1
|
Chen WW, Kong YH, Zhang LY. Denosumab combined with immunotherapy, radiotherapy, and granulocyte-macrophage colony-stimulating factor for the treatment of metastatic nasopharyngeal carcinoma: A case report. World J Clin Oncol 2025; 16:95642. [PMID: 39995562 PMCID: PMC11686553 DOI: 10.5306/wjco.v16.i2.95642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Bone is a major site of metastasis in nasopharyngeal carcinoma (NPC). Recently, nuclear factor kappa-beta ligand (RANKL) inhibitors have garnered attention for their ability to inhibit osteoclast formation and bone resorption, as well as their potential to modulate immune functions and thereby enhance the efficacy of programmed cell death protein 1 (PD-1) inhibitor therapy. CASE SUMMARY We present a case of a patient with NPC who developed sternal stalk metastasis and multiple bone metastases with soft tissue invasion following radical chemoradiotherapy and targeted therapy. Prior to chemotherapy, the patient experienced severe bone marrow suppression and opted out of further chemotherapy sessions. However, the patient received combination therapy, including RANKL inhibitors (denosumab) alongside PD-1, radiotherapy, and granulocyte-macrophage colony-stimulating factor (PRaG) therapy (NCT05435768), and achieved 16 months of progression-free survival and more than 35 months of overall survival, without encountering any grade 2 or higher treatment-related adverse events. CONCLUSION Denosumab combined with PRaG therapy could be a new therapeutic approach for the second-line treatment in patients with bone metastases.
Collapse
Affiliation(s)
- Wei-Wu Chen
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Yue-Hong Kong
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| | - Li-Yuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| |
Collapse
|
2
|
Melo Garcia L, Gangadharan A, Banerjee P, Li Y, Zeng AGX, Rafei H, Lin P, Kumar B, Acharya S, Daher M, Muniz-Feliciano L, Deyter GM, Dominguez G, Park JM, Reyes Silva F, Nunez Cortes AK, Basar R, Uprety N, Shanley M, Kaplan M, Liu E, Shpall EJ, Rezvani K. Overcoming CD226-related immune evasion in acute myeloid leukemia with CD38 CAR-engineered NK cells. Cell Rep 2025; 44:115122. [PMID: 39754720 PMCID: PMC11838179 DOI: 10.1016/j.celrep.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/26/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226. CRISPR-Cas9 deletion of CD226 led to reduced LFA-1 recruitment, poor synapse formation, and decreased NK cell anti-leukemic activity. Engineering NK cells to express a chimeric antigen receptor targeting the AML antigen CD38 (CAR38) could overcome the need for CD226 to establish strong immune synapses. LFA-1 blockade reduced CAR38 NK cell activity, and this depended on the CD38 expression levels of AML cells. This suggests parallel but potentially cooperative roles for LFA-1 and CAR38 in synapse formation. Our findings suggest that CAR38 NK cells could be an effective therapeutic strategy to overcome CD226-mediated immune evasion in AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- T Lineage-Specific Activation Antigen 1
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Lymphocyte Function-Associated Antigen-1/metabolism
- Immune Evasion
- Cell Line, Tumor
- Immunological Synapses/immunology
- Female
Collapse
Affiliation(s)
- Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; Hematology-Oncology Service, CHU de Québec - Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Achintyan Gangadharan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33616, USA
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andy G X Zeng
- Princess Margaret Cancer Center, University Healthy Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary M Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Dominguez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeong Min Park
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Shinkawa T, Chang E, Rakib T, Cavallo K, Lai R, Behar SM. CD226 identifies effector CD8 + T cells during tuberculosis and costimulates recognition of Mycobacterium tuberculosis-infected macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634303. [PMID: 39896604 PMCID: PMC11785225 DOI: 10.1101/2025.01.22.634303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
CD8+ T cells defend against Mycobacterium tuberculosis (Mtb) infection but variably recognize Mtb-infected macrophages. To define how the diversity of lung parenchymal CD8+ T cells changes during chronic infection, cells from C57BL/6J mice infected for 6- and 41-weeks were analyzed by scRNA-seq. We identified an effector lineage, including a cluster that expresses high levels of cytotoxic effectors and cytokines, and dysfunctional lineage that transcriptionally resembles exhausted T cells. The most significant differentially expressed gene between two distinct CD8+ T cell lineages is CD226. Mtb-infected IFNγ-eYFP reporter mice revealed IFNγ production is enriched in CD226+CD8+ T cells, confirming these as functional T cells in vivo. Purified CD226+ but not CD226- CD8+ T cells recognize Mtb-infected macrophages, and CD226 blockade inhibits IFNγ and granzyme B production. Thus, CD226 costimulation is required for efficient CD8+ T cell recognition of Mtb-infected macrophages, and its expression identifies CD8+ T cells that recognize Mtb-infected macrophages.
Collapse
Affiliation(s)
- Tomoyo Shinkawa
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Evelyn Chang
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
| | - Tasfia Rakib
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Immunology and Microbiology Program, Graduate School of Biomedical Science, Worcester, Massachusetts, USA
| | - Kelly Cavallo
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rocky Lai
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Samuel M. Behar
- Department of Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
Upadhyay S, Murugu L, Svensson L. Tumor cells escape immunosurveillance by hampering LFA-1. Front Immunol 2025; 16:1519841. [PMID: 39911389 PMCID: PMC11794523 DOI: 10.3389/fimmu.2025.1519841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
During tumor immunosurveillance, leukocytes play a crucial role in the cellular defense system, working collaboratively with other immune components to recognize and eliminate aberrant cells. Integral to this process is the integrin Lymphocyte Function-Associated Antigen 1 (LFA-1). LFA-1 facilitates adhesion during leukocyte migration and helps establish stable cell-to-cell contacts between leukocytes and their targets. Additionally, as a receptor, LFA-1 signaling activates leukocytes, promoting their differentiation and effector functions against cancer. However, tumors can develop mechanisms to evade immune clearance by disrupting LFA-1 functions or hijacking its pathways. In this review, we first detail how leukocytes utilize LFA-1 during immunosurveillance and then explore how tumors counteract this process in the tumor microenvironment (TME) by either altering LFA-1 functions or exploiting it to drive tumorigenesis. Moreover, we discuss therapeutic strategies targeting LFA-1, including inhibitors tested in laboratory studies and animal models, highlighting their potential as anticancer interventions and the need for further research to evaluate their clinical utility.
Collapse
Affiliation(s)
| | - Lewis Murugu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Lena Svensson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Rezaeifar M, Shahbaz S, Peters AC, Gibson SB, Elahi S. Polyfunctional CD8 +CD226 +RUNX2 hi effector T cells are diminished in advanced stages of chronic lymphocytic leukemia. Mol Oncol 2025. [PMID: 39777847 DOI: 10.1002/1878-0261.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
CD8+ T cells, a subset of T cells identified by the surface glycoprotein CD8, particularly those expressing the co-stimulatory molecule CD226, play a crucial role in the immune response to malignancies. However, their role in chronic lymphocytic leukemia (CLL), an immunosuppressive disease, has not yet been explored. We studied 64 CLL patients and 25 age- and sex-matched healthy controls (HCs). We analyzed the proportion of CD226-expressing cells among different CD8+ T cell subsets (including naïve, central memory, effector memory, and effectors) in CLL patients, stratified by Rai stage and immunoglobulin heavy-chain variable region gene (IgHV) mutation status. Additionally, we compared the effector functions of CD8+CD226+ cells and their CD226- counterparts. We also quantified cytokine and chemokine levels in the plasma of CLL and HCs. Furthermore, we reanalyzed the publicly available bulk RNA-seq on CD226+ and CD226-CD8+ T cells. Finally, we evaluated the impact of elevated cytokines/chemokines on CD226 expression. Our results showed that CD226-expressing cells were significantly decreased within the effector memory and effector CD8+ T cell subsets in CLL patients with advanced Rai stages and unmutated IgHV, a marker of poor prognosis. These cells displayed robust effector functions, including cytokine production, cytolytic activity, degranulation, proliferation, and migration capacity. In contrast, CD8+CD226- T cells displayed an exhausted phenotype with reduced Runt-related transcription factor 2 (RUNX2) expression. Elevated levels of interleukin-6 (IL-6) and macrophage inflammatory protein-1 beta (MIP-1β) were inversely correlated with the frequency of CD8+CD226+ T cells and may contribute to the downregulation of CD226, possibly leading to T cell dysfunction in CLL. Our findings highlight the critical role of CD8+CD226+RUNX2hi T cells in CLL and suggest that their reduction is associated with disease progression and poor clinical outcomes. This study also underscores the potential of targeting IL-6 and MIP-1β to preserve polyfunctional CD8+CD226+ T cells as a promising immunotherapy strategy.
Collapse
Affiliation(s)
- Maryam Rezaeifar
- Division of Foundational Sciences, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Canada
| | - Shima Shahbaz
- Division of Foundational Sciences, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Canada
| | - Anthea C Peters
- Division of Medical Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
| | - Spencer B Gibson
- Division of Medical Oncology, Department of Oncology, University of Alberta, Edmonton, Canada
- Department of Biochemistry and Medical Genetics, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, Mike Petryk School of Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Women and Children Health Research Institute, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
6
|
Launonen IM, Niemiec I, Hincapié-Otero M, Erkan EP, Junquera A, Afenteva D, Falco MM, Liang Z, Salko M, Chamchougia F, Szabo A, Perez-Villatoro F, Li Y, Micoli G, Nagaraj A, Haltia UM, Kahelin E, Oikkonen J, Hynninen J, Virtanen A, Nirmal AJ, Vallius T, Hautaniemi S, Sorger PK, Vähärautio A, Färkkilä A. Chemotherapy induces myeloid-driven spatially confined T cell exhaustion in ovarian cancer. Cancer Cell 2024; 42:2045-2063.e10. [PMID: 39658541 DOI: 10.1016/j.ccell.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
Anti-tumor immunity is crucial for high-grade serous ovarian cancer (HGSC) prognosis, yet its adaptation upon standard chemotherapy remains poorly understood. Here, we conduct spatial and molecular characterization of 117 HGSC samples collected before and after chemotherapy. Our single-cell and spatial analyses reveal increasingly versatile immune cell states forming spatiotemporally dynamic microcommunities. We describe Myelonets, networks of interconnected myeloid cells that contribute to CD8+ T cell exhaustion post-chemotherapy and show that M1/M2 polarization at the tumor-stroma interface is associated with CD8+ T cell exhaustion and exclusion, correlating with poor chemoresponse. Single-cell and spatial transcriptomics reveal prominent myeloid-T cell interactions via NECTIN2-TIGIT induced by chemotherapy. Targeting these interactions using a functional patient-derived immuno-oncology platform demonstrates that high NECTIN2-TIGIT signaling in matched tumors predicts responses to immune checkpoint blockade. Our discovery of clinically relevant myeloid-driven spatial T cell exhaustion unlocks immunotherapeutic strategies to unleash CD8+ T cell-mediated anti-tumor immunity in HGSC.
Collapse
Affiliation(s)
- Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Iga Niemiec
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | | | - Ada Junquera
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Daria Afenteva
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matias M Falco
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Zhihan Liang
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matilda Salko
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Foteini Chamchougia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Angela Szabo
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Yilin Li
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Giulia Micoli
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ashwini Nagaraj
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Department of Oncology, Clinical Trials Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Essi Kahelin
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anni Virtanen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Ajit J Nirmal
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA; Ludwig Center at Harvard, Boston, MA, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, Department of Oncology, Clinical Trials Unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Williams CJM, Peddle AM, Kasi PM, Seligmann JF, Roxburgh CS, Middleton GW, Tejpar S. Neoadjuvant immunotherapy for dMMR and pMMR colorectal cancers: therapeutic strategies and putative biomarkers of response. Nat Rev Clin Oncol 2024; 21:839-851. [PMID: 39317818 DOI: 10.1038/s41571-024-00943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Approximately 15% of locally advanced colorectal cancers (CRC) have DNA mismatch repair deficiency (dMMR), resulting in high microsatellite instability and a high tumour mutational burden. These cancers are frequently sensitive to therapy with immune-checkpoint inhibitors (ICIs) in the metastatic setting. This sensitivity seems to be even more pronounced in locally advanced disease, and organ preservation has become a realistic aim in ongoing clinical trials involving patients with dMMR rectal cancer. By contrast, metastatic CRCs with proficient DNA mismatch repair (pMMR) are generally resistant to ICIs, although a proportion of locally advanced pMMR tumours seem to have a high degree of sensitivity to ICIs. In this Review, we describe the current and emerging clinical evidence supporting the use of neoadjuvant ICIs in patients with dMMR and pMMR CRC, and the potential advantages (based on a biological rationale) of such an approach. We discuss how neoadjuvant 'window-of-opportunity' trials are being leveraged to progress biomarker discovery and we provide an overview of potential predictive biomarkers of response to ICIs, exploring the challenges faced when evaluating such biomarkers in biopsy-derived samples. Lastly, we describe how these discoveries might be used to drive a rational approach to trialling novel immunotherapeutic strategies in patients with pMMR CRC, with the ultimate aim of disease eradication and the generation of long-term immunosurveillance.
Collapse
Affiliation(s)
| | | | - Pashtoon M Kasi
- Department of Gastrointestinal Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA, USA
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Gary W Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
8
|
Dookie RS, Villegas-Mendez A, Cheeseman A, Jones AP, Barroso R, Barrett JR, Draper SJ, Janse CJ, Grogan JL, MacDonald AS, Couper KN. Synergistic blockade of TIGIT and PD-L1 increases type-1 inflammation and improves parasite control during murine blood-stage Plasmodium yoelii non-lethal infection. Infect Immun 2024; 92:e0034524. [PMID: 39324794 PMCID: PMC11556036 DOI: 10.1128/iai.00345-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
Pro-inflammatory immune responses are rapidly suppressed during blood-stage malaria but the molecular mechanisms driving this regulation are still incompletely understood. In this study, we show that the co-inhibitory receptors TIGIT and PD-1 are upregulated and co-expressed by antigen-specific CD4+ T cells (ovalbumin-specific OT-II cells) during non-lethal Plasmodium yoelii expressing ovalbumin (PyNL-OVA) blood-stage infection. Synergistic blockade of TIGIT and PD-L1, but not individual blockade of each receptor, during the early stages of infection significantly improved parasite control during the peak stages (days 10-15) of infection. Mechanistically, this protection was correlated with significantly increased plasma levels of IFN-γ, TNF, and IL-2, and an increase in the frequencies of IFN-γ-producing antigen-specific T-bet+ CD4+ T cells (OT-II cells), but not antigen-specific CD8+ T cells (OT-I cells), along with expansion of the splenic red pulp and monocyte-derived macrophage populations. Collectively, our study identifies a novel role for TIGIT in combination with the PD1-PD-L1 axis in regulating specific components of the pro-inflammatory immune response and restricting parasite control during the acute stages of blood-stage PyNL infection.
Collapse
Affiliation(s)
- Rebecca S. Dookie
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ana Villegas-Mendez
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Antonn Cheeseman
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adam P. Jones
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ruben Barroso
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | | | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Leiden Malaria Group, Center of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jane L. Grogan
- Department of Cancer Immunology, Genentech, South San Francisco, California, USA
| | - Andrew S. MacDonald
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kevin N. Couper
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024; 49:1014-1029. [PMID: 39277450 PMCID: PMC11991696 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
11
|
Morandi E, Adoue V, Bernard I, Friebel E, Nunez N, Aubert Y, Masson F, Dejean AS, Becher B, Astier A, Martinet L, Saoudi A. Impact of the Multiple Sclerosis-Associated Genetic Variant CD226 Gly307Ser on Human CD8 T-Cell Functions. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200306. [PMID: 39231385 PMCID: PMC11379124 DOI: 10.1212/nxi.0000000000200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND AND OBJECTIVES The rs763361 nonsynonymous variant in the CD226 gene, which results in a glycine-to-serine substitution at position 307 of the CD226 protein, has been implicated as a risk factor of various immune-mediated diseases, including multiple sclerosis (MS). Compelling evidence suggests that this allele may play a significant role in predisposing individuals to MS by decreasing the immune-regulatory capacity of Treg cells and increasing the proinflammatory potential of effector CD4 T cells. However, the impact of this CD226 gene variant on CD8 T-cell functions, a population that also plays a key role in MS, remains to be determined. METHODS To study whether the CD226 risk variant affects human CD8 T-cell functions, we used CD8 T cells isolated from peripheral blood mononuclear cell of 16 age-matched healthy donors homozygous for either the protective or the risk allele of CD226. We characterized these CD8 T cells on T-cell receptor (TCR) stimulation using high-parametric flow cytometry and bulk RNAseq and through characterization of canonical signaling pathways and cytokine production. RESULTS On TCR engagement, the phenotype of ex vivo CD8 T cells bearing the protective (CD226-307Gly) or the risk (CD226-307Ser) allele of CD226 was largely overlapping. However, the transcriptomic signature of CD8 T cells from the donors carrying the risk allele presented an enrichment in TCR, JAK/STAT, and IFNγ signaling. We next found that the CD226-307Ser risk allele leads to a selective increase in the phosphorylation of the mitogen-activated protein kinases extracellular signal-regulated kinases 1 and 2 (ERK1/2) associated with enhanced phosphorylation of STAT4 and increased production of IFNγ. DISCUSSION Our data suggest that the CD226-307Ser risk variant imposes immune dysregulation by increasing the pathways related to IFNγ signaling in CD8 T cells, thereby contributing to the risk of developing chronic inflammation.
Collapse
Affiliation(s)
- Elena Morandi
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Véronique Adoue
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Isabelle Bernard
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Ekaterina Friebel
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Nunez
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Yann Aubert
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Frederick Masson
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Anne S Dejean
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Burkhard Becher
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Anne Astier
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Ludovic Martinet
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Abdelhadi Saoudi
- From the Infinity-Toulouse Institute for Infectious and Inflammatory Diseases (E.M., V.A., I.B., Y.A., F.M., A.S.D., A.A., A.S.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1291, Centre National de la Recherche Scientifique (CNRS) UMR 5051, Université Paul Sabatier (UPS), Toulouse, France; Institute of Experimental Immunology (E.F., N.N., B.B.), University of Zurich, Switzerland; and Cancer Research Center of Toulouse (CRCT) (L.M.), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
12
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Zhong T, Li X, Lei K, Tang R, Deng Q, Love PE, Zhou Z, Zhao B, Li X. TGF-β-mediated crosstalk between TIGIT + Tregs and CD226 +CD8 + T cells in the progression and remission of type 1 diabetes. Nat Commun 2024; 15:8894. [PMID: 39406740 PMCID: PMC11480485 DOI: 10.1038/s41467-024-53264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by hyperglycemia resulting from the destruction of insulin-producing β-cells that is traditionally deemed irreversible, but partial remission (PR) with temporary reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA sequencing to delineate the immune cell landscape across patients in different T1D stages. Together with cohort validation and functional assays, we observe dynamic changes in TIGIT+CCR7- Tregs and CD226+CCR7-CD8+ cytotoxic T cells during the peri-remission phase. Machine learning algorithms further identify TIGIT+CCR7- Tregs and CD226+CD8+ T cells as biomarkers for β-cell function decline in a predictive model, while cell communication analysis and in vitro assays suggest that TIGIT+CCR7- Tregs may inhibit CD226+CCR7-CD8+ T cells via TGF-β signaling. Lastly, in both cyclophosphamide-induced and streptozotocin (STZ)-induced mouse diabetes models, CD226 inhibition postpones insulitis onset and reduces hyperglycemia severity. Our results thus identify two interrelated immune cell subsets that may serve as biomarkers for monitoring disease progression and targets for therapeutic intervention of T1D.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Mice
- Humans
- Transforming Growth Factor beta/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Male
- Disease Progression
- Female
- Diabetes Mellitus, Experimental/immunology
- Adult
- Mice, Inbred NOD
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/immunology
- Adolescent
- Young Adult
- Cell Communication/immunology
Collapse
Affiliation(s)
- Ting Zhong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyu Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kang Lei
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Tang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qiaolin Deng
- Department of Physiology and Pharmacology, Karolinska Institute, 17177, Solna, Sweden
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- CSU-Sinocare Research Center for Nutrition and Metabolic Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Jo Y, Sim HI, Yun B, Park Y, Jin HS. Revisiting T-cell adhesion molecules as potential targets for cancer immunotherapy: CD226 and CD2. Exp Mol Med 2024; 56:2113-2126. [PMID: 39349829 PMCID: PMC11541569 DOI: 10.1038/s12276-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
Cancer immunotherapy aims to initiate or amplify immune responses that eliminate cancer cells and create immune memory to prevent relapse. Immune checkpoint inhibitors (ICIs), which target coinhibitory receptors on immune effector cells, such as CTLA-4 and PD-(L)1, have made significant strides in cancer treatment. However, they still face challenges in achieving widespread and durable responses. The effectiveness of anticancer immunity, which is determined by the interplay of coinhibitory and costimulatory signals in tumor-infiltrating immune cells, highlights the potential of costimulatory receptors as key targets for immunotherapy. This review explores our current understanding of the functions of CD2 and CD226, placing a special emphasis on their potential as novel agonist targets for cancer immunotherapy. CD2 and CD226, which are present mainly on T and NK cells, serve important functions in cell adhesion and recognition. These molecules are now recognized for their costimulatory benefits, particularly in the context of overcoming T-cell exhaustion and boosting antitumor responses. The importance of CD226, especially in anti-TIGIT therapy, along with the CD2‒CD58 axis in overcoming resistance to ICI or chimeric antigen receptor (CAR) T-cell therapies provides valuable insights into advancing beyond the current barriers of cancer immunotherapy, underscoring their promise as targets for novel agonist therapy.
Collapse
Affiliation(s)
- Yunju Jo
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Hye-In Sim
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Bohwan Yun
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yoon Park
- Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Dong B, Obermajer N, Tsuji T, Matsuzaki J, Bonura CM, Sander C, Withers H, Long MD, Chavel C, Olejniczak SH, Minderman H, Kirkwood JM, Edwards RP, Storkus WJ, Romero P, Kalinski P. NK Receptor Signaling Lowers TCR Activation Threshold, Enhancing Selective Recognition of Cancer Cells by TAA-Specific CTLs. Cancer Immunol Res 2024; 12:1421-1437. [PMID: 38949179 PMCID: PMC11706306 DOI: 10.1158/2326-6066.cir-24-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Cytotoxic CD8+ T lymphocyte (CTL) recognition of non-mutated tumor-associated antigens (TAA), present on cancer cells and also in healthy tissues, is an important element of cancer immunity, but the mechanism of its selectivity for cancer cells and opportunities for its enhancement remain elusive. In this study, we found that CTL expression of the NK receptors (NKR) DNAM1 and NKG2D was associated with the effector status of CD8+ tumor-infiltrating lymphocytes and long-term survival of patients with melanoma. Using MART1 and NY-ESO-1 as model TAAs, we demonstrated that DNAM1 and NKG2D regulate T-cell receptor (TCR) functional avidity and set the threshold for TCR activation of human TAA-specific CTLs. Superior co-stimulatory effects of DNAM1 over CD28 involved enhanced TCR signaling, CTL killer function, and polyfunctionality. Double transduction of human CTLs with TAA-specific TCR and NKRs resulted in strongly enhanced antigen sensitivity, without a reduction in antigen specificity and selectivity of killer function. In addition, the elevation of NKR ligand expression on cancer cells due to chemotherapy also increased CTL recognition of cancer cells expressing low levels of TAAs. Our data help explain the ability of self-antigens to mediate tumor rejection in the absence of autoimmunity and support the development of dual-targeting adoptive T-cell therapies that use NKRs to enhance the potency and selectivity of recognition of TAA-expressing cancer cells.
Collapse
MESH Headings
- Humans
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Melanoma/immunology
- Melanoma/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Cell Line, Tumor
- MART-1 Antigen/immunology
- MART-1 Antigen/metabolism
- Cytotoxicity, Immunologic
- T Lineage-Specific Activation Antigen 1
Collapse
Affiliation(s)
- Bowen Dong
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Nataša Obermajer
- Department of Surgery, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Takemasa Tsuji
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Junko Matsuzaki
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Cindy M. Bonura
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Cindy Sander
- Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Henry Withers
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Colin Chavel
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Scott H. Olejniczak
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - Hans Minderman
- Department of Flow and Immune Analysis Shared Resource, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
| | - John M. Kirkwood
- Department of Medicine, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Robert P. Edwards
- Department of OB-GYN, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Walter J. Storkus
- Department of Dermatology, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| | - Pedro Romero
- University of Lausanne and Ludwig Institute for Cancer Research; Lausanne, Switzerland
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
- Department of Medicine, Roswell Park Comprehensive Cancer Center; Buffalo, NY, United States
- Department of Surgery, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine; Pittsburgh, PA, United States
| |
Collapse
|
16
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
17
|
Blanquart E, Ekren R, Rigaud B, Joubert MV, Baylot V, Daunes H, Cuisinier M, Villard M, Carrié N, Mazzotti C, Lucca LE, Perrot A, Corre J, Walzer T, Avet-Loiseau H, Axisa PP, Martinet L. NK cells with adhesion defects and reduced cytotoxic functions are associated with a poor prognosis in multiple myeloma. Blood 2024; 144:1271-1283. [PMID: 38875515 DOI: 10.1182/blood.2023023529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.
Collapse
Affiliation(s)
- Eve Blanquart
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Bineta Rigaud
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Virginie Baylot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Hélène Daunes
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Nadège Carrié
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Liliana E Lucca
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Aurore Perrot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Jill Corre
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| |
Collapse
|
18
|
Wang X, Zhang J, Zhong P, Wei X. Exhaustion of T cells after renal transplantation. Front Immunol 2024; 15:1418238. [PMID: 39165360 PMCID: PMC11333218 DOI: 10.3389/fimmu.2024.1418238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Renal transplantation is a life-saving treatment for patients with end-stage renal disease. However, the challenge of transplant rejection and the complications associated with immunosuppressants necessitates a deeper understanding of the underlying immune mechanisms. T cell exhaustion, a state characterized by impaired effector functions and sustained expression of inhibitory receptors, plays a dual role in renal transplantation. While moderate T cell exhaustion can aid in graft acceptance by regulating alloreactive T cell responses, excessive exhaustion may impair the recipient's ability to control viral infections and tumors, posing significant health risks. Moreover, drugs targeting T cell exhaustion to promote graft tolerance and using immune checkpoint inhibitors for cancer treatment in transplant recipients are areas deserving of further attention and research. This review aims to provide a comprehensive understanding of the changes in T cell exhaustion levels after renal transplantation and their implications for graft survival and patient outcomes. We discuss the molecular mechanisms underlying T cell exhaustion, the role of specific exhaustion markers, the potential impact of immunosuppressive therapies, and the pharmaceutical intervention on T cell exhaustion levels. Additionally, we demonstrate the potential to modulate T cell exhaustion favorably, enhancing graft survival. Future research should focus on the distinctions of T cell exhaustion across different immune states and subsets, as well as the interactions between exhausted T cells and other immune cells. Understanding these dynamics is crucial for optimizing transplant outcomes and ensuring long-term graft survival while maintaining immune competence.
Collapse
Affiliation(s)
- Xiujia Wang
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinghui Zhang
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pingshan Zhong
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xiuwang Wei
- Department of 1st Urology Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
19
|
Wang W, Chen Y, Shen Y, Chen J, Yao X, Cheng Y, Xu J, Ma L, Chen Y, Zhang C. Secretory Phenotype in Peripheral Blood Mononuclear Cells of Elderly Patients with Rheumatoid Arthritis. Rejuvenation Res 2024; 27:122-130. [PMID: 38814828 DOI: 10.1089/rej.2024.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
This study aims to investigate the expression differences of peripheral blood mononuclear cells (PBMCs) in patients with elderly rheumatoid arthritis (ERA). Differentially expressed genes (DEGs) of PBMCs between young patients with RA (RA_Y) and elderly patients with RA (RA_A) were identified by RNA sequencing using the DESeq2 package, followed by bioinformatics analysis. The overlapped targets of the current DEGs and proteomic differentially expressed proteins (another set of unpublished data) were identified and further validated. The bioinformatics analysis revealed significant transcriptomic heterogeneity between RA_A and RA_Y. A total of 348 upregulated and 363 downregulated DEGs were identified. Gene functional enrichment analysis indicated that the DEGs, which represented senescence phenotype for patients with ERA, were enriched in pathways such as Phosphatidylinositol3 kinase/AKT serine-threonine protein kinase (PI3K/Akt) signaling, Mitogen-activated protein kinases (MAPK) signaling, toll-like receptor family, neutrophil degranulation, and immune-related pathways. Gene set enrichment analysis further confirmed the activation of humoral immune response pathways in RA_A. Quantitative polymerase chain reaction validated the expression of five representative DEGs such as SPTA1, SPTB, VNN1, TNXB, and KRT1 in PBMCs of patients with ERA. Patients with ERA have significant senescence phenotype differences versus the young patients. The DEGs identified may facilitate exploring the biomarkers of senescence in RA.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of Rheumatology and Immunology, First People's Hospital of Wenling, Wenling, P.R. China
| | - Yanjuan Chen
- Department of Geriatrics and Division of Rheumatology and Research, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, P.R. China
| | - Yidi Shen
- Department of Rheumatology and Immunology, Seventh People's Hospital of ShangHai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Jian Chen
- Division of Traditional Medicine and Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoyang Yao
- Department of Clinical Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yongjun Cheng
- Department of Rheumatology and Immunology, First People's Hospital of Wenling, Wenling, P.R. China
| | - Jinzhong Xu
- Department of Clinical Pharmacy, First People's Hospital of Wenling, Wenling, P.R. China
| | - Lisha Ma
- Department of Clinical Laboratory, First People's Hospital of Wenling, Wenling, P.R. China
| | - Yong Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chuanfu Zhang
- Department of Rheumatology and Immunology, Seventh People's Hospital of ShangHai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
20
|
Zuo S, Li C, Sun X, Deng B, Zhang Y, Han Y, Ling Z, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Zong J, Tian Z, Shan L, Tang K, Huang H, Song Y, Niu Q, Zhou D, Feng S, Han Z, Wang G, Wu T, Pan J, Feng X. C-JUN overexpressing CAR-T cells in acute myeloid leukemia: preclinical characterization and phase I trial. Nat Commun 2024; 15:6155. [PMID: 39039086 PMCID: PMC11263573 DOI: 10.1038/s41467-024-50485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells show suboptimal efficacy in acute myeloid leukemia (AML). We find that CAR T cells exposed to myeloid leukemia show impaired activation and cytolytic function, accompanied by impaired antigen receptor downstream calcium, ZAP70, ERK, and C-JUN signaling, compared to those exposed to B-cell leukemia. These defects are caused in part by the high expression of CD155 by AML. Overexpressing C-JUN, but not other antigen receptor downstream components, maximally restores anti-tumor function. C-JUN overexpression increases costimulatory molecules and cytokines through reinvigoration of ERK or transcriptional activation, independent of anti-exhaustion. We conduct an open-label, non-randomized, single-arm, phase I trial of C-JUN-overexpressing CAR-T in AML (NCT04835519) with safety and efficacy as primary and secondary endpoints, respectively. Of the four patients treated, one has grade 4 (dose-limiting toxicity) and three have grade 1-2 cytokine release syndrome. Two patients have no detectable bone marrow blasts and one patient has blast reduction after treatment. Thus, overexpressing C-JUN endows CAR-T efficacy in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Middle Aged
- Male
- Female
- Proto-Oncogene Proteins c-jun/metabolism
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Aged
- Adult
- Cell Line, Tumor
- Mice
Collapse
Affiliation(s)
- Shiyu Zuo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Chuo Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaolei Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Biping Deng
- Cytology Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yibing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yajing Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhuojun Ling
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jinlong Xu
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiajia Duan
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zelin Wang
- Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xinjian Yu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qinlong Zheng
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Xiuwen Xu
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Jiao Zong
- Medical Laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Zhenglong Tian
- Gobroad Research Center, Gobroad Medical Group, Beijing, China
| | - Lingling Shan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kaiting Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huifang Huang
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanzhi Song
- Department of Bone Marrow Transplantation, Beijing GoBroad Boren Hospital, Beijing, China
| | - Qing Niu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhongchao Han
- Institute of Stem Cells, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd, Tianjin, China
| | - Guoling Wang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| | - Tong Wu
- Department of Bone Marrow Transplantation, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Clinical Translational Center, Department of Hematology, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
- Central laboratory, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
21
|
Hu S, Han P, Wang M, Cao X, Liu H, Zhang S, Zhang S, Liu J, Han Y, Xiao J, Chen Q, Miao K, Qi J, Tan S, Gao GF, Wang H. Structural basis for the immune recognition and selectivity of the immune receptor PVRIG for ligand Nectin-2. Structure 2024; 32:918-929.e4. [PMID: 38626767 DOI: 10.1016/j.str.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 06/27/2024]
Abstract
Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.
Collapse
Affiliation(s)
- Songtao Hu
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China; Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China; Beijing Life Science Academy, Beijing 102200, China
| | - Pu Han
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Meiyu Wang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Xiaoqing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Hao Liu
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Shuailong Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Anhui 230601, China
| | - Shuijun Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101125, China
| | - Jinhe Xiao
- Department of Prevention and Treatment of Breast Disease, Haidian District Maternal and Child Health Care Hospital, Beijing 100080, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa Macau SAR, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Han Wang
- Beijing Life Science Academy, Beijing 102200, China; Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100080, China.
| |
Collapse
|
22
|
Li S, Luo X, Sun M, Wang Y, Zhang Z, Jiang J, Hu D, Zhang J, Wu Z, Wang Y, Huang W, Xia L. Context-dependent T-BOX transcription factor family: from biology to targeted therapy. Cell Commun Signal 2024; 22:350. [PMID: 38965548 PMCID: PMC11225425 DOI: 10.1186/s12964-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024] Open
Abstract
T-BOX factors belong to an evolutionarily conserved family of transcription factors. T-BOX factors not only play key roles in growth and development but are also involved in immunity, cancer initiation, and progression. Moreover, the same T-BOX molecule exhibits different or even opposite effects in various developmental processes and tumor microenvironments. Understanding the multiple roles of context-dependent T-BOX factors in malignancies is vital for uncovering the potential of T-BOX-targeted cancer therapy. We summarize the physiological roles of T-BOX factors in different developmental processes and their pathological roles observed when their expression is dysregulated. We also discuss their regulatory roles in tumor immune microenvironment (TIME) and the newly arising questions that remain unresolved. This review will help in systematically and comprehensively understanding the vital role of the T-BOX transcription factor family in tumor physiology, pathology, and immunity. The intention is to provide valuable information to support the development of T-BOX-targeted therapy.
Collapse
Affiliation(s)
- Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China
| | - Wenjie Huang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Huazhong University of Science and Technology, Ministry of Education and Ministry of Public Health, Wuhan, Hubei, 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
23
|
Zhang T, Wen R, Fan H, Yu Y, Jia H, Peng Z, Zhou L, Yu G, Zhang W. Impact and potential value of immunosenescence on solid gastrointestinal tumors. Front Immunol 2024; 15:1375730. [PMID: 39007138 PMCID: PMC11239362 DOI: 10.3389/fimmu.2024.1375730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Solid gastrointestinal tumors often respond poorly to immunotherapy for the complex tumor microenvironment (TME), which is exacerbated by immune system alterations. Immunosenescence is the process of increased diversification of immune genes due to aging and other factors, leading to a decrease in the recognition function of the immune system. This process involves immune organs, immune cells, and the senescence-associated secretory phenotype (SASP). The most fundamental change is DNA damage, resulting in TME remodeling. The main manifestations are worsening inflammation, increased immunosuppressive SASP production, decreased immune cell antitumor activity, and the accumulation of tumor-associated fibroblasts and myeloid-derived suppressor cells, making antitumor therapy less effective. Senotherapy strategies to remove senescent cells and block key senescence processes can have synergistic effects with other treatments. This review focuses on immunoenescence and its impact on the solid TME. We characterize the immunosenescent TME and discuss future directions for antitumor therapies targeting senescence.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leqi Zhou
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guanyu Yu
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Wei Zhang
- Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Piovesan D, de Groot AE, Cho S, Anderson AE, Ray RD, Patnaik A, Foster PG, Mitchell CG, Lopez Espinoza AY, Zhu WS, Stagnaro CE, Singh H, Zhao X, Seitz L, Walker NP, Walters MJ, Sivick KE. Fc-Silent Anti-TIGIT Antibodies Potentiate Antitumor Immunity without Depleting Regulatory T Cells. Cancer Res 2024; 84:1978-1995. [PMID: 38635895 DOI: 10.1158/0008-5472.can-23-2455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/02/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
T-cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) is an inhibitory receptor on immune cells that outcompetes an activating receptor, CD226, for shared ligands. Tumor-infiltrating lymphocytes express TIGIT and CD226 on regulatory T cells (Treg) and on CD8+ T cells with tumor-reactive or exhausted phenotypes, supporting the potential of therapeutically targeting TIGIT to enhance antitumor immunity. To optimize the efficacy of therapeutic antibodies against TIGIT, it is necessary to understand IgG Fc (Fcγ) receptor binding for therapeutic benefit. In this study, we showed that combining Fc-enabled (Fce) or Fc-silent (Fcs) anti-TIGIT with antiprogrammed cell death protein 1 in mice resulted in enhanced control of tumors by differential mechanisms: Fce anti-TIGIT promoted the depletion of intratumoral Treg, whereas Fcs anti-TIGIT did not. Despite leaving Treg numbers intact, Fcs anti-TIGIT potentiated the activation of tumor-specific exhausted CD8+ populations in a lymph node-dependent manner. Fce anti-TIGIT induced antibody-dependent cell-mediated cytotoxicity against human Treg in vitro, and significant decreases in Treg were measured in the peripheral blood of patients with phase I solid tumor cancer treated with Fce anti-TIGIT. In contrast, Fcs anti-TIGIT did not deplete human Treg in vitro and was associated with anecdotal objective clinical responses in two patients with phase I solid tumor cancer whose peripheral Treg frequencies remained stable on treatment. Collectively, these data provide evidence for pharmacologic activity and antitumor efficacy of anti-TIGIT antibodies lacking the ability to engage Fcγ receptor. SIGNIFICANCE Fcs-silent anti-TIGIT antibodies enhance the activation of tumor-specific pre-exhausted T cells and promote antitumor efficacy without depleting T regulatory cells.
Collapse
|
25
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
26
|
Wang J, Ren H, Xu C, Yu B, Cai Y, Wang J, Ni X. Identification of m6A/m5C-related lncRNA signature for prediction of prognosis and immunotherapy efficacy in esophageal squamous cell carcinoma. Sci Rep 2024; 14:8238. [PMID: 38589454 PMCID: PMC11001862 DOI: 10.1038/s41598-024-58743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024] Open
Abstract
N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications have garnered significant attention in the field of epigenetic research due to their close association with human cancers. This study we focus on elucidating the expression patterns of m6A/m5C-related long non-coding RNAs (lncRNAs) in esophageal squamous cell carcinoma (ESCC) and assessing their prognostic significance and therapeutic potential. Transcriptomic profiles of ESCC were derived from public resources. m6A/m5C-related lncRNAs were obtained from TCGA using Spearman's correlations analysis. The m6A/m5C-lncRNAs prognostic signature was selected to construct a RiskScore model for survival prediction, and their correlation with the immune microenvironment and immunotherapy response was analyzed. A total of 606 m6A/m5C-lncRNAs were screened, and ESCC cases in the TCGA cohort were stratified into three clusters, which showed significantly distinct in various clinical features and immune landscapes. A RiskScore model comprising ten m6A/m5C-lncRNAs prognostic signature were constructed and displayed good independent prediction ability in validation datasets. Patients in the low-RiskScore group had a better prognosis, a higher abundance of immune cells (CD4 + T cell, CD4 + naive T cell, class-switched memory B cell, and Treg), and enhanced expression of most immune checkpoint genes. Importantly, patients with low-RiskScore were more cline benefit from immune checkpoint inhibitor treatment (P < 0.05). Our findings underscore the potential of RiskScore system comprising ten m6A/m5C-related lncRNAs as effective biomarkers for predicting survival outcomes, characterizing the immune landscape, and assessing response to immunotherapy in ESCC.
Collapse
Affiliation(s)
- Jianlin Wang
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Huiwen Ren
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China
| | - Chao Xu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Bo Yu
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Yiling Cai
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China
| | - Jian Wang
- Department of Radiotherapy, Jiangyin People's Hospital, Jiangyin, 214400, Jiangsu, China.
| | - Xinye Ni
- Department of Radiotherapy, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
- Center for Medical Physics, Nanjing Medical University, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
27
|
Baudouin R, Hans S, Lisan Q, Morin B, Adimi Y, Martin J, Lechien JR, Tartour E, Badoual C. Prognostic Significance of the Microenvironment in Human Papillomavirus Oropharyngeal Carcinoma: A Systematic Review. Laryngoscope 2024; 134:1507-1516. [PMID: 37642393 DOI: 10.1002/lary.31010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE The immune microenvironment of HPV-associated (HPV+) oropharyngeal squamous cell carcinomas (OPSCCs) (HPV+OPSCCs) differs from that of HPV-independent oropharyngeal cancers (HPV-independent OPSCCs). The literature on the subject is very abundant, demanding an organized synthesis of this wealth of information to evaluate the hypothesis associating the favorable prognosis of HPV+OPSCC patients with a different immune microenvironment. A systematic review of the literature was conducted regarding the microenvironment of HPV+OPSCCs. DATA SOURCE MEDLINE/PubMed, Embase, and Cochrane Library databases. REVIEW METHODS A literature search was performed following PRISMA guidelines (Moher D. PLoS Med. 2009). The PEO (Population, Exposure, and Outcome) framework is detailed as follows: P: patients with oropharyngeal squamous cell carcinomas, E: human papillomavirus (HPV), and O: histological and immunological composition of the tumoral microenvironment (TME). No meta-analysis was performed. RESULTS From 1,202 studies that were screened, 58 studies were included (n = 6,474 patients; n = 3,581 (55%) HPV+OPSCCs and n = 2,861(45%) HPV-independent OPSCCs). The presence of tumor-infiltrating lymphocytes (TIL), CD3+ in 1,733 patients, CD4+ in 520 patients, and CD8+ (cytotoxic T lymphocytes (CTL)) in 3,104 patients, and high levels of PD-L1 expression in 1,222 patients is strongly correlated with an improved clinical outcome in HPV+OPSCCs. CONCLUSION This systematic review provides the most comprehensive information on the immune microenvironment of HPV+OPSCCs to date. Tumor-infiltrating lymphocytes and PD-L1 expression are associated with a favorable prognosis. B, CD8+ and resident memory cells densities are higher in HPV+OPSCCs. The importance of myeloid lineages is still a matter of debate and research. LEVEL OF EVIDENCE NA Laryngoscope, 134:1507-1516, 2024.
Collapse
Affiliation(s)
- R Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - S Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - Q Lisan
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - B Morin
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - Y Adimi
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - J Martin
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - J R Lechien
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Montigny-le-Bretonneux, France
| | - E Tartour
- Department of Biological Immunology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| | - C Badoual
- Department of Pathology, Hôpital Européen Georges Pompidou, Université Paris Cité, INSERM, PARCC, Paris, France
| |
Collapse
|
28
|
Wang P, Ma Y, Zhao Y, Li Y, Tang C, Wang S, Jin S, Wang J, Zhu M, Xie B, Wang P. Single-cell RNA sequencing unveils tumor heterogeneity and immune microenvironment between subungual and plantar melanoma. Sci Rep 2024; 14:7039. [PMID: 38528036 DOI: 10.1038/s41598-024-57640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 03/27/2024] Open
Abstract
Acral melanoma (AM) is a subtype of melanoma with high prevalence in East Asians. AM is characterized by greater aggressiveness and lower survival rates. However, there are still fewer studies on immune mechanisms of AM especially subungual melanoma (SM) versus non-subungual melanoma (NSM). In order to explore tumor heterogeneity and immune microenvironment in different subtypes of AM, we applied single-cell RNA sequencing to 24,789 single cells isolated from the SM and plantar melanoma (PM) patients. Aspects of tumor heterogeneity, melanocytes from PM and SM had significant differences in gene expression, CNV and pathways in which tumor-associated such as NF-kb and Wnt were involved. Regarding the immune microenvironment, PM contained more fibroblasts and T/NK cells. The EPHA3-EFNA1 axis was expressed only in cancer-associated fibroblast (CAF) and melanocytes of PM, and the TIGIT-NECTIN2 axis was expressed in both AM subtypes of T/NK cells and melanocytes. Altogether, our study helps to elucidate the tumor heterogeneity in AM subpopulations and provides potential therapeutic targets for clinical research.
Collapse
Affiliation(s)
- Panpan Wang
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yangyang Ma
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Yige Zhao
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Li
- Research Center, Shanghai Yeslab Biotechnology, Shanghai, China
| | - Chenyu Tang
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiwen Wang
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sha Jin
- Fourth Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqi Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Mengyan Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Ping Wang
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China.
| |
Collapse
|
29
|
Li J, Wang F, Li Z, Feng J, Men Y, Han J, Xia J, Zhang C, Han Y, Chen T, Zhao Y, Zhou S, Da Y, Chai G, Hao J. Integrative multi-omics analysis identifies genetically supported druggable targets and immune cell specificity for myasthenia gravis. J Transl Med 2024; 22:302. [PMID: 38521921 PMCID: PMC10960998 DOI: 10.1186/s12967-024-04994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/12/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by fluctuating muscle weakness. Despite the availability of established therapies, the management of MG symptoms remains suboptimal, partially attributed to lack of efficacy or intolerable side-effects. Therefore, new effective drugs are warranted for treatment of MG. METHODS By employing an analytical framework that combines Mendelian randomization (MR) and colocalization analysis, we estimate the causal effects of blood druggable expression quantitative trait loci (eQTLs) and protein quantitative trait loci (pQTLs) on the susceptibility of MG. We subsequently investigated whether potential genetic effects exhibit cell-type specificity by utilizing genetic colocalization analysis to assess the interplay between immune-cell-specific eQTLs and MG risk. RESULTS We identified significant MR results for four genes (CDC42BPB, CD226, PRSS36, and TNFSF12) using cis-eQTL genetic instruments and three proteins (CTSH, PRSS8, and CPN2) using cis-pQTL genetic instruments. Six of these loci demonstrated evidence of colocalization with MG susceptibility (posterior probability > 0.80). We next undertook genetic colocalization to investigate cell-type-specific effects at these loci. Notably, we identified robust evidence of colocalization, with a posterior probability of 0.854, linking CTSH expression in TH2 cells and MG risk. CONCLUSIONS This study provides crucial insights into the genetic and molecular factors associated with MG susceptibility, singling out CTSH as a potential candidate for in-depth investigation and clinical consideration. It additionally sheds light on the immune-cell regulatory mechanisms related to the disease. However, further research is imperative to validate these targets and evaluate their feasibility for drug development.
Collapse
Affiliation(s)
- Jiao Li
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Fei Wang
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Zhen Li
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Jingjing Feng
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Yi Men
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Jinming Han
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Jiangwei Xia
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Chen Zhang
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Yilai Han
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Teng Chen
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Yinan Zhao
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Sirui Zhou
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China
| | - Guoliang Chai
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, China.
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, China.
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China.
| |
Collapse
|
30
|
Vázquez-Reyes A, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Ayón-Pérez MF, Gutiérrez-Silerio GY, Del Toro-Arreola S, Alejandre-González AG, Ortiz-Martínez L, Haramati J, Tovar-Ocampo IC, Victorio-De los Santos M, Gutiérrez-Franco J. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Curr Issues Mol Biol 2024; 46:2819-2826. [PMID: 38666906 PMCID: PMC11048971 DOI: 10.3390/cimb46040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNAM-1 (CD226) is an activating receptor expressed in CD8+ T cells, NK cells, and monocytes. It has been reported that two SNPs in the DNAM-1 gene, rs763361 C>T and rs727088 G>A, have been associated with different autoimmune diseases; however, the role of DNAM-1 in ankylosing spondylitis has been less studied. For this reason, we focused on the study of these two SNPs in association with ankylosing spondylitis. For this, 34 patients and 70 controls were analyzed using endpoint PCR with allele-specific primers. Our results suggest that rs763361 C>T is involved as a possible protective factor under the CT co-dominant model (OR = 0.34, 95% CI = 0.13-0.88, p = 0.022) and the CT + TT dominant model (OR = 0.39, 95% CI = 0.17-0.90, p = 0.025), while rs727088 G>A did not show an association with the disease in any of the inheritance models. When analyzing the relationships of the haplotypes, we found that the T + A haplotype (OR = 0.31, 95% CI = 0.13-0.73, p = 0.0083) is a protective factor for developing the disease. In conclusion, the CT and CT + TT variants of rs763361 C>T and the T + A haplotype were considered as protective factors for developing ankylosing spondylitis.
Collapse
Affiliation(s)
- Alejandro Vázquez-Reyes
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Miriam Fabiola Ayón-Pérez
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Faculta de Medicina, Universidad Autónoma de Querétaro, Querétaro 76140, Querétaro, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alan Guillermo Alejandre-González
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Liliana Ortiz-Martínez
- Clínica de Reumatología, Servicio de Medicina Interna, Instituto Mexicano del Seguro Social (IMSS), Tepic 63000, Nayarit, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Iris Celeste Tovar-Ocampo
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Marcelo Victorio-De los Santos
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| |
Collapse
|
31
|
Launonen IM, Erkan EP, Niemiec I, Junquera A, Hincapié-Otero M, Afenteva D, Liang Z, Salko M, Szabo A, Perez-Villatoro F, Falco MM, Li Y, Micoli G, Nagaraj A, Haltia UM, Kahelin E, Oikkonen J, Hynninen J, Virtanen A, Nirmal AJ, Vallius T, Hautaniemi S, Sorger P, Vähärautio A, Färkkilä A. Chemotherapy induces myeloid-driven spatial T-cell exhaustion in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585657. [PMID: 38562799 PMCID: PMC10983974 DOI: 10.1101/2024.03.19.585657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To uncover the intricate, chemotherapy-induced spatiotemporal remodeling of the tumor microenvironment, we conducted integrative spatial and molecular characterization of 97 high-grade serous ovarian cancer (HGSC) samples collected before and after chemotherapy. Using single-cell and spatial analyses, we identify increasingly versatile immune cell states, which form spatiotemporally dynamic microcommunities at the tumor-stroma interface. We demonstrate that chemotherapy triggers spatial redistribution and exhaustion of CD8+ T cells due to prolonged antigen presentation by macrophages, both within interconnected myeloid networks termed "Myelonets" and at the tumor stroma interface. Single-cell and spatial transcriptomics identifies prominent TIGIT-NECTIN2 ligand-receptor interactions induced by chemotherapy. Using a functional patient-derived immuno-oncology platform, we show that CD8+T-cell activity can be boosted by combining immune checkpoint blockade with chemotherapy. Our discovery of chemotherapy-induced myeloid-driven spatial T-cell exhaustion paves the way for novel immunotherapeutic strategies to unleash CD8+ T-cell-mediated anti-tumor immunity in HGSC.
Collapse
Affiliation(s)
- Inga-Maria Launonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Iga Niemiec
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ada Junquera
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Daria Afenteva
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Zhihan Liang
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Matilda Salko
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Angela Szabo
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | | | - Matias M Falco
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Giulia Micoli
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ashwini Nagaraj
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Department of Oncology, Clinical trials unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Essi Kahelin
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital
| | - Jaana Oikkonen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, University of Turku and Turku University Hospital, Turku, Finland
| | - Anni Virtanen
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital
| | - Ajit J Nirmal
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
| | - Tuulia Vallius
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
- Ludwig Center at Harvard
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Peter Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Department of Oncology, Clinical trials unit, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Finland
| |
Collapse
|
32
|
Trivedi P, Jhala G, De George DJ, Chiu C, Selck C, Ge T, Catterall T, Elkerbout L, Boon L, Joller N, Kay TW, Thomas HE, Krishnamurthy B. TIGIT acts as an immune checkpoint upon inhibition of PD1 signaling in autoimmune diabetes. Front Immunol 2024; 15:1370907. [PMID: 38533515 PMCID: PMC10964479 DOI: 10.3389/fimmu.2024.1370907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Introduction Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells. TIGIT negatively regulates the CD226 costimulatory pathway, T-cell receptor (TCR) signaling, and hence T-cell function. Methods The phenotype and function of TIGIT expressing islet infiltrating T cells was studied in non-obese diabetic (NOD) mice using flow cytometry and single cell RNA sequencing. To determine if TIGIT restrains self-reactive T cells, we used a TIGIT blocking antibody alone or in combination with anti-PDL1 antibody. Results We show that TIGIT is highly expressed on activated islet infiltrating T cells in NOD mice. We identified a subset of stem-like memory CD8+ T cells expressing multiple immune checkpoints including TIGIT, PD1 and the transcription factor EOMES, which is linked to dysfunctional CD8+ T cells. A known ligand for TIGIT, CD155 was expressed on beta cells and islet infiltrating dendritic cells. However, despite TIGIT and its ligand being expressed, islet infiltrating PD1+TIGIT+CD8+ T cells were functional. Inhibiting TIGIT in NOD mice did not result in exacerbated autoimmune diabetes while inhibiting PD1-PDL1 resulted in rapid autoimmune diabetes, indicating that TIGIT does not restrain islet infiltrating T cells in autoimmune diabetes to the same degree as PD1. Partial inhibition of PD1-PDL1 in combination with TIGIT inhibition resulted in rapid diabetes in NOD mice. Discussion These results suggest that TIGIT and PD1 act in synergy as immune checkpoints when PD1 signaling is partially impaired. Beta cell specific stem-like memory T cells retain their functionality despite expressing multiple immune checkpoints and TIGIT is below PD1 in the hierarchy of immune checkpoints in autoimmune diabetes.
Collapse
Affiliation(s)
- Prerak Trivedi
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - David J De George
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Chris Chiu
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Claudia Selck
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Tara Catterall
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | - Lorraine Elkerbout
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
| | | | - Nicole Joller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Thomas W Kay
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Helen E Thomas
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
33
|
Jiang S, Wang W, Yang Y. TIGIT: A potential immunotherapy target for gynecological cancers. Pathol Res Pract 2024; 255:155202. [PMID: 38367600 DOI: 10.1016/j.prp.2024.155202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Gynecological cancer represents a significant global health challenge, and conventional treatment modalities have demonstrated limited efficacy. However, recent investigations into immune checkpoint pathways have unveiled promising opportunities for enhancing the prognosis of patients with cancer. Among these pathways, TIGIT has surfaced as a compelling candidate owing to its capacity to augment the immune function of NK and T cells through blockade, thereby yielding improved anti-tumor effects and prolonged patient survival. Global clinical trials exploring TIGIT blockade therapy have yielded promising preliminary findings. Nevertheless, further research is imperative to comprehensively grasp the potential of TIGIT-based immunotherapy in optimizing therapeutic outcomes for gynecological cancers. This review primarily delineates the regulatory network and immunosuppressive mechanism of TIGIT, expounds upon its expression and therapeutic potential in three major gynecological cancers, and synthesizes the clinical trials of TIGIT-based cancer immunotherapy. Such insights aim to furnish novel perspectives and serve as reference points for subsequent research and clinical application targeting TIGIT in gynecological cancers.
Collapse
Affiliation(s)
- Siyue Jiang
- The third People's Hospital of Suining, Suining, Sichuan, China
| | - Wenhua Wang
- First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Key Laboratory of Gynecologic Oncology Gansu Province, Lanzhou, Gansu, China.
| |
Collapse
|
34
|
Baudouin R, Tartour E, Badoual C, Hans S. Hypothesis of a CD137/Eomes activating axis for effector T cells in HPV oropharyngeal cancers. Mol Med 2024; 30:26. [PMID: 38355394 PMCID: PMC10868089 DOI: 10.1186/s10020-024-00796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic Human Papilloma Virus (HPV) infection is supplanting alcohol and tobacco intoxications as the leading cause of oropharyngeal cancer in developed countries. HPV-related squamous cell carcinomas of the oropharynx (HPV + OSC) present better survival and respond better to radiotherapy and chemotherapy. Regulatory T cells (TREG) are mainly described as immunosuppressive and protumoral in most solid cancers. However, TREG are paradoxically associated with a better prognosis in HPV + OSCs. The transcription factor FoxP3 is the basis for the identification of TREG. Among CD4 + FoxP3 + T cells, some have effector functions. A medical hypothesis is formulated here: the existence of a CD137 (4.1BB)-Eomesodermin (Eomes) activated pathway downstream of TCR-specific activation in a subpopulation of CD4 + FoxP3 + T cells may explain this effector function. Evidence suggest that this axis may exist either in CD4 + FoxP3 + T cells or CD8 + T cells. This pathway could lead T cells to strong antitumor cytotoxic activity in a tumor-specific manner. Furthermore, CD137 is one of the most expected targets for the development of agonist immunotherapies. The identification of CD137 + Eomes + FoxP3+/- T cells could be a key element in the selective activation of the most anti-tumor cells in the HPV + OSC microenvironment.
Collapse
Affiliation(s)
- Robin Baudouin
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, 40 rue Worth, 92 150, Suresnes, France.
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en- Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, Montigny- le-Bretonneux, 78 180, France.
| | - Eric Tartour
- Université Paris Cite, INSERM, PARCC, Hôpital européen Georges Pompidou, Service d'Immunologie biologique, 20, Rue Leblanc, Paris, 75015, France
| | - Cécile Badoual
- Hôpital européen Georges Pompidou, Service d'anatomopathologie, 20, Rue Leblanc, Paris, 75015, France
| | - Stéphane Hans
- Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, 40 rue Worth, 92 150, Suresnes, France
- School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en- Yvelines (Paris Saclay University), 2 Av. de la Source de la Bièvre, Montigny- le-Bretonneux, 78 180, France
| |
Collapse
|
35
|
Ding H, Hu B, Guo R. Comprehensive analysis of single cell and bulk data develops a promising prognostic signature for improving immunotherapy responses in ovarian cancer. PLoS One 2024; 19:e0298125. [PMID: 38346070 PMCID: PMC10861092 DOI: 10.1371/journal.pone.0298125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
The tumor heterogeneity is an important cause of clinical therapy failure and yields distinct prognosis in ovarian cancer (OV). Using the advantages of integrated single cell RNA sequencing (scRNA-seq) and bulk data to decode tumor heterogeneity remains largely unexplored. Four public datasets were enrolled in this study, including E-MTAB-8107, TCGA-OV, GSE63885, and GSE26193 cohorts. Random forest algorithm was employed to construct a multi-gene prognostic panel and further evaluated by receiver operator characteristic (ROC), calibration curve, and Cox regression. Subsequently, molecular characteristics were deciphered, and treatments strategies were explored to deliver precise therapy. The landscape of cell subpopulations and functional characteristics, as well as the dynamic of macrophage cells were detailly depicted at single cell level, and then screened prognostic candidate genes. Based on the expression of candidate genes, a stable and robust cell characterized gene associated prognosis signature (CCIS) was developed, which harbored excellent performance at prognosis assessment and patient stratification. The ROC and calibration curves, and Cox regression analysis elucidated CCIS could serve as serve as an independent factor for predicting prognosis. Moreover, a promising clinical tool nomogram was also constructed according to stage and CCIS. Through comprehensive investigations, patients in low-risk group were charactered by favorable prognosis, elevated genomic variations, higher immune cell infiltrations, and superior antigen presentation. For individualized treatment, patients in low-risk group were inclined to better immunotherapy responses. This study dissected tumor heterogeneity and afforded a promising prognostic signature, which was conducive to facilitating clinical outcomes for patients with OV.
Collapse
Affiliation(s)
- Huanfei Ding
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Henan Province, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixia Guo
- Medical Key Laboratory for Prevention and Treatment of Malignant Gynecological Tumor, Henan Province, China
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
37
|
Ye F, Wang L, Li Y, Dong C, Zhou L, Xu J. IL4I1 in M2-like macrophage promotes glioma progression and is a promising target for immunotherapy. Front Immunol 2024; 14:1338244. [PMID: 38250074 PMCID: PMC10799346 DOI: 10.3389/fimmu.2023.1338244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background Glioma is the prevailing malignant intracranial tumor, characterized by an abundance of macrophages. Specifically, the infiltrating macrophages often display the M2 subtype and are known as tumor-associated macrophages (TAMs). They have a critical role in promoting the oncogenic properties of tumor cells. Interleukin-4-induced-1 (IL4I1) functions as an L-phenylalanine oxidase, playing a key part in regulating immune responses and the progression of various tumors. However, there is limited understanding of the IL4I1-mediated cross-talk function between TAMs and glioma cell in the glioma microenvironment. Methods TCGA, GTEx, and HPA databases were applied to assess the IL4I1 expression, clinical characteristics, and prognostic value of pan-cancer. The link between IL4I1 levels and the prognosis, methylation, and immune checkpoints (ICs) in gliomas were explored through Kaplan-Meier curve, Cox regression, and Spearman correlation analyses. The IL4I1 levels and their distribution were investigated by single-cell analysis and the TIMER 2 database. Additionally, validation of IL4I1 expression was performed by WB, RT-qPCR, IHC, and IF. Co-culture models between glioma cells and M2-like macrophages were used to explore the IL4I1-mediated effects on tumor growth, invasion, and migration of glioma cells. Moreover, the function of IL4I1 on macrophage polarization was evaluated by ELISA, RT-qPCR, WB, and siRNA transfection. Results Both transcriptome and protein levels of IL4I1 were increased obviously in various tumor types, and correlated with a dismal prognosis. Specifically, IL4I1 was implicated in aggressive progression and a dismal prognosis for patients with glioma. A negative association was noticed between the glioma grade and DNA promoter methylation of IL4I1. Enrichment analyses in glioma patients suggested that IL4I1 was linked to cytokine and immune responses, and was positively correlated with ICs. Single-cell analysis, molecular experiments, and in vitro assays showed that IL4I1 was significantly expressed in TAMs. Importantly, co-culture models proved that IL4I1 significantly promoted the invasion and migration of glioma cells, and induced the polarization of M2-like macrophages. Conclusion IL4I1 could be a promising immunotherapy target for selective modulation of TAMs and stands as a novel macrophage-related prognostic biomarker in glioma.
Collapse
Affiliation(s)
| | | | | | | | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Zacharias ZR, Houtman JCD. OMIP-099: 31-color spectral flow cytometry panel to investigate the steady-state phenotype of human T cells. Cytometry A 2024; 105:10-15. [PMID: 37814476 PMCID: PMC10842108 DOI: 10.1002/cyto.a.24799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
We have developed a 31-color panel to define the steady-state phenotype of T cells in human peripheral blood (Table 1). The panel presented here was optimized using cryopreserved peripheral blood mononuclear cells (PBMC). The markers included in this panel were chosen in order to characterize the steady-state phenotype of T cells and includes markers (CD45RA, CD45RO, CCR7, CD95) to distinguish the main subsets (e.g., naïve, TEM , TCM , TEMRA , TSCM etc.) of CD4, CD8, and γδ T cells. This panel also includes markers for the identification of differentiation status (CD27, CD28), activation/antigen experience status (CD11a, CD49d, CD38, HLA-DR, CD56, and CD39), co-inhibitory marker expression (PD-1, TIM-3), and CD4 T helper subsets (CXCR3, CXCR5, CCR4, CCR6, Foxp3, CD25, and CD127). This optimized panel provides a broad assessment of the steady-state phenotype of human T cells.
Collapse
Affiliation(s)
- Zeb R. Zacharias
- Human Immunology Core, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jon C. D. Houtman
- Human Immunology Core, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
39
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
40
|
Ma P, Sun W. Integrated single-cell and bulk sequencing analyses with experimental validation identify the prognostic and immunological implications of CD226 in pan-cancer. J Cancer Res Clin Oncol 2023; 149:14597-14617. [PMID: 37580402 DOI: 10.1007/s00432-023-05268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE CD226 (DNAM-1) is an activating receptor mainly expressed in CD8 + and NK cells. CD226 deficiency and blockade have been shown to impair tumor suppression, while enhanced CD226 expression positively correlated with the increased efficacy of immune checkpoint blockade (ICB) therapies. However, the detailed function and role of CD226 in pan-cancer are largely unknown and require further in-depth investigation. Therefore, this study aims to investigate the biological functions of CD226, its role in tumor immunity, and its potential to predict prognosis and immunotherapy response in pan-cancer. METHODS By taking advantage of single-cell and bulk sequencing analyses, we analyzed the expression profile of CD226, its correlation with patient prognosis, immune infiltration level, immune-related genes, tumor heterogeneity, and stemness in pan-cancer. We also investigated the biological functions of CD226 using gene set enrichment analysis (GSEA) and evaluated its predictive value in response to immunotherapy and small-molecule targeted drugs. In addition, we validated the expression of CD226 in tumor-infiltrating CD8 + and NK cells and studied its association with their functions using a murine B16F10 melanoma model. RESULTS CD226 exhibited differential expression across most tumor types, and its elevated expression was associated with improved clinical outcomes in multiple cancer types. CD226 is closely correlated with numerous tumor-infiltrating immune cells, tumor stemness, and heterogeneity in most cancers. Furthermore, based on single-cell sequencing analysis, CD226 expression was found to be higher on effector CD4 + T cells than naïve CD4 + T cells, and its expression level was decreased in exhausted CD8 + T cells relative to effector CD8 + T cells in multiple cancer types. Additionally, flow cytometric analysis demonstrated that CD226 was highly correlated with the function of tumor-infiltrating NK and CD8 + T cells in murine B16F10 melanoma. Moreover, GSEA analysis revealed that CD226 was closely associated with T cell activation, natural killer cell mediated immunity, natural killer cell-mediated cytotoxicity, and T cell receptor signaling pathway. Finally, CD226 showed promising predictive potential for responsiveness to both ICB therapies and various small-molecule targeted drugs. CONCLUSION CD226 has shown great potential as an innovative biomarker for predicting patient prognosis, immune infiltration levels, and the function of tumor-infiltrating CD8 + T cells, as well as immunotherapy response. Additionally, our findings suggest that the optimal modification of CD226 expression and function, combined with current ICBs, could be a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Peng Ma
- Department of Gastroenterology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei Province, People's Republic of China
| | - Weili Sun
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
- Montreal Clinical Research Institute (IRCM), 110 Pine Ave W, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
41
|
Paolini R, Molfetta R. Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment. Cancers (Basel) 2023; 15:4616. [PMID: 37760586 PMCID: PMC10527063 DOI: 10.3390/cancers15184616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
NK cells play a pivotal role in anti-cancer immune responses, thanks to the expression of a wide array of inhibitory and activating receptors that regulate their cytotoxicity against transformed cells while preserving healthy cells from lysis. However, NK cells exhibit severe dysfunction in the tumor microenvironment, mainly due to the reduction of activating receptors and the induction or increased expression of inhibitory checkpoint receptors. An activating receptor that plays a central role in tumor recognition is the DNAM-1 receptor. It recognizes PVR and Nectin2 adhesion molecules, which are frequently overexpressed on the surface of cancerous cells. These ligands are also able to trigger inhibitory signals via immune checkpoint receptors that are upregulated in the tumor microenvironment and can counteract DNAM-1 activation. Among them, TIGIT has recently gained significant attention, since its targeting results in improved anti-tumor immune responses. This review aims to summarize how the recognition of PVR and Nectin2 by paired co-stimulatory/inhibitory receptors regulates NK cell-mediated clearance of transformed cells. Therapeutic approaches with the potential to reverse DNAM-1 dysfunction in the tumor microenvironment will be also discussed.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
42
|
Xie J, Huang H, Li X, Ouyang L, Wang L, Liu D, Wei X, Tan P, Tu P, Hu Z. The Role of Traditional Chinese Medicine in Cancer Immunotherapy: Current Status and Future Directions. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1627-1651. [PMID: 37638827 DOI: 10.1142/s0192415x2350074x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The tumor microenvironment (TME) plays an important role in the development of tumors. Immunoregulatory cells and cytokines facilitate cancer cells to avoid immune surveillance. Overexpression of immune checkpoint molecules such as CTLA-4 and PD-1/PD-L1 inhibits immune function and enables cancer cells to avoid clearance by the immune system. Thus, minimizing tumor immunosuppression could be an important strategy for cancer therapy. Currently, many immune checkpoint-targeted drugs, such as PD-1/PD-L1 inhibitors, have been approved for marketing and have shown unique advantages in the clinical treatment of cancers. The concept of "strengthening resistance to eliminate pathogenic factors" in traditional Chinese medicine (TCM) is consistent with the immunotherapy of cancer. According to previous studies, the role of TCM in tumor immunotherapy is mainly associated with the positive regulation of natural killer cells, CD8/CD4 T cells, dendritic cells, M2 macrophages, interleukin-2, tumor necrosis factor-[Formula: see text], and IFN-[Formula: see text], as well as with the negative regulation of Tregs, myeloid-derived suppressor cells, cancer-associated fibroblasts, PD-1/PD-L1, transforming growth factor-[Formula: see text], and tumor necrosis factor-[Formula: see text]. This paper summarizes the current research on the effect of TCM targeting the TME, and further introduces the research progress on studying the effects of TCM on immune checkpoints. Modern pharmacological studies have demonstrated that TCM can directly or indirectly affect the TME by inhibiting the overexpression of immune checkpoint molecules and enhancing the efficacy of tumor immunotherapy. TCM with immunomodulatory stimulation could be the key factor to achieve benefits from immunotherapy for patients with non-inflammatory, or "cold", tumors.
Collapse
Affiliation(s)
- Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Xingxing Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P. R. China
| | - Lishan Ouyang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| |
Collapse
|
43
|
Tang F, Wang Y, Zeng Y, Xiao A, Tong A, Xu J. Tumor-associated macrophage-related strategies for glioma immunotherapy. NPJ Precis Oncol 2023; 7:78. [PMID: 37598273 PMCID: PMC10439959 DOI: 10.1038/s41698-023-00431-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/31/2023] [Indexed: 08/21/2023] Open
Abstract
High-grade glioma is one of the deadliest primary tumors of the central nervous system. Despite the many novel immunotherapies currently in development, it has been difficult to achieve breakthrough results in clinical studies. The reason may be due to the suppressive tumor microenvironment of gliomas that limits the function of specific immune cells (e.g., T cells) which are currently the primary targets of immunotherapy. However, tumor-associated macrophage, which are enriched in tumors, plays an important role in the development of GBM and is becoming a research hotspot for immunotherapy. This review focuses on current research advances in the use of macrophages as therapeutic targets or therapeutic tools for gliomas, and provides some potential research directions.
Collapse
Affiliation(s)
- Fansong Tang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yunhui Zeng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
44
|
Hou Y, Wang Y, Tang K, Yang Y, Wang Y, Liu R, Wu B, Chen X, Fu Z, Zhao F, Chen L. CD226 deficiency attenuates cardiac early pathological remodeling and dysfunction via decreasing inflammatory macrophage proportion and macrophage glycolysis in STZ-induced diabetic mice. FASEB J 2023; 37:e23047. [PMID: 37392373 DOI: 10.1096/fj.202300424rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications in type I diabetic patients. Activated macrophage is critical for directing the process of inflammation during the development of DCM. The present study focused on the roles of CD226 on macrophage function during the DCM progression. It has been found that the number of cardiac macrophages in the hearts of streptozocin (STZ)-induced diabetes mice was significantly increased compared with that in non-diabetes mice, and the expression level of CD226 on cardiac macrophages in STZ-induced diabetes mice was higher than that in non-diabetes mice. CD226 deficiency attenuated the diabetes-induced cardiac dysfunction and decreased the proportion of CD86+ F4/80+ macrophages in the diabetic hearts. Notably, adoptive transfer of Cd226-/- - bone marrow derived macrophages (BMDMs) alleviated diabetes-induced cardiac dysfunction, which may be due to the attenuated migration capacity of Cd226-/- -BMDM under high glucose stimulation. Furthermore, CD226 deficiency decreased the macrophage glycolysis accompanying by the downregulated hexokinase 2 (HK2) and lactate dehydrogenase A (LDH-A) expression. Taken together, these findings revealed the pathogenic roles of CD226 played in the process of DCM and provided a basis for the treatment of DCM.
Collapse
Affiliation(s)
- Yongli Hou
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yazhen Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Kang Tang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yan Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yiwei Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Ruiyan Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Bin Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xutao Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
- Department of Implant Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Zhaoyue Fu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Feng Zhao
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lihua Chen
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
45
|
Pichler AC, Carrié N, Cuisinier M, Ghazali S, Voisin A, Axisa PP, Tosolini M, Mazzotti C, Golec DP, Maheo S, do Souto L, Ekren R, Blanquart E, Lemaitre L, Feliu V, Joubert MV, Cannons JL, Guillerey C, Avet-Loiseau H, Watts TH, Salomon BL, Joffre O, Grinberg-Bleyer Y, Schwartzberg PL, Lucca LE, Martinet L. TCR-independent CD137 (4-1BB) signaling promotes CD8 +-exhausted T cell proliferation and terminal differentiation. Immunity 2023; 56:1631-1648.e10. [PMID: 37392737 PMCID: PMC10649891 DOI: 10.1016/j.immuni.2023.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/29/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
CD137 (4-1BB)-activating receptor represents a promising cancer immunotherapeutic target. Yet, the cellular program driven by CD137 and its role in cancer immune surveillance remain unresolved. Using T cell-specific deletion and agonist antibodies, we found that CD137 modulates tumor infiltration of CD8+-exhausted T (Tex) cells expressing PD1, Lag-3, and Tim-3 inhibitory receptors. T cell-intrinsic, TCR-independent CD137 signaling stimulated the proliferation and the terminal differentiation of Tex precursor cells through a mechanism involving the RelA and cRel canonical NF-κB subunits and Tox-dependent chromatin remodeling. While Tex cell accumulation induced by prophylactic CD137 agonists favored tumor growth, anti-PD1 efficacy was improved with subsequent CD137 stimulation in pre-clinical mouse models. Better understanding of T cell exhaustion has crucial implications for the treatment of cancer and infectious diseases. Our results identify CD137 as a critical regulator of Tex cell expansion and differentiation that holds potential for broad therapeutic applications.
Collapse
Affiliation(s)
- Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Samira Ghazali
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Allison Voisin
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Laura do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Eve Blanquart
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Virginie Feliu
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Jennifer L Cannons
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Camille Guillerey
- Cancer Immunotherapies Group, The University of Queensland, Brisbane, QLD, Australia
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benoit L Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France; Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Olivier Joffre
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), UPS, INSERM, CNRS, Toulouse, France
| | - Yenkel Grinberg-Bleyer
- Centre de Recherche en Cancérologie de Lyon, Labex DEVweCAN, INSERM, CNRS, Université Claude Bernard Lyon 1, Centre Léon Bérard, Lyon, France
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Liliana E Lucca
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France.
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III-Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, Toulouse, France.
| |
Collapse
|
46
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
47
|
Zhang Y, Zhao ZX, Gao JP, Huang YK, Huang H. Tumor-infiltrating CD226 +CD8 + T cells are associated with postoperative prognosis and adjuvant chemotherapeutic benefits in gastric cancer patients. J Cancer Res Clin Oncol 2023; 149:4381-4389. [PMID: 36107244 DOI: 10.1007/s00432-022-04346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Defining the phenotypic characteristics of CD8+ T cell subsets in gastric cancer (GC) can help remodel the immune microenvironment of the tumor, thereby improving patient prognosis. CD226 has recently been shown to regulate the activity of CD8+ T cell in several malignancies. However, the clinical relevance of CD226+CD8+ T cells in GC remains unclear. METHODS Fudan University Shanghai Cancer Center (FUSCC) cohort (n = 316), The Cancer Genome Atlas (TCGA) cohort (n = 407), KUGH/KUCM cohort (n = 202), and Asian Cancer Research Group (ACRG) cohort (n = 300) were included in prognosis and response to adjuvant chemotherapy (ACT) analyses. Flow cytometry and multiplex immunostaining were used to characterize CD226+CD8+ T cells. RESULTS CD226+CD8+ T cells predicted favorable outcomes in patients undergoing curative resection for GC. GC patients with high CD226+CD8+ T cell infiltration benefitted more from adjuvant chemotherapy. CD155 is upregulated in GC tissues and is associated with decreased intra-tumoral CD226+CD8+ T cell infiltration. The combination of intra-tumoral CD226+CD8+ T cells and CD155 is a strong prognostic predictor in patients with GC. CONCLUSION CD226+CD8+ T cells may represent a novel therapeutic target and a useful marker of prognosis and therapeutic response in patients with GC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Zhen-Xiong Zhao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Jian-Peng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Ya-Kai Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China
| | - Hua Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
48
|
Tian W, Qin G, Jia M, Li W, Cai W, Wang H, Zhao Y, Bao X, Wei W, Zhang Y, Shao Q. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade. Front Immunol 2023; 14:1198551. [PMID: 37398674 PMCID: PMC10311999 DOI: 10.3389/fimmu.2023.1198551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.
Collapse
Affiliation(s)
- Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Gaofeng Qin
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Jia
- Jiaxing Key Laboratory of Pathogenic Microbiology, Jiaxing Center for Disease Control and Prevention, Jiaxing, Zhejiang, China
| | - Wuhao Li
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Weili Cai
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yangjing Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University & Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| | - Wangzhi Wei
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu Zhang
- Life Science Institute, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
49
|
Guan Q, Han M, Guo Q, Yan F, Wang M, Ning Q, Xi D. Strategies to reinvigorate exhausted CD8 + T cells in tumor microenvironment. Front Immunol 2023; 14:1204363. [PMID: 37398660 PMCID: PMC10311918 DOI: 10.3389/fimmu.2023.1204363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
CD8+ T cell exhaustion is a stable dysfunctional state driven by chronic antigen stimulation in the tumor microenvironment (TME). Differentiation of exhausted CD8+ T cells (CD8+ TEXs) is accompanied by extensive transcriptional, epigenetic and metabolic reprogramming. CD8+ TEXs are mainly characterized by impaired proliferative and cytotoxic capacity as well as the increased expression of multiple co-inhibitory receptors. Preclinical tumor studies and clinical cohorts have demonstrated that T cell exhaustion is firmly associated with poor clinical outcomes in a variety of cancers. More importantly, CD8+ TEXs are regarded as the main responder to immune checkpoint blockade (ICB). However, to date, a large number of cancer patients have failed to achieve durable responses after ICB. Therefore, improving CD8+ TEXs may be a breakthrough point to reverse the current dilemma of cancer immunotherapy and eliminate cancers. Strategies to reinvigorate CD8+ TEXs in TME mainly include ICB, transcription factor-based therapy, epigenetic therapy, metabolism-based therapy and cytokine therapy, which target on different aspects of exhaustion progression. Each of them has its advantages and application scope. In this review, we mainly focus on the major advances of current strategies to reinvigorate CD8+ TEXs in TME. We summarize their efficacy and mechanisms, identify the promising monotherapy and combined therapy and propose suggestions to enhance the treatment efficacy to significantly boost anti-tumor immunity and achieve better clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dong Xi
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
50
|
Li A, Ji B, Yang Y, Ye B, Zhu Q, Hu X, Liu Y, Zhou P, Liu J, Gao R, Zhou Q, Kang B, Jiang Y. Single-cell RNA sequencing highlights the role of PVR/PVRL2 in the immunosuppressive tumour microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1164448. [PMID: 37383234 PMCID: PMC10293927 DOI: 10.3389/fimmu.2023.1164448] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction The conflict between cancer cells and the host immune system shapes the immune tumour microenvironment (TME) in hepatocellular carcinoma (HCC). A deep understanding of the heterogeneity and intercellular communication network in the TME of HCC will provide promising strategies to orchestrate the immune system to target and eradicate cancers. Methods Here, we performed single-cell RNA sequencing (scRNA-seq) and computational analysis of 35786 unselected single cells from 3 human HCC tumour and 3 matched adjacent samples to elucidate the heterogeneity and intercellular communication network of the TME. The specific lysis of HCC cell lines was examined in vitro using cytotoxicity assays. Granzyme B concentration in supernatants of cytotoxicity assays was measured by ELISA. Results We found that VCAN+ tumour-associated macrophages (TAMs) might undergo M2-like polarization and differentiate in the tumour region. Regulatory dendritic cells (DCs) exhibited immune regulatory and tolerogenic phenotypes in the TME. Furthermore, we observed intensive potential intercellular crosstalk among C1QC+ TAMs, regulatory DCs, regulator T (Treg) cells, and exhausted CD8+ T cells that fostered an immunosuppressive niche in the HCC TME. Moreover, we identified that the TIGIT-PVR/PVRL2 axis provides a prominent coinhibitory signal in the immunosuppressive TME. In vitro, antibody blockade of PVR or PVRL2 on HCC cell lines or TIGIT blockade on immune cells increased immune cell-mediated lysis of tumour cell. This enhanced immune response is paralleled by the increased secretion of Granzyme B by immune cells. Discussion Collectively, our study revealed the functional state, clinical significance, and intercellular communication of immunosuppressive cells in HCC at single-cell resolution. Moreover, PVR/PVRL2, interact with TIGIT act as prominent coinhibitory signals and might represent a promising, efficacious immunotherapy strategy in HCC.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, the First Hospital of Jilin University, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreas Surgery, the Second Hospital of Jilin University, Changchun, China
| | - Bicheng Ye
- School of Clinical Medicine, Medical College of Yangzhou Polytechnic College, Yangzhou, China
| | - Qinmei Zhu
- School of Clinical Medicine, Medical College of Yangzhou Polytechnic College, Yangzhou, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, China
| | - Yong Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, China
| | - Peiwen Zhou
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, China
| | - Juanjuan Liu
- Department of Bioinformatics, Analytical Biosciences Limited, Beijing, China
| | - Ranran Gao
- Department of Bioinformatics, Analytical Biosciences Limited, Beijing, China
| | - Qi Zhou
- Department of Bioinformatics, Analytical Biosciences Limited, Beijing, China
| | - Boxi Kang
- Department of Bioinformatics, Analytical Biosciences Limited, Beijing, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Genetic Diagnosis Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|