1
|
Lee J, Park JR, Lee H, Hong SH, Kim WJ, Eickelberg O, Park SM, Ryu S, Cho SJ, Kim SJ, Yang SR. Fludarabine attenuates inflammation and dysregulated autophagy in alveolar macrophages via inhibition of STAT1/IRF1 pathway. Lab Anim Res 2025; 41:12. [PMID: 40336064 PMCID: PMC12057031 DOI: 10.1186/s42826-025-00245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI), including its most severe form, acute respiratory distress syndrome (ARDS), is a common cause of acute hypoxemic respiratory failure. Although its clinical characteristics have been well characterized, the relevant mechanism remains unclear. An imbalance in autophagy leads to alveolar remodeling and triggers the pathogenesis of ARDS. In this study, we assessed the therapeutic efficacy of the STAT1 inhibitor fludarabine (Fluda) in ALI. C57BL6 mice were exposed to lipopolysaccharide (LPS), and their lung tissues were analyzed via next-generation transcriptome sequencing. RESULTS Western blotting revealed that interferon regulatory factor 1 (IRF1) was highly expressed and STAT1 was phosphorylated following LPS exposure. Fluda significantly decreased the protein expression of STAT1/IRF1 and inhibited the alveolar infiltration of neutrophils and macrophages. Nitric oxide (NO), inducible nitric oxide synthase, tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin-6 (IL-6) release was decreased in the lungs of mice and RAW264.7 macrophages following Fluda treatment. In LPS-induced GFP-LC3 transgenic mice treated with Fluda, the counts of LC3-expressing neutrophils and macrophages in bronchoalveolar (BAL) fluid were significantly decreased. Furthermore, Fluda decreased LC3 and p62 protein expression, thereby inhibiting the release of NO, IL-6, and TNF-α in BAL. In RAW264.7 cells, the inhibition of STAT1/IRF1 by Fluda decreased LPS-induced ERK and NF-κB p65 phosphorylation. CONCLUSIONS The inhibition of STAT1/IRF1 by Fluda plays a pivotal role in modulating dysregulated autophagy by suppressing the MAPK and NF-κB p65 pathways in ALI.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Oliver Eickelberg
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Semin Ryu
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Sung Joon Cho
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 24341, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon, South Korea.
- Institute of Medical Science, School of Medicine, Kangwon National University, Gangwon State, 1 Kanwondaehak-Gil, Chuncheon, 24341, South Korea.
| |
Collapse
|
2
|
Xu S, Chen Y, Zhang L, Lu W, Chen X, Wang T, Wang W. Neuroprotective effects of arctigenin on cerebral ischemia-reperfusion injury in rats via the EPO/EPOR-JAK2-STAT5 signaling pathway. Front Pharmacol 2025; 16:1503971. [PMID: 40206088 PMCID: PMC11979258 DOI: 10.3389/fphar.2025.1503971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/20/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process with significant morbidity and mortality, and there is no specific agent. Previous studies have found that arctigenin can play an anti-CIRI role through anti-inflammatory and antioxidant effects. This study further explored the anti-CIRI mechanism of arctigenin via the EPO/EPOR-JAK2-STAT5 signaling pathway. Methods TTC and H&E staining were used to observe infarct volume and morphological changes in the brain, RT-PCR was used to detect EPO, EPOR, HIF, JAK2, STAT5, NF-κB mRNA expression, EPO/EPOR ratio was detected by immunofluorescence, and HIF was observed by immunohistochemical staining. The protein expression levels of JAK2 and STAT5 were detected, and the protein expression levels of EPO, EPOR, HIF, JAK2 and STAT5 were detected by western blot. Results Our results indicate that arctigenin significantly reduced infarct volume and improved histopathological changes in the brain tissues from CIRI rats at 24 h, 48 h, and 72 h after reperfusion by TTC and H&E staining. RT-PCR analysis showed that arctigenin could significantly upregulate the mRNA expressions of EPO, EPOR, and HIF and downregulate the mRNA expressions of JAK2, STAT5, and NF-κB in the brain tissues from CIRI rats at 24 h, 48 h, and 72 h after reperfusion. Immunofluorescence assay showed that the ratio of EPO/EPOR in CIRI rats at 24 h, 48 h, and 72 h post-reperfusion was significantly elevated by arctigenin. Arctigenin could upregulate the HIF protein expression while downregulate the protein expressions of JAK2, STAT5, and NFκB in the brain tissues from CIRI rats at 24 h, 48 h, and 72 h after reperfusion by immunohistochemical staining. The protein regulation results of EPO, EPOR, HIF, JAK2, and STAT5 were also confirmed by Western blot at 72 h after reperfusion, consistent with the above results. Discussion In conclusion, arctigenin demonstrated neuroprotective properties against CIRI potentially through the EPO/EPOR-JAK2-STAT5 signaling pathway. These findings provide a scientific rationale for further exploration of arctigenin as a therapeutic agent for stroke.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Yuting Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lingling Zhang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Wei Lu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Xu Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Ting Wang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Wenjie Wang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| |
Collapse
|
3
|
Xing A, Wang F, Liu J, Zhang Y, He J, Zhao B, Sun B. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med 2025; 23:269-285. [PMID: 40122658 DOI: 10.1016/s1875-5364(25)60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 03/25/2025]
Abstract
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Collapse
Affiliation(s)
- Aili Xing
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Feng Wang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jinzhong Liu
- Preventive Dentistry, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jingya He
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Bin Zhao
- Periodontics, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| | - Bin Sun
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Gul P, Khan J, Li Q, Liu K. Moringa oleifera in a modern time: A comprehensive review of its nutritional and bioactive composition as a natural solution for managing diabetes mellitus by reducing oxidative stress and inflammation. Food Res Int 2025; 201:115671. [PMID: 39849793 DOI: 10.1016/j.foodres.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications. MO is a multi-purpose plant that has an impressive range of nutritional components including proteins, amino acids (Essential and non-essential amino acids), carbs, fats, fiber, vitamins, and phenolic compounds. In the modern era, scientists have paid close attention to the anti-diabetic, anti-oxidative and anti-inflammatory attributes and other medicinal properties, of MO leaves and seeds. MO leaves and seeds have modulatory effects on DM that are likely influenced by multiple mechanisms. Some of these mechanisms include direct effects, but other mechanisms involve inhibition the production of inflammatory markers, modulation of the gut microbiome, reduction of OS, enhancement of glucose metabolism through hexokinase and glucose 6-phosphate dehydrogenase, improve insulin sensitivity and glucose uptake in the liver and muscles. Overall, these findings suggest that MO may play a role in lowering the risk of DM and its related outcomes. The purpose of this review is to provide a comprehensive overview of the nutritional and bioactive profiles of MO leaves and seeds, as well as to investigate their possible anti-diabetic effects by modulating oxidative stress and inflammation. Our results indicate that MO may be a beneficial natural resource for management of DM and related issues by lowering oxidative stress and inflammation. Furthermore, studies on MO has yielded promising findings in diabetic animal models, indicating antioxidant and anti-inflammatory properties. However, human trials have shown less solid results, most likely due to a lack of studies, different techniques, and dosages. More clinical research is needed to fully understand MO's anti-diabetic potential, notably in lowering oxidative stress and inflammation, both of which are critical in controlling diabetes complications.
Collapse
Affiliation(s)
- Palwasha Gul
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Jabir Khan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Qingyun Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001 China; School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001 China.
| |
Collapse
|
5
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
6
|
Lu X, Han Y, Zhang Y, Li R, Xu J, Yang J, Yao J, Lv Z. An integrated network pharmacology and molecular docking approach to reveal the role of Arctigenin against Cutibacterium acnes-induced skin inflammation by targeting the CYP19A1. Chem Biol Drug Des 2024; 104:e14598. [PMID: 39090783 DOI: 10.1111/cbdd.14598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Acne caused by inflammation of hair follicles and sebaceous glands is a common chronic skin disease. Arctigenin (ATG) is an extract of Arctium lappa L., which has significant anti-inflammatory effects. However, the effect and mechanism of ATG in cutaneous inflammation mediated by Cutibacterium acnes (C. acnes) has not been fully evaluated. The purpose of this study was to explore the effect and potential mechanism of ATG in the treatment of acne through network pharmacology and experimental confirmation. An acne model was established by injected live C. acnes into living mice and treated with ATG. Our data showed that ATG effectively improved acne induced by live C. acnes, which was confirmed by determining ear swelling rate, estradiol concentration and hematoxylin and eosin (H&E) staining. In addition, ATG inhibited the NLRP3 inflammasome signaling pathway in mice ear tissues and reduced the secretion of pro-inflammatory cytokines IL-1β to relieve inflammation. The results of network pharmacology and molecular docking confirmed that ATG can regulate 17β-Estradiol (E2) levels through targeted to CYP19A1, and finally inhibited skin inflammation. Taken together, our results confirmed that ATG regulated E2 secretion by targeting CYP19A1, thereby inhibiting the NLRP3 inflammasome signaling pathway and improving inflammation levels in acne mice. This study provides a basis for the feasibility of ATG in treating acne in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Yanzhong Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Yongkang Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Rui Li
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Jiaoyan Xu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Linyi, People's Republic of China
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi, People's Republic of China
| | - Zhihai Lv
- Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Zhu J, Cheng W, He TT, Hou BL, Lei LY, Wang Z, Liang YN. Exploring the Anti-Inflammatory Effect of Tryptanthrin by Regulating TLR4/MyD88/ROS/NF-κB, JAK/STAT3, and Keap1/Nrf2 Signaling Pathways. ACS OMEGA 2024; 9:30904-30918. [PMID: 39035974 PMCID: PMC11256115 DOI: 10.1021/acsomega.4c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Tryptanthrin (TRYP) is the main active ingredient in Indigo Naturalis. Studies have shown that TRYP had excellent anti-inflammatory activity, but its specific mechanism has been unclear. In this work, the differentially expressed proteins resulting from TRYP intervention in LPS-stimulated RAW264.7 cells were obtained based on tandem mass tag proteomics technology. The anti-inflammatory mechanism of TRYP was further validated by a combination of experiments using the LPS-induced RAW264.7 cell model in vitro and the DSS-induced UC mouse model (free drinking 2.5% DSS) in vivo. The results demonstrated that TRYP could inhibit levels of NO, IL-6, and TNF-α in LPS-induced RAW264.7 cells. Twelve differential proteins were screened out. And the results indicated that TRYP could inhibit upregulated levels of gp91phox, p22phox, FcεRIγ, IKKα/β, and p-IκBα and reduce ROS levels in vitro. Besides, after TRYP treatment, the health conditions of colitis mice were all improved. Furthermore, TRYP inhibited the activation of JAK/STAT3, nuclear translocation of NF-κB p65, and promoted the nuclear expression of Nrf2 in vitro and in vivo. This work preliminarily indicated that TRYP might suppress the TLR4/MyD88/ROS/NF-κB and JAK/STAT3 signaling pathways to exert anti-inflammatory effects. Additionally, TRYP could achieve antioxidant effects by regulating the Keap1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Wen Cheng
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Tian-Tian He
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Bao-Long Hou
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Li-Yan Lei
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Zheng Wang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| | - Yan-Ni Liang
- Co-construction Collaborative Innovation
Center for Chinese Medicine Resources Industrialization by Shaanxi
& Education Ministry, State Key Laboratory of Research & Development
of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xianyang 712083, China
| |
Collapse
|
8
|
Shukla S, Kakade M, Cherian S, Alagarasu K, Parashar D. Arctigenin from Arctium lappa L. inhibits chikungunya virus by affecting its entry and replication. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155491. [PMID: 38489894 DOI: 10.1016/j.phymed.2024.155491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Dengue and chikungunya, caused by dengue virus (DENV) and chikungunya virus (CHIKV) respectively, are the most common arthropod-borne viral diseases worldwide, for which there are no FDA-approved antivirals or effective vaccines. Arctigenin, a phenylpropanoid lignan from the seeds of Arctium lappa L. is known for its anti-inflammatory, anti-cancer, antibacterial, and immunomodulatory properties. Arctigenin's antimicrobial and immunomodulatory capabilities make it a promising candidate for investigating its potential as an anti-DENV and anti-CHIKV agent. PURPOSE The aim of the study was to explore the anti-DENV and anti-CHIKV effects of arctigenin and identify the possible mechanisms of action. METHODS The anti-DENV or anti-CHIKV effects of arctigenin was assessed using various in vitro and in silico approaches. Vero CCL-81 cells were infected with DENV or CHIKV and treated with arctigenin at different concentrations, temperature, and time points to ascertain the effect of the compound on virus entry or replication. In silico molecular docking was performed to identify the interactions of the compound with viral proteins. RESULTS Arctigenin had no effects on DENV. Various time- and temperature-dependent assays revealed that arctigenin significantly reduced CHIKV RNA copy number and infectious virus particles and affected viral entry. Entry bypass assay revealed that arctigenin inhibited the initial steps of viral replication. In silico docking results revealed the high binding affinity of the compound with the E1 protein and the nsp3 macrodomain of CHIKV. CONCLUSION This study demonstrates the in-vitro anti-CHIKV potential of arctigenin and suggests that the compound might affect CHIKV entry and replication. Further preclinical and clinical studies are needed to identify its safety and efficacy as an anti-CHIKV drug.
Collapse
Affiliation(s)
- Shridhar Shukla
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India 411001
| | - Mahadeo Kakade
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India 411001
| | - Sarah Cherian
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India 411001
| | - Kalichamy Alagarasu
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India 411001.
| | - Deepti Parashar
- Dengue and Chikungunya Group, ICMR-National Institute of Virology, Pune, India 411001.
| |
Collapse
|
9
|
Alhadidi MHA, Tabrizi MH, Ghobeh M. Evaluation of the effect of designed PLGA-arctiin nanoparticles modified with folic acid and chitosan on colon cancer cells. Biotechnol Appl Biochem 2024; 71:72-80. [PMID: 37817403 DOI: 10.1002/bab.2522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/01/2023] [Indexed: 10/12/2023]
Abstract
In this study, we designed nanoparticles (NPs) based on polylactic acid glycolic acid modified with chitosan and folic acid to optimize the anti-cancer, anti-inflammatory, and antioxidant effects of arctiin (ARC), and we measured its effects on cancer cells, including colon cancer. NPs were synthesized using the W1/O/W2 double-emulsion solvent evaporation method. Physicochemical characteristics of synthesized NPs (ARC-PCF-NPs), including average particle size, dispersity index (PDI), zeta potential (ZP), field emission scanning electron microscope figures, and encapsulation efficiency (EE), were evaluated. 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) methods were carried out to determine the antioxidant properties of NPs. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay was performed to investigate cytotoxicity effects on cancer cells and normal fibroblasts. Quantitative polymerase chain reaction was also performed on inflammatory and antioxidant genes. The obtained results indicated that the synthesized NPs have a size of 100 nm, a DPI of 0.36, a ZP of 26.30 mV, and EE was calculated at about 87.5%. The antioxidant influence of ARC-PCF-NPs was confirmed by inhibiting ABTS and DPPH free radicals and ferrous reduction in the FRAP method. Moreover, the reduction of inflammatory and antioxidant genes confirmed the anti-inflammatory and antioxidant properties of NPs. These results indicate the modification of the surface of NPs in order to increase the bioavailability, stability, and effectiveness of medicinal compounds in therapeutic applications.
Collapse
Affiliation(s)
| | | | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Iqbal Andrabi N, Sarkar AR, Assim Haq S, Kumar D, Kour D, Saroch D, Kumar Shukla S, Kumar A, Bhagat A, Ali A, Kour G, Ahmed Z. Site-selective synthesis and pharmacological elucidation of novel semi-synthetic analogues of koenimbine as a potential anti-inflammatory agent. Int Immunopharmacol 2024; 126:111059. [PMID: 37979450 DOI: 10.1016/j.intimp.2023.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/20/2023]
Abstract
Koenimbine (1), a carbazole alkaloid isolated from Murraya koenigii, belongs to the Rutaceae family. Various pharmacological effects such as anti-diabetic, melanogenesis inhibition, anti-diarrheal, anti-cancer, and anti-inflammatory properties of koenimbine have already been reported. In the current study, we investigated the anti-inflammatory role of koenimbine (1) and its novel semi-synthetic derivative 8-methoxy-3,3,5-trimethylpyrano[3,2-a] carbazole-11(3H)-yl) (3-(trifluoromethyl) phenyl) methanone (1G) in both in vitro and in vivo biological systems. Our results demonstrated that the anti-inflammatory activity of 1G significantly lowered the production of NO, pro-inflammatory cytokines (IL-6, TNF-α & IL-1β), LTB4 following LPS stimulation in RAW 264.7 macrophages. Furthermore, 1G significantly attenuated the expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner and also decreased the production of reactive oxygen species (ROS) in LPS-activated RAW 264.7 cells. In addition, the oral administration of 1G reduced the inflammatory response in carrageenan-induced paw edema in BALB/C mice. Moreover, it effectively reduced NO, IL-6, IL-1β & TNF-α levels, liver markers (AST, ALT), and kidney markers (BUN, CRE, and Urea). Also, 1G reverted the infiltration of inflammatory cells and tissue damage in lungs, liver and kidney enhanced the survival rate in LPS-challenged mice. 1G blocks NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. These results illustrated that 1G suppresses the inflammatory effects both in-vitro and in-vivo studies via downregulating the nuclear factor kappa-B (NF-κB) signaling pathway. In conclusion, our results demonstrate that semi-synthetic derivative 1G can effectively attenuate the inflammatory response via NF-κB and MAPK signaling pathways; suggesting 1G is a potential novel anti-inflammatory drug candidate in treating inflammatory disorders.
Collapse
Affiliation(s)
- Nusrit Iqbal Andrabi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aminur R Sarkar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diljeet Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Saroch
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket Kumar Shukla
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asif Ali
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Gurleen Kour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Kim HW, Seong JK, Ahn M, Park KI, Kim GS. Antioxidant effects of phenolic compounds in through the distillation of Lonicera japonica & Chenpi extract and anti-inflammation on skin keratinocyte. Sci Rep 2023; 13:20883. [PMID: 38016995 PMCID: PMC10684860 DOI: 10.1038/s41598-023-48170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023] Open
Abstract
The phenolic compounds in Lonicera japonica & Chenpi distillation extract (LCDE) were thoroughly examined for their antioxidant and anti-inflammatory properties. Phenolic compounds in LCDE were analyzed for five peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS) and determined. Five phenolic compounds were identified from the samples and MS data. Ultrafiltration with LC analysis was used to investigate the ability of bioactive compounds to target DPPH. As a result, it was confirmed that the major compounds exhibited a high binding affinity to DPPH and could be regarded as antioxidant-active compounds. In addition, the anti-inflammatory effect of LCDE was confirmed in vitro, and signal inhibition of anti-inflammation cytokines, MAPK and NF-kB pathways was confirmed. Finally, Molecular docking analysis supplements the anti-inflammatory effect through the binding affinity of selected compounds and inflammatory factors. In conclusion, the phenolic compounds of the LCDE were identified and potential active compounds for antioxidant and anti-inflammatory activities were identified. Additionally, this study will be utilized to provide basic information for the application of LCDE in the pharmaceutical and pharmaceutical cosmetics industries along with information on efficient screening techniques for other medicinal plants.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Jinju, 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, 26339, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
12
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
13
|
Jin X, Liu S, Chen S, Wang L, Cui Y, He J, Fang S, Li J, Chang Y. A systematic review on botany, ethnopharmacology, quality control, phytochemistry, pharmacology and toxicity of Arctium lappa L. fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116223. [PMID: 36781057 DOI: 10.1016/j.jep.2023.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
14
|
Cao JY, Wang ZY, Stewart AJ, Dong Q, Zhao Y, Mei LJ, Tao YD, Yu RT. Five New Diarylbutyrolactones and Sesquilignans from Saussurea medusa and Their Inhibitory Effects on LPS-induced NO Production. PLANTA MEDICA 2023; 89:663-673. [PMID: 36202093 DOI: 10.1055/a-1956-7829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Five new diarylbutyrolactones and sesquilignans (1A/1B: - 4: ), including one pair of enantiomers (1A/1B: ), together with 10 known analogues (5: - 14: ), were isolated from the whole plants of Saussurea medusa. Compound 1: was found to possess an unusual 7,8'-diarylbutyrolactone lignan structure. Separation by chiral HPLC analysis led to the isolation of one pair of enantiomers, (+)-1A: and (-)-1B: . The structures of the new compounds were elucidated by extensive spectroscopic data. All compounds, except compounds 5, 7: and 9: , were isolated from S. medusa for the first time. Moreover, compounds 1: - 4, 8: and 10: - 14: had never been obtained from the genus Saussurea previously. Compounds (+)- 1A, 2, 5, 7: , and 9: - 11: were found to inhibit the lipopolysaccharide (LPS)-induced release of NO by RAW264.7 cells with IC50 values ranging from 10.1 ± 1.8 to 41.7 ± 2.1 µM. Molecular docking and iNOS expression experiments were performed to examine the interactions between the active compounds and the iNOS enzyme.
Collapse
Affiliation(s)
- Jing-Ya Cao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | | | - Alan J Stewart
- School of Medicine, University of St Andrews, United Kingdom
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, PR China
| | - Ye Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Li-Juan Mei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, PR China
| | - Yan-Duo Tao
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, PR China
| | - Rui-Tao Yu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research; Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, PR China
| |
Collapse
|
15
|
Sanei S, Kasgari MB, Abedinzadeh F, Sasan AP, Hassani S, Karimi E, Oskoueian E, Jahromi MF. Microcapsules loaded with date seed extract and its inhibitory potential to modulate the toxic effects of mycotoxins in mice received mold-contaminated diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58654-58662. [PMID: 36991200 DOI: 10.1007/s11356-023-26640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Mycotoxins are the secondary fungal metabolites generally produced by wide range of fungi including aflatoxins (AF), ochratoxin A (OTA), fumonisins (FB), zearalenone (ZEN), and deoxynivalenol (DON). Nowadays, they are main concern to food and agricultural commodities due to undesirable health and socio-economic effect. This investigation was designed to synthesized microcapsules loaded the bioactive compounds of date seed and evaluated its inhibitory activities in mice received mold-contaminated diet. The finding revealed that the developed microcapsule is homogenous and mostly spherical with size of 2.58 μm with acceptable PDI of 0.21. The main phytochemical has been confirmed by HPLC analysis were xylose, fructose, mannose, glucose, and galactose with the respective values of 41.95%, 2.24%, 5.27%, and 0.169%. The in vivo analyses manifested that the mice received date seed microcapsules significantly (p < 0.05) improved the average daily weight gain, feed intake, liver enzymes (ALT, ALP, and AST), and lipid peroxidation values compare to mice group received mycotoxin-contaminated diet. Furthermore, encapsulation date seed bioactive compounds notably up-regulated the expression of GPx, SOD, IFN-γ, and IL-2 genes while down-regulated the iNOS gene. Consequently, the novel microcapsules loaded date seed is suggested to be considered as a promising mycotoxin inhibitor.
Collapse
Affiliation(s)
- Sogand Sanei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Fatemeh Abedinzadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Atena Poor Sasan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saeid Hassani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| | | |
Collapse
|
16
|
Chen X, Deng Q, Li X, Xian L, Xian D, Zhong J. Natural Plant Extract - Loganin: A Hypothesis for Psoriasis Treatment Through Inhibiting Oxidative Stress and Equilibrating Immunity via Regulation of Macrophage Polarization. Clin Cosmet Investig Dermatol 2023; 16:407-417. [PMID: 36817639 PMCID: PMC9936880 DOI: 10.2147/ccid.s396173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Psoriasis, a chronic immune-mediated inflammatory skin disease, influences approximately 2-3% of the world's population. At present, the etiology of psoriasis remains unclear and there is still no causal treatment available. Recent studies indicate that oxidative stress (OS) and T cells dysregulation may participate in the pathogenesis of psoriasis, among which M1-dominant macrophage polarization is a crucial contributor. Macrophages mainly polarize into two different subsets, ie, classically activated macrophage (M1) and alternatively activated macrophage (M2). M1 polarization tends to exacerbate psoriasis via producing substantial reactive oxygen species (ROS) and inflammatory mediators, to encourage OS invasion and T cells dysregulation. Thus, targeting M1 polarization can be a possible therapeutic alternative for psoriasis. Loganin, belonging to iridoid glycosides, is a pharmaceutically active ingredient originated from Cornus officinalis, exerting multiple biological activities, eg, immunomodulation, antioxidation, anti-inflammation, etc. More importantly, it could effectively suppress M1 polarization, thereby arresting OS aggression and T cells' dysregulation. Numerous studies have confirmed that loganin is quite reliable for diseases treatment via suppressing M1 polarization. Nevertheless, reports about loganin treating psoriasis have seldom appeared so far. Accordingly, we hold a hypothesis that loganin would availably manage psoriasis through preventing M1 polarization. Data from previous studies guarantee the potential of loganin in control of psoriasis.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qiyan Deng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xiaolong Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Li Xian
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Dehai Xian
- Department of Anatomy, Southwest Medical University, Luzhou, 646000, People’s Republic of China,Correspondence: Jianqiao Zhong, Email ; Dehai Xian, Email
| | - Jianqiao Zhong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China,Correspondence: Jianqiao Zhong, Email ; Dehai Xian, Email
| |
Collapse
|
17
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
18
|
Shamansoori MT, Karimi E, Oskoueian E. Rheum ribes extract-loaded nanoliposome as a novel phytogenic antibiotic alternative in mice challenged by Escherichia coli (O157:H7). Biotechnol Appl Biochem 2022; 69:2540-2549. [PMID: 34894162 DOI: 10.1002/bab.2303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
This study was performed to compare the noncapsulated with nanoliposome-encapsulated phenolic-rich fraction (PRF) obtained from Rheum ribes as a dietary additive and to assess their health-promoting potentials in the mice infected by enteropathogenic Escherichia coli (O157:H7). Upon fractionation, the ethyl acetate fraction with 46.9 ± 2.17 mg GAE/g DW was found as a highest phenolic content. The PRF successfully loaded into nanoliposome structure with a nanometer in size (193.2 nm) and spherical shape and homogeneous dispersion. The gallic acid, salicylic acid, caffeic acid, cinnamic acid, catechin, ellagic acid, and ferulic acid are bioactive phenolics present in the nanoliposome-loaded PRF; however, the main bioactive compounds are cinnamic acid (911 μg/g DW) and ellagic acid (826 μg/g DW). The infection caused by E. coil impaired the weight gain and food intake, liver function, morpho structural characteristics of jejunum, upregulated the expression of inflammatory genes (Cox2, iNOS), downregulation of antioxidant-related genes (SOD, GPX), and increased the ileal population of E. coil. The addition of nonencapsulated PRF and nanoliposome-encapsulated PRF at the concentration of 10 mg TPC/kg BW/day improved these parameters although the nanoliposome-encapsulated PRF revealed more potential as compared with the nonencapsulated PRF in improving the health parameters in mice. The higher health-promoting activity of nanoliposome-encapsulated PRF could be associated with its enhanced intestinal absorption, bioavailability, bioaccessibility, and bioactivity. Consequently, the nanoliposome-encapsulated PRF could be considered as a promising phytobiotic against E. coil infection in mice.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
19
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
20
|
Xanthatin Alleviates LPS-Induced Inflammatory Response in RAW264.7 Macrophages by Inhibiting NF-κB, MAPK and STATs Activation. Molecules 2022; 27:molecules27144603. [PMID: 35889477 PMCID: PMC9322085 DOI: 10.3390/molecules27144603] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022] Open
Abstract
Xanthatin (XT) is a sesquiterpene lactone isolated from the Chinese herb Xanthium, which belongs to the Asteraceae family. In this study, we developed an inflammation model via stimulating macrophage cell line (RAW 264.7 cells) with lipopolysaccharide (LPS), which was applied to assess the anti-inflammatory effect and probable mechanisms of xanthatin. When compared with the only LPS-induced group, cells that were pretreated with xanthatin were found to decrease the amount of nitric oxide (NO), reactive oxygen species (ROS) and associated pro-inflammatory factors (TNF-α, IL-1β and IL-6), and downregulate the mRNA expression of iNOS, COX-2, TNF-α, IL-1β, and IL-6. Interestingly, phosphorylated levels of related proteins (STAT3, ERK1/2, SAPK/JNK, IκBα, p65) were notably increased only with the LPS-activated cells, while the expression of these could be reverted by pre-treatment with xanthatin in a dose-dependent way. Meanwhile, xanthatin was also found to block NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. Collectively, these results demonstrated that xanthatin suppresses the inflammatory effects through downregulating the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STATs) signaling pathways. Taken together, xanthatin possesses the potential to act as a good anti-inflammatory medication candidate.
Collapse
|
21
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
22
|
Peng F, Yi J, Xiao J, Chen J, Zhang H, He X, Song Z. Protective effect and possible mechanism of arctiin on broilers challenged by Salmonella pullorum. J Anim Sci 2022; 100:skac126. [PMID: 35417554 PMCID: PMC9115908 DOI: 10.1093/jas/skac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
This study was aimed to investigate the effects of dietary arctiin (ARC) supplementation (100, 200, and 400 mg/kg) on the growth performance and immune response of broilers after a Salmonella pullorum (S. pullorum) challenge, and we conducted in vitro antibacterial test to explore the bacteriostatic mechanism of ARC. The in vivo trial was randomly assigned to six groups: noninfected control (NC) group and positive control (PC) group received a basal diet; TET group, received a basal diet supplemented with 100 mg/kg chlortetracycline; ARC100, ARC200, and ARC400 groups received a basal diet containing 100, 200, and 400 mg/kg ARC, respectively. From days 14 to 16, all birds (except the NC group) were infected with 1 mL (1 × 108 CFU per mL) fresh S. pullorum culture by oral gavage per day. In vivo results showed that dietary supplementation of 200 mg/kg ARC significantly increased average daily gain (P < 0.05) and decreased feed-to-gain ratio of broilers vs. the PC group during days 15 to 28 after being challenged with S. pullorum (P < 0.05). The jejunal crypt depth (CD) was decreased by supplementing 100 or 200 mg/kg ARC in diets compared with PC birds at day 19 (P < 0.05). The jejunal villi height (VH) was increased by supplementing 100, 200, or 400 mg/kg ARC in diets compared with PC birds at day 28 (P < 0.05). Besides, dietary supplementation of 200 mg/kg ARC increased the jejunal VH to CD ratio than the PC group both at days 19 and 28 (P < 0.05). Notably, the broilers had lower serum lipopolysaccharide and diamine oxidase levels in the ARC100 and ARC200 groups at day 28 than those in the PC group (P < 0.05). Furthermore, in comparison to PC birds, the birds in ARC groups (100, 200, and 400 mg/kg) had higher serum contents of IgM and IL-10, and the birds in the ARC200 group had higher serum contents of IgA at day 19 (P < 0.05). At day 28, the birds in ARC groups (100, 200, and 400 mg/kg) had lower serum contents of IL-8, and the birds in the ARC200 group had lower serum contents of IFN-γ compared with PC birds (P < 0.05). The in vitro experiment showed that ARC significantly inhibited the biofilm formation and adhesion of S. pullorum (P < 0.05). Metabonomics analysis revealed that ARC can restrain the formation of the biofilm by affecting a variety of metabolic pathways of S. pullorum. Therefore, dietary supplementation of 200 mg/kg ARC might be a potential way to substitute antibiotics to control S. pullorum infection in broilers.
Collapse
Affiliation(s)
- Fang Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Jinhui Yi
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Jian Xiao
- Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde 41500, Hunan, China
| | - Junlie Chen
- Hunan Xiang Jia Husbandry Limited by Share Ltd, Changde 41500, Hunan, China
| | - Haihan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| | - Zehe Song
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
- Hunan Engineering Research Center of Poultry Production Safety, Changsha 410128, Hunan, China
- Ministry of Education Engineering Research Center of Feed Safety and Efficient Use, Changsha 410128, Hunan, China
| |
Collapse
|
23
|
Dou T, Wang J, Liu Y, Jia J, Zhou L, Liu G, Li X, Han M, Lin J, Huang F, Chen X. A Combined Transcriptomic and Proteomic Approach to Reveal the Effect of Mogroside V on OVA-Induced Pulmonary Inflammation in Mice. Front Immunol 2022; 13:800143. [PMID: 35371026 PMCID: PMC8972588 DOI: 10.3389/fimmu.2022.800143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Mogroside V is a bioactive ingredient extracted from the natural food Siraitia grosvenorii which possesses functions that stimulate lung humidification and cough relief activities, but its underlying mechanisms were rarely studied. To estimate its potential protective effect on ovalbumin (OVA)-induced pulmonary inflammation and understand its system-wide mechanism, integrated omics was applied in this study. Mogroside V effectively reduced the levels of IgE, TNF-α, and IL-5 in OVA-induced mice. The results of RNA-seq and data-independent acquisition proteomics approach revealed that 944 genes and 341 proteins were differentially expressed in the normal control group (NC) and ovalbumin-induced control group (OC) and 449 genes and 259 proteins were differentially expressed between the OC and the group treated with 50 mg/kg mogroside V (MV). After a combined analysis of the transcriptome and the proteome, 93 major pathways were screened, and we discovered that mogroside V exerts an anti-inflammation effect in the lung via NF-κB and JAK-STAT, both of which are among the signaling pathways mentioned above. In addition, we found that the key regulatory molecules (Igha, Ighg1, NF-κB, Jak1, and Stat1) in the two pathways were activated in inflammation and inhibited by mogroside V. Thus, mogroside V may be the main bioactivity component in S. grosvenorii that exerts lung humidification and cough relief effects.
Collapse
Affiliation(s)
- Tong Dou
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Juan Wang
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Guilin Medical University, Guilin, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Faculty of Basic Medicine, Guilin Medical University, Guilin, China
| | - Yisa Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiangang Jia
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Luwei Zhou
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Guoxiang Liu
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xiaojuan Li
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Mengjie Han
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiaxun Lin
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Fengxiang Huang
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Xu Chen
- Department of Pharmacy, Guilin Medical University, Guilin, China
- Key Laboratory of Pharmacognosy, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
- *Correspondence: Xu Chen,
| |
Collapse
|
24
|
Hassirian N, Karimi E, Oskoueian E. Nanoliposome-encapsulated phenolic-rich fraction from Alcea rosea as a dietary phytobiotic in mice challenged by Escherichia coli. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
This research was performed to evaluate the antibacterial and health-promoting potentials of nanoliposome-encapsulated phenolic-rich fraction (PRF) from Alcea rosea leaves, as a dietary phytobiotic, in mice as challenged by enteropathogenic Escherichia coli (E. coli; O157: H7).
Method
The PEF was encapsulated in nanoliposomes (PEF-NLs), and the phenolic profiling of PEF-NLs was confirmed by HPLC. Next, 40 white male balb/c mice were assigned to four treatment groups to assess the antibacterial potential of PEF-NLs by measuring the blood parameters and the liver’s lipid peroxidation in the mice as a result of the infection caused by E. coli. Finally, the expression of cyclooxygenase 2 (COX2), inducible nitric oxide synthase (iNOS), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were determined in the miceʼs ileum tissues. A real-time PCR was used to analyze the relative fold changes in the population of E. coli in the ileum.
Results
The overall results demonstrated that the nanoliposome-loaded PRF contained gallic acid, salicylic acid, pyrogallol, cinnamic acid, catechin, naringin, and ferulic acid. The E. coli intervention impaired the mice's weight gain, food intake, liver enzymes, lipid peroxidation, and the ileum’s morphometric characteristics. The challenge also upregulated the inflammatory genes (COX2, iNOS), downregulated the antioxidant-related genes (SOD and GPx), and increased the population of E. coli in the ileum. The dietary inclusion of the nonencapsulated PRF and the nanoliposome-encapsulated PRF, at the concentration of 10 mg TPC/kg BW/day, improved these parameters. However, compared to nonencapsulated PRF, the nanoliposome-encapsulated PRF appeared to be more effective in improving the health parameters in mice.
Conclusion
As a promising phytobiotic, the nanoliposome-encapsulated PRF could play a critical role against the E. coli infection in mice probably due to the increase in the higher intestinal solubility, bioavailability, and absorption of phenolic compounds encapsulated in the nanoliposome carrier.
Collapse
|
25
|
Nateghi N, Karimi E, Oskoueian E. Nanoliposome-Encapsulated and Non-Encapsulated Phenolics From Achillea millefolium and Their Biological Function in Mice Challenged by Campylobacter jejuni: A Comparative Study. Front Mol Biosci 2022; 8:832022. [PMID: 35187077 PMCID: PMC8847675 DOI: 10.3389/fmolb.2021.832022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/21/2022] Open
Abstract
The objective of this research was to develop the nanoliposome-encapsulated phenolic rich fraction from Achillea millefolium (A. millefolium) and to investigate its antibacterial and health-promoting activities in mice challenged by pathogenic foodborne Campylobacter jejuni. The A. millefolium was extracted and the ethyl acetate fraction was found to be the phenolic-rich fraction (PRF) containing 14.72 ± 2.39 mg gallic acid equivalent (GAE)/g dry weight (DM). Base on the results, the synthesized nanoliposome-loaded PRF (PRF-NLs) with the size of 187.2 nm exhibited homogeneous dispersion (PDI 0.213) and moderate stability behavior in colloidal dispersions (Zeta potential −37.45). The non-encapsulated PRF and PRF-NLs were gavaged orally in the mice for 28 days, and mice were challenged with C. jejuni on day 21. The results indicated that the dietary supplementation of non-encapsulated PRF and PRF-NLs significantly (p < 0.05) improved the average daily weight gain, food intake, liver function, antioxidant status, and morphostructural characteristics of the ileum. However, the PRF-NLs appeared to be more potent as compared to non-encapsulated PRF. The higher biological activity of PRF-NLs could be associated with the higher intestinal solubility and absorption of nanoliposome-encapsulated PRF. Thereby, the nanoliposome-encapsulated PRF could be considered as a natural antibiotic alternative called phytobiotic to prevent intestinal infection caused by enteropathogenic C. jejuni.
Collapse
Affiliation(s)
- Nikta Nateghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- *Correspondence: Ehsan Karimi, ; Ehsan Oskoueian,
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
- *Correspondence: Ehsan Karimi, ; Ehsan Oskoueian,
| |
Collapse
|
26
|
Wu L, Chen J, Zhou D, Chen R, Chen X, Shao Z, Yang W, He B. Anti-inflammatory activity of arctigenin against PCV2 infection in a mouse model. Vet Med Sci 2021; 8:700-709. [PMID: 34914190 PMCID: PMC8959337 DOI: 10.1002/vms3.693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Arctigenin (ACT) is a novel anti-inflammatory lignan extracted from Arctium lappa L, a herb commonly used in traditional Chinese herbal medicine. In this study, we investigated the molecular mechanism whereby ACT inhibits PCV2 infection-induced proinflammatory cytokine production in vitro and in vivo. We observed that in PCV2 infection+ACT treated PK-15 cells, proinflammatory cytokine production was significantly reduced, compared to the PCV2-infected cells. The transfection and luciferase reporter assay confirmed that ACT suppressed NF-κB signalling pathway activation following PCV2 infection in PK-15 cells. Furthermore, western blotting demonstrated that ACT suppressed the NF-κB signal pathway in PCV2 infection-stimulated PK-15 cells by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation. BALB/c mice were used as a model to evaluate the anti-inflammatory effect of ACT in vivo. We found that the BALB/c mice inoculated with PCV2 infection + ACT treated showed a significant reduction of proinflammatory cytokine production in serum, lung and spleen tissue, compared to the PCV2-infected mice. Western blotting confirmed that ACT suppressed the NF-κB signal pathway in PCV2-infected mice by inhibiting the translocation of p65 from the cytoplasm to the nucleus and IκBα phosphorylation in lung tissue. Our studies first demonstrate that ACT inhibits PCV2 infection-induced proinflammatory cytokine production by suppressing the phosphorylation and nuclear translocation of NF-κB in vitro and in vivo. These results will help further develop ACT as a Traditional Chinese herbal medicine remedy in the treatment of porcine circovirus-associated diseases.
Collapse
Affiliation(s)
- Lijun Wu
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Jie Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Danna Zhou
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Runshan Chen
- Animal disease prevention and control center, Fangxian Animal Husbandry and Veterinary Service Center, Shiyan, China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Zhiyong Shao
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Wenhai Yang
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
27
|
Ming Zhuo C, Liu C, Srivastava KD, Lin A, Lazarski C, Wang L, Maskey A, Song Y, Chen X, Yang N, Zambrano L, Bushko R, Nowak-Wegrzyn A, Cox A, Liu Z, Huang W, Dunkin D, Miao M, Li XM. Anti-IgE Effect of Small-Molecule-Compound Arctigenin on Food Allergy in association with a Distinct Transcriptome Profile. Clin Exp Allergy 2021; 52:250-264. [PMID: 34757674 DOI: 10.1111/cea.14048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Excessive production of IgE plays a major role in the pathology of food allergy. In an attempt to identify anti-IgE natural products, Arctium Lappa was one of the most effective herbs among approximately 300 screened medicinal herbs. However, little is known about its anti-IgE compounds. OBJECTIVE To identify compounds from Arctium Lappa for targeted therapy on IgE production and explore their underlying mechanisms. METHODS Liquid-liquid extraction and column chromatographic methods were used to purify the compounds. IgE inhibitory effects were determined on IgE producing human myeloma U266 cells, peanut-allergic murine model, and PBMCs from food-allergic patients. Genes involved in IgE inhibition in PBMCs were studied by RNA sequencing. RESULTS The main compounds isolated were identified as arctiin and arctigenin. Both compounds significantly inhibited IgE production in U266 cells, with arctigenin the most potent (IC50=5.09μg/mL). Arctigenin (at a dose of 13.3 mg/kg) markedly reduced peanut-specific IgE levels, blocked hypothermia and histamine release in a peanut-allergic mouse model. Arctigenin also significantly reduced IgE production and Th2 cytokines (IL5, IL13) by PBMCs. We found 479 differentially expressed genes in PBMCs with arctigenin treatment (p<0.001 and fold-change ≥1.5), involving 24 gene ontology terms (p<0.001, FDR <0.05); cell division was the most significant. Eleven genes including UBE2C and BCL6 were validated by qPCR. CONCLUSION Arctigenin markedly inhibited IgE production in U266 cells, peanut allergic murine model and PBMCs from allergic patients by down-regulating cell division, cell cycle-related genes and up-regulating anti-inflammatory factors.
Collapse
Affiliation(s)
- Cao Ming Zhuo
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Changda Liu
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China.,Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Kamal D Srivastava
- Department of Microbiology and Immunology, New York Medical College, New York, NY, 10595, USA.,General Nutraceutical Technology LLC, Elmsford, NY, 10523, USA
| | - Adora Lin
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Lu Wang
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, 20010, USA
| | - Anish Maskey
- Department of Microbiology and Immunology, New York Medical College, New York, NY, 10595, USA
| | - Ying Song
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China.,Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Xiaoke Chen
- Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Department of Pulmonary and Critical Care Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Nan Yang
- Department of Microbiology and Immunology, New York Medical College, New York, NY, 10595, USA.,General Nutraceutical Technology LLC, Elmsford, NY, 10523, USA
| | - Linda Zambrano
- Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Renna Bushko
- Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Anna Nowak-Wegrzyn
- Allergy and Immunology, Department of Pediatrics, Hassenfeld Children's Hospital, New York University Grossman School of Medicine, New York, NY, 10029, USA.,Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Amanda Cox
- Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Zhigang Liu
- Department of Immunology, the First Affiliated Hospital of Shen Zhen University, Shenzhen, China, 518116
| | - Weihua Huang
- Department of Pathology, New York Medical College, New York, NY, 10595, USA
| | - David Dunkin
- Pediatric Department, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Mingsan Miao
- Academy of Chinese Medicine Science, Henan University of Chinese Medicine, Zhengzhou, Henan, 450000, China
| | - Xiu-Min Li
- Department of Microbiology and Immunology, New York Medical College, New York, NY, 10595, USA.,Department of Otolaryngology, New York Medical College, New York, NY, 10595, USA
| |
Collapse
|
28
|
Liu X, Wang J, Dou P, Zhang X, Ran X, Liu L, Dou D. The Ameliorative Effects of Arctiin and Arctigenin on the Oxidative Injury of Lung Induced by Silica via TLR-4/NLRP3/TGF- β Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5598980. [PMID: 34336106 PMCID: PMC8313330 DOI: 10.1155/2021/5598980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 06/26/2021] [Indexed: 12/26/2022]
Abstract
Silicosis remains one of the most serious diseases worldwide, with no effective drug for its treatment. Our research results have indicated that arctiin and arctigenin could increase the mitochondrial membrane potential, which in turn reduces the production of reactive oxygen species (ROS), blocks the polarization of macrophages, and inhibits the differentiation of myofibroblasts to reduce oxidative stress, inflammation, and fibrosis. Further, our study revealed that arctiin and arctigenin suppressed the activation of NLRP3 inflammasome through the TLR-4/Myd88/NF-κB pathway and the silica-induced secretion of TNF-α, IL-1β, TGF-β, and α-SMA. Besides, the silica-induced increase in the levels of serum ceruloplasmin and HYP was also inhibited. Results of metabolomics indicated that arctiin and arctigenin could regulate the abnormal metabolic pathways associated with the development of silicosis, which involve pantothenate and CoA biosynthesis, cysteine and methionine metabolism, linoleic acid metabolism, and arginine and proline metabolism successively. Furthermore, the analysis of metabolomics, together with network topological analysis in different phases of silicosis, revealed that urine myristic acid, serum 4-hydroxyproline, and L-arginine could be regarded as diagnosis biomarkers in the early phase and formation of pulmonary fibrosis in the latter phases of silicosis. Arctiin and arctigenin could downregulate the increased levels of myristic acid in the early phase and serum 4-hydroxyproline in the latter phase of silicosis. Interestingly, the integration of TLR-4/NLRP3/TGF-β signaling and metabolomics verified the importance of macrophage polarization in the silicosis fibrosis process. To the best of our knowledge, this is the first study reporting that arctiin and arctigenin both can ameliorate silicosis effectively, and the former is a little stronger than its aglycone arctigenin because of its high oral bioavailability, low toxicity, and multimolecular active metabolites as determined by AdmetSAR and molecular docking analysis.
Collapse
Affiliation(s)
- Xueying Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jian Wang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang 110032, China
| | - Peiyuan Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Xiaoku Ran
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Linlin Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| |
Collapse
|
29
|
Suzuki Y, Sato M, Awazuhara T, Nukui Y, Yoshida A, Terashima T, Watanabe K, Fujioka R, Tsuchihara K, Kishino S, Ohno K. Simultaneous quantification of arctigenin and its glucuronide conjugate in mouse plasma using ultra-high performance liquid chromatography coupled to tandem mass spectrometry. J Sep Sci 2021; 44:1299-1306. [PMID: 33387366 DOI: 10.1002/jssc.202001078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Arctigenin is a natural lignin and a main active component of Fructus arctii, the dried fruit of Arctium lappa. This compound was reported to have some biological activities such as anti-inflammatory, antioxidant, antiviral, renoprotective, and antitumor effects. Arctigenin is mainly metabolized to arctigenin-4'-O-glucuronide by UDP-glucuronosyltransferase. In this study, a simultaneous quantification method was established and validated for measuring arctigenin and arctigenin-4'-O-glucuronide in mouse plasma using ultra-high performance liquid chromatography with tandem mass spectrometry. The assay fulfilled the requirements of the United States Food and Drug Administration guideline for assay validation, with a lower limit of quantification of 2.00 ng/mL for arctigenin and 50.0 ng/mL for arctigenin-4'-O-glucuronide. The recovery rate and matrix effect ranged from 78.4 to 102.8% and 92.5 to 106.3%, respectively, for arctigenin, and 74.3 to 109.2% and 94.9 to 110.2% for arctigenin-4'-O-glucuronide. The method was applied to the measurement of plasma concentrations of arctigenin and arctigenin-4'-O-glucuronide in the plasma of mice after administration of arctigenin. All measured concentrations were within the calibration ranges. Our novel method may be useful to measure plasma arctigenin and arctigenin-4'-O-glucuronide concentrations, and contribute to evaluate the pharmacokinetics of arctigenin and arctigenin-4'-O-glucuronide in mice.
Collapse
Affiliation(s)
- Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Michiko Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Takuya Awazuhara
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yusuke Nukui
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Airi Yoshida
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Tomoka Terashima
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Keita Watanabe
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Rumi Fujioka
- Division of Translational Informatics, National Cancer Center, Kashiwa, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, National Cancer Center, Kashiwa, Chiba, Japan
| | - Satoshi Kishino
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| |
Collapse
|
30
|
Zuo X, Gu Y, Wang C, Zhang J, Zhang J, Wang G, Wang F. A Systematic Review of the Anti-Inflammatory and Immunomodulatory Properties of 16 Essential Oils of Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:8878927. [PMID: 33354224 PMCID: PMC7735857 DOI: 10.1155/2020/8878927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Inflammation is a host defense mechanism in the body after it is infected and damaged. If inflammation is not treated in time, then it may cause a variety of diseases, such as cancer and autoimmune diseases. Herbal essential oils are natural extracts that can suppress inflammation effectively and are expected to be used in therapeutic drugs for anti-inflammatory diseases in the future. Aim of the review. We review the anti-inflammatory and immunomodulatory effects of essential oils derived from 16 herbs. Materials and methods. We searched the literature of the fields of anti-inflammatory and immunomodulatory herbal essential oil activity published in English within the past five years via databases (PubMed, EMBASE, Scopus, and The Web of Science). RESULTS A total of 1932 papers were found by searching, and 132 papers were screened after removing duplicates and reading article titles. Fifteen articles met the requirements to be included in this review. Among those selected, 11 articles reported in vivo research results, and 10 articles showed research results. CONCLUSION Essential oils extracted from herbs can reduce inflammation by regulating the release of inflammatory cytokines involved in multiple signalling pathways. Herbal essential oils are expected to be developed as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jinrong Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
31
|
Zheng Y, Liu S, Fan C, Zeng H, Huang H, Tian C, Lu Z, Cao H, Liu J, Yu L. Holistic quality evaluation of Qingwen Baidu Decoction and its anti-inflammatory effects. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113145. [PMID: 32730890 DOI: 10.1016/j.jep.2020.113145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/15/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingwen Baidu Decoction (QBD), a famous traditional Chinese medicine prescription with heat-clearing and detoxifying efficacies, is widely used in the treatment of inflammatory diseases. However, due to lack of holistic quality evaluation research, the further study on the detailed molecular mechanisms of action are still insufficient. AIM OF THE STUDY This study aimed to evaluate the overall quality of QBD and to explore the anti-inflammatory effects and associated intracellular signaling pathways. MATERIALS AND METHODS a comprehensive method of chemical fingerprint analysis and simultaneous multi-component quantification was firstly developed by high performance liquid chromatography with diode array detector (HPLC-DAD). Similarity analysis, principal component analysis and hierarchical cluster analysis with heatmap were also applied to screen out the markers components in QBD samples. Moreover, its anti-inflammatory effects and mechanisms were further investigated by survival analysis, hematoxylin-eosin staining (H&E), neutrophil observation, quantitative real-time PCR analysis (qRT-PCR), Western blotting and confocal microscopy. RESULTS Twenty-one characteristic peaks from 11 herbs were chemically identified in the chromatographic fingerprint. Fifteen quantitative markers from 11 herbs, such as baicalin, wogonoside, geniposidic acid, oxypaeoniflora and so on, were screened out with the aid of chemometrics to further quantitatively assess the quality of QBD. The results of survival analysis, H&E and neutrophil observation in zebrafish inflammatory models consistently showed that QBD exerts potent anti-inflammatory effects in a dose-dependent manner. Additionally, QBD inhibited the activation of NF-κB and STAT3 signal pathways in LPS-induced zebrafish and RAW 264.7 macrophage cells. CONCLUSION Collectively, our investigations firstly described the chemical profile of QBD and its possible mechanism of anti-inflammation, which provides a preferred strategy for monitoring the overall quality of QBD and supports its clinical application in treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yuanru Zheng
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, 510515, PR China
| | - Shanhong Liu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Chunlin Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Huhu Zeng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hefei Huang
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Chunyang Tian
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Zibin Lu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Huihui Cao
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China
| | - Junshan Liu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| | - Linzhong Yu
- Traditional Chinese Pharmacological Laboratory, Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
32
|
Mehwish HM, Riaz Rajoka MS, Xiong Y, Zheng K, Xiao H, Anjin T, Liu Z, Zhu Q, He Z. Moringa oleifera – A Functional Food and Its Potential Immunomodulatory Effects. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1825479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hafiza Mahreen Mehwish
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yongai Xiong
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Tao Anjin
- Department of Pharmacy, Hybio Pharmaceutical Co., Ltd., Shenzhen, 518057, PR China
| | - Zhigang Liu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Qinchang Zhu
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
| | - Zhendan He
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen, 518060, PR China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen Technology University., Shenzhen, 518060, PR China
| |
Collapse
|
33
|
You X, Qu Y, Zhang Y, Huang J, Gao X, Huang C, Luo G, Liu Q, Liu M, Xu D. Mir-331-3p Inhibits PRRSV-2 Replication and Lung Injury by Targeting PRRSV-2 ORF1b and Porcine TNF-α. Front Immunol 2020; 11:547144. [PMID: 33072088 PMCID: PMC7544944 DOI: 10.3389/fimmu.2020.547144] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by a single-stranded RNA virus (PRRSV) is a highly infectious respiratory disease and leads to huge economic losses to the swine industry worldwide. To investigate the role of miRNAs in the infection and lung injury induced by PRRSV, the differentially expressed miRNAs (DE-miRs) were isolated from PRRSV-2 infected/mock-infected PAMs of Meishan, Landrace, Pietrain, and Qingping pigs at 9, 36, and 60 hpi. Mir-331-3p was the only common DE-miR in each set of miRNA expression profile at 36 hpi. Mir-210 was one of 7 common DE-miRs between PRRSV infected and mock-infected PAMs of Meishan, Pietrain, and Qingping pigs at 60 hpi. Mir-331-3p/mir-210 could target PRRSV-2 ORF1b, bind and downregulate porcine TNF-α/STAT1 expression, and inhibit PRRSV-2 replication, respectively. Furthermore, STAT1 and TNF-α could mediate the transcriptional activation of MCP-1, VCAM-1, and ICAM-1. STAT1 could also upregulate the expression of TNF-α by binding to its promoter region. In vivo, pEGFP-N1-mir-331-3p could significantly reduce viral replication and pathological changes in PRRSV-2 infected piglets. Taken together, Mir-331-3p/mir-210 have significant roles in the infection and lung injury caused by PRRSV-2, and they may be promising therapeutic targets for PRRS and lung injury/inflammation.
Collapse
Affiliation(s)
- Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yilin Qu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yue Zhang
- Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingshu Huang
- Agricultural Development Center of Hubei Province, Wuhan, China
| | - Xiaoxiao Gao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengyu Huang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Hu J, Pi S, Xiong M, Liu Z, Huang X, An R, Zhang T, Yuan B. WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation. Mol Cells 2020; 43:749-762. [PMID: 32868491 PMCID: PMC7468582 DOI: 10.14348/molcells.2020.0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/23/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.
Collapse
Affiliation(s)
- JiSheng Hu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
- These authors contributed equally to this work.
| | - ShangJing Pi
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
- These authors contributed equally to this work.
| | - MingRui Xiong
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
| | - ZhongYing Liu
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
| | - Xia Huang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
| | - Ran An
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
| | - TongCun Zhang
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
| | - BaiYin Yuan
- Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology, Hubei 43008, China
| |
Collapse
|
35
|
Wu JY, Chen YJ, Bai L, Liu YX, Fu XQ, Zhu PL, Li JK, Chou JY, Yin CL, Wang YP, Bai JX, Wu Y, Wu ZZ, Yu ZL. Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153173. [PMID: 31999977 DOI: 10.1016/j.phymed.2020.153173] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chrysoeriol is a flavone found in diverse dietary and medicinal herbs such as Lonicerae Japonicae Flos (the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.). These herbs are commonly used for treating inflammatory diseases. Herbal extracts containing chrysoeriol have been shown to have anti-inflammatory effects and inhibit nuclear factor-kappa B (NF-κB) signaling. Some of these extracts can inhibit signal transducers and activators of transcription 3 (STAT3) signaling in cancer cells. PURPOSE This study aimed to determine whether chrysoeriol has anti-inflammatory effects and whether NF-κB and STAT3 pathways are involved in the effects. STUDY DESIGN AND METHODS A TPA (12-O-tetradecanoylphorbol-13-acetate)-induced ear edema mouse model and LPS-stimulated RAW264.7 cells were used to evaluate the effects of chrysoeriol. Griess reagent was used to measure the production of nitric oxide (NO). Western blot and enzyme-linked immunosorbent assays were employed to detect protein levels. RT-qPCR analyses were used to detect mRNA levels. Haematoxylin and eosin (H&E) staining was employed to examine the pathological conditions in animal tissues. RESULTS In the mouse model, chrysoeriol ameliorated acute skin inflammation, evidenced by reduced ear thickness, ear weight and number of inflammatory cells in inflamed ear tissues. The compound lowered protein levels of phospho-p65 (Ser536), phospho-STAT3 (Tyr705), inducible nitric oxide synthases (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), IL-1β and tumor necrosis factor α (TNF-α) in mouse swollen ears. In LPS-stimulated RAW264.7 cells, chrysoeriol also lowered levels of these proteins. In addition, chrysoeriol decreased the production of NO and prostaglandin E2; inhibited the phosphorylation of inhibitor of κB (Ser32), p65 (Ser536) and Janus kinase 2 (Tyr1007/1008); decreased nuclear localization of p50, p65 and STAT3; and down-regulated mRNA levels of pro-inflammatory cytokines IL-6, IL-1β and TNF-α that are transcriptionally regulated by NF-κB and STAT3 in the cell model. CONCLUSION We for the first time demonstrated that chrysoeriol ameliorates TPA-induced ear edema in mice, and that inhibition of JAK2/STAT3 and IκB/p65 NF-κB pathways are involved in the anti-inflammatory effects of chrysoeriol. This study provides chemical and pharmacological justifications for the use of chrysoeriol-containing herbs in treating inflammatory diseases, and provides pharmacological groundwork for developing chrysoeriol as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Jia-Ying Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Lu Bai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Yu-Xi Liu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Kui Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jing-Xuan Bai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zheng-Zhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
36
|
Tang S, Zhou W, Zhong X, Xu J, Huang H, Zheng X, Zhang J, Yang S, Shang P, Tang Q, Liu H. Arctigenin prevents the progression of osteoarthritis by targeting PI3K/Akt/NF-κB axis: In vitro and in vivo studies. J Cell Mol Med 2020; 24:4183-4193. [PMID: 32090454 PMCID: PMC7171400 DOI: 10.1111/jcmm.15079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/03/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA), which is principally featured by progressive joint metabolic imbalance and subsequent degeneration of articular cartilage, is a common chronic joint disease. Arctigenin (ATG), a dietary phyto-oestrogen, has been described to have potent anti-inflammatory effects. Nevertheless, its protective effects on OA have not been clearly established. The target of our following study is to evaluate the protective effects of ATG on IL-1β-induced human OA chondrocytes and mouse OA model. Our results revealed that the ATG pre-treatment effectively decreases the level of pro-inflammatory mediators, such as prostaglandin E2 (PGE2), nitrous oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and tumour necrosis factor alpha (TNF-α) in IL-1β-induced human chondrocytes. In addition, ATG protects against the degradation of extracellular matrix (ECM) under the stimulation of IL-1β and the possible mechanism might be connected with the inactivation of phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor-kappa B (NF-κB) axis. Furthermore, a powerful binding capacity between ATG and PI3K was also uncovered in our molecular docking research. Meanwhile, ATG may act as a protector on the mouse OA model. Collectively, all these findings suggest that ATG could be utilized as a promising therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Shangkun Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Weijun Zhou
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xinyang Zhong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianchen Xu
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Huasong Huang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xinnan Zheng
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jingkang Zhang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shuyue Yang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Green Tea Polyphenol (-)-Epigallocatechin Gallate (EGCG) Attenuates Neuroinflammation in Palmitic Acid-Stimulated BV-2 Microglia and High-Fat Diet-Induced Obese Mice. Int J Mol Sci 2019; 20:ijms20205081. [PMID: 31614951 PMCID: PMC6834190 DOI: 10.3390/ijms20205081] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is closely associated with neuroinflammation in the hypothalamus, which is characterized by over-activated microglia and excessive production of pro-inflammatory cytokines. The present study was aimed at elucidating the effects of (−)-epigallocatechin gallate (EGCG) on palmitic acid-stimulated BV-2 microglia and high-fat-diet-induced obese mice. The results indicated the suppressive effect of EGCG on lipid accumulation, pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) release, and microglial activation in both cellular and high-fat-diet rodent models. These results were associated with lower phosphorylated levels of the janus kinase 2/signal transducers and activators of transcription 3 (JAK2/STAT3) signaling pathway. In conclusion, EGCG can attenuate high-fat-induced hypothalamic inflammation via inhibiting the JAK2/STAT3 signaling pathways in microglia.
Collapse
|
38
|
Zhong Y, Lee K, Deng Y, Ma Y, Chen Y, Li X, Wei C, Yang S, Wang T, Wong NJ, Muwonge AN, Azeloglu EU, Zhang W, Das B, He JC, Liu R. Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun 2019; 10:4523. [PMID: 31586053 PMCID: PMC6778111 DOI: 10.1038/s41467-019-12433-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arctigenin (ATG) is a major component of Fructus Arctii, a traditional herbal remedy that reduced proteinuria in diabetic patients. However, whether ATG specifically provides renoprotection in DKD is not known. Here we report that ATG administration is sufficient to attenuate proteinuria and podocyte injury in mouse models of diabetes. Transcriptomic analysis of diabetic mouse glomeruli showed that cell adhesion and inflammation are two key pathways affected by ATG treatment, and mass spectrometry analysis identified protein phosphatase 2 A (PP2A) as one of the top ATG-interacting proteins in renal cells. Enhanced PP2A activity by ATG reduces p65 NF-κB-mediated inflammatory response and high glucose-induced migration in cultured podocytes via interaction with Drebrin-1. Importantly, podocyte-specific Pp2a deletion in mice exacerbates DKD injury and abrogates the ATG-mediated renoprotection. Collectively, our results demonstrate a renoprotective mechanism of ATG via PP2A activation and establish PP2A as a potential target for DKD progression.
Collapse
Affiliation(s)
- Yifei Zhong
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yueyi Deng
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yiping Chen
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueling Li
- Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shumin Yang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Nicholas J Wong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alecia N Muwonge
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Renal Section, James J Peters Veterans Affair Medical Center, Bronx, NY, USA.
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Kim TW, Shin JS, Chung KS, Lee YG, Baek NI, Lee KT. Anti-Inflammatory Mechanisms of Koreanaside A, a Lignan Isolated from the Flower of Forsythia koreana, against LPS-Induced Macrophage Activation and DSS-Induced Colitis Mice: The Crucial Role of AP-1, NF-κB, and JAK/STAT Signaling. Cells 2019; 8:cells8101163. [PMID: 31569788 PMCID: PMC6829247 DOI: 10.3390/cells8101163] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
The current treatment options for inflammatory bowel disease (IBD) are unsatisfactory. Therefore, novel and safer therapies are needed. We previously reported that koreanaside A (KA) showed high radical scavenging activity and suppressed vascular cell adhesion molecule 1 (VCAM-1) expression in vascular smooth muscle cells. However, the molecular mechanisms involved in its anti-inflammatory effect have not been reported. KA inhibited pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nitric oxide (NO), and prostaglandin E2 (PGE2). KA inhibited the production and mRNA expression of interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) induced by LPS. KA downregulated the myeloid differentiation primary response 88 (MyD88)-dependent inflammatory gene expressions in the MyD88-overexpressed cells. KA suppressed the LPS-induced transcriptional and DNA-binding activities of activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB). KA was found to inhibit the phosphorylation of Janus kinase 1/2 (JAK1/2) and signal transducers and activators of transcription 1/3 (STAT1/3). In DSS-induced colitis mice, KA relieved the symptoms of colitis by suppressing inflammatory cell infiltration, restoring tight junction (TJ)- and epithelial–mesenchymal transition (EMT)-related protein expression, and inactivating AP-1, NF-κB, and STAT1/3. Therefore, KA reduced inflammatory responses by downregulating AP-1, NF-κB, and JAK/STAT signaling in LPS-induced macrophages and DSS-induced colitis mice.
Collapse
Affiliation(s)
- Tae-Woo Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| | - Yeong-Geun Lee
- Natural Product Chemistry Laboratory, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Nam-In Baek
- Natural Product Chemistry Laboratory, Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
40
|
Inhibitory Effects of a Novel Chrysin-Derivative, CPD 6, on Acute and Chronic Skin Inflammation. Int J Mol Sci 2019; 20:ijms20112607. [PMID: 31141897 PMCID: PMC6600461 DOI: 10.3390/ijms20112607] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/16/2022] Open
Abstract
The skin is an important physiological barrier against external stimuli, such as ultraviolet radiation (UV), xenobiotics, and bacteria. Dermal inflammatory reactions are associated with various skin disorders, including chemical-induced irritation and atopic dermatitis. Modulation of skin inflammatory response is a therapeutic strategy for skin diseases. Here, we synthesized chrysin-derivatives and identified the most potent derivative of Compound 6 (CPD 6). We evaluated its anti-inflammatory effects in vitro cells of macrophages and keratinocytes, and in vivo dermatitis mouse models. In murine macrophages stimulated by lipopolysaccharide (LPS), CPD 6 significantly attenuated the release of inflammatory mediators such as nitric oxide (NO) (IC50 for NO inhibition: 3.613 μM) and other cytokines. In cultured human keratinocytes, CPD 6 significantly attenuated the release of inflammatory cytokines induced by the combination of IFN-γ and TNF-α, UV irradiation, or chemical irritant stimulation. CPD 6 inhibited NFκB and JAK2/STAT1 signaling pathways, and activated Nrf2/HO-1 signaling. In vivo relevancy of anti-inflammatory effects of CPD 6 was observed in acute and chronic skin inflammation models in mice. CPD 6 showed significant anti-inflammatory properties both in vitro cells and in vivo dermatitis animal models, mediated by the inhibition of the NFκB and JAK2-STAT1 pathways and activation of Nrf2/HO-1 signaling. We propose that the novel chrysin-derivative CPD 6 may be a potential therapeutic agent for skin inflammation.
Collapse
|
41
|
Identification of Chinese Herbal Compounds with Potential as JAK3 Inhibitors. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4982062. [PMID: 31093295 PMCID: PMC6481137 DOI: 10.1155/2019/4982062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/07/2019] [Accepted: 03/17/2019] [Indexed: 01/30/2023]
Abstract
The Janus kinases (JAKs) consist of four similar tyrosine kinases and function as key hubs in the signaling pathways that are implicated in both innate and adaptive immunity. Among the four members, JAK3 is probably the more attractive target for treatment of inflammatory diseases because its inhibition demonstrates the greatest immunosuppression and most profound effect in the treatment of such disorders. Although many JAK3 inhibitors are already available, certain shortcomings have been identified, mostly acquired drug resistance or unwanted side effects. To discover and identify new promising lead candidates, in this study, the structure of JAK3 (3LXK) was obtained from the Protein Data Bank and used for simulation modeling and protein-ligand interaction analysis. The ~36,000 Chinese herbal compounds obtained from TCM Database@Taiwan were virtually screened by AutoDock Vina docking program and filtered with Lipinski's Rules and ADME/T virtual predictions. Because of high occurrence of fake hits during docking, we selected 12 phytochemicals which have demonstrated modulating JAKs expressions among the top 50 chemicals from docking results. To validate whether these compounds are able to directly mediate JAK3 kinase, we have investigated the inhibitory activity using enzymatic activity assays, western blot, and HEK 293 cell STAT5 transactivity assays. The molecular analysis included docking and molecular dynamics (MD) simulations in order to investigate structural conformations and to explore the key amino acids in the interaction between JAK3 kinase and its putative ligands. The results demonstrated that Cryptotanshinone, Icaritin, and Indirubin exhibited substantial inhibitory activity against JAK3 kinase in vitro. The results also provide binding models of the protein-ligand interaction, detailing the interacting amino acid residues at the active ATP-binding domains of JAK3 kinase. In conclusion, our work discovered 3 potential natural inhibitors of JAK3 kinase and could provide new possibilities and stimulate new insights for the treatment of JAK3-targeted diseases.
Collapse
|
42
|
Rodríguez-García C, Sánchez-Quesada C, Toledo E, Delgado-Rodríguez M, Gaforio JJ. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019; 24:E917. [PMID: 30845651 PMCID: PMC6429205 DOI: 10.3390/molecules24050917] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Dietary guidelines universally advise adherence to plant-based diets. Plant-based foods confer considerable health benefits, partly attributable to their abundant micronutrient (e.g., polyphenol) content. Interest in polyphenols is largely focused on the contribution of their antioxidant activity to the prevention of various disorders, including cardiovascular disease and cancer. Polyphenols are classified into groups, such as stilbenes, flavonoids, phenolic acids, lignans and others. Lignans, which possess a steroid-like chemical structure and are defined as phytoestrogens, are of particular interest to researchers. Traditionally, health benefits attributed to lignans have included a lowered risk of heart disease, menopausal symptoms, osteoporosis and breast cancer. However, the intake of naturally lignan-rich foods varies with the type of diet. Consequently, based on the latest humans' findings and gathered information on lignan-rich foods collected from Phenol Explorer database this review focuses on the potential health benefits attributable to the consumption of different diets containing naturally lignan-rich foods. Current evidence highlight the bioactive properties of lignans as human health-promoting molecules. Thus, dietary intake of lignan-rich foods could be a useful way to bolster the prevention of chronic illness, such as certain types of cancers and cardiovascular disease.
Collapse
Affiliation(s)
- Carmen Rodríguez-García
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
| | - Cristina Sánchez-Quesada
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, 31008 Pamplona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain.
| | - Miguel Delgado-Rodríguez
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - José J Gaforio
- Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaén, Spain.
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain.
- Agri-food Campus of International Excellence (ceiA3), 14071 Córdoba, Spain.
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
43
|
Li R, Hong P, Zheng X. β-carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages. Anim Sci J 2018; 90:140-148. [DOI: 10.1111/asj.13108] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ruonan Li
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| | - Pan Hong
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| | - Xin Zheng
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| |
Collapse
|
44
|
Chen WC, Hu Y, Liu L, Shen YF, Wang GX, Zhu B. Synthesis and in vitro activities evaluation of arctigenin derivatives against spring viraemia of carp virus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:17-26. [PMID: 30077800 DOI: 10.1016/j.fsi.2018.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/20/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Spring viraemia of carp virus (SVCV) is a viral fish pathogen causing high mortality in several carp species and other cultivated fish. However, robust anti-SVCV drugs currently are extremely scarce. For the purpose of seeking out anti-SVCV drugs, here a total of 35 arctigenin derivatives were designed, synthesized and evaluated for their anti-viral activities. By comparing the inhibitory concentration at half-maximal activity (IC50) of the 15 screened candidate drugs (max inhibitory response surpassing 90%) in epithelioma papulosum cyprini (EPC) cells infected with SVCV, 2Q and 6 A were chosen for additional validation studies, with an IC50 of 0.077 μg/mL and 0.095 μg/mL, respectively. Further experiments revealed that 2Q and 6 A could significantly decrease SVCV-induced apoptosis and have a protective effect on cell morphology at 48 and 72 h post-infection. Moreover, the reactive oxygen species (ROS) induced upon SVCV infection could be obviously inhibited by 2Q and 6 A, while SVCV-infected cells were clearly observed. On account of these findings, 2Q and 6 A could have a promising application for the treatment of infection of SVCV and provide a considerable reference for novel antivirals in aquaculture.
Collapse
Affiliation(s)
- Wei-Chao Chen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Yang Hu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Lei Liu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Yu-Feng Shen
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
45
|
Feng Q, Yao J, Zhou G, Xia W, Lyu J, Li X, Zhao T, Zhang G, Zhao N, Yang J. Quantitative Proteomic Analysis Reveals That Arctigenin Alleviates Concanavalin A-Induced Hepatitis Through Suppressing Immune System and Regulating Autophagy. Front Immunol 2018; 9:1881. [PMID: 30177931 PMCID: PMC6109684 DOI: 10.3389/fimmu.2018.01881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
Abstract
Concanavalin A-induced autoimmune hepatitis is a well-established experimental model for immune-mediated liver injury. It has been widely used in the therapeutic studies of immune hepatitis. The in-depth analysis of dysregulated proteins from comparative proteomic results indicated that the activation of immune system resulted in the deregulation of autophagy. Follow-up studies validated that some immune related proteins, including Stat1, Pkr, Atg7, and Adrm1, were indeed upregulated. The accumulations of LC3B-II and p62 were confirmed by immunohistochemistry and Western blot analyses. Arctigenin pretreatment significantly alleviated the liver injury, as evidenced by biochemical and histopathological investigations, whose protective effects were comparable with Prednisone acetate and Cyclosporin A. Arctigenin pretreatment decreased the levels of IL-6 and IFN-γ, but increased the ones of IL-10. Next, the quantitative proteomic analysis demonstrated that ARC pretreatment suppressed the activation of immune system through the inhibition of IFN-γ signaling, when it downregulated the protein expressions of Stat1, P-Stat1, Pkr, P-Pkr, Bnip3, Beclin1, Atg7, LC3B, Adrm1, and p62. Meanwhile, Arctigenin pretreatment also reduced the gene expressions of Stat1, Pkr, and Atg7. These results suggested that Arctigenin alleviated autophagy as well as apoptosis through inhibiting IFN-γ/IL-6/Stat1 pathway and IL-6/Bnip3 pathway. In summary, the comparative proteomic analysis revealed that the activation of immune system led to Concanavalin A-induced hepatitis. Both autophagy and apoptosis had important clinical implications for the treatment of immune hepatitis. Arctigenin might exert great therapeutic potential in immune-mediated liver injury.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingchun Yao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ge Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingang Lyu
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xin Li
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Tao Zhao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Guimin Zhang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China.,School of Pharmacy, Linyi University, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
46
|
Curcumin reduces Ly6C hi monocyte infiltration to protect against liver fibrosis by inhibiting Kupffer cells activation to reduce chemokines secretion. Biomed Pharmacother 2018; 106:868-878. [PMID: 30119257 DOI: 10.1016/j.biopha.2018.07.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023] Open
Abstract
Curcumin has been reported to have anti-fibrotic effect. However, the anti-fibrotic mechanism of curcumin for liver fibrosis remains obscure. In the presenting study, we aimed to investigate whether curcumin reduce chemokines secretion by inhibiting kupffer cells (KCs) activation to decrease Ly6Chi monocyte infiltration in the treatment of liver fibrosis. Liver fibrosis was induced by intraperitoneal carbon tetrachloride (CCl4)-injection in mice. Mice in curcumin group received curcumin treatment by gavage. Pretreatment with curcumin significantly protected mice from liver inflammation and fibrosis. Compared to CCl4 group, mice in the curcumin group showed significantly less intrahepatic infiltration of Ly6Chi monocytes, but no difference of other leucocyte subtypes. Moreover, curcumin significantly reduced Ly6Chi monocytes associated pro-inflammatory and pro-fibrogenic cytokines, which was in line with the decreased numbers of intrahepatic Ly6Chi monocytes. Further study found that curcumin is able to decrease KCs activation and monocyte chemokines, which explains why curcumin can reduce Ly6Chi monocytes infiltration during liver fibrosis. In vitro, we discovered that curcumin prevents the polarization of macrophages toward M1 and reduces monocyte chemokines secretion, which is involved with ERK1/2 and p38 pathways. Taken together, for the first time, we verified that curcumin can reduce chemokines secretion by inhibiting KCs activation to decrease Ly6Chi monocyte infiltration in the treatment of liver fibrosis. These results suggested that curcumin may be considered a promising candidate in the prevention and treatment of liver fibrosis.
Collapse
|
47
|
Yu Q, Zeng KW, Ma XL, Jiang Y, Tu PF, Wang XM. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chin J Nat Med 2018; 15:751-757. [PMID: 29103460 DOI: 10.1016/s1875-5364(17)30106-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 12/17/2022]
Abstract
The saponin ginsenoside Rk1 is a major compound isolated from ginseng. Ginsenoside Rk1 has been reported to have anti-inflammatory and anti-tumor properties and to be involved in the regulation of metabolism. However, the effect and mechanism of anti-inflammatory action of ginsenoside Rk1 has not been fully clarified. We investigated whether ginsenoside Rk1 could suppress the inflammatory response in lipopolysaccharide-stimulated RAW264.7 macrophages and to explore its mechanism of the action. RAW264.7 cells were treated with LPS (1 μg·mL-1) in the absence or the presence of Ginsenoside Rk1 (10, 20, and 40 μmol·L-1). Then the inflammatory factors were tested with Griess reagents, ELISA, and RT-PCR. The proteins were analyzed by Western blotting. Ginsenoside Rk1 inhibited lipopolysaccharide-induced expression of nitric oxide (NO), interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and monocyte chemotactic protein (MCP)-1. Ginsenoside Rk1 inhibited the lipopolysaccharide-stimulated phosphorylation of NF-κB and janus kinase (Jak)2 and signal transducer and activator of transcription (Stat)3 at Ser727 and Tyr705. These data suggested that ginsenoside Rk1 could inhibit expression of inflammatory mediators and suppress inflammation further by blocking activation of NF-κB and the Jak2/Stat3 pathway in LPS-stimulated RAW264.7 cells.
Collapse
Affiliation(s)
- Qian Yu
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Li Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xue-Mei Wang
- Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China.
| |
Collapse
|
48
|
Lu Z, Chang L, Du Q, Huang Y, Zhang X, Wu X, Zhang J, Li R, Zhang Z, Zhang W, Zhao X, Tong D. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway. Front Pharmacol 2018; 9:475. [PMID: 29867481 PMCID: PMC5962800 DOI: 10.3389/fphar.2018.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruizhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
49
|
Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 2018; 39:787-801. [PMID: 29698388 DOI: 10.1038/aps.2018.32] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
Collapse
|
50
|
Cheng X, Wang H, Yang J, Cheng Y, Wang D, Yang F, Li Y, Zhou D, Wang Y, Xue Z, Zhang L, Zhang Q, Yang L, Zhang R, Da Y. Arctigenin protects against liver injury from acute hepatitis by suppressing immune cells in mice. Biomed Pharmacother 2018; 102:464-471. [PMID: 29579707 DOI: 10.1016/j.biopha.2018.03.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 12/17/2022] Open
Abstract
As a phenylpropanoid and dibenzylbutyrolactone lignan present in medical plants, such as those used in traditional Chinese herbal medicine, including Arctium lappa (Niubang), arctigenin exhibits antimicrobial, anti-inflammatory, and anticancer activities. In this study, we investigated the protective role of arctigenin in Concanavalin A (ConA)-induced acute hepatitis in mice. Arctigenin remarkably reduced the congestion and necroinflammation of livers, and improved hepatic function (ALT and AST) in ConA-induced acute hepatitis in vivo. The infiltration of CD4 T, NKT and macrophages into the livers was found to be reduced with arctigenin treatment. Arctigenin suppressed ConA-induced T lymphocyte proliferations that might have resulted from enhanced IL-10 production by macrophages and CD4 T cells. These results suggested that arctigenin could be a powerful drug candidate for acute hepatitis through immune suppression.
Collapse
Affiliation(s)
- Xixi Cheng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China; Department of Clinical Laboratory, Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin, China
| | - Huafeng Wang
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Jinlai Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Yingnan Cheng
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Dan Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Fengrui Yang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Dongmei Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Yanxia Wang
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Zhenyi Xue
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Lijuan Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China
| | - Luhong Yang
- School of Life Science, Shanxi Normal University, Linfen, China
| | - Rongxin Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China; Laboratory of Immunology and Inflammation, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yurong Da
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|