1
|
Anraku Y, Kita S, Onodera T, Sato A, Tadokoro T, Ito S, Adachi Y, Kotaki R, Suzuki T, Sasaki J, Shiwa-Sudo N, Iwata-Yoshikawa N, Nagata N, Kobayashi S, Kazuki Y, Oshimura M, Nomura T, Sasaki M, Orba Y, Suzuki T, Sawa H, Hashiguchi T, Fukuhara H, Takahashi Y, Maenaka K. Structural and virological identification of neutralizing antibody footprint provides insights into therapeutic antibody design against SARS-CoV-2 variants. Commun Biol 2025; 8:483. [PMID: 40121330 PMCID: PMC11929858 DOI: 10.1038/s42003-025-07827-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Medical treatments using potent neutralizing SARS-CoV-2 antibodies have achieved remarkable improvements in clinical symptoms, changing the situation for the severity of COVID-19 patients. We previously reported an antibody, NT-108 with potent neutralizing activity. However, the structural and functional basis for the neutralizing activity of NT-108 has not yet been understood. Here, we demonstrated the therapeutic effects of NT-108 in a hamster model and its protective effects at low doses. Furthermore, we determined the cryo-EM structure of NT-108 in complex with SARS-CoV-2 spike. The single-chain Fv construction of NT-108 improved the cryo-EM maps because of the prevention of preferred orientations induced by Fab orientation. The footprints of NT-108 illuminated how escape mutations such as E484K evade from class 2 antibody recognition without ACE2 affinity attenuation. The functional and structural basis for the potent neutralizing activity of NT-108 provides insights into the rational design of therapeutic antibodies.
Collapse
Affiliation(s)
- Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Sato
- Laboratory for Drug Discovery & Disease Research, Shionogi & Co., Ltd., Osaka, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Takashi Tadokoro
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shiori Ito
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Souta Kobayashi
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Takao Nomura
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Kyoto University Immunomonitoring Center, Kyoto University, Kyoto, Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
- One Health Research Center, Hokkaido University, Sapporo, Japan.
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan.
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Chakraborty S, Nguyen KN, Zhao M, Gnanakaran S. Allosteric Control and Glycan Shielding Adaptations in the SARS-CoV-2 Spike from Early to Peak Virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642723. [PMID: 40161746 PMCID: PMC11952406 DOI: 10.1101/2025.03.11.642723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The SARS-CoV-2 Spike glycoprotein is central to viral infectivity and immune evasion, making it a key target for vaccine and therapeutic design. This trimeric peplomer undergoes dynamic conformational changes, particularly in its Receptor Binding Domain (RBD), which transitions between closed (down) and ACE2-accessible (up) states relative to the rest of the protein, to facilitate host cell entry. Structural understanding of such critical inter-domain motions, as well as epitope exposure quantification, is essential for obtaining an effective molecular handle over this protein and, in turn, exploiting it towards improved immunogen development. Focusing on the early circulating D614G form and the later emerging Delta (B.1.617.2) variant with higher virulence, we performed large-scale molecular dynamics simulations of the soluble form of the Spike in both 'down' and 'up' conformations of the RBD. Guided by differences in overall fluctuations, we described reaction coordinates based on domain rotations and tilting to extract features that distinguish D614G versus Delta structural behavior of the N-terminal Domain (NTD) and RBD. Using reaction coordinate analysis and Principal Component Analysis (PCA), we identify allosteric coupling between the N-terminal Domain (NTD) and RBD, where NTD tilting influences RBD gating. While some of these motions are conserved across variants, Delta exhibits an optimized RBD-gating mechanism that enhances ACE2 accessibility. Additionally, glycan remodeling in Delta enhances shielding at the NTD supersite, contributing to reduced sensitivity to neutralizing antibodies. Finally, we uncover the impact of the D950N mutation in the HR1 region, which modulates downstream Spike dynamics and immune evasion. Together, our findings reveal variant-specific and conserved structural determinants of SARS-CoV-2 Spike function, providing a mechanistic basis for allosteric modulation, glycan-mediated immune evasion, and viral adaptation. These insights offer valuable guidance for rational vaccine and therapeutic design against SARS-CoV-2 and emerging variants.
Collapse
Affiliation(s)
- Srirupa Chakraborty
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115
| | | | - Mingfei Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487
| | - S. Gnanakaran
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
3
|
Fujitani M, Lu X, Shinnakasu R, Inoue T, Kidani Y, Seki NM, Ishida S, Mitsuki S, Ishihara T, Aoki M, Suzuki A, Takahashi K, Takayama M, Ota T, Iwata S, Shibata RY, Sonoyama T, Ariyasu M, Kitano A, Terooatea T, Kelly Villa J, Yamashita K, Yamasaki S, Kurosaki T, Omoto S. Longitudinal analysis of immune responses to SARS-CoV-2 recombinant vaccine S-268019-b in phase 1/2 prime-boost study. Front Immunol 2025; 16:1550279. [PMID: 40109335 PMCID: PMC11919840 DOI: 10.3389/fimmu.2025.1550279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Background The durability of vaccine-induced immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing infection, especially severe disease. Methods This follow-up report from a phase 1/2 study of S-268019-b (a recombinant spike protein vaccine) after homologous booster vaccination confirms its long-term safety, tolerability, and immunogenicity. Results Booster vaccination with S-268019-b resulted in an enhancement of serum neutralizing antibody (NAb) titers and a broad range of viral neutralization. Single-cell immune profiling revealed persistent and mature antigen-specific memory B cells and T follicular helper cells, with increased B-cell receptor diversity. The expansion of B- and T-cell repertoires and presence of cross-reactive NAbs targeting conserved epitopes within the receptor-binding domain following a booster accounted for the broad-spectrum neutralizing activity. Conclusion These findings highlight the potential of S-268019-b to provide broad and robust protection against a range of SARS-CoV-2 variants, addressing a critical challenge in the ongoing fight against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Masaya Fujitani
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Xiuyuan Lu
- Laboratory of Molecular Immunology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yujiro Kidani
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Naomi M. Seki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoru Ishida
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Shungo Mitsuki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | | | - Miwa Aoki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Akio Suzuki
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Koji Takahashi
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Masahiro Takayama
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takeshi Ota
- Pharmaceutical Technology Research Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Satoshi Iwata
- Department of Microbiology, Tokyo Medical University, Tokyo, Japan
| | - Risa Yokokawa Shibata
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Takuhiro Sonoyama
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | - Mari Ariyasu
- Drug Development and Regulatory Science Division, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | | | | | - Sho Yamasaki
- Laboratory of Molecular Immunology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Shinya Omoto
- Vaccine Business Division, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
4
|
Fujisawa M, Onodera T, Kuroda D, Kewcharoenwong C, Sasaki M, Itakura Y, Yumoto K, Nithichanon A, Ito N, Takeoka S, Suzuki T, Sawa H, Lertmemongkolchai G, Takahashi Y. Molecular convergence of neutralizing antibodies in human revealed by repeated rabies vaccination. NPJ Vaccines 2025; 10:39. [PMID: 39988605 PMCID: PMC11847937 DOI: 10.1038/s41541-025-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Rabies vaccines require repeated immunization to robustly elicit neutralizing antibodies that prevent fatal diseases. Here, we analyzed rabies glycoprotein antibody repertoires at both polyclonal and monoclonal levels following repeated vaccination. Booster vaccination dramatically elevated the neutralizing activity of recalled antibodies, primarily targeting an immunodominant site III epitope with hydrophilic and rugged structures. Strikingly, the majority of site III-directed antibodies in the recall response used a convergent VH gene (IGHV3-30), and they exhibited more hydrophilic and shorter paratopes than non-site III antibodies, providing physicochemical advantages for binding to site III. Additionally, several amino acids on heavy chain CDR3 were identified as key sites for acquiring an ultrapotent neutralizing activity through site III binding. Our in-depth analysis of antibody repertoires revealed the molecular signatures of neutralizing antibodies generated by repeated rabies vaccination, possibly as a result of adaptive convergence.
Collapse
Affiliation(s)
- Mizuki Fujisawa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control (IIZC), Hokkaido University, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Hokkaido, Japan
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Ching Mai, Thailand
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Hokkaido, Japan.
| |
Collapse
|
5
|
Zhang Z, Zhou L, Liu Q, Zheng Y, Tan X, Huang Z, Guo M, Wang X, Chen X, Liang S, Li W, Song K, Yan K, Li J, Li Q, Zhang Y, Yang S, Cai Z, Dai M, Xian Q, Shi ZL, Xu K, Lan K, Chen Y. The lethal K18-hACE2 knock-in mouse model mimicking the severe pneumonia of COVID-19 is practicable for antiviral development. Emerg Microbes Infect 2024; 13:2353302. [PMID: 38753462 PMCID: PMC11132709 DOI: 10.1080/22221751.2024.2353302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Animal models of COVID-19 facilitate the development of vaccines and antivirals against SARS-CoV-2. The efficacy of antivirals or vaccines may differ in different animal models with varied degrees of disease. Here, we introduce a mouse model expressing human angiotensin-converting enzyme 2 (ACE2). In this model, ACE2 with the human cytokeratin 18 promoter was knocked into the Hipp11 locus of C57BL/6J mouse by CRISPR - Cas9 (K18-hACE2 KI). Upon intranasal inoculation with high (3 × 105 PFU) or low (2.5 × 102 PFU) dose of SARS-CoV-2 wildtype (WT), Delta, Omicron BA.1, or Omicron BA.2 variants, all mice showed obvious infection symptoms, including weight loss, high viral loads in the lung, and interstitial pneumonia. 100% lethality was observed in K18-hACE2 KI mice infected by variants with a delay of endpoint for Delta and BA.1, and a significantly attenuated pathogenicity was observed for BA.2. The pneumonia of infected mice was accompanied by the infiltration of neutrophils and pulmonary fibrosis in the lung. Compared with K18-hACE2 Tg mice and HFH4-hACE2 Tg mice, K18-hACE2 KI mice are more susceptible to SARS-CoV-2. In the antivirals test, REGN10933 and Remdesivir had limited antiviral efficacies in K18-hACE2 KI mice upon the challenge of SARS-CoV-2 infections, while Nirmatrelvir, monoclonal antibody 4G4, and mRNA vaccines potently protected the mice from death. Our results suggest that the K18-hACE2 KI mouse model is lethal and stable for SARS-CoV-2 infection, and is practicable and stringent to antiviral development.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Yucheng Zheng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xue Tan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xin Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Xianying Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Simeng Liang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Wenkang Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Kun Song
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Kun Yan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Jiali Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Qiaohong Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Yuzhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ming Dai
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Qiaoyang Xian
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, People’s Republic of China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory / Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, People’s Republic of China
| |
Collapse
|
6
|
Satofuka H, Wang Y, Tanaka H, Hiramatsu K, Morimoto K, Takayama H, Tu H, Qiao Y, Ito S, Gao X, Oshimura M, Kazuki Y. Developing a workflow for the isolation of hybridoma cells producing fully human antigen-specific antibodies using a surface IgG detection method. Sci Rep 2024; 14:23138. [PMID: 39366976 PMCID: PMC11452657 DOI: 10.1038/s41598-024-73770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
The antigen-mediated B cell isolation method, based on the detection of surface IgG (sIgG), has increased the efficiency of therapeutic antibody (Ab) discovery. However, the reduction in sIgG expression on B cells during plasma cell differentiation presents challenges as it enables Ab production from only a small subset of B cells (e.g., memory B cells). The present study aimed to addressed this problem by developing a workflow to isolate human-IgG-secreting hybridoma cells produced by cell fusion, the majority of which express sIgG. We showed that our sIgG-based antigen-coated bead separation method efficiently enriched hybridoma cells expressing antigen-specific Abs with a yield of 83.5% (from the cell fusion pool) and a positive rate of 73.2%. Furthermore, because the separation could be performed after only a short (1-2-day) culture period following cell fusion, diverse hybridoma clones could be obtained, minimizing clonal selection and the incidence of duplicates. Given that the expression of membrane-bound IgG and sIgG are regulated by different splicing mechanisms, we speculate that the cell fusion step potentially attenuated the suppression of human sIgG expression. Overall, our proposed method is expected to markedly improve the efficiency of therapeutic Ab candidate production, which will have important clinical implications.
Collapse
Affiliation(s)
- Hiroyuki Satofuka
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yayan Wang
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Hiroshi Tanaka
- Trans Chromosomics Inc, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kei Hiramatsu
- Trans Chromosomics Inc, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Kayoko Morimoto
- Trans Chromosomics Inc, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Haruka Takayama
- Trans Chromosomics Inc, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Haochen Tu
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Satoru Ito
- Research Department, Purotech Bio Inc, Yokohama, Kanagawa, Japan
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Mitsuo Oshimura
- Trans Chromosomics Inc, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
- Chromosome Engineering Research Group, The Exploratory Research Center On Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
7
|
Inoue T, Yamamoto Y, Sato K, Okemoto-Nakamura Y, Shimizu Y, Ogawa M, Onodera T, Takahashi Y, Wakita T, Kaneko MK, Fukasawa M, Kato Y, Noguchi K. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024; 27:109363. [PMID: 38500835 PMCID: PMC10946335 DOI: 10.1016/j.isci.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
A current challenge is the emergence of SARS-CoV-2 variants, such as BQ.1.1 and XBB.1.5, that can evade immune defenses, thereby limiting antibody drug effectiveness. Emergency-use antibody drugs, including the widely effective bebtelovimab, are losing their benefits. One potential approach to address this issue are bispecific antibodies which combine the targeting abilities of two antibodies with distinct epitopes. We engineered neutralizing bispecific antibodies in the IgG-scFv format from two initially non-neutralizing antibodies, CvMab-6 (which binds to the receptor-binding domain [RBD]) and CvMab-62 (targeting a spike protein S2 subunit epitope adjacent to the known anti-S2 antibody epitope). Furthermore, we created a bispecific antibody by incorporating the scFv of bebtelovimab with our anti-S2 antibody, demonstrating significant restoration of effectiveness against bebtelovimab-resistant BQ.1.1 variants. This study highlights the potential of neutralizing bispecific antibodies, which combine existing less effective anti-RBD antibodies with anti-S2 antibodies, to revive the effectiveness of antibody therapeutics compromised by immune-evading variants.
Collapse
Affiliation(s)
- Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Kaoru Sato
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku 164-8530, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
8
|
Salem GM, Galula JU, Wu SR, Liu JH, Chen YH, Wang WH, Wang SF, Song CS, Chen FC, Abarientos AB, Chen GW, Wang CI, Chao DY. Antibodies from dengue patients with prior exposure to Japanese encephalitis virus are broadly neutralizing against Zika virus. Commun Biol 2024; 7:15. [PMID: 38267569 PMCID: PMC10808242 DOI: 10.1038/s42003-023-05661-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024] Open
Abstract
Exposure to multiple mosquito-borne flaviviruses within a lifetime is not uncommon; however, how sequential exposures to different flaviviruses shape the cross-reactive humoral response against an antigen from a different serocomplex has yet to be explored. Here, we report that dengue-infected individuals initially primed with the Japanese encephalitis virus (JEV) showed broad, highly neutralizing potencies against Zika virus (ZIKV). We also identified a rare class of ZIKV-cross-reactive human monoclonal antibodies with increased somatic hypermutation and broad neutralization against multiple flaviviruses. One huMAb, K8b, binds quaternary epitopes with heavy and light chains separately interacting with overlapping envelope protein dimer units spanning domains I, II, and III through cryo-electron microscopy and structure-based mutagenesis. JEV virus-like particle immunization in mice further confirmed that such cross-reactive antibodies, mainly IgG3 isotype, can be induced and proliferate through heterologous dengue virus (DENV) serotype 2 virus-like particle stimulation. Our findings highlight the role of prior immunity in JEV and DENV in shaping the breadth of humoral response and provide insights for future vaccination strategies in flavivirus-endemic countries.
Collapse
Affiliation(s)
- Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Jedhan Ucat Galula
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Jyung-Hurng Liu
- Graduate Institute of Genomics and Bioinformatics, College of Life Sciences, National Chung Hsing University, Taichung City, 40227, Taiwan
| | - Yen-Hsu Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Wen-Hung Wang
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung City, 80424, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Sheng-Fan Wang
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Cheng-Sheng Song
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Fan-Chi Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan
| | - Adrian B Abarientos
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Guan-Wen Chen
- Institute of Oral Medicine, School of Dentistry, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, 402, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
9
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. Nat Commun 2023; 14:7218. [PMID: 37940661 PMCID: PMC10632514 DOI: 10.1038/s41467-023-42097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle. Consequently, the resulting Abs cannot physically access the MPER crawlspace on the virion surface. By studying naturally arising Abs, we further reveal that flexibility of the human IgG3 hinge mitigates the epitope inaccessibility and additionally facilitates Env spike protein crosslinking. Our results suggest that generation of IgG3 subtype class-switched B cells is a strategy for anti-MPER bnAb induction. Moreover, the findings illustrate the need to incorporate topological features of the target epitope in immunogen design.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Junjian Chen
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Immunology, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kaku
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- NeoCura Bio-Medical Technology Co., Ltd., Beijing, China
| | - Luke Donius
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, MA, USA
| | - Rafiq Ahmad Khan
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Li
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Mikyung Kim
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Bolton MJ, Santos JJS, Arevalo CP, Griesman T, Watson M, Li SH, Bates P, Ramage H, Wilson PC, Hensley SE. IgG3 subclass antibodies recognize antigenically drifted influenza viruses and SARS-CoV-2 variants through efficient bivalent binding. Proc Natl Acad Sci U S A 2023; 120:e2216521120. [PMID: 37603748 PMCID: PMC10469028 DOI: 10.1073/pnas.2216521120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/12/2023] [Indexed: 08/23/2023] Open
Abstract
The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.
Collapse
Affiliation(s)
- Marcus J. Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Jefferson J. S. Santos
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Claudia P. Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Trevor Griesman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Megan Watson
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Shuk Hang Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Holly Ramage
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Patrick C. Wilson
- Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY10021
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
11
|
Tonouchi K, Adachi Y, Suzuki T, Kuroda D, Nishiyama A, Yumoto K, Takeyama H, Suzuki T, Hashiguchi T, Takahashi Y. Structural basis for cross-group recognition of an influenza virus hemagglutinin antibody that targets postfusion stabilized epitope. PLoS Pathog 2023; 19:e1011554. [PMID: 37556494 PMCID: PMC10411744 DOI: 10.1371/journal.ppat.1011554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Plasticity of influenza virus hemagglutinin (HA) conformation increases an opportunity to generate conserved non-native epitopes with unknown functionality. Here, we have performed an in-depth analysis of human monoclonal antibodies against a stem-helix region that is occluded in native prefusion yet exposed in postfusion HA. A stem-helix antibody, LAH31, provided IgG Fc-dependent cross-group protection by targeting a stem-helix kinked loop epitope, with a unique structure emerging in the postfusion state. The structural analysis and molecular modeling revealed key contact sites responsible for the epitope specificity and cross-group breadth that relies on somatically mutated light chain. LAH31 was inaccessible to the native prefusion HA expressed on cell surface; however, it bound to the HA structure present on infected cells with functional linkage to the Fc-mediated clearance. Our study uncovers a novel non-native epitope that emerges in the postfusion HA state, highlighting the utility of this epitope for a broadly protective antigen design.
Collapse
Affiliation(s)
- Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Laboratory of Precision Immunology, Center for Intractable Diseases and ImmunoGenomics research, National Institutes of Biomedical Innovation, Health and Nutrition; Saito-Asagi, Ibaraki City, Osaka, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, Shinjuku, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| |
Collapse
|
12
|
Moriyama S, Anraku Y, Taminishi S, Adachi Y, Kuroda D, Kita S, Higuchi Y, Kirita Y, Kotaki R, Tonouchi K, Yumoto K, Suzuki T, Someya T, Fukuhara H, Kuroda Y, Yamamoto T, Onodera T, Fukushi S, Maeda K, Nakamura-Uchiyama F, Hashiguchi T, Hoshino A, Maenaka K, Takahashi Y. Structural delineation and computational design of SARS-CoV-2-neutralizing antibodies against Omicron subvariants. Nat Commun 2023; 14:4198. [PMID: 37452031 PMCID: PMC10349087 DOI: 10.1038/s41467-023-39890-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.
Collapse
Affiliation(s)
- Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Yuki Anraku
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Shunta Taminishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shunsuke Kita
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Yusuke Higuchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
- Department of Life Science and Medical Bioscience, Waseda University; Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kohei Yumoto
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tateki Suzuki
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University; Kyoto, Kyoto, 606-8507, Japan
| | - Taiyou Someya
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Hideo Fukuhara
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Fukumi Nakamura-Uchiyama
- Department of Infectious Diseases, Tokyo Metropolitan Bokutoh Hospital; Sumida-ku, Tokyo, 130-8575, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University; Kyoto, Kyoto, 606-8507, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine; Kyoto, Kyoto, 602-8566, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, and Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
- Division of Pathogen Structure, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University; Sapporo, Hokkaido, 060-0812, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
13
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546734. [PMID: 37425731 PMCID: PMC10327024 DOI: 10.1101/2023.06.27.546734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved epitopes, thereby inhibiting viral entry. Yet surprisingly, those recognizing linear epitopes in the HIV-1 gp41 membrane proximal external region (MPER) are elicited neither by peptide nor protein scaffold vaccines. Here, we observe that while Abs generated by MPER/liposome vaccines may exhibit human bnAb-like paratopes, B-cell programming without constraints imposed by the gp160 ectodomain selects Abs unable to access the MPER within its native "crawlspace". During natural infection, the flexible hinge of IgG3 partially mitigates steric occlusion of less pliable IgG1 subclass Abs with identical MPER specificity, until affinity maturation refines entry mechanisms. The IgG3 subclass maintains B-cell competitiveness, exploiting bivalent ligation resulting from greater intramolecular Fab arm length, offsetting weak antibody affinity. These findings suggest future immunization strategies.
Collapse
|
14
|
Fujisawa M, Adachi Y, Onodera T, Shiwa-Sudo N, Iwata-Yoshikawa N, Nagata N, Suzuki T, Takeoka S, Takahashi Y. High-throughput isolation of SARS-CoV-2 nucleocapsid antibodies for improved antigen detection. Biochem Biophys Res Commun 2023; 673:114-120. [PMID: 37379800 PMCID: PMC10279465 DOI: 10.1016/j.bbrc.2023.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
SARS-CoV-2 nucleocapsid protein (NP) is the main target for COVID-19-diagnostic PCR and antigen rapid diagnostic tests (Ag-RDTs). Ag-RDTs are more convenient than PCR tests for point-of-care testing or self-testing to identify the SARS-CoV-2 antigen. The sensitivity and specificity of this method depends mainly on the affinity and specificity of NP-binding antibodies; therefore, antigen-antibody binding is key elements for the Ag-RDTs. Here, we applied the high-throughput antibody isolation platform that has been utilized to isolate therapeutic antibodies against rare epitopes. Two NP antibodies were identified to recognize non-overlapping epitopes with high affinity. One antibody specifically binds to SARS-CoV-2 NP, and the other rapidly and tightly binds to SARS-CoV-2 NP with cross-reactivity to SARS-CoV NP. Furthermore, these antibodies were compatible with a sandwich enzyme-linked immunosorbent assay that exhibited enhanced sensitivity for NP detection compared to the previously isolated NP antibodies. Thus, the NP antibody pair is applicable to more sensitive and specific Ag-RDTs, highlighting the utility of a high-throughput antibody isolation platform for diagnostics development.
Collapse
Affiliation(s)
- Mizuki Fujisawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Nozomi Shiwa-Sudo
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama-shi, Tokyo, 208-0011, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama-shi, Tokyo, 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama-shi, Tokyo, 208-0011, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama-shi, Tokyo, 208-0011, Japan
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Research Institute for Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
15
|
Onodera T, Sax N, Sato T, Adachi Y, Kotaki R, Inoue T, Shinnakasu R, Nakagawa T, Fukushi S, Terooatea T, Yoshikawa M, Tonouchi K, Nagakura T, Moriyama S, Matsumura T, Isogawa M, Terahara K, Takano T, Sun L, Nishiyama A, Omoto S, Shinkai M, Kurosaki T, Yamashita K, Takahashi Y. CD62L expression marks SARS-CoV-2 memory B cell subset with preference for neutralizing epitopes. SCIENCE ADVANCES 2023; 9:eadf0661. [PMID: 37315144 DOI: 10.1126/sciadv.adf0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2-neutralizing antibodies primarily target the spike receptor binding domain (RBD). However, B cell antigen receptors (BCRs) on RBD-binding memory B (Bmem) cells have variation in the neutralizing activities. Here, by combining single Bmem cell profiling with antibody functional assessment, we dissected the phenotype of Bmem cell harboring the potently neutralizing antibodies in coronavirus disease 2019 (COVID-19)-convalescent individuals. The neutralizing subset was marked by an elevated CD62L expression and characterized by distinct epitope preference and usage of convergent VH (variable region of immunoglobulin heavy chain) genes, accounting for the neutralizing activities. Concordantly, the correlation was observed between neutralizing antibody titers in blood and CD62L+ subset, despite the equivalent RBD binding of CD62L+ and CD62L- subset. Furthermore, the kinetics of CD62L+ subset differed between the patients who recovered from different COVID-19 severities. Our Bmem cell profiling reveals the unique phenotype of Bmem cell subset that harbors potently neutralizing BCRs, advancing our understanding of humoral protection.
Collapse
Affiliation(s)
- Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Takaki Nagakura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Laboratory of Viral Infection, Ōmura Satoshi Memorial Institute Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Lin Sun
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ayae Nishiyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
16
|
Shitaoka K, Higashiura A, Kawano Y, Yamamoto A, Mizoguchi Y, Hashiguchi T, Nishimichi N, Huang S, Ito A, Ohki S, Kanda M, Taniguchi T, Yoshizato R, Azuma H, Kitajima Y, Yokosaki Y, Okada S, Sakaguchi T, Yasuda T. Structural basis of spike RBM-specific human antibodies counteracting broad SARS-CoV-2 variants. Commun Biol 2023; 6:395. [PMID: 37041231 PMCID: PMC10088672 DOI: 10.1038/s42003-023-04782-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/30/2023] [Indexed: 04/13/2023] Open
Abstract
The decrease of antibody efficacy to mutated SARS-CoV-2 spike RBD explains the breakthrough infections and reinfections by Omicron variants. Here, we analyzed broadly neutralizing antibodies isolated from long-term hospitalized convalescent patients of early SARS-CoV-2 strains. One of the antibodies named NCV2SG48 is highly potent to broad SARS-CoV-2 variants including Omicron BA.1, BA.2, and BA.4/5. To reveal the mode of action, we determined the sequence and crystal structure of the Fab fragment of NCV2SG48 in a complex with spike RBD from the original, Delta, and Omicron BA.1. NCV2SG48 is from a minor VH but the multiple somatic hypermutations contribute to a markedly extended binding interface and hydrogen bonds to interact with conserved residues at the core receptor-binding motif of RBD, which efficiently neutralizes a broad spectrum of variants. Thus, eliciting the RBD-specific B cells to the longitudinal germinal center reaction confers potent immunity to broad SARS-CoV-2 variants emerging one after another.
Collapse
Affiliation(s)
- Kiyomi Shitaoka
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akifumi Higashiura
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Kawano
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akima Yamamoto
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Norihisa Nishimichi
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Integrin-Matrix Biomedical Science, Translational Research Center, Hiroshima University, Hiroshima, Japan
| | - Shiyu Huang
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayano Ito
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Kanda
- Collaborative laboratory of Liquid Biopsy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomohiro Taniguchi
- Division of General Internal Medicine and Infectious Diseases, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Rin Yoshizato
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Azuma
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuo Kitajima
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Yokosaki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Integrin-Matrix Biomedical Science, Translational Research Center, Hiroshima University, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takemasa Sakaguchi
- Department of Virology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoharu Yasuda
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
17
|
Takano T, Sato T, Kotaki R, Moriyama S, Fukushi S, Shinoda M, Kabasawa K, Shimada N, Kousaka M, Adachi Y, Onodera T, Terahara K, Isogawa M, Matsumura T, Shinkai M, Takahashi Y. Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain. Nat Commun 2023; 14:1451. [PMID: 36922492 PMCID: PMC10016167 DOI: 10.1038/s41467-023-37128-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The immunogenicity of mRNA vaccines has not been well studied when compared to different vaccine modalities in the context of additional boosters. Here we show that longitudinal analysis reveals more sustained SARS-CoV-2 spike receptor-binding domain (RBD)-binding IgG titers with the breadth to antigenically distinct variants by the S-268019-b spike protein booster compared to the BNT162b2 mRNA homologous booster. The durability and breadth of RBD-angiotensin-converting enzyme 2 (ACE2) binding inhibitory antibodies are pronounced in the group without systemic adverse events (AEs) after the S-268019-b booster, leading to the elevated neutralizing activities against Omicron BA.1 and BA.5 variants in the stratified group. In contrast, BNT162b2 homologous booster elicited antibodies to spike N-terminal domain in proportion to the AE scores. High-dimensional immune profiling identifies early CD16+ natural killer cell dynamics with CCR3 upregulation, as one of the correlates for the distinct anti-RBD antibody responses by the S-268019-b booster. Our results illustrate the combinational effects of heterologous booster on the immune dynamics and the durability and breadth of recalled anti-RBD antibody responses against emerging virus variants.
Collapse
Affiliation(s)
- Tomohiro Takano
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takashi Sato
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Ryutaro Kotaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | | | | | | | - Mio Kousaka
- Tokyo Shinagawa Hospital, Tokyo, 140-8522, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Kazutaka Terahara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| | | | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan.
| |
Collapse
|
18
|
Koyanagi K, Kataoka K, Yoshimatsu H, Fujihashi K, Miyake T. Human salivary protein-derived peptides specific-salivary SIgA antibodies enhanced by nasal double DNA adjuvant in mice play an essential role in preventing Porphyromonas gingivalis colonization: an in-vitro study. BMC Oral Health 2023; 23:123. [PMID: 36829152 PMCID: PMC9950703 DOI: 10.1186/s12903-023-02821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND We previously showed that fimbriae-bore from Poryphyromonas gingivalis (Pg), one of the putative periodontopathogenic bacteria specifically bound to a peptide domain (stat23, prp21) shared on statherin or acidic proline-rich protein 1 (PRP1) molecule of human salivary proteins (HSPs). Here, we investigated whether the nasal administration of DNA plasmid expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotide 1826 as double DNA adjuvant (dDA) with stat23 and prpr21 induces antigen (Ag)-specific salivary secretory IgA (SIgA) antibodies (Abs) in mice. Further, we examined that stat23- and prpr21-specific salivary SIgA Abs induced by dDA have an impact on Pg-binding to human whole saliva-coated hydroxyapatite beads (wsHAPs). MATERIAL AND METHODS C57BL/6N mice were nasally immunized with dDA plus sta23 or/and prp21 peptide as Ag four times at weekly intervals. Saliva was collected one week after the final immunization and was subjected to Ag-specific ELISA. To examine the functional applicability of Ag-specific SIgA Abs, SIgA-enriched saliva samples were subjected to Pg binding inhibition assay to wsHAPs. RESULTS Significantly elevated levels of salivary SIgA Ab to stat23 or prp21 were seen in mice given nasal stat23 or prp21 with dDA compared to those in mice given Ag alone. Of interest, mice nasally given the mixture of stat23 and prp21 as double Ags plus dDA, resulted in both stat23- and prp21-specific salivary SIgA Ab responses, which are mediated through significantly increased numbers of CD11c+ dendritic cell populations and markedly elevated Th1 and Th2 cytokines production by CD4+ T cells in the mucosal inductive and effector tissues. The SIgA Ab-enriched saliva showed significantly reduced numbers of live Pg cells binding to wsHAPs as compared with those in mice given double Ags without dDA or naïve mice. Additionally, saliva from IgA-deficient mice given nasal double Ags plus dDA indicated no decrease of live Pg binding to wsHAPs. CONCLUSION These findings show that HSP-derived peptides-specific salivary SIgA Abs induced by nasal administration of stat23 and prp21 peptides plus dDA, play an essential role in preventing Pg attachment and colonization on the surface of teeth, suggesting a potency that the SIgA may interrupt and mask fimbriae-binding domains in HSPs on the teeth.
Collapse
Affiliation(s)
- Kayo Koyanagi
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan
| | - Kosuke Kataoka
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan. .,Department of Oral Health Science and Social Welfare, Graduate School of Oral Sciences, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi, Tokushima, 770-8504, Japan.
| | - Hideki Yoshimatsu
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan
| | - Kohtaro Fujihashi
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Research Institute of Disaster Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, Japan.,Division of Mucosal Vaccine, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shiroganedai, Minato-Ku, Tokyo, 108-8639, Japan.,Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, 1919 7Th Avenue South, Birmingham, AL, 35233, USA
| | - Tatsuro Miyake
- Department of Preventive and Community Dentistry, Graduate School of Dentistry, Osaka Dental University, 1-8 Kuzuha Hanazono-Cho, Hirakata-Shi, Osaka, 573-1121, Japan
| |
Collapse
|
19
|
Rouet R, Henry JY, Johansen MD, Sobti M, Balachandran H, Langley DB, Walker GJ, Lenthall H, Jackson J, Ubiparipovic S, Mazigi O, Schofield P, Burnett DL, Brown SHJ, Martinello M, Hudson B, Gilroy N, Post JJ, Kelleher A, Jäck HM, Goodnow CC, Turville SG, Rawlinson WD, Bull RA, Stewart AG, Hansbro PM, Christ D. Broadly neutralizing SARS-CoV-2 antibodies through epitope-based selection from convalescent patients. Nat Commun 2023; 14:687. [PMID: 36755042 PMCID: PMC9907207 DOI: 10.1038/s41467-023-36295-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (S309) by orders of magnitude. They also provide prophylactic and therapeutic in vivo protection of female hACE2 mice against viral challenge. Our results indicate that exposure to SARS-CoV-2 induces antibodies that maintain broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.
Collapse
Affiliation(s)
- Romain Rouet
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia.
| | - Jake Y Henry
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Matt D Johansen
- Center for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Meghna Sobti
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Harikrishnan Balachandran
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - David B Langley
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Gregory J Walker
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
- Prince of Wales Hospital, Sydney, NSW, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Jennifer Jackson
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Stephanie Ubiparipovic
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Ohan Mazigi
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Simon H J Brown
- Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Marianne Martinello
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | | | | | - Anthony Kelleher
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen-Nürnberg, Germany
| | - Christopher C Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
| | - Stuart G Turville
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - William D Rawlinson
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rowena A Bull
- UNSW Sydney, School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Alastair G Stewart
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | | | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
- UNSW Sydney, St Vincent's Clinical School, Faculty of Medicine, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Wang E. Prediction of antibody binding to SARS-CoV-2 RBDs. BIOINFORMATICS ADVANCES 2023; 3:vbac103. [PMID: 36698760 PMCID: PMC9868522 DOI: 10.1093/bioadv/vbac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/18/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Summary The ability to predict antibody-antigen binding is essential for computational models of antibody affinity maturation and protein design. While most models aim to predict binding for arbitrary antigens and antibodies, the global impact of SARS-CoV-2 on public health and the availability of associated data suggest that a SARS-CoV-2-specific model would be highly beneficial. In this work, we present a neural network model, trained on ∼315 000 datapoints from deep mutational scanning experiments, that predicts escape fractions of SARS-CoV-2 RBDs binding to arbitrary antibodies. The antibody embeddings within the model constitute an effective sequence space, which correlates with the Hamming distance, suggesting that these embeddings may be useful for downstream tasks such as binding prediction. Indeed, the model achieves Spearman correlation coefficients of 0.46 and 0.52 on two held-out test sets. By comparison, correlation coefficients calculated using existing structure and sequence-based models do not exceed 0.28. The correlation coefficient against dissociation constants of antibodies binding to SARS-CoV-2 RBD variants is 0.46. Additionally, the residue-level escapes are highest in the antibody epitope, correlating well with experimentally measured escapes. We further study the effect of antibody chain use, embedding dimension size and feed-forward and convolutional architectures on the model results. Lastly, we find that the inference time of our model is significantly faster than previous models, suggesting that it could be a useful tool for the accurate and rapid prediction of antibodies binding to SARS-CoV-2 RBDs. Availability and implementation The model and associated code are available for download at https://github.com/ericzwang/RBD_AB. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Eric Wang
- To whom correspondence should be addressed.
| |
Collapse
|
21
|
Moriyama S. [Neutralizing antibodies against SARS-CoV-2]. Uirusu 2023; 73:153-162. [PMID: 39343550 DOI: 10.2222/jsv.73.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Severe acute respiratory syndrome (SARS) corona virus 2 (SARS-CoV-2) is a novel coronavirus that infects humans and causes respiratory symptoms, resulting in a global pandemic since its appearance in 2019. Neutralizing antibody production is an important immune response following SARS-CoV-2 infection, and a great deal of research has been performed regarding the immune response against SARS-CoV-2 infection. However, SARS-CoV-2 is constantly changing and multiple amino acid reconstitutions accumulated in the spike protein enabled viruses to escape from immune responses, especially from neutralizing antibodies. In this review, the antibody responses to SARS-CoV-2 and the emergence of escape variants, and the development of broadly neutralizing antibodies will be introduced.
Collapse
Affiliation(s)
- Saya Moriyama
- Research center for drug and vaccine development, National Institute of Infectious Diseases
| |
Collapse
|
22
|
Liang H, Zheng P, Wang Q, Deng Y, Liang D, Yi H, Cheng Y, Zhao X, Ma J, Yang Y, Hu P, Zheng P, Zhang Y, Huang S, Lin X, Ke C, Niu X, Sun B, Chen L. Broad and durable antibody response after vaccination with inactivated SARS-CoV-2 in individuals with a history of 2003 SARS-CoV infection. Emerg Microbes Infect 2022; 11:1500-1507. [PMID: 35615992 PMCID: PMC9176697 DOI: 10.1080/22221751.2022.2076613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In vaccinees who were infected with SARS-CoV in 2003, we observed greater antibody responses against spike and nucleoprotein of both SARS-CoV-2 and SARS-CoV after a single dosage of inactivated SARS-CoV-2 vaccine. After receiving the second vaccination, antibodies against RBD of SARS-CoV-2 Wuhan, Beta, Delta, and recently emerged Omicron are significantly higher in SARS-CoV experienced vaccinees than in SARS-CoV naïve vaccinees. Neutralizing activities measured by authentic viruses and pseudoviruses of SARS-CoV, SARS-CoV-2 Wuhan, Beta, and Delta are greater in SARS-CoV experienced vaccinees. In contrast, only weak neutralizing activities against SARS-CoV-2 and variants were detected in SARS-CoV naïve vaccinees. By 6 months after the second vaccination, neutralizing activities were maintained at a relatively higher level in SARS-CoV experienced vaccinees but were undetectable in SARS-CoV naïve vaccinees. These findings suggested a great possibility of developing a universal vaccine by heterologous vaccination using spike antigens from different SARS-related coronaviruses.
Collapse
Affiliation(s)
- Huang Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Dan Liang
- Guangdong Provincial Centre for Diseases Control and Prevention, Guangzhou, People's Republic of China
| | - Haisu Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yuanyi Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xinwei Zhao
- Guangdong Laboratory of Computational Biomedicine, Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yidong Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Peiyu Hu
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Pingqian Zheng
- Guangzhou Laboratory, Guangzhou, People's Republic of China
| | - Yudi Zhang
- Guangdong Laboratory of Computational Biomedicine, Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shuangshuang Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xiancheng Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Changwen Ke
- Guangdong Provincial Centre for Diseases Control and Prevention, Guangzhou, People's Republic of China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangdong Laboratory of Computational Biomedicine, Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Laboratory, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Scheepers C, Richardson SI, Moyo-Gwete T, Moore PL. Antibody class-switching as a strategy to improve HIV-1 neutralization. Trends Mol Med 2022; 28:979-988. [PMID: 36117072 PMCID: PMC9617786 DOI: 10.1016/j.molmed.2022.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022]
Abstract
Broadly neutralizing antibodies (bNAbs), when administered through passive immunization, are protective against HIV-1 infection. Current HIV-1 vaccine strategies are aimed at guiding the immune system to make bNAbs by mimicking their development during infection. Somatic hypermutation of the variable region is known to be crucial for the development of bNAbs. More recently, however, studies have shown how class-switch recombination (CSR) resulting in the generation of different antibody isotypes may serve as an additional mechanism through which antibodies can gain neutralization breadth and potency. In this review, we discuss the importance of different antibody isotypes for HIV-1 neutralization breadth and potency and how this information can be leveraged to improve passive and active immunization against HIV-1.
Collapse
Affiliation(s)
- Cathrine Scheepers
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simone I Richardson
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa; SA MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa (CAPRISA), KwaZulu-Natal, South Africa, Discipline of Virology, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
24
|
Antoine D, Mohammadi M, McDermott CE, Walsh E, Johnson PA, Wawrousek KE, Wall JG. Isolation of SARS-CoV-2-blocking recombinant antibody fragments and characterisation of their binding to variant spike proteins. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1028186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2. From its initial appearance in Wuhan, China in 2019, it developed rapidly into a global pandemic. In addition to vaccines, therapeutic antibodies play an important role in immediately treating susceptible individuals to lessen severity of the disease. In this study, phage display technology was utilised to isolate human scFv antibody fragments that bind the receptor-binding domain (RBD) of SARS-CoV-2 Wuhan-Hu-1 spike protein. Of eight RBD-binding scFvs isolated, two inhibited interaction of RBD with ACE2 protein on VeroE6 cells. Both scFvs also exhibited binding to SARS-CoV-2 Delta variant spike protein but not to Omicron variant spike protein in a Raman spectroscopy immunotest. The study demonstrates the potential of recombinant antibody approaches to rapidly isolate antibody moieties with virus neutralisation potential.
Collapse
|
25
|
Bolton MJ, Arevalo CP, Griesman T, Li SH, Bates P, Wilson PC, Hensley SE. IgG3 subclass antibodies recognize antigenically drifted influenza viruses and SARS-CoV-2 variants through efficient bivalent binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.27.509738. [PMID: 36203556 PMCID: PMC9536032 DOI: 10.1101/2022.09.27.509738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2 or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded, and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 strain of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality, but also for binding and neutralization of antigenically drifted viruses. Significance Influenza viruses and coronaviruses undergo continuous change, successfully evading human antibodies elicited from prior infections or vaccinations. It is important to identify features that allow antibodies to bind with increased breadth. Here we examined the effect that different IgG subclasses have on monoclonal antibody binding and neutralization. We show that IgG subclass is a determinant of antibody breadth, with IgG3 affording increased neutralization of antigenically drifted variants of influenza virus and SARS-CoV-2. Future studies should evaluate IgG3 therapeutic antibodies and vaccination strategies or adjuvants that may skew antibody responses toward broadly reactive isotypes.
Collapse
Affiliation(s)
- Marcus J. Bolton
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claudia P. Arevalo
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor Griesman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuk Hang Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick C. Wilson
- Department of Medicine, Section of Rheumatology, the Knapp Center for Lupus and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
Yang X, Chi H, Wu M, Wang Z, Lang Q, Han Q, Wang X, Liu X, Li Y, Wang X, Huang N, Bi J, Liang H, Gao Y, Zhao Y, Feng N, Yang S, Wang T, Xia X, Ge L. Discovery and characterization of SARS-CoV-2 reactive and neutralizing antibodies from humanized CAMouseHG mice through rapid hybridoma screening and high-throughput single-cell V(D)J sequencing. Front Immunol 2022; 13:992787. [PMID: 36211410 PMCID: PMC9545174 DOI: 10.3389/fimmu.2022.992787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease 2019 pandemic has caused more than 532 million infections and 6.3 million deaths to date. The reactive and neutralizing fully human antibodies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective detection tools and therapeutic measures. During SARS-CoV-2 infection, a large number of SARS-CoV-2 reactive and neutralizing antibodies will be produced. Most SARS-CoV-2 reactive and neutralizing fully human antibodies are isolated from human and frequently encoded by convergent heavy-chain variable genes. However, SARS-CoV-2 viruses can mutate rapidly during replication and the resistant variants of neutralizing antibodies easily survive and evade the immune response, especially in the face of such focused antibody responses in humans. Therefore, additional tools are needed to develop different kinds of fully human antibodies to compensate for current deficiency. In this study, we utilized antibody humanized CAMouseHG mice to develop a rapid antibody discovery method and examine the antibody repertoire of SARS-CoV-2 RBD-reactive hybridoma cells derived from CAMouseHG mice by using high-throughput single-cell V(D)J sequencing analysis. CAMouseHG mice were immunized by 28-day rapid immunization method. After electrofusion and semi-solid medium screening on day 12 post-electrofusion, 171 hybridoma clones were generated based on the results of SARS-CoV-2 RBD binding activity assay. A rather obvious preferential usage of IGHV6-1 family was found in these hybridoma clones derived from CAMouseHG mice, which was significantly different from the antibodies found in patients with COVID-19. After further virus neutralization screening and antibody competition assays, we generated a noncompeting two-antibody cocktail, which showed a potent prophylactic protective efficacy against SARS-CoV-2 in cynomolgus macaques. These results indicate that humanized CAMouseHG mice not only provide a valuable platform to obtain fully human reactive and neutralizing antibodies but also have a different antibody repertoire from humans. Thus, humanized CAMouseHG mice can be used as a good complementary tool in discovery of fully human therapeutic and diagnostic antibodies.
Collapse
Affiliation(s)
- Xi Yang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Hang Chi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Meng Wu
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Zhenshan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Qiaoli Lang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Qiuxue Han
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, China
| | - Xinyue Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Xueqin Liu
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yuanguo Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiwen Wang
- Food and Drug Inspection Laboratory, Administration for Drug and Instrument Supervision and Inspection, Beijing, China
| | - Nan Huang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Jinhao Bi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hao Liang
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yuwei Gao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| | - Liangpeng Ge
- Institute of Bioengineering, ChongQing Academy of Animal Sciences, Chongqing, China
- *Correspondence: Liangpeng Ge, ; Tiecheng Wang, ; Xianzhu Xia,
| |
Collapse
|
27
|
Abstract
The COVID-19 pandemic has caused an unprecedented health crisis and economic burden worldwide. Its etiological agent SARS-CoV-2, a new virus in the coronavirus family, has infected hundreds of millions of people worldwide. SARS-CoV-2 has evolved over the past 2 years to increase its transmissibility as well as to evade the immunity established by previous infection and vaccination. Nevertheless, strong immune responses can be elicited by viral infection and vaccination, which have proved to be protective against the emergence of variants, particularly with respect to hospitalization or severe disease. Here, we review our current understanding of how the virus enters the host cell and how our immune system is able to defend against cell entry and infection. Neutralizing antibodies are a major component of our immune defense and have been extensively studied for SARS-CoV-2 and its variants. Structures of these neutralizing antibodies have provided valuable insights into epitopes that are protective against the original ancestral virus and the variants that have emerged. The molecular characterization of neutralizing epitopes as well as epitope conservation and resistance are important for design of next-generation vaccines and antibody therapeutics.
Collapse
Affiliation(s)
- Hejun Liu
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
28
|
Hemmi T, Ainai A, Hashiguchi T, Tobiume M, Kanno T, Iwata-Yoshikawa N, Iida S, Sato Y, Miyamoto S, Ueno A, Sano K, Saito S, Shiwa-Sudo N, Nagata N, Tamura K, Suzuki R, Hasegawa H, Suzuki T. Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology. Vaccine 2022; 40:5892-5903. [PMID: 36064667 PMCID: PMC9439873 DOI: 10.1016/j.vaccine.2022.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/02/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection. However, regarding the development of COVID-19 vaccines, there is concern about the potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive immune response. In this study, we investigated the protective effect against virus infection induced by intranasal vaccination of recombinant trimeric spike protein derived from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model. The intranasal vaccine combined with ODN2006 successfully induced not only systemic spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa. Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal vaccine of this formulation induced a high number of IFN-γ-secreting cells in the draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are consistent with the induction of the Th1 adaptive immune response. In addition, mice intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate that can prevent the infection of antigenically different variant viruses, reducing the risk of vaccine-associated enhanced respiratory disease.
Collapse
|
29
|
Shimojima M, Sugimoto S, Umekita K, Onodera T, Sano K, Tani H, Takamatsu Y, Yoshikawa T, Kurosu T, Suzuki T, Takahashi Y, Ebihara H, Saijo M. Neutralizing mAbs against SFTS Virus Gn Protein Show Strong Therapeutic Effects in an SFTS Animal Model. Viruses 2022; 14:v14081665. [PMID: 36016286 PMCID: PMC9416629 DOI: 10.3390/v14081665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease with a high case fatality rate caused by the SFTS virus, and currently there are no approved specific treatments. Neutralizing monoclonal antibodies (mAbs) against the virus could be a therapeutic agent in SFTS treatment, but their development has not sufficiently been carried out. In the present study, mouse and human mAbs exposed to the viral envelope proteins Gn and Gc (16 clones each) were characterized in vitro and in vivo by using recombinant proteins, cell culture with viruses, and an SFTS animal model with IFNAR-/- mice. Neutralization activities against the recombinant vesicular stomatitis virus bearing SFTS virus Gn/Gc as envelope proteins were observed with three anti-Gn and six anti-Gc mAbs. Therapeutic activities were observed among anti-Gn, but not anti-Gc mAbs with neutralizing activities. These results propose an effective strategy to obtain promising therapeutic mAb candidates for SFTS treatment, and a necessity to reveal precise roles of the SFTS virus Gn/Gc proteins.
Collapse
Affiliation(s)
- Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
- Correspondence: shimoji-@niid.go.jp (M.S.); (M.S.)
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Kunihiko Umekita
- Department of Respirology, Rheumatology, Infectious Diseases and Neurology, Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.O.); (Y.T.)
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; ka-- (K.S.); (T.S.)
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama 939-0363, Japan;
| | - Yuki Takamatsu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; ka-- (K.S.); (T.S.)
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (T.O.); (Y.T.)
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo 208-0011, Japan; (S.S.); (Y.T.); (T.Y.); (T.K.); (H.E.)
- Medical Affairs Department, Health and Welfare Bureau, Sapporo 060-0042, Japan
- Correspondence: shimoji-@niid.go.jp (M.S.); (M.S.)
| |
Collapse
|
30
|
Affiliation(s)
- Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China. .,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China. .,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, China. .,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China. .,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, China.
| |
Collapse
|
31
|
Tada T, Zhou H, Dcosta BM, Samanovic MI, Chivukula V, Herati RS, Hubbard SR, Mulligan MJ, Landau NR. Increased resistance of SARS-CoV-2 Omicron variant to neutralization by vaccine-elicited and therapeutic antibodies. EBioMedicine 2022; 78:103944. [PMID: 35465948 PMCID: PMC9021600 DOI: 10.1016/j.ebiom.2022.103944] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND SARS-CoV-2 vaccines currently authorized for emergency use have been highly successful in preventing infection and lessening disease severity. The vaccines maintain effectiveness against earlier SARS-CoV-2 Variants of Concern but the heavily mutated, highly transmissible Omicron variant presents an obstacle both to vaccine protection and monoclonal antibody therapies. METHODS Pseudotyped lentiviruses were incubated with serum from vaccinated and boosted donors or therapeutic monoclonal antibody and then applied to target cells. After 2 days, luciferase activity was measured in a microplate luminometer. Resistance mutations of the Omicron spike were identified using point-mutated spike protein pseudotypes and mapped onto the three-dimensional spike protein structure. FINDINGS Virus with the Omicron spike protein was 26-fold resistant to neutralization by recovered donor sera and 26-34-fold resistance to Pfizer BNT162b2 and Moderna vaccine-elicited antibodies following two immunizations. A booster immunization increased neutralizing titres against Omicron. Neutralizing titres against Omicron were increased in the sera with a history of prior SARS-CoV-2 infection. Analysis of the therapeutic monoclonal antibodies showed that the Regeneron and Eli Lilly monoclonal antibodies were ineffective against the Omicron pseudotype while Sotrovimab and Evusheld were partially effective. INTERPRETATION The results highlight the benefit of a booster immunization to protect against the Omicron variant and demonstrate the challenge to monoclonal antibody therapy. The decrease in neutralizing titres against Omicron suggest that much of the vaccine efficacy may rely on T cells. FUNDING The work was funded by grants from the NIH to N.R.L. (DA046100, AI122390 and AI120898) and 55 to M.J.M. (UM1AI148574).
Collapse
Affiliation(s)
- Takuya Tada
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Hao Zhou
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Belinda M Dcosta
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Marie I Samanovic
- NYU Langone Vaccine Center and Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Vidya Chivukula
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA
| | - Ramin S Herati
- NYU Langone Vaccine Center and Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- NYU Langone Vaccine Center and Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU Grossman School of Medicine, 430 East 29th Street, Alexandria West Building, Rm 509, New York, NY 10016, USA.
| |
Collapse
|
32
|
Seki Y, Yoshihara Y, Nojima K, Momose H, Fukushi S, Moriyama S, Wagatsuma A, Numata N, Sasaki K, Kuzuoka T, Yato Y, Takahashi Y, Maeda K, Suzuki T, Mizukami T, Hamaguchi I. Safety and immunogenicity of the Pfizer/BioNTech SARS-CoV-2 mRNA third booster vaccine dose against the SARS-CoV-2 BA.1 and BA.2 Omicron variants. MED 2022; 3:406-421.e4. [PMID: 35815933 PMCID: PMC9040508 DOI: 10.1016/j.medj.2022.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022]
Abstract
Background The Omicron variant of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was identified in Japan in November 2021. This variant contains up to 36 mutations in the spike protein, the target of neutralizing antibodies, and can escape vaccine-induced immunity. A booster vaccination campaign began with healthcare workers and high-risk groups. The safety and immunogenicity of the three-dose vaccination against Omicron remain unknown. Methods A total of 272 healthcare workers were initially evaluated for long-term vaccine safety and immunogenicity. We further established a vaccinee panel to evaluate the safety and immunogenicity against variants of concern (VOCs), including the Omicron variants, using a live virus microneutralization assay. Findings Two-dose vaccination induced robust anti-spike antibodies and neutralization titers (NTs) against the ancestral strain WK-521, whereas NTs against VOCs were significantly lower. Within 93–247 days of the second vaccine dose, NTs against Omicron were completely abolished in up to 80% of individuals in the vaccinee panel. Booster dose induced a robust increase in anti-spike antibodies and NTs against the WK-521, Delta, and Omicron variants. There were no significant differences in the neutralization ability of sera from boosted individuals among the Omicron subvariants BA.1, BA.1.1, and BA.2. Boosting increased the breadth of humoral immunity and cross-reactivity with Omicron without changes in cytokine signatures and adverse event rate. Conclusions The third vaccination dose is safe and increases neutralization against Omicron variants. Funding This study was supported by grants from AMED (grants JP21fk0108104 and JP21mk0102146). The SARS-CoV-2 Omicron variant, later named BA.1, has emerged as a highly transmissible variant due to the 36 mutations in its spike protein, which is the target of neutralizing antibodies; it can therefore escape vaccine-induced immunity. The Omicron subvariant, BA.2, was recently identified and has rapidly become a major variant of concern in many countries, including Japan. This study found that anti-spike antibody levels and neutralization ability decreased gradually 6–9 months after the second vaccination. A third dose dramatically increased the response against multiple Omicron variants. These results show that a booster shot increases neutralization antibodies against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yohei Seki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Yasuo Yoshihara
- National Hospital Organization Murayama Medical Center, Tokyo 208-0011, Japan
| | - Kiyoko Nojima
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ayumi Wagatsuma
- National Hospital Organization Murayama Medical Center, Tokyo 208-0011, Japan
| | - Narumi Numata
- National Hospital Organization Murayama Medical Center, Tokyo 208-0011, Japan
| | - Kyohei Sasaki
- National Hospital Organization Murayama Medical Center, Tokyo 208-0011, Japan
| | - Tomoyo Kuzuoka
- National Hospital Organization Murayama Medical Center, Tokyo 208-0011, Japan
| | - Yoshiyuki Yato
- National Hospital Organization Murayama Medical Center, Tokyo 208-0011, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan.
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| |
Collapse
|
33
|
Vaccination-infection interval determines cross-neutralization potency to SARS-CoV-2 Omicron after breakthrough infection by other variants. MED 2022; 3:249-261.e4. [PMID: 35261995 PMCID: PMC8894731 DOI: 10.1016/j.medj.2022.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022]
Abstract
Background The immune profile against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has dramatically diversified due to a complex combination of exposure to vaccines and infection by various lineages/variants, likely generating a heterogeneity in protective immunity in a given population. To further complicate this, the Omicron variant, with numerous spike mutations, has emerged. These circumstances have created the need to assess the potential of immune evasion by Omicron in individuals with various immune histories. Methods The neutralization susceptibility of the variants, including Omicron and their ancestors, was comparably assessed using a panel of plasma/serum derived from individuals with divergent immune histories. Blood samples were collected from either mRNA vaccinees or from those who suffered from breakthrough infections of Alpha/Delta with multiple time intervals following vaccination. Findings Omicron was highly resistant to neutralization in fully vaccinated individuals without a history of breakthrough infections. In contrast, robust cross-neutralization against Omicron was induced in vaccinees that experienced breakthrough infections. The time interval between vaccination and infection, rather than the variant types of infection, was significantly correlated with the magnitude and potency of Omicron-neutralizing antibodies. Conclusions Immune histories with breakthrough infections can overcome the resistance to infection by Omicron, with the vaccination-infection interval being the key determinant of the magnitude and breadth of neutralization. The diverse exposure history in each individual warrants a tailored and cautious approach to understanding population immunity against Omicron and future variants. Funding This study was supported by grants from the Japan Agency for Medical Research and Development (AMED).
Collapse
|
34
|
Hwang YC, Lu RM, Su SC, Chiang PY, Ko SH, Ke FY, Liang KH, Hsieh TY, Wu HC. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci 2022; 29:1. [PMID: 34983527 PMCID: PMC8724751 DOI: 10.1186/s12929-021-00784-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an exceptional public health crisis that demands the timely creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies (mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun to urgently develop Ab-based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ab drugs for use as COVID-19 therapeutic agents. The detailed structure of the SARS-CoV-2 spike protein is known, and since this protein is key for viral infection, its receptor-binding domain (RBD) has become a major target for therapeutic Ab development. Because SARS-CoV-2 is an RNA virus with a high mutation rate, especially under the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is expected to be an important strategy for effective COVID-19 treatment. Moreover, SARS-CoV-2 infection may stimulate an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to combat cytokine storms have also been under intense development as treatments for COVID-19. In addition to their use as drugs, Abs are currently being utilized in SARS-CoV-2 detection tests, including antigen and immunoglobulin tests. Such Ab-based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID-19. Herein, we highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic.
Collapse
Affiliation(s)
- Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Chieh Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Pao-Yin Chiang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yi Ke
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Kang-Hao Liang
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan
| | - Tzung-Yang Hsieh
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
- Biomedical Translation Research Center (BioTReC), Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
35
|
Ozawa T, Tani H, Anraku Y, Kita S, Igarashi E, Saga Y, Inasaki N, Kawasuji H, Yamada H, Sasaki SI, Somekawa M, Sasaki J, Hayakawa Y, Yamamoto Y, Morinaga Y, Kurosawa N, Isobe M, Fukuhara H, Maenaka K, Hashiguchi T, Kishi H, Kitajima I, Saito S, Niimi H. Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants. MAbs 2022; 14:2072455. [PMID: 35543180 PMCID: PMC9103358 DOI: 10.1080/19420862.2022.2072455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/27/2022] [Indexed: 12/15/2022] Open
Abstract
Many potent neutralizing SARS-CoV-2 antibodies have been developed and used for therapies. However, the effectiveness of many antibodies has been reduced against recently emerging SARS-CoV-2 variants, especially the Omicron variant. We identified a highly potent SARS-CoV-2 neutralizing antibody, UT28K, in COVID-19 convalescent individuals who recovered from a severe condition. UT28K showed efficacy in neutralizing SARS-CoV-2 in an in vitro assay and in vivo prophylactic treatment, and the reactivity to the Omicron strain was reduced. The structural analyses revealed that antibody UT28K Fab and SARS-CoV-2 RBD protein interactions were mainly chain-dominated antigen-antibody interactions. In addition, a mutation analysis suggested that the emergence of a UT28K neutralization-resistant SARS-CoV-2 variant was unlikely, as this variant would likely lose its competitive advantage over circulating SARS-CoV-2. Our data suggest that UT28K offers potent protection against SARS-CoV-2, including newly emerging variants.
Collapse
Affiliation(s)
- Tatsuhiko Ozawa
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Yuki Anraku
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Shunsuke Kita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Emiko Igarashi
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Yumiko Saga
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Noriko Inasaki
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Hitoshi Kawasuji
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hiroshi Yamada
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - so-Ichiro Sasaki
- Section of Host Defences, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Japan
| | - Mayu Somekawa
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Jiei Sasaki
- Laboratory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yoshihiro Hayakawa
- Section of Host Defences, Department of Bioscience, Institute of Natural Medicine, University of Toyama, Japan
| | - Yoshihiro Yamamoto
- Department of Clinical Infectious Diseases, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Yoshitomo Morinaga
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Nobuyuki Kurosawa
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, Academic Assembly, University of Toyama, Toyama, Japan
| | - Masaharu Isobe
- Department of Life Sciences and Bioengineering, Laboratory of Molecular and Cellular Biology, Faculty of Engineering, Academic Assembly, University of Toyama, Toyama, Japan
| | - Hideo Fukuhara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Isao Kitajima
- Administrative office, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Administrative office, University of Toyama, Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
36
|
Li G, Zhang L, Xue P. Codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105175. [PMID: 34871776 PMCID: PMC8641433 DOI: 10.1016/j.meegid.2021.105175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads all over the world and brings great harm to humans in many countries. Many new SARS-CoV-2 variants appeared during its transmission. In the present study, the Delta variants (B.1.617.2) of SARS-CoV-2, which have appeared in many countries, were considered for analysis. In order to evaluate the evolutionary divergence of the Delta variants(B.1.617.2), the codon usage divergence in Delta variants (B.1.617.2) of SARS-CoV-2 was compared to that of the SARS-CoV-2 genomes emerged before June 2020. All Delta variants (B.1.617.2) and 350 early genomes of SARS-CoV-2 in the NCBI database were downloaded. Codon usage pattern including the basic composition, the GC ratio of the third position (GC3) and the first two positions (GC12) in codons, overall GC contents, the effective number of codons (ENC), the codon bias index (CBI), the relative synonymous codon usage (RSCU) values, etc., of all concerned important gene sequences were all calculated. Codon usage divergence of them was calculated via summing their standard deviations. The results suggested that base compositions in both Delta variants (B.1.617.2) of SARS-CoV-2 and the early SARS-CoV-2 genomes were similar to each other. However, the internal codon usage divergence for most genes in Delta variants (B.1.617.2) was significantly wider than that of SARS-CoV-2. The RSCU values were further used to explore the synonymous and non-synonymous mutations in the sequences of the Delta variants (B.1.617.2), and the results showed the synonymous mutations are more obvious than the non-synonymous in the concerned sequences. The related codon usage divergence analysis is helpful for further study on the adaptability and disease prognosis of the SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Gun Li
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China.
| | - Liang Zhang
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| | - Pei Xue
- Laboratory for Biodiversity Science, Department of Biomedical Engineering, School of Electronic Information Engineering, Xi'An Technological University, Xi'An, China
| |
Collapse
|
37
|
Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2021; 602:657-663. [PMID: 35016194 PMCID: PMC8866119 DOI: 10.1038/s41586-021-04385-3] [Citation(s) in RCA: 1320] [Impact Index Per Article: 330.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A–F)—a grouping that is highly concordant with knowledge-based structural classifications3–5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A–D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants. A high-throughput yeast display platform is used to analyse the profiles of mutations in the SARS-CoV-2 receptor-binding domain (RBD) that enable escape from antibodies, and suggests that most anti-RBD antibodies can be escaped by the Omicron variant.
Collapse
|
38
|
Nakamura H, Kikkawa M, Murata T. Technical development and sharing of high-resolution cryo-electron microscopes. Biophys Physicobiol 2021; 18:265-266. [PMID: 34909362 PMCID: PMC8639199 DOI: 10.2142/biophysico.bppb-v18.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Haruki Nakamura
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahide Kikkawa
- Department of Cell Biology & Anatomy, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, Inage, Chiba 263-8522, Japan
| |
Collapse
|