1
|
Lisicka W, Earley ZM, Sifakis JJ, Erickson SA, Mattingly JR, Wu-Woods NJ, Krishnamurthy SR, Belkaid Y, Ismagilov RF, Cyster JG, Riesenfeld SJ, Bendelac A, Jabri B. Immunoglobulin A controls intestinal virus colonization to preserve immune homeostasis. Cell Host Microbe 2025; 33:498-511.e10. [PMID: 40154490 DOI: 10.1016/j.chom.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/26/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Immunoglobulin A (IgA) is the predominant immunoglobulin isotype in mammals, primarily secreted at type I mucosal surfaces. Despite its abundance, the precise role of secretory IgA in the intestinal lumen, where it coats a diverse array of commensal microbiota, has remained elusive. Our study reveals that germinal center IgA responses are essential for preventing chronic colonization of the gut by specific viruses. In the absence of IgA, chronic viral colonization triggers an antigen-driven expansion of CD8αβ+ intraepithelial lymphocytes (IELs). Although these IELs are unable to clear the virus, they contribute to maintaining homeostasis by regulating its load and type I interferon responses. Consequently, IgA deficiency increases susceptibility to colitis in genetically susceptible hosts or following chemical induction but only in the presence of viral pathobionts requiring IgA for their clearance. These findings underscore the potential vulnerability of IgA-deficient individuals to immunopathology when exposed to selective viral pathobionts.
Collapse
Affiliation(s)
- Wioletta Lisicka
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zachary M Earley
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph J Sifakis
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Steven A Erickson
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jonathan R Mattingly
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Natalie J Wu-Woods
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Samantha J Riesenfeld
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Department of Pathology, University of Chicago, Chicago, IL, USA; Paris City University, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Tian C, Yan M, Guo J, Zhou Y, Du B, Cheng G. Yeast Cell Wall-Mediated Ileal Targeted Delivery System for IgA Nepharopathy Therapy. ACS Biomater Sci Eng 2025; 11:1498-1509. [PMID: 39957538 DOI: 10.1021/acsbiomaterials.4c01941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
IgA nephropathy (IgAN) is a primary glomerulonephritis mediated by autoimmunity, characterized by an abnormal increase and the deposition of IgA in the glomeruli. In recent years, most studies have emphasized the crucial role of the gut-kidney axis in the pathogenesis of IgA nephropathy, and the ileal Peyer patches in the intestinal mucosal immune system are the main site for IgA production. Therefore, in this study, hydroxychloroquine (HCQ) and dexamethasone (DXM) were used as model drugs, and yeast cell wall (YCW)-coated oleic acid-grafted chitosan (CSO) was used as a carrier to construct a yeast cell wall oral drug delivery system HCQ/DXM@CSO@YCW. This delivery system achieves ileal targeted delivery through the yeast cell wall (YCW), reduces IgA production, and synergistically regulates the inflammatory pathological environment. The delivery system had good gastrointestinal stability and biocompatibility. In vitro cell experiments had shown the targeted uptake ability of dendritic cells and macrophages, and in vitro intestinal experiments showed that the YCW has ileal targeting properties. In vivo pharmacodynamic experiments showed that the HCQ/DXM@CSO@YCW delivery system could significantly reduce the serum IgA levels and IgA deposition in the renal tissue of IgAN mice, as well as the levels of IL-6, TNF-α, and TGF-β in the renal tissue, improving the pathological morphology of the renal tissue. Therefore, the DXM/HCQ@CSO@YCW oral administration system provided a new intestinal targeted delivery platform for intestinal mucosal immunotherapy in IgA nephropathy.
Collapse
Affiliation(s)
- Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China
| | - Mei Yan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China
| | - Yingying Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou, Henan 450001, China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, Henan 450001, China
| | - Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
3
|
Gutzeit C, Grasset EK, Matthews DB, Maglione PJ, Britton GJ, Miller H, Magri G, Tomalin L, Stapylton M, Canales-Herrerias P, Sominskaia M, Guzman M, Pybus M, Tejedor Vaquero S, Radigan L, Tachó-Piñot R, Martín Nalda A, García Prat M, Martinez Gallo M, Dieli-Crimi R, Clemente JC, Mehandru S, Suarez-Farinas M, Faith JJ, Cunningham-Rundles C, Cerutti A. Gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses. SCIENCE ADVANCES 2025; 11:eado9455. [PMID: 39937896 PMCID: PMC11817949 DOI: 10.1126/sciadv.ado9455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
The gut microbiota enhances systemic immunoglobulin G (IgG) responses to vaccines, but it is unknown whether this effect involves IgA, which coats intestinal microbes. That IgA may amplify postimmune IgG production is suggested by the impaired IgG response to pneumococcal vaccines in some IgA-deficient patients. Here, we found that antipneumococcal but not total IgG production was impaired in mice with IgA deficiency. The positive effect of gut IgA on antipneumococcal IgG responses started very early in life and could implicate gut bacteria, as these responses were attenuated in germ-free mice recolonized with gut microbes from IgA-deficient donors. IgA could exert this effect by constraining the systemic translocation of gut antigens, which was associated with chronic immune activation, including T cell overexpression of programmed cell death protein 1 (PD-1). This inhibitory receptor may attenuate antipneumococcal IgG production by causing B cell hyporesponsiveness, which improved upon anti-PD-1 treatment. Thus, gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilie K. Grasset
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dean B. Matthews
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Paul J. Maglione
- Pulmonary Center and Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn Institute for Data Science and Genome Technology, School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haley Miller
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuliana Magri
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lewis Tomalin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Stapylton
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pablo Canales-Herrerias
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Musia Sominskaia
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mauricio Guzman
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), 02041 Barcelona, Spain
| | - Sonia Tejedor Vaquero
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lin Radigan
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roser Tachó-Piñot
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Andrea Martín Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Marina García Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Monica Martinez Gallo
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - Romina Dieli-Crimi
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - José C. Clemente
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saurabh Mehandru
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Gastroenterology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Cerutti
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain
| |
Collapse
|
4
|
Samiea A, Celis G, Yadav R, Rodda LB, Moreau JM. B cells in non-lymphoid tissues. Nat Rev Immunol 2025:10.1038/s41577-025-01137-6. [PMID: 39910240 DOI: 10.1038/s41577-025-01137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2025] [Indexed: 02/07/2025]
Abstract
B cells have long been understood to be drivers of both humoral and cellular immunity. Recent advances underscore this importance but also indicate that in infection, inflammatory disease and cancer, B cells function directly at sites of inflammation and form tissue-resident memory populations. The spatial organization and cellular niches of tissue B cells have profound effects on their function and on disease outcome, as well as on patient response to therapy. Here we review the role of B cells in peripheral tissues in homeostasis and disease, and discuss the newly identified cellular and molecular signals that are involved in regulating their activity. We integrate emerging data from multi-omic human studies with experimental models to propose a framework for B cell function in tissue inflammation and homeostasis.
Collapse
Affiliation(s)
- Abrar Samiea
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - George Celis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rashi Yadav
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lauren B Rodda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Joshua M Moreau
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Jang S, Kim CW, Olarinoye ZY, Akter S, Kim I. Increased lamina propria B cells play roles in fructose-induced hypertension of Dahl salt-sensitive rats. Life Sci 2025; 361:123314. [PMID: 39675553 DOI: 10.1016/j.lfs.2024.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
AIMS Although the immune system participates in the development of hypertension, the proportional contributions of distinct immune cells remain poorly understood. With the development of transcriptomics, we can profile the transcriptomes of individual immune cells and assess the relative contribution of each immune cell to the development of hypertension. So, we tested the hypothesis that increased lamina propria B cells play roles in fructose-induced hypertension of Dahl salt-sensitive (SS) rats. MATERIALS AND METHODS Eight-week-old Dahl SS and Dahl salt-resistant (SR) male rats were divided into four groups; each group received either tap water (TW) or a 20 % fructose solution (HFS) for 4 weeks. Systolic blood pressure was measured using the tail-cuff method. Single-cell RNA sequencing (scRNA-seq) analysis was performed on lamina propria (LP) cells and peripheral blood mononuclear cells (PBMCs) obtained from the SS and SR rats subjected to either TW or HFS. KEY FINDINGS Results revealed that high-fructose intake induced hypertension in the SS rats but not in the SR rats. It also increased B cells in LPs but not in PBMCs of the SS rats; their subsets showed increased follicular and naïve B cells. Increased lamina propria B cells play roles in fructose-induced hypertension of SS rats. SIGNIFICANCE This finding suggest that targeting B cells could be a potential strategy to mitigate high blood pressure in fructose-induced hypertension.
Collapse
Affiliation(s)
- Sungmin Jang
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Cheong-Wun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Zainab Yetunde Olarinoye
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sadia Akter
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
| |
Collapse
|
6
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
7
|
Nguyen HT, Li M, Vadakath R, Henke KA, Tran TC, Li H, Yamadi M, Darbha S, Yang Y, Kabat J, Albright AR, Centeno EG, Phelan JD, Roulland S, Huang DW, Kelly MC, Young RM, Pittaluga S, Difilippantonio S, Muppidi JR. Gα13 restricts nutrient driven proliferation in mucosal germinal centers. Nat Immunol 2024; 25:1718-1730. [PMID: 39025963 PMCID: PMC11362015 DOI: 10.1038/s41590-024-01910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Germinal centers (GCs) that form in mucosal sites are exposed to gut-derived factors that have the potential to influence homeostasis independent of antigen receptor-driven selective processes. The G-protein Gα13 confines B cells to the GC and limits the development of GC-derived lymphoma. We discovered that Gα13-deficiency fuels the GC reaction via increased mTORC1 signaling and Myc protein expression specifically in the mesenteric lymph node (mLN). The competitive advantage of Gα13-deficient GC B cells (GCBs) in mLN was not dependent on T cell help or gut microbiota. Instead, Gα13-deficient GCBs were selectively dependent on dietary nutrients likely due to greater access to gut lymphatics. Specifically, we found that diet-derived glutamine supported proliferation and Myc expression in Gα13-deficient GCBs in the mLN. Thus, GC confinement limits the effects of dietary glutamine on GC dynamics in mucosal tissues. Gα13 pathway mutations coopt these processes to promote the gut tropism of aggressive lymphoma.
Collapse
Affiliation(s)
- Hang T Nguyen
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Moyi Li
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Rahul Vadakath
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Keirstin A Henke
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Tam C Tran
- Precision Health Informatics Section, NHGRI NIH, Bethesda, MD, USA
| | - Huifang Li
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Maryam Yamadi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Sriranjani Darbha
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Juraj Kabat
- Research Technologies Branch, NIAID NIH, Bethesda, MD, USA
| | - Anne R Albright
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Enoc Granados Centeno
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Michael C Kelly
- Single Cell Analysis Facility, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI NIH, Bethesda, MD, USA
| | - Simone Difilippantonio
- Gnotobiotics Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
| | - Jagan R Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
MacLean AJ, Bonifacio JP, Oram SL, Mohsen MO, Bachmann MF, Arnon TI. Regulation of pulmonary plasma cell responses during secondary infection with influenza virus. J Exp Med 2024; 221:e20232014. [PMID: 38661717 PMCID: PMC11044945 DOI: 10.1084/jem.20232014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024] Open
Abstract
During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.
Collapse
Affiliation(s)
| | | | - Sophia L. Oram
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Mona O. Mohsen
- Department of Bio Medical Research, University of Bern, Rheumatology, Immunology and Allergology, Bern, Switzerland
| | - Martin F. Bachmann
- Nuffield Department of Medicine, University of Oxford, The Jenner Institute, Oxford, UK
- Department of Bio Medical Research, University of Bern, Rheumatology, Immunology and Allergology, Bern, Switzerland
| | - Tal I. Arnon
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| |
Collapse
|
9
|
Verma S, Dufort MJ, Olsen TM, Kimmel S, Labuda JC, Scharffenberger S, McGuire AT, Harrison OJ. Antigen-level resolution of commensal-specific B cell responses can be enabled by phage display screening coupled with B cell tetramers. Immunity 2024; 57:1428-1441.e8. [PMID: 38723638 PMCID: PMC11168869 DOI: 10.1016/j.immuni.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024]
Abstract
Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.
Collapse
Affiliation(s)
- Sheenam Verma
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Matthew J Dufort
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Tayla M Olsen
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Samantha Kimmel
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Jasmine C Labuda
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Sam Scharffenberger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Oliver J Harrison
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Roy K, Chakraborty M, Kumar A, Manna AK, Roy NS. The NFκB signaling system in the generation of B-cell subsets: from germinal center B cells to memory B cells and plasma cells. Front Immunol 2023; 14:1185597. [PMID: 38169968 PMCID: PMC10758606 DOI: 10.3389/fimmu.2023.1185597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024] Open
Abstract
Memory B cells and antibody-secreting cells are the two prime effector B cell populations that drive infection- and vaccine-induced long-term antibody-mediated immunity. The antibody-mediated immunity mostly relies on the formation of specialized structures within secondary lymphoid organs, called germinal centers (GCs), that facilitate the interactions between B cells, T cells, and antigen-presenting cells. Antigen-activated B cells may proliferate and differentiate into GC-independent plasmablasts and memory B cells or differentiate into GC B cells. The GC B cells undergo proliferation coupled to somatic hypermutation of their immunoglobulin genes for antibody affinity maturation. Subsequently, affinity mature GC B cells differentiate into GC-dependent plasma cells and memory B cells. Here, we review how the NFκB signaling system controls B cell proliferation and the generation of GC B cells, plasmablasts/plasma cells, and memory B cells. We also identify and discuss some important unanswered questions in this connection.
Collapse
Affiliation(s)
- Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mainak Chakraborty
- Division of Immunology, Indian Council of Medical Research-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ashok Kumar
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Asit Kumar Manna
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Neeladri Sekhar Roy
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|