization of immunological memory requires a complex cascade of events involving memory T cells, the intestinal microbiota, and myeloid cells. Our findings suggest that DR enhances the ability of memory T cells to recruit and activate myeloid cells in the context of a secondary infection. Concomitantly, DR promotes the expansion of commensal Bifidobacteria within the large intestine, which produce the short-chain fatty acid acetate. Acetate conditioning of the myeloid compartment during DR enhances the capacity of these cells to kill pathogens. Enhanced host protection during DR is compromised when Bifidobacteria expansion is prevented, indicating that microbiota configuration and function play an important role in determining immune responsiveness to this dietary intervention. Altogether, our study supports the idea that DR induces both memory T cells and the gut microbiota to produce distinct factors that converge on myeloid cells to promote optimal pathogen control. These findings suggest that nutritional cues can promote adaptation and co-operation between multiple immune cells and the gut microbiota, which synergize to optimize immunity and protect the collective metaorganism.
Collapse
Affiliation(s)
- Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Dan Corral
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | | | - Liang Chi
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ana Teijeiro
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Daniel S. Yong
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - P. Juliana Perez-Chaparro
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and the Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
27
|
Redruello-Romero A, Benitez-Cantos MS, Lopez-Perez D, García-Rubio J, Tamayo F, Pérez-Bartivas D, Moreno-SanJuan S, Ruiz-Palmero I, Puentes-Pardo JD, Vilchez JR, López-Nevot MÁ, García F, Cano C, León J, Carazo Á. Human adipose tissue as a major reservoir of cytomegalovirus-reactive T cells. Front Immunol 2023; 14:1303724. [PMID: 38053998 PMCID: PMC10694288 DOI: 10.3389/fimmu.2023.1303724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is a common herpesvirus with a high prevalence worldwide. After the acute infection phase, CMV can remain latent in several tissues. CD8 T cells in the lungs and salivary glands mainly control its reactivation control. White adipose tissue (WAT) contains a significant population of memory T cells reactive to viral antigens, but CMV specificity has mainly been studied in mouse WAT. Therefore, we obtained blood, omental WAT (oWAT), subcutaneous WAT (sWAT), and liver samples from 11 obese donors to characterize the human WAT adaptive immune landscape from a phenotypic and immune receptor specificity perspective. Methods We performed high-throughput sequencing of the T cell receptor (TCR) locus to analyze tissue and blood TCR repertoires of the 11 donors. The presence of TCRs specific to CMV epitopes was tested through ELISpot assays. Moreover, phenotypic characterization of T cells was carried out through flow cytometry. Results High-throughput sequencing analyses revealed that tissue TCR repertoires in oWAT, sWAT, and liver samples were less diverse and dominated by hyperexpanded clones when compared to blood samples. Additionally, we predicted the presence of TCRs specific to viral epitopes, particularly from CMV, which was confirmed by ELISpot assays. Remarkably, we found that oWAT has a higher proportion of CMV-reactive T cells than blood or sWAT. Finally, flow cytometry analyses indicated that most WAT-infiltrated lymphocytes were tissue-resident effector memory CD8 T cells. Discussion Overall, these findings postulate human oWAT as a major reservoir of CMV-specific T cells, presumably for latent viral reactivation control. This study enhances our understanding of the adaptive immune response in human WAT and highlights its potential role in antiviral defense.
Collapse
Affiliation(s)
| | - Maria S. Benitez-Cantos
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - David Lopez-Perez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | | | - Daniel Pérez-Bartivas
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Sara Moreno-SanJuan
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Cytometry and Microscopy Research Service, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Isabel Ruiz-Palmero
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
| | - Jose D. Puentes-Pardo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jose R. Vilchez
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Á. López-Nevot
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
- Clinical Analyses and Immunology Unit, Virgen de las Nieves University Hospital, Granada, Spain
| | - Federico García
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Josefa León
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Digestive Unit, San Cecilio University Hospital, Granada, Spain
| | - Ángel Carazo
- Research Unit, Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain
- Clinical Microbiology Unit, San Cecilio University Hospital, Granada, Spain
| |
Collapse
|
28
|
Li P, Li F, Zhang Y, Yu X, Li J. Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics. Cancer Immunol Immunother 2023; 72:3453-3460. [PMID: 37733059 PMCID: PMC10992207 DOI: 10.1007/s00262-023-03540-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Tumor-infiltrating T cells are promising drug targets to modulate the tumor microenvironment. However, tumor-infiltrating T lymphocytes, as central targets of cancer immunotherapy, show considerable heterogeneity and dynamics across tumor microenvironments and cancer types that may fundamentally influence cancer growth, metastasis, relapse, and response to clinical drugs. The T cell heterogeneity not only refers to the composition of subpopulations but also divergent metabolic states of T cells. Comparing to the diversity of tumor-infiltrating T cell compositions that have been well recognized, the metabolic diversity of T cells deserves more attention for precision immunotherapy. Single-cell sequencing technology enables panoramic stitching of the tumor bulk, partly by showing the metabolic-related gene expression profiles of tumor-infiltrating T cells at a single-cell resolution. Therefore, we here discuss T cell metabolism reprogramming triggered by tumor microenvironment as well as the potential application of metabolic targeting drugs. The tumor-infiltrating T cells metabolic pathway addictions among different cancer types are also addressed in this brief review.
Collapse
Affiliation(s)
- Peipei Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- BGI Tech Solutions, Co., Ltd. BGI Shenzhen, Shenzhen, 518000, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Fangchao Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Yanfei Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China
| | - Xiaoyang Yu
- Weibei Prison Hospital, Weifang, Shandong, 261109, China
| | - Jingjing Li
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 262700, China.
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, 262700, China.
| |
Collapse
|
29
|
Vlasova VV, Shmagel KV. T Lymphocyte Metabolic Features and Techniques to Modulate Them. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1857-1873. [PMID: 38105204 DOI: 10.1134/s0006297923110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/27/2023] [Indexed: 12/19/2023]
Abstract
T cells demonstrate high degree of complexity and broad range of functions, which distinguish them from other immune cells. Throughout their lifetime, T lymphocytes experience several functional states: quiescence, activation, proliferation, differentiation, performance of effector and regulatory functions, memory formation, and apoptosis. Metabolism supports all functions of T cells, providing lymphocytes with energy, biosynthetic substrates, and signaling molecules. Therefore, T cells usually restructure their metabolism as they transition from one functional state to another. Strong association between the metabolism and T cell functions implies that the immune response can be controlled by manipulating metabolic processes within T lymphocytes. This review aims to highlight the main metabolic adaptations necessary for the T cell function, as well as the recent progress in techniques to modulate metabolic features of lymphocytes.
Collapse
Affiliation(s)
- Violetta V Vlasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia.
| | - Konstantin V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| |
Collapse
|
30
|
Wang Y, Li T, Yang C, Wu Y, Liu Y, Yang X. Eurotium cristatum from Fu Brick Tea Promotes Adipose Thermogenesis by Boosting Colonic Akkermansia muciniphila in High-Fat-Fed Obese Mice. Foods 2023; 12:3716. [PMID: 37893609 PMCID: PMC10606327 DOI: 10.3390/foods12203716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
This study investigated the potential fat-thermogenic effects of Eurotium cristatum, and elucidated the underlying mechanisms. The 12-week administration of E. cristatum in HFD-fed obese mice reduced body weight and improved glucolipid metabolism disorders. The administration of E. cristatum also efficiently promoted thermogenesis by increasing the expression of UCP1 and PRDM16 in both interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) of HFD-fed mice. Furthermore, E. cristatum shaped the gut microbiome by increasing the abundance of Parabacteroides and Akkermansia muciniphila, and also elevated the levels of cecal short-chain fatty acids, particularly propionate and acetate. Of note, A. muciniphila was highly negatively correlated with body weight gain (r = -0.801, p < 0.05) and the iWAT index (r = -0.977, p < 0.01), suggesting that A. muciniphila may play an important role in the thermogenic mobilization induced by E. cristatum. Continuous supplementation with A. muciniphila suppressed adipose accumulation, improved glucolipid metabolism, and enhanced the thermogenic activity of iWAT and iBAT. Collectively, our results propose that boosted A. muciniphila acts as a key microbe in tea-derived probiotic E. cristatum-mediated fat-thermogenic and anti-obesity effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Xingbin Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China (T.L.)
| |
Collapse
|
31
|
Zhong X, Lv M, Ma M, Huang Q, Hu R, Li J, Yi J, Sun J, Zhou X. State of CD8 + T cells in progression from nonalcoholic steatohepatitis to hepatocellular carcinoma: From pathogenesis to immunotherapy. Biomed Pharmacother 2023; 165:115131. [PMID: 37429231 DOI: 10.1016/j.biopha.2023.115131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023] Open
Abstract
With the obesity epidemic, nonalcoholic steatohepatitis (NASH) is emerging as the fastest growing potential cause of hepatocellular carcinoma (HCC). NASH has been demonstrated to establish a tumor-prone liver microenvironment where both innate and adaptive immune systems are involved. As the most typical anti-tumor effector, the cell function of CD8+ T cells is remodeled by chronic inflammation, metabolic alteration, lipid toxicity and oxidative stress in the liver microenvironment along the NASH to HCC transition. Unexpectedly, NASH may blunt the effect of immune checkpoint inhibitor therapy against HCC due to the dysregulated CD8+ T cells. Growing evidence has supported that NASH is likely to facilitate the state transition of CD8+ T cells with changes in cell motility, effector function, metabolic reprogramming and gene transcription according to single-cell sequencing. However, the mechanistic insight of CD8+ T cell states in the NASH-driven HCC is not comprehensive. Herein, we focus on the characterization of state phenotypes of CD8+ T cells with both functional and metabolic signatures in NASH-driven fibrosis and HCC. The NASH-specific CD8+ T cells are speculated to mainly have a dualist effect, where its aberrant activated phenotype sustains chronic inflammation in NASH but subsequently triggers its exhaustion in HCC. As the exploration of CD8+ T cells on the distribution and phenotypic shifts will provide a new direction for the intervention strategies against HCC, we also discuss the implications for targeting different phenotypes of CD8+ T cells, shedding light on the personalized immunotherapy for NASH-driven HCC.
Collapse
Affiliation(s)
- Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - MengQing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinyu Yi
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jialing Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China; Department of Liver Disease, the fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
32
|
Fung HY, Espinal AM, Teryek M, Lemenze AD, Bergsbaken T. STAT4 increases the phenotypic and functional heterogeneity of intestinal tissue-resident memory T cells. Mucosal Immunol 2023; 16:250-263. [PMID: 36925068 PMCID: PMC10327535 DOI: 10.1016/j.mucimm.2023.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023]
Abstract
Tissue-resident memory T cells (Trms) are an important subset of lymphocytes that are lodged within non-lymphoid tissues and carry out diverse functions to control local pathogen replication. CD103 has been used to broadly define subsets of Trms within the intestine, with CD103+ and CD103- subsets having unique transcriptional profiles and effector functions. Here we identify signal transducer and activator of transcription 4 (STAT4) as an important regulator of CD103- Trm differentiation. STAT4-deficient cells trafficked to the intestine and localized to areas of infection but displayed impaired Trm differentiation with fewer CD103- Trms. Single-cell RNA-sequencing demonstrated that STAT4-deficiency led to a reduction in CD103- Trm subsets and expansion of a single population of CD103+ cells. Alterations in Trm populations were due, in part, to STAT4-mediated inhibition of transforming growth factor (TGF)-β-driven expression of Trm signature genes. STAT4-dependent Trm populations expressed genes associated with cytokine production and cell migration, and STAT4-deficient Trm cells had altered localization within the tissue and reduced effector function after reactivation in vivo. Overall, our data indicate that STAT4 leads to increased differentiation of CD103- Trms, in part by modulating the expression of TGF-β-regulated genes, and results in increased Trm heterogeneity and function within the intestinal tissue.
Collapse
Affiliation(s)
- Helen Y Fung
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Angie M Espinal
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Matthew Teryek
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Alexander D Lemenze
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA
| | - Tessa Bergsbaken
- Center for Immunity and Inflammation, Department of Pathology, Laboratory Medicine & Immunology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, USA.
| |
Collapse
|
33
|
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol 2023; 16:38. [PMID: 37055849 PMCID: PMC10099030 DOI: 10.1186/s13045-023-01430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.
Collapse
Affiliation(s)
- Shaochuan Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
34
|
Zhang Y, Wang X, Li Y, Hong Y, Zhao Q, Ye Z. Immune-related adverse events correlate with the efficacy of PD-1 inhibitors combination therapy in advanced cholangiocarcinoma patients: A retrospective cohort study. Front Immunol 2023; 14:1141148. [PMID: 37033935 PMCID: PMC10079946 DOI: 10.3389/fimmu.2023.1141148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Background Whether irAEs can predict the efficacy of PD-1 inhibitors in cholangiocarcinoma (CCA) has not been assessed. Therefore, this study aims to investigate the correlation between irAEs and the therapeutic effect of PD-1 inhibitors combination therapy in patients with advanced CCA. Methods All patients with CCA who were consecutively admitted to the inpatient unit of our hospital and received PD-1 inhibitors combination therapy between September 2020 and April 2022 were screened. In total, 106 patients with CCA were screened out. We then followed up these patients until October 2022. Due to perioperative use (n=28), less than 2 cycles of PD-1 inhibitor therapy (n=9), incomplete data (n=8) and no pathological report (n=2), 59 patients were included in the final analysis. The patients were divided into the irAEs cohort and the non-irAEs cohort according to whether they experienced irAEs or not. The Log-Rank test was performed to compare the difference in survival time between these two cohorts. We then applied multivariate COX regression analysis to investigate whether irAEs were independent prognostic factors for survival in patients with advanced CCA. Results Finally, 32 patients were included in the irAEs cohort and 27 patients in the non-irAEs cohort. A total of 32 patients (54.2%) had any-grade irAEs, of which 4 patients (6.8%) had grade 3-4 irAEs. The most common irAEs were thyroid toxicity (30.5%) and dermatologic toxicity (30.5%). There were no notable differences in demographics and clinical characteristics between the irAEs and non-irAEs cohorts, except for total bilirubin level (P=0.026) and relapse (P=0.016). The disease control rate (DCR) in the irAEs cohort was higher than in the non-irAEs cohort (90.6% vs 70.4%, P=0.047). Median overall survival (OS) and median progression-free survival (PFS) were better in the irAEs cohort than in the non-irAEs cohort (OS: 21.2 vs 10.0 months, P<0.001; PFS: 9.0 vs 4.4 months, P=0.003). Multivariate COX regression analysis showed that irAEs were independent prognostic factors for OS and PFS (OS: HR=0.133, 95% CI: 0.039-0.452, P=0.001; PFS: HR=0.435, 95% CI: 0.202-0.934, P=0.033). Conclusion IrAEs correlated with improved DCR, OS, and PFS in advanced CCA patients receiving PD-1 inhibitors combination therapy.
Collapse
Affiliation(s)
- Yanfang Zhang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Wang
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinyan Li
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Hong
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Ye
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Knetki-Wróblewska M, Tabor S, Piórek A, Płużański A, Winiarczyk K, Zaborowska-Szmit M, Zajda K, Kowalski DM, Krzakowski M. Nivolumab or Atezolizumab in the Second-Line Treatment of Advanced Non-Small Cell Lung Cancer? A Prognostic Index Based on Data from Daily Practice. J Clin Med 2023; 12:jcm12062409. [PMID: 36983409 PMCID: PMC10053214 DOI: 10.3390/jcm12062409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The efficacy of nivolumab and atezolizumab in advanced pre-treated NSCLC was documented in prospective trials. We aim to confirm the benefits and indicate predictive factors for immunotherapy in daily practice. METHODS This study was a retrospective analysis. The median PFS and OS were estimated using the Kaplan-Meier method. The log-rank test was used for comparisons. Multivariate analyses were performed using the Cox regression method. RESULTS A total of 260 patients (ECOG 0-1) with advanced NSCLC (CS III-IV) were eligible to receive nivolumab or atezolizumab as second-line treatment. Median PFS and OS were three months (95% confidence interval [CI] 2.57-3.42) and 10 months (95% CI 8.03-11.96), respectively, for the overall population. The median OS for the atezolizumab arm was eight months (95% CI 5.89-10.1), while for the nivolumab group, it was 14 months (95% CI 10.02-17.97) (p = 0.018). The sum of all measurable changes >100.5 mm (p = 0.007; HR = 1.003, 95% CI 1.001-1.005), PLT > 281.5 G/l (p < 0.001; HR = 1.003, 95% CI 1.001-1.003) and bone metastases (p < 0.004; HR = 1.58, 95% CI 1.04-2.38) were independent negative prognostic factors for OS in multivariate analysis. Based on preliminary analyses, a prognostic index was constructed to obtain three prognostic groups. Median OS in the subgroups was 16 months (95% CI 13.3-18.7), seven months (95% CI 4.83-9.17) and four months (95% CI 2.88-5.13), respectively (p < 0.001). CONCLUSIONS Nivolumab and atezolizumab provided clinical benefit in real life. Clinical and laboratory factors may help to identify subgroups likely to benefit. The use of prognostic indices may be valuable in clinical practice.
Collapse
Affiliation(s)
- Magdalena Knetki-Wróblewska
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Sylwia Tabor
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aleksandra Piórek
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Adam Płużański
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Kinga Winiarczyk
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Zaborowska-Szmit
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Katarzyna Zajda
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Dariusz M Kowalski
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung Cancer and Chest Tumours, The Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
36
|
Fang X, Kang L, Qiu YF, Li ZS, Bai Y. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol 2023; 13:1129996. [PMID: 36968108 PMCID: PMC10031030 DOI: 10.3389/fcimb.2023.1129996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Increasing attention is being paid to the unique roles gut microbes play in both physiological and pathological processes. Crohn’s disease (CD) is a chronic, relapsing, inflammatory disease of the gastrointestinal tract with unknown etiology. Currently, gastrointestinal infection has been proposed as one initiating factor of CD. Yersinia enterocolitica, a zoonotic pathogen that exists widely in nature, is one of the most common bacteria causing acute infectious gastroenteritis, which displays clinical manifestations similar to CD. However, the specific role of Y. enterocolitica in CD is controversial. In this Review, we discuss the current knowledge on how Y. enterocolitica and derived microbial compounds may link to the pathogenesis of CD. We highlight examples of Y. enterocolitica-targeted interventions in the diagnosis and treatment of CD, and provide perspectives for future basic and translational investigations on this topic.
Collapse
Affiliation(s)
| | | | | | | | - Yu Bai
- *Correspondence: Zhao-Shen Li, ; Yu Bai,
| |
Collapse
|
37
|
Roccuzzo G, Moirano G, Fava P, Maule M, Ribero S, Quaglino P. Obesity and immune-checkpoint inhibitors in advanced melanoma: A meta-analysis of survival outcomes from clinical studies. Semin Cancer Biol 2023; 91:27-34. [PMID: 36871633 DOI: 10.1016/j.semcancer.2023.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Obesity is a chronic inflammatory condition that has been associated with different types of cancer. However, its role in melanoma incidence, progression, and response to immune-checkpoint-inhibitors (ICI) is still controversial. On the one hand, increased levels of lipids and adipokines can promote tumor proliferation and several genes associated with fatty acid metabolism have been found to be upregulated in melanomas. On the other hand, immunotherapy seems to be more effective in obese animal models, presumably due to an increase in CD8 + and subsequent decrease in PD-1 + T-cells in the tumor microenvironment. In humans, several studies have investigated the role of BMI (body mass index) and other adiposity-related parameters as potential prognostic markers of survival in advanced melanoma patients treated with ICI. The aim of this research has been to systematically review the scientific literature on studies evaluating the relationship between overweight/obesity and survival outcomes in patients with advanced melanoma treated with ICI and to perform a meta-analysis on those sharing common characteristics. After screening 1070 records identified through a literature search, 18 articles assessing the role of BMI-related exposure in relation to survival outcomes in ICI-treated patients with advanced melanoma were included in our review. In the meta-analysis of the association between overweight (defined as BMI>25 or BMI 25-30), overall survival (OS), and progression free survival (PFS), 7 studies were included, yielding a summary HR of 0.87 (95% CI: 0.74-1.03) and 0.96 (95% CI: 0.86-1.08), respectively. Our results show that, despite few suggestive findings, the use of BMI as a valuable predictor of melanoma patients' survival in terms of PFS and OS should not be currently recommended, due to the limited evidence available.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin 10126, Torino, Italy.
| | - Giovenale Moirano
- Cancer Epidemiology Unit and CPO-Piemonte, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; Postgraduate School in Biostatistics, Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Paolo Fava
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin 10126, Torino, Italy
| | - Milena Maule
- Cancer Epidemiology Unit and CPO-Piemonte, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin 10126, Torino, Italy
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin 10126, Torino, Italy
| |
Collapse
|
38
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
39
|
Regional immunity of chicken adipose tissue responds to secondary immunity induced by Newcastle disease vaccine via promoting immune activation and weakening lipid metabolism. Poult Sci 2023; 102:102646. [PMID: 37031585 PMCID: PMC10105486 DOI: 10.1016/j.psj.2023.102646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Adipose tissue (AT) is considered as a regional immune organ and plays an important role in the anti-infection immune response. However, the function and mechanism of chicken AT in response to secondary immune response remain poorly understood. Here, we used mRNA and microRNA (miRNA) sequencing technology to survey the transcriptomic landscape of chicken abdominal adipose tissue (AAT) during the first and second immunization with Newcastle disease virus (NDV) vaccine, and carried out bioinformatics analysis, such as Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis, protein-protein interaction (PPI) analysis, and miRNA-mRNA integrated analysis. The results indicated that chicken AAT actively responded to the secondary immune response. DNA replication and cytoskeleton regulation as the regulatory functions of immune activation changed significantly, and weakened lipid metabolism was an effective strategy for the secondary immunity. Mechanically, the regulatory network between the differentially expressed miRNAs (DEMs) and their targeted differentially expressed genes (DEGs), such as miR-206/miR-499-5p-nuclear receptor subfamily 4 group A member 3 (NR4A3)/methylsterol monooxygenase 1 (MSMO1) pathway, was one of the potential key mechanisms by which AAT responded to the secondary immune response. In conclusion, regional immunity of chicken AT responds to secondary immunity by promoting immune activation and weakening lipid metabolism, and this study can instruct future research on antiviral strategy.
Collapse
|
40
|
De Siqueira MK, Andrade-Oliveira V, Stacy A, Pedro Tôrres Guimarães J, Wesley Alberca-Custodio R, Castoldi A, Marques Santos J, Davoli-Ferreira M, Menezes-Silva L, Miguel Turato W, Han SJ, Glatman Zaretsky A, Hand TW, Olsen Saraiva Câmara N, Russo M, Jancar S, Morais da Fonseca D, Belkaid Y. Infection-elicited microbiota promotes host adaptation to nutrient restriction. Proc Natl Acad Sci U S A 2023; 120:e2214484120. [PMID: 36652484 PMCID: PMC9942920 DOI: 10.1073/pnas.2214484120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
The microbiota performs multiple functions vital to host fitness, including defense against pathogens and adaptation to dietary changes. Yet, how environmental challenges shape microbiota resilience to nutrient fluctuation remains largely unexplored. Here, we show that transient gut infection can optimize host metabolism toward the usage of carbohydrates. Following acute infection and clearance of the pathogen, mice gained more weight as a result of white adipose tissue expansion. Concomitantly, previously infected mice exhibited enhanced carbohydrate (glucose) disposal and insulin sensitivity. This metabolic remodeling depended on alterations to the gut microbiota, with infection-elicited Betaproteobacteria being sufficient to enhance host carbohydrate metabolism. Further, infection-induced metabolic alteration protected mice against stunting in the context of limited nutrient availability. Together, these results propose that alterations to the microbiota imposed by acute infection may enhance host fitness and survival in the face of nutrient restriction, a phenomenon that may be adaptive in settings where both infection burden and food precarity are prevalent.
Collapse
Affiliation(s)
- Mirian Krystel De Siqueira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Vinicius Andrade-Oliveira
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Apollo Stacy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - João Pedro Tôrres Guimarães
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | | | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Jaqueline Marques Santos
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Marcela Davoli-Ferreira
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Luísa Menezes-Silva
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Walter Miguel Turato
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Arielle Glatman Zaretsky
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Timothy Wesley Hand
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP05508-000, Brazil
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
41
|
Saber MM. Coexpression of PD-L1/PD-1 with CXCR3/CD36 and IL-19 Increase in Extranodal Lymphoma. J Immunol Res 2023; 2023:4556586. [PMID: 36726488 PMCID: PMC9886470 DOI: 10.1155/2023/4556586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023] Open
Abstract
Many studies have demonstrated that PD-L1/PD-1 signaling is an immune evasion mechanism in tumors. PD-L1/PD-1 coexpression with CXCR3/CD36 in peripheral lymphocytes in lymphoma still needs to be clarified. The current study investigated PD-L1/PD-1 coexpression with CXCR3/CD36 in circulating lymphocytes, serum IL-19 levels, and their correlation with clinical outcome and extranodal involvement in lymphoma. Subjects and Methods. The coexpression of PD-L1/PD-1 with CXCR3/CD36 on circulating lymphocytes was analyzed by flow cytometry in 78 lymphoma patients before and after therapy and in 50 healthy controls. The concentration levels of IL-19 in serum were assessed by an ELISA. Results. PD-L1 and PD-1 were expressed on circulating CXCR3+ and CD36+ lymphocytes in lymphoma and were significantly higher in patients with extranodal involvement than in lymphoma patients without extranodal involvement (P < 0.001). Elevated IL-19 levels were observed in lymphoma patients and increased significantly in extranodal involvement (P < 0.001). High percentages of PD-L1+CXCR3+ and PD-1+CXCR3+ lymphocytes were associated with high LDH levels, hepatomegaly, lymphedema, advanced tumor stage, and recurrence. Furthermore, patients with splenomegaly and generalized lymphadenopathy had high percentages of PD-L1+CXCR3+ lymphocytes. In addition, levels of PD-L1/PD-1 coexpression with CXCR3 and IL-19 were significantly associated with bone marrow, lung, and lymph vessel involvement. Further analysis revealed that high percentages of PD-L1+CD36+ and PD-1+CD36+ lymphocytes were associated with lung and bone marrow involvement. Patients with high levels of PD-L1/PD-1 coexpression with CXCR3 and IL-19 had inferior event-free survival (EFS) compared with that in lymphoma patients with low levels. EFS was decreased in patients with high percentages of PD-L1+CD36+ and PD-1+CD36+ lymphocytes. When using the receiver operating characteristic (ROC) curve, the superiority of IL-19 (area under the curve (AUC): 0.993) and PD-L1+CXCR3+% (AUC: 0.961) to PD-1+CXCR3+% (AUC: 0.805), PD-L1+CD36+% (AUC: 0.694), and PD-1+CD36+% (AUC 0.769) was evident in the diagnosis of extranodal involvement, identifying lymphoma patients with extranodal involvement from patients without extranodal involvement. Conclusions. Coexpression of PD-L1/PD-1 with CXCR3/CD36 in circulating lymphocytes and serum IL-19 levels contributes to poor prognosis and might be potential markers for extranodal involvement in lymphoma.
Collapse
Affiliation(s)
- Manal Mohamed Saber
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| |
Collapse
|
42
|
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13:1104943. [PMID: 36726994 PMCID: PMC9884980 DOI: 10.3389/fimmu.2022.1104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
T Helper 17 (Th17) cells are adaptive immune cells that play myriad roles in the body. Immune-endocrine interactions are vital in endocrine organs during pathological states. Th17 cells are known to take part in multiple autoimmune diseases over the years. Current evidence has moved from minimal to substantial that Th17 cells are closely related to endocrine organs. Diverse tissue Th17 cells have been discovered within endocrine organs, including gut, adipose tissue, liver and bone, and these cells are modulated by various secretions from endocrine organs. Th17 cells in these endocrine organs are key players in the process of an array of metabolic disorders and inflammatory conditions, including obesity, insulin resistance, nonalcoholic fatty liver disease (NAFLD), primary sclerosing cholangitis (PSC), osteoporosis and inflammatory bowel disease (IBD). We reviewed the pathogenetic or protective functions played by Th17 cells in various endocrine tissues and identified potential regulators for plasticity of it. Furthermore, we discussed the roles of Th17 cells in crosstalk of gut-organs axis.
Collapse
Affiliation(s)
- Changyan Zi
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Die Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| | - Lisha He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Yongxiang Gao, ; Lisha He,
| |
Collapse
|
43
|
Shirakawa K, Sano M. Drastic transformation of visceral adipose tissue and peripheral CD4 T cells in obesity. Front Immunol 2023; 13:1044737. [PMID: 36685567 PMCID: PMC9846168 DOI: 10.3389/fimmu.2022.1044737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Obesity has a pronounced effect on the immune response in systemic organs that results in not only insulin resistance but also altered immune responses to infectious diseases and malignant tumors. Obesity-associated microenvironmental changes alter transcriptional expression and metabolism in T cells, leading to alterations in T-cell differentiation, proliferation, function, and survival. Adipokines, cytokines, and lipids derived from obese visceral adipose tissue (VAT) may also contribute to the systemic T-cell phenotype, resulting in obesity-specific pathogenesis. VAT T cells, which have multiple roles in regulating homeostasis and energy utilization and defending against pathogens, are most susceptible to obesity. In particular, many studies have shown that CD4 T cells are deeply involved in the homeostasis of VAT endocrine and metabolic functions and in obesity-related chronic inflammation. In obesity, macrophages and adipocytes in VAT function as antigen-presenting cells and contribute to the obesity-specific CD4 T-cell response by inducing CD4 T-cell proliferation and differentiation into inflammatory effectors via interactions between major histocompatibility complex class II and T-cell receptors. When obesity persists, prolonged stimulation by leptin and circulating free fatty acids, repetitive antigen stimulation, activating stress responses, and hypoxia induce exhaustion of CD4 T cells in VAT. T-cell exhaustion is characterized by restricted effector function, persistent expression of inhibitory receptors, and a transcriptional state distinct from functional effector and memory T cells. Moreover, obesity causes thymic regression, which may result in homeostatic proliferation of obesity-specific T-cell subsets due to changes in T-cell metabolism and gene expression in VAT. In addition to causing T-cell exhaustion, obesity also accelerates cellular senescence of CD4 T cells. Senescent CD4 T cells secrete osteopontin, which causes further VAT inflammation. The obesity-associated transformation of CD4 T cells remains a negative legacy even after weight loss, causing treatment resistance of obesity-related conditions. This review discusses the marked transformation of CD4 T cells in VAT and systemic organs as a consequence of obesity-related microenvironmental changes.
Collapse
Affiliation(s)
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
44
|
Wang Y, Li T, Liu Y, Yang C, Liu L, Zhang X, Yang X. Heimao tea polysaccharides ameliorate obesity by enhancing gut microbiota-dependent adipocytes thermogenesis in mice fed with high fat diet. Food Funct 2022; 13:13014-13027. [PMID: 36449351 DOI: 10.1039/d2fo02415b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heimao tea (HMT) is a kind of fermented dark tea that has various health benefits. However, the available information regarding the anti-obesity effect of HMT and its active ingredients is still limited. Herein, we extracted the polysaccharides from Heimao tea (HMTP) and evaluated the anti-obesity effect and the underlying mechanism of HMTP. 12-Week administration of HMTP ameliorated lipid accumulation in the adipose tissue and improved glucolipid metabolism in high-fat diet (HFD)-fed mice. HMTP also induced browning of inguinal white adipose tissue (iWAT) and enhanced the thermogenic activity of interscapular brown adipose tissue (iBAT) by upregulating the expression of a series of thermogenic genes, such as Ucp1, Prdm16, and Pgc1α. Interestingly, the anti-obesity effect of HMTP was closely associated with altered relative abundance of the gut microbes, especially Dubosiella and Romboutsia, with significant increases, in which the abundance of Dubosiella and Romboutsia was negatively correlated with the body weight (r = -0.567, p < 0.05; r = -0.407, p < 0.05) and positively correlated with the iBAT index (r = 0.520, p < 0.05; r = 0.315, p < 0.05). Our data suggest that the alteration of the gut microbiota may play a critical role in HMTP-induced iWAT browning and iBAT activation, and our findings may provide a promising way for preventing obesity.
Collapse
Affiliation(s)
- Yu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Lei Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
45
|
Qian X, Meng X, Zhang S, Zeng W. Neuroimmune regulation of white adipose tissues. FEBS J 2022; 289:7830-7853. [PMID: 34564950 DOI: 10.1111/febs.16213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
The white adipose tissues (WAT) are located in distinct depots throughout the body. They serve as an energy reserve, providing fatty acids for other tissues via lipolysis when needed, and function as an endocrine organ to regulate systemic metabolism. Their activities are coordinated through intercellular communications among adipocytes and other cell types such as residential and infiltrating immune cells, which are collectively under neuronal control. The adipocytes and immune subtypes including macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK) cells display cellular and functional diversity in response to the energy states and contribute to metabolic homeostasis and pathological conditions. Accumulating evidence reveals that neuronal innervations control lipid deposition and mobilization via regulating lipolysis, adipocyte size, and cellularity. Vice versa, the neuronal innervations and activity are influenced by cellular factors in the WAT. Though the literature describing adipose tissue cells is too extensive to cover in detail, we strive to highlight a selected list of neuronal and immune components in this review. The cell-to-cell communications and the perspective of neuroimmune regulation are emphasized to enlighten the potential therapeutic opportunities for treating metabolic disorders.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xia Meng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
46
|
Mansouri S, Gogoi H, Patel S, Katikaneni DS, Singh A, Aybar-Torres A, de Lartigue G, Jin L. MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2114-2132. [PMID: 36261171 PMCID: PMC9679991 DOI: 10.4049/jimmunol.2200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
MPYS/STING (stimulator of IFN genes) senses cyclic dinucleotides (CDNs), generates type I IFNs, and plays a critical role in infection, inflammation, and cancer. In this study, analyzing genotype and haplotype data from the 1000 Genomes Project, we found that the R71H-G230A-R293Q (HAQ) MPYS allele frequency increased 57-fold in East Asians compared with sub-Saharan Africans. Meanwhile, the G230A-R293Q (AQ) allele frequency decreased by 98% in East Asians compared with sub-Saharan Africans. We propose that the HAQ and AQ alleles underwent a natural selection during the out-of-Africa migration. We used mouse models of HAQ and AQ to investigate the underlying mechanism. We found that the mice carrying the AQ allele, which disappeared in East Asians, had normal CDN-type I IFN responses. Adult AQ mice, however, had less fat mass than did HAQ or wild-type mice on a chow diet. AQ epididymal adipose tissue had increased regulatory T cells and M2 macrophages with protein expression associated with enhanced fatty acid oxidation. Conditional knockout mice and adoptive cell transfer indicate a macrophage and regulatory T cell-intrinsic role of MPYS in fatty acid metabolism. Mechanistically, AQ/IFNAR1-/- mice had a similar lean phenotype as for the AQ mice. MPYS intrinsic tryptophan fluorescence revealed that the R71H change increased MPYS hydrophilicity. Lastly, we found that the second transmembrane (TM) and the TM2-TM3 linker region of MPYS interact with activated fatty acid, fatty acyl-CoA. In summary, studying the evolution of the human MPYS gene revealed an MPYS function in modulating fatty acid metabolism that may be critical during the out-of-Africa migration.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Divya S. Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
47
|
Mix MR, Harty JT. Keeping T cell memories in mind. Trends Immunol 2022; 43:1018-1031. [PMID: 36369103 PMCID: PMC9691610 DOI: 10.1016/j.it.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
The mammalian central nervous system (CNS) contains a vibrant community of resident adaptive immune cells at homeostasis. Among these are memory CD8+ and CD4+ T cells, which reside in the CNS in the settings of health, aging, and neurological disease. These T cells commonly exhibit a tissue-resident memory (TRM) phenotype, suggesting that they are antigen-experienced and remain separate from the circulation. Despite these characterizations, T cell surveillance of the CNS has only recently been studied through the lens of TRM immunology. In this Review, we outline emerging concepts of CNS TRM generation, localization, maintenance, function, and specificity. In this way, we hope to highlight roles of CNS TRM in health and disease to inform future studies of adaptive neuroimmunity.
Collapse
Affiliation(s)
- Madison R Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
48
|
Fung HY, Teryek M, Lemenze AD, Bergsbaken T. CD103 fate mapping reveals that intestinal CD103 - tissue-resident memory T cells are the primary responders to secondary infection. Sci Immunol 2022; 7:eabl9925. [PMID: 36332012 PMCID: PMC9901738 DOI: 10.1126/sciimmunol.abl9925] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tissue-resident memory T (TRM) cells remain poised in the tissue and mediate robust protection from secondary infection. TRM cells within the intestine and other tissues are heterogeneous in their phenotype and function; however, the contributions of these TRM subsets to secondary infection remain poorly defined. To address the plasticity of intestinal TRM subsets and their role in local and systemic immunity, we generated mice to fate map intestinal CD103+ TRM cells and track their location and function during secondary infection with Yersinia pseudotuberculosis. We found that CD103+ TRM cells remained lodged in the tissue and were poorly reactivated during secondary challenge. CD103- TRM cells were the primary responders to secondary infection and expanded within the tissue, with limited contribution from circulating memory T cells. The transcriptional profile of CD103- TRM cells demonstrated maintenance of a gene signature similar to circulating T cells along with increased cytokine production and migratory potential. CD103- TRM cells also expressed genes associated with T cell receptor (TCR) activation and displayed enhanced TCR-mediated reactivation both in vitro and in vivo compared with their CD103+ counterparts. These studies reveal the limited recall potential of CD103+ TRM subsets and the role of CD103- TRM cells as central memory-like T cells within peripheral tissues.
Collapse
|
49
|
de Candia P, Procaccini C, Russo C, Lepore MT, Matarese G. Regulatory T cells as metabolic sensors. Immunity 2022; 55:1981-1992. [PMID: 36351373 DOI: 10.1016/j.immuni.2022.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022]
Abstract
Compelling experimental evidence links immunity and metabolism. In this perspective, we propose forkhead-box-P3 (FoxP3)+CD4+CD25+ regulatory T (Treg) cells as key metabolic sensors controlling the immunological state in response to their intrinsic capacity to perceive nutritional changes. Treg cell high anabolic state in vivo, residency in metabolically crucial districts, and recirculation between lymphoid and non-lymphoid sites enable them to recognize the metabolic cues and adapt their intracellular metabolism and anti-inflammatory function at the paracrine and systemic levels. As privileged regulators at the interface between neuroendocrine and immune systems, the role of Treg cells in maintaining metabolic homeostasis makes these cells promising targets of therapeutic strategies aimed at restoring organismal homeostasis not only in autoimmune but also metabolic disorders.
Collapse
Affiliation(s)
- Paola de Candia
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy.
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy; Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Claudia Russo
- Unità di Neuroimmunologia, IRCCS-Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Teresa Lepore
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Naples, Italy.
| |
Collapse
|
50
|
Obesity-associated mesenteric lymph leakage impairs the trafficking of lipids, lipophilic drugs and antigens from the intestine to mesenteric lymph nodes. Eur J Pharm Biopharm 2022; 180:319-331. [DOI: 10.1016/j.ejpb.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/06/2022] [Accepted: 10/19/2022] [Indexed: 11/23/2022]
|