1
|
Hao R, Li H, Li X, Liu J, Ji X, Zhang H, Zhang Z, Yang P, Zhai Z. Transcriptomic profiling of lncRNAs and mRNAs in a venous thrombosis mouse model. iScience 2025; 28:111561. [PMID: 39949957 PMCID: PMC11821396 DOI: 10.1016/j.isci.2024.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 02/16/2025] Open
Abstract
This study explores the role of lncRNAs and mRNAs in venous thromboembolism (VTE) using an inferior vena cava (IVC) mouse model. RNA sequencing identified differentially expressed lncRNAs and mRNAs between model and control groups. Enrichment analyses revealed significant pathways, including HIF-1α signaling, glycolysis/gluconeogenesis, and platelet activation. A lncRNA-miRNA-mRNA network highlighted key regulatory interactions. Validation using qRT-PCR confirmed the RNA-seq findings. These results provide insights into the molecular mechanisms of VTE and suggest potential biomarkers and therapeutic targets for thrombosis.
Collapse
Affiliation(s)
- Risheng Hao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Capital Medical University, Beijing, China
| | - Haobo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xincheng Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jixiang Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaofan Ji
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Schulman S, Makatsariya A, Khizroeva J, Bitsadze V, Kapanadze D. The Basic Principles of Pathophysiology of Venous Thrombosis. Int J Mol Sci 2024; 25:11447. [PMID: 39519000 PMCID: PMC11547114 DOI: 10.3390/ijms252111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
The past few decades have brought tremendous insight into the molecular and pathophysiological mechanisms responsible for thrombus generation. For a clinician, it is usually sufficient to explain the incident of deep vein thrombosis (DVT) with provoking factors such as trauma with vascular injury, immobilization, hormonal factors, or inherited or acquired coagulation defects. About half of DVTs are, however, lacking such triggers and are called unprovoked. Venous stasis and hypoxia at the valve sinus level may start a chain of reactions. The concept of immunothrombosis has added a new dimension to the old etiological triad of venous stasis, vessel wall injury, and changes in blood components. This is particularly important in COVID-19, where hyperinflammation, cytokines, and neutrophil extracellular traps are associated with the formation of microthrombi in the lungs. To better understand the mechanisms behind DVT and reach beyond the above-mentioned simplifications, animal models and clinical epidemiological studies have brought insight into the complex interplay between leukocytes, platelets, endothelium, cytokines, complements, and coagulation factors and inhibitors. These pathways and the interplay will be reviewed here, as well as the roles of cancer, anticancer drugs, and congenital thrombophilic defects on the molecular level in hypercoagulability and venous thromboembolism.
Collapse
Affiliation(s)
- Sam Schulman
- Department of Medicine, Thrombosis and Atherosclerosis Research Institute, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
- Department of Obstetrics, Gynecology and Perinatal Medicine, The I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str 8-2, 119435 Moscow, Russia; (A.M.); (J.K.); (V.B.)
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, The I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str 8-2, 119435 Moscow, Russia; (A.M.); (J.K.); (V.B.)
| | - Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, The I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str 8-2, 119435 Moscow, Russia; (A.M.); (J.K.); (V.B.)
| | - Victoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, The I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str 8-2, 119435 Moscow, Russia; (A.M.); (J.K.); (V.B.)
| | - Daredzhan Kapanadze
- Center of Pathology of Pregnancy and Hemostasis «Medlabi», Tbilisi 340112, Georgia;
| |
Collapse
|
3
|
Mashima E, Saito-Sasaki N, Sawada Y. Systemic Implications of Bullous Pemphigoid: Bridging Dermatology and Internal Medicine. Diagnostics (Basel) 2024; 14:2272. [PMID: 39451595 PMCID: PMC11506695 DOI: 10.3390/diagnostics14202272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Bullous pemphigoid is an autoimmune bullous disease that frequently affects a large skin surface area, but it can also present in localized areas. It has been hypothesized that bullous pemphigoid affects the systemic functioning of different organs because inflammatory cells and cytokines circulate throughout numerous organs. Results: Recent clinical and experimental studies have revealed an association between bullous pemphigoid and systemic organ disorders. To avoid the emergence of systemic organ diseases, the significance of systemic treatment in cases of severe bullous pemphigoid should be emphasized. Conclusions: Here, we discuss the specific molecular processes underlying typical systemic organ inflammatory diseases associated with bullous pemphigoids.
Collapse
Affiliation(s)
| | | | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; (E.M.); (N.S.-S.)
| |
Collapse
|
4
|
Fan J, Liu S, Ye W, Zhang X, Shi W. miR-483-5p-Containing exosomes treatment ameliorated deep vein thrombosis‑induced inflammatory response. Eur J Pharm Biopharm 2024; 202:114384. [PMID: 38950718 DOI: 10.1016/j.ejpb.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Peripheral vascular condition, known as deep vein thrombosis (DVT), is a common ailment that may lead to deadly pulmonary embolism. Inflammation is closely connected to venous thrombosis, which results in blood stasis, leading to ischemia and hypoxia, as indicated by research. The objective of this research was to investigate the mechanism by which exosomes derived from adipose stem cells (ADSCs) prevent deep vein thrombosis. Our data showed that Exo-483 effectively reduced the thrombus weight in DVT rats by intravenous injection. Exo-483 decreased the expression of tissue factor (TF) protein, the influx of inflammatory cells into the thrombosed vein wall, and the levels of cytokines in the serum. Furthermore, Exo-483 suppressed the expression of Mitogen-activated protein kinase 1 (MAPK1) and decreased the expression of NLRP3 inflammasomes. In an oxygen-glucose deprivation (OGD) cell model, the tube-forming and migratory abilities of primary human umbilical vein endothelial cells (HUVEC) and EA.hy926 cells were suppressed by Exo-483 pretreatment.Exo-483 is also linked to regulating Dynamin-related protein 1 (DRP1) production downstream of MAPK1.By decreasing the mitochondrial localization and phosphorylation at the S616 site of DRP1, it diminishes the expression of NLRP3 inflammasomes. Moreover, according to Bioinformatics analysis, miR-483-5p was anticipated to target MAPK1. The research conducted by our team revealed that the miR-483-5p exosome derived from ADSCs exhibited anti-inflammatory properties through the modulation of downstream DRP1-NLRP3 expression by targeting MAPK1.The findings of this research propose that miR-483-5p may be regarded as an innovative treatment target for DVT.
Collapse
Affiliation(s)
- Jing Fan
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sikai Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenhai Ye
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiujin Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wanyin Shi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
5
|
Zhang Z, Zhou X, Zhou X, Cheng Z, Hu Y. Role of Platelets and Their Interaction with Immune Cells in Venous Thromboembolism. Semin Thromb Hemost 2024. [PMID: 39214148 DOI: 10.1055/s-0044-1789022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Venous thromboembolism (VTE) represents a significant global health challenge, ranking as the third leading cause of cardiovascular-related mortality. VTE pervades diverse clinical specialties, posing substantial risks to patient well-being and imposing considerable economic strains on health care systems. While platelets have long been recognized as pivotal players in hemostasis, emerging evidence underscores their multifaceted immune functions and their capacity to engage in crosstalk with other immune cells, such as neutrophils, thereby fostering immune-related thrombosis. Notably, investigations have elucidated the pivotal role of platelets in the pathogenesis of VTE. This review provides a comprehensive overview of platelet physiology, encompassing their activation, secretion dynamics, and implications in VTE. Moreover, it delineates the impact of platelet interactions with various immune cells on the initiation and progression of VTE, explores the correlation between platelet-related laboratory markers and VTE, and elucidates the role of platelets in thrombosis regression.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xianghui Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Xin Zhou
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Zhipeng Cheng
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| | - Yu Hu
- Department of Hematology, Huazhong University of Science and Technology, Union Hospital, Tongji Medical College, Wuhan, China
| |
Collapse
|
6
|
Rayes J, Brill A. Hot under the clot: venous thrombogenesis is an inflammatory process. Blood 2024; 144:477-489. [PMID: 38728383 DOI: 10.1182/blood.2023022522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT Venous thrombosis (VT) is a serious medical condition in which a blood clot forms in deep veins, often causing limb swelling and pain. Current antithrombotic therapies carry significant bleeding risks resulting from targeting essential coagulation factors. Recent advances in this field have revealed that the cross talk between the innate immune system and coagulation cascade is a key driver of VT pathogenesis, offering new opportunities for potential therapeutic interventions without inducing bleeding complications. This review summarizes and discusses recent evidence from preclinical models on the role of inflammation in VT development. We highlight the major mechanisms by which endothelial cell activation, Weibel-Palade body release, hypoxia, reactive oxygen species, inflammasome, neutrophil extracellular traps, and other immune factors cooperate to initiate and propagate VT. We also review emerging clinical data describing anti-inflammatory approaches as adjuncts to anticoagulation in VT treatment. Finally, we identify key knowledge gaps and future directions that could maximize the benefit of anti-inflammatory therapies in VT. Identifying and targeting the inflammatory factors driving VT, either at the endothelial cell level or within the clot, may pave the way for new therapeutic possibilities for improving VT treatment and reducing thromboembolic complications without increasing bleeding risk.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
7
|
Chu C, Sun S, Zhang Z, Wu Q, Li H, Liang G, Miao X, Jiang H, Gao Y, Zhang Y, Wang B, Li X. Si-Miao-Yong-An Decoction alleviates thromboangiitis obliterans by regulating miR-548j-5p/IL-17A signaling pathway. Chin J Nat Med 2024; 22:541-553. [PMID: 38906601 DOI: 10.1016/s1875-5364(24)60626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 06/23/2024]
Abstract
Thromboangiitis obliterans (TAO) is a rare, chronic, progressive, and segmental inflammatory disease characterized by a high rate of amputation, significantly compromising the quality of life of patients. Si-Miao-Yong-An decoction (SMYA), a traditional prescription, exhibits anti-inflammatory, anti-thrombotic, and various other pharmacological properties. Clinically, it was fully proved to be effective for TAO therapy, but the specific therapeutic effect of SMYA on TAO has been unknown. Thus, deep unveiling the mechanism of SMYA in TAO for identifying clinical therapeutic targets is extremely important. In this study, we observed elevated levels of IL-17A in the peripheral blood mononuclear cells (PBMCs) of TAO patients, whereas the expression of miR-548j-5p was significantly decreased. A negative correlation between the levels of miR-548j-5p and IL-17A was also demonstrated. In vitro experiments showed that overexpression of miR-548j-5p led to a decrease in IL-17A levels, whereas downregulation of miR-548j-5p showed the opposite effect. Using a dual luciferase assay, we confirmed that miR-548j-5p directly targets IL-17A. Furthermore, serum containing SMYA effectively decreased IL-17A levels by increasing the expression of miR-548j-5p. More importantly, the results of in vivo tests indicated that SMYA mitigated the development of TAO by inhibiting IL-17A through the upregulation of miR-548j-5p in vascular tissues. In conclusion, SMYA significantly enhances the expression of miR-548j-5p, thereby reducing the levels of the target gene IL-17A and alleviating TAO. Our research not only identifies novel targets and pathways for the clinical diagnosis and treatment of TAO but also advances the innovation in traditional Chinese medicine through the elucidation of the SMYA/miR-548j-5p/IL-17A regulatory axis in the pathogenesis of TAO.
Collapse
Affiliation(s)
- Chu Chu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shangwen Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 271016, China
| | - Zhen Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qi Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haoyang Li
- International Business School, Tianjin Foreign Studies University, Tianjin 300204, China
| | - Gang Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiuming Miao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yan Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunhong Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xia Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
8
|
Hu T, Su P, Yang F, Ying J, Chen Y, Cui H. Circulating Cytokines and Venous Thromboembolism: A Bidirectional Two-Sample Mendelian Randomization Study. Thromb Haemost 2024; 124:471-481. [PMID: 38109907 PMCID: PMC11038873 DOI: 10.1055/s-0043-1777351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/26/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Epidemiological evidence has linked circulating cytokines to venous thromboembolism (VTE). However, it remains uncertain whether these associations are causal due to confounding factors or reverse causality. We aim to explore the causality between circulating cytokines and VTE, encompassing deep vein thrombosis (DVT) and pulmonary embolism (PE). METHODS In the current bidirectional Mendelian randomization (MR) study, instrumental variables of 41 circulating cytokines were obtained from the genome-wide association study meta-analyses (8,293 individuals). Summary statistics for the association of VTE (17,048 cases and 325,451 controls), DVT (8,077 cases and 295,014 controls), and PE (8,170 cases and 333,487 controls) were extracted from the FinnGen Study. A multivariable MR study was conducted to adjust for potential confounders. The inverse-variance weighted method was employed as the main analysis, and comprehensive sensitivity analyses were conducted in the supplementary analyses. RESULTS The MR analysis indicated stromal cell-derived factor-1α was suggestively associated with a reduced risk of VTE (odds ratio [OR]: 0.90; 95% confidence interval [CI]: 0.81-0.99; p = 0.033) and DVT (OR: 0.85; 95% CI: 0.75-0.97; p = 0.015). In addition, suggestive association of granulocyte colony-stimulating factor with PE (OR: 1.20; 95% CI: 1.06-1.37; p = 0.005) was observed. Multivariable MR analysis showed that the effect of cytokines on VTE was partly mediated through hemoglobin A1c and systolic blood pressure. Reverse MR analysis revealed that VTE was linked to decreased levels of several cytokines. CONCLUSION We provide suggestive genetic evidence supporting the bidirectional causal effect between circulating cytokines and VTE, highlighting the importance of targeting circulating cytokines to reduce the incidence of VTE.
Collapse
Affiliation(s)
- Teng Hu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Pengpeng Su
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Fangkun Yang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Jiajun Ying
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| | - Yu Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, China
| | - Hanbin Cui
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, School of Medicine, Ningbo University, Ningbo, China
- Cardiovascular Disease Clinical Medical Research Center of Ningbo, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
| |
Collapse
|
9
|
Huang M, Wang L, Zhang Q, Zhou L, Liao R, Wu A, Wang X, Luo J, Huang F, Zou W, Wu J. Interleukins in Platelet Biology: Unraveling the Complex Regulatory Network. Pharmaceuticals (Basel) 2024; 17:109. [PMID: 38256942 PMCID: PMC10820339 DOI: 10.3390/ph17010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins, a diverse family of cytokines produced by various cells, play crucial roles in immune responses, immunoregulation, and a wide range of physiological and pathological processes. In the context of megakaryopoiesis, thrombopoiesis, and platelet function, interleukins have emerged as key regulators, exerting significant influence on the development, maturation, and activity of megakaryocytes (MKs) and platelets. While the therapeutic potential of interleukins in platelet-related diseases has been recognized for decades, their clinical application has been hindered by limitations in basic research and challenges in drug development. Recent advancements in understanding the molecular mechanisms of interleukins and their interactions with MKs and platelets, coupled with breakthroughs in cytokine engineering, have revitalized the field of interleukin-based therapeutics. These breakthroughs have paved the way for the development of more effective and specific interleukin-based therapies for the treatment of platelet disorders. This review provides a comprehensive overview of the effects of interleukins on megakaryopoiesis, thrombopoiesis, and platelet function. It highlights the potential clinical applications of interleukins in regulating megakaryopoiesis and platelet function and discusses the latest bioengineering technologies that could improve the pharmacokinetic properties of interleukins. By synthesizing the current knowledge in this field, this review aims to provide valuable insights for future research into the clinical application of interleukins in platelet-related diseases.
Collapse
Affiliation(s)
- Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Long Wang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Ling Zhou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Rui Liao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Xinle Wang
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Jiesi Luo
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
| | - Feihong Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.W.); (L.Z.); (R.L.); (A.W.); (F.H.)
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (M.H.); (Q.Z.)
| | - Jianming Wu
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (X.W.); (J.L.)
- The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education of China, Luzhou 646000, China
| |
Collapse
|
10
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-associated immunopathology following SARS-CoV-2 breakthrough infection in Spike-vaccinated ACE2-humanized mice. J Med Virol 2024; 96:e29408. [PMID: 38258331 PMCID: PMC10832989 DOI: 10.1002/jmv.29408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Zhang T, Magazine N, McGee MC, Carossino M, Veggiani G, Kousoulas KG, August A, Huang W. Th2 and Th17-Associated Immunopathology Following SARS-CoV-2 Breakthrough Infection in Spike-Vaccinated ACE2-humanized Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563016. [PMID: 37904941 PMCID: PMC10614945 DOI: 10.1101/2023.10.18.563016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Vaccines have demonstrated remarkable effectiveness in protecting against COVID-19; however, concerns regarding vaccine-associated enhanced respiratory diseases (VAERD) following breakthrough infections have emerged. Spike protein subunit vaccines for SARS-CoV-2 induce VAERD in hamsters, where aluminum adjuvants promote a Th2-biased immune response, leading to increased type 2 pulmonary inflammation in animals with breakthrough infections. To gain a deeper understanding of the potential risks and the underlying mechanisms of VAERD, we immunized ACE2-humanized mice with SARS-CoV-2 Spike protein adjuvanted with aluminum and CpG-ODN. Subsequently, we exposed them to increasing doses of SARS-CoV-2 to establish a breakthrough infection. The vaccine elicited robust neutralizing antibody responses, reduced viral titers, and enhanced host survival. However, following a breakthrough infection, vaccinated animals exhibited severe pulmonary immunopathology, characterized by a significant perivascular infiltration of eosinophils and CD4+ T cells, along with increased expression of Th2/Th17 cytokines. Intracellular flow cytometric analysis revealed a systemic Th17 inflammatory response, particularly pronounced in the lungs. Our data demonstrate that aluminum/CpG adjuvants induce strong antibody and Th1-associated immunity against COVID-19 but also prime a robust Th2/Th17 inflammatory response, which may contribute to the rapid onset of T cell-mediated pulmonary immunopathology following a breakthrough infection. These findings underscore the necessity for further research to unravel the complexities of VAERD in COVID-19 and to enhance vaccine formulations for broad protection and maximum safety.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
12
|
Wang Z, Fang C, Yao M, Wu D, Chen M, Guo T, Mo J. Research progress of NF-κB signaling pathway and thrombosis. Front Immunol 2023; 14:1257988. [PMID: 37841272 PMCID: PMC10570553 DOI: 10.3389/fimmu.2023.1257988] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Venous thromboembolism is a very common and costly health problem. Deep-vein thrombosis (DVT) can cause permanent damage to the venous system and lead to swelling, ulceration, gangrene, and other symptoms in the affected limb. In addition, more than half of the embolus of pulmonary embolism comes from venous thrombosis, which is the most serious cause of death, second only to ischemic heart disease and stroke patients. It can be seen that deep-vein thrombosis has become a serious disease affecting human health. In recent years, with the deepening of research, inflammatory response is considered to be an important pathway to trigger venous thromboembolism, in which the transcription factor NF-κB is the central medium of inflammation, and the NF-κB signaling pathway can regulate the pro-inflammatory and coagulation response. Thus, to explore the mechanism and make use of it may provide new solutions for the prevention and treatment of thrombosis.
Collapse
Affiliation(s)
- Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maga Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Ganzhou City Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Yao M, Ma J, Wu D, Fang C, Wang Z, Guo T, Mo J. Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy. Front Immunol 2023; 14:1198952. [PMID: 37680629 PMCID: PMC10482110 DOI: 10.3389/fimmu.2023.1198952] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
Deep venous thrombosis (DVT) is a part of venous thromboembolism (VTE) that clinically manifests as swelling and pain in the lower limbs. The most serious clinical complication of DVT is pulmonary embolism (PE), which has a high mortality rate. To date, its underlying mechanisms are not fully understood, and patients usually present with clinical symptoms only after the formation of the thrombus. Thus, it is essential to understand the underlying mechanisms of deep vein thrombosis for an early diagnosis and treatment of DVT. In recent years, many studies have concluded that Neutrophil Extracellular Traps (NETs) are closely associated with DVT. These are released by neutrophils and, in addition to trapping pathogens, can mediate the formation of deep vein thrombi, thereby blocking blood vessels and leading to the development of disease. Therefore, this paper describes the occurrence and development of NETs and discusses the mechanism of action of NETs on deep vein thrombosis. It aims to provide a direction for improved diagnosis and treatment of deep vein thrombosis in the near future.
Collapse
Affiliation(s)
- Mengting Yao
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiacheng Ma
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dongwen Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chucun Fang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zilong Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianting Guo
- Department of Orthopedics, Guangdong Provincial People’s Hospital Ganzhou Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China
| | - Jianwen Mo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
14
|
Liao Y, Xie J, Qu B. Apolipoprotein L Domain Containing 1 Inhibits Tissue Factor to Impede Thrombus Formation in a Rat Model of Deep Vein Thrombosis via Activating PI3K/Akt Pathway. Ann Vasc Surg 2023; 89:312-321. [PMID: 36272664 DOI: 10.1016/j.avsg.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Deep venous thrombosis (DVT) is one of the major health problems worldwide. Apolipoprotein L domain containing 1 (APOLD1) was reported to be downregulated in DVT. The present study intended to investigate whether APOLD1 affects thrombus formation in a rat model of DVT. METHODS The rat model of DVT was established by inferior vena cava (IVC) stenosis. At 6 hr, 12 hr, 24 hr, and 48 hr after IVC stenosis, the gross IVC with thrombus was dissected and observed. Then, the rats were preinjected with the lentiviral overexpression vector, APOLD1-LVs, 1 hr before IVC stenosis, to evaluate the influence of APOLD1 on thrombosis in rats. The serum levels of D-dimer and TAT as well as the content of TF in IVC tissues were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS IVC stenosis resulted in thrombus formation in rats, increased serum levels of D-dimer and TAT, and decreased APOLD1 expression. APOLD1 overexpression inhibited in vivo thrombosis, reduced serum levels of D-dimer, and downregulated tissue factor (TF) activity and level. APOLD1 overexpression also increased p-PI3K and p-Akt protein levels. CONCLUSIONS APOLD1 suppresses thrombus formation in a rat model of DVT via downregulating TF expression by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yonggui Liao
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinfeng Xie
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bihui Qu
- Department of Vascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Immunothrombosis and the Role of Platelets in Venous Thromboembolic Diseases. Int J Mol Sci 2022; 23:ijms232113176. [PMID: 36361963 PMCID: PMC9656618 DOI: 10.3390/ijms232113176] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Venous thromboembolism (VTE) is the third leading cardiovascular cause of death and is conventionally treated with anticoagulants that directly antagonize coagulation. However, recent data have demonstrated that also platelets play a crucial role in VTE pathophysiology. In the current review, we outline how platelets are involved during all stages of experimental venous thrombosis. Platelets mediate initiation of the disease by attaching to the vessel wall upon which they mediate leukocyte recruitment. This process is referred to as immunothrombosis, and within this novel concept inflammatory cells such as leukocytes and platelets directly drive the progression of VTE. In addition to their involvement in immunothrombosis, activated platelets can directly drive venous thrombosis by supporting coagulation and secreting procoagulant factors. Furthermore, fibrinolysis and vessel resolution are (partly) mediated by platelets. Finally, we summarize how conventional antiplatelet therapy can prevent experimental venous thrombosis and impacts (recurrent) VTE in humans.
Collapse
|
16
|
Necroptosis Plays a Crucial Role in Vascular Injury during DVT and Is Enhanced by IL-17B. J Immunol Res 2022; 2022:6909764. [PMID: 36046722 PMCID: PMC9424031 DOI: 10.1155/2022/6909764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/16/2022] [Indexed: 12/16/2022] Open
Abstract
Background. This study investigated whether vascular endothelial necroptosis is involved in deep vein thrombosis (DVT) and how IL-17B facilitates necroptosis signaling. Methods. The DVT mouse model was induced by ligation of the IVC. The cross-sectional area of thrombus increases and the thrombus occupied the entire venous lumen at 48 h after ligation. Meanwhile, the increased expression of p-RIP3/RIP3 was most pronounced at 48 h after ligation, and the p-MLKL/MLKL peaked at 72 h. Results. Based on Illumina sequencing and KEGG pathway analyses, the activated RIP3/MLKL is associated with increased IL-17B. With thrombus formation, IL-17B was upregulated and enhanced the expression of RIP3 and MLKL in the IVC wall, as well as their phosphorylation levels (all
, the comparison group consisted of the control group, DVT group, DVT/IL-17B group, and DVT/anti-IL-17B group). The p-RIP3/RIP3 and p-MLKL/MLKL ratios were reduced by anti-IL-17B. Similarly, the weight and cross-sectional area of the thrombi were increased by IL-17B and decreased by the IL-17B antibody. IL-17B had a smaller effect on thrombosis in knockout mice compared with WT mice. In vitro, the IL-17B protein expression and the level of RIP3 and MLKL phosphorylation increased high in the OGD cells, accompanied by increased expression of IL-6 and TNF-α. IL-17B enhanced the expression of IL-6 and TNF-α but had little effect on the IL-6 and TNF-α after transfected with siRIP3 or siMLKL. Similarly, the plasma IL-17B, IL-6, and TNF-α were significantly increased after thrombosis in WT mice, and enhanced by IL-17B. But IL-17B did not increase the plasma IL-6 and TNF-α in knockout mice. Conclusions. In conclusion, those results suggest that vascular endothelial necroptosis plays a crucial role in vascular injury and IL-17B could enhance the necroptosis pathway.
Collapse
|
17
|
Wienkamp AK, Erpenbeck L, Rossaint J. Platelets in the NETworks interweaving inflammation and thrombosis. Front Immunol 2022; 13:953129. [PMID: 35979369 PMCID: PMC9376363 DOI: 10.3389/fimmu.2022.953129] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
Platelets are well characterized for their indispensable role in primary hemostasis to control hemorrhage. Research over the past years has provided a substantial body of evidence demonstrating that platelets also participate in host innate immunity. The surface expression of pattern recognition receptors, such as TLR2 and TLR4, provides platelets with the ability to sense bacterial products in their environment. Platelet α-granules contain microbicidal proteins, chemokines and growth factors, which upon release may directly engage pathogens and/or contribute to inflammatory signaling. Additionally, platelet interactions with neutrophils enhance neutrophil activation and are often crucial to induce a sufficient immune response. In particular, platelets can activate neutrophils to form neutrophil extracellular traps (NETs). This specific neutrophil effector function is characterized by neutrophils expelling chromatin fibres decorated with histones and antimicrobial proteins into the extracellular space where they serve to trap and kill pathogens. Until now, the mechanisms and signaling pathways between platelets and neutrophils inducing NET formation are still not fully characterized. NETs were also detected in thrombotic lesions in several disease backgrounds, pointing towards a role as an interface between neutrophils, platelets and thrombosis, also known as immunothrombosis. The negatively charged DNA within NETs provides a procoagulant surface, and in particular NET-derived proteins may directly activate platelets. In light of the current COVID-19 pandemic, the topic of immunothrombosis has become more relevant than ever, as a majority of COVID-19 patients display thrombi in the lung capillaries and other vascular beds. Furthermore, NETs can be found in the lung and other tissues and are associated with an increased mortality. Here, virus infiltration may lead to a cytokine storm that potently activates neutrophils and leads to massive neutrophil infiltration into the lung and NET formation. The resulting NETs presumably activate platelets and coagulation factors, further contributing to the subsequent emergence of microthrombi in pulmonary capillaries. In this review, we will discuss the interplay between platelets and NETs and the potential of this alliance to influence the course of inflammatory diseases. A better understanding of the underlying molecular mechanisms and the identification of treatment targets is of utmost importance to increase patients’ survival and improve the clinical outcome.
Collapse
Affiliation(s)
- Ann-Katrin Wienkamp
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University Hospital Münster, Münster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
- *Correspondence: Jan Rossaint,
| |
Collapse
|
18
|
Park Y, Shim Y, Kwon I, Lee HW, Nam HS, Choi HJ, Heo JH. Effects of Interleukin-17A on the Early Stages of Arterial Thrombosis in Mice. Yonsei Med J 2022; 63:632-639. [PMID: 35748074 PMCID: PMC9226831 DOI: 10.3349/ymj.2022.63.7.632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Interleukin (IL)-17A has been suggested to play a role in the growth and organization of thrombi. We examined whether IL-17A plays a role in the early stages of thrombosis and whether there are sex differences in the effects of IL-17A. MATERIALS AND METHODS We performed a blinded, randomized, placebo-controlled study to compare time to thrombotic occlusion and sex differences therein between mice treated with IL-17A and those treated with saline using a ferric chloride-induced model. We also assessed thrombus histology, blood coagulation, and plasma levels of coagulation factors. RESULTS Time to occlusion values did not differ between the IL-17A group and the control group (94.6±86.9 sec vs. 121.0±84.4 sec, p=0.238). However, it was significantly shorter in the IL-17A group of female mice (74.6±57.2 sec vs. 130.0±76.2 sec, p=0.032). In rotational thromboelastometry, the IL-17A group exhibited increased maximum clot firmness (71.3±4.5 mm vs. 66.7±4.7 mm, p=0.038) and greater amplitude at 30 min (69.7±5.2 mm vs. 64.5±5.3 mm, p=0.040) than the control group. In Western blotting, the IL-17A group showed higher levels of coagulation factor XIII (2.2±1.5 vs. 1.0±0.9, p=0.008), monocyte chemoattractant protein-1 (1.6±0.6 vs. 1.0±0.4, p=0.023), and tissue factor (1.5±0.6 vs. 1.0±0.5, p=0.003). CONCLUSION IL-17A plays a role in the initial st ages of arterial thrombosis in mice. Coagulation factors and monocyte chemoattractant protein-1 may be associated with IL-17A-mediated thrombosis.
Collapse
Affiliation(s)
- Youngseon Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yeseul Shim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Il Kwon
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Heow Won Lee
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Jung Choi
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Rosell A, Martinod K, Mackman N, Thålin C. Neutrophil extracellular traps and cancer-associated thrombosis. Thromb Res 2022; 213 Suppl 1:S35-S41. [DOI: 10.1016/j.thromres.2021.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
|
20
|
Resende GG, da Cruz Lage R, Lobê SQ, Medeiros AF, Costa E Silva AD, Nogueira Sá AT, Oliveira AJDA, Sousa D, Guimarães HC, Gomes IC, Souza RP, Aguiar RS, Tunala R, Forestiero F, Bueno Filho JSS, Teixeira MM. Blockade of interleukin seventeen (IL-17A) with secukinumab in hospitalized COVID-19 patients - the BISHOP study. Infect Dis (Lond) 2022; 54:591-599. [PMID: 35485381 DOI: 10.1080/23744235.2022.2066171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with severe COVID-19 seem to evolve with a compromised antiviral response and hyperinflammation. Neutrophils are critical players in COVID-19. IL-17A plays a major role in protection against extracellular pathogens and neutrophil attraction/activation. We hypothesized that secukinumab, an anti-IL17A monoclonal antibody, could prevent the deleterious hyperinflammation in COVID-19. METHODS BISHOP was a randomized, open-label, single-centre, phase-II controlled trial. Fifty adult patients hospitalized with PCR-positive Covid-19, were randomized 1:1 to receive 300 mg of secukinumab subcutaneously at day-0 plus standard of care (group A) or standard of care alone (group B). A second dose of 300 mg of secukinumab could be administered on day-7, according to staff judgement. The primary endpoint was ventilator-free days at day-28 (VFD-28). Secondary efficacy and safety outcomes were also explored. RESULTS An intention-to-treat analysis showed no difference in VFD-28: 23.7 (95%CI 19.6-27.8) in group A vs. 23.8 (19.9-27.6) in group B, p = .62; There was also no difference in hospitalization time, intensive care unit demand and the incidence of circulatory shock, acute kidney injury, fungal or bacterial co-infections. There was no difference in the incidence of severe adverse events. Pulmonary thromboembolism occurred only in males and was less frequent in secukinumab-treated patients (4.2% vs. 26.2% p = .04). There was one death in each group. Upper airway viral clearance was also similar in both groups. CONCLUSION The efficacy of secukinumab in the treatment of Covid19 was not demonstrated. Secukinumab decreased pulmonary embolism in male patients. There was no difference between groups in adverse events and no unexpected events were observed.
Collapse
Affiliation(s)
- Gustavo Gomes Resende
- Rheumatology Unit, Hospital das Clínicas - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo da Cruz Lage
- Rheumatology Unit, Hospital das Clínicas - Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | | | | | | | - Denise Sousa
- Hospital Risoleta Tolentino Neves, Belo Horizonte, Brazil
| | | | | | - Renan Pedra Souza
- Dept. of Genetics, Ecology and Evolution - UFMG, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Navarrete S, Solar C, Tapia R, Pereira J, Fuentes E, Palomo I. Pathophysiology of deep vein thrombosis. Clin Exp Med 2022:10.1007/s10238-022-00829-w. [PMID: 35471714 DOI: 10.1007/s10238-022-00829-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 12/29/2022]
Abstract
Deep venous thrombosis is a frequent, multifactorial disease and a leading cause of morbidity and mortality. Most of the time deep venous thrombosis is triggered by the interaction between acquired risk factors, such as hip fracture, pregnancy, and immobility, and hereditary risk factors such as thrombophilias. The mechanisms underlying deep venous thrombosis are not fully elucidated; however, in recent years, important advances have shed light on the role of venous flow, endothelium, platelets, leukocytes, and the interaction between inflammation and hemostasis. It has been described that the alteration of venous blood flow produces endothelial activation, favoring the adhesion of platelets and leukocytes, which, through tissue factor expression and neutrophil extracellular traps formation, contribute to the activation of coagulation, trapping more cells, such as red blood cells. Thus, the concerted interaction of these phenomena allows the formation and growth of the thrombus. In this work, the main mechanisms involved in the pathophysiology of deep vein thrombosis will be described.
Collapse
Affiliation(s)
- Simón Navarrete
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Carla Solar
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | | | - Jaime Pereira
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Av. Lircay s/n, 3460000, Talca, Chile.
| |
Collapse
|
22
|
Luo W, Liu X, Bao K, Huang C. Ischemic stroke associated with COVID-19: a systematic review and meta-analysis. J Neurol 2022; 269:1731-1740. [PMID: 34652503 PMCID: PMC8517946 DOI: 10.1007/s00415-021-10837-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), a contagious infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread across the world. Apart from respiratory complications, an increasing number of patients with ischemic stroke have been reporting. OBJECTIVE This systematic review and meta-analysis aims to explore the characteristics of ischemic stroke after SARS-CoV-2 infection, and provides valuable reference materials for subsequent clinical treatment. MATERIALS AND METHODS PubMed, Web of Science, and Ovid-Embase databases were searched up to 24th March 2021. We utilized the search strategy of medical subject headings combined with entry terms to search all related literatures. All studies identified with the electronic and manual searches were listed by citation, title, authors, and abstract. Only studies involving patients with COVID-19-related stroke were eligible. The references of included studies were also manually screened. RESULTS The meta-analysis was conducted following the PRISMA and MOOSE reporting guidelines. Bias risk was assessed using the Newcastle-Ottawa Scale (NOS). Ten articles, including 26,691 participants and 280 patients with ischemic stroke and COVID-19, were selected. The pooled prevalence of ischemic stroke in COVID-19 was 2% (95% CI 1-2%; p < 0.01). The pooled proportions of hypertension, hyperlipidemia and diabetes in COVID-19-related ischemic stroke was 66% (95% CI 51-81%; p < 0.01), 48% (95% CI 19-76%; p < 0.01) and 40% (95% CI 29-51%; p < 0.01), respectively. Notably, the pooled proportions of female was 36% (95% CI 21-50%; p < 0.01) in patients with COVID-19 and stroke. In addition, in TOAST classification, cryptogenic stroke subtype was associated with a high trend, and its pooled proportion was 35% (95% CI 12-59%; p < 0.01). CONCLUSION Ischemic stroke caused by COVID-19 has its own unique clinical features. Although common high-risk factors can also be observed, its importance may have changed. The major inflammatory storm of COVID-19 is more likely to occur in male patients. The increase in the proportion of cryptogenic stroke has also made stroke related to COVID-19 complicated.
Collapse
Affiliation(s)
- Wenzhang Luo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Xiang Liu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Kunyang Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Luzhou, 646000, Sichuan, China
| | - Changren Huang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, No.25 of Taiping Street, Luzhou, 646000, Sichuan, China.
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
- Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
23
|
Che Mohd Nassir CMN, Hashim S, Wong KK, Abdul Halim S, Idris NS, Jayabalan N, Guo D, Mustapha M. COVID-19 Infection and Circulating Microparticles-Reviewing Evidence as Microthrombogenic Risk Factor for Cerebral Small Vessel Disease. Mol Neurobiol 2021; 58:4188-4215. [PMID: 34176095 PMCID: PMC8235918 DOI: 10.1007/s12035-021-02457-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is cerebral small vessel disease (CSVD) which represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger subsequent neuroinflammation and neurodegeneration. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, and Alzheimer's disease. In the background of COVID-19 infection, the heightened cellular activations from inflammations and oxidative stress may result in elevated levels of microthrombogenic extracellular-derived circulating microparticles (MPs). Consequently, MPs could act as pro-coagulant risk factor that may serve as microthrombi for the vulnerable microcirculation in the brain leading to CSVD manifestations. This review aims to appraise the accumulating body of evidence on the plausible impact of COVID-19 infection on the formation of microthrombogenic MPs that could lead to microthrombosis in CSVD manifestations, including occult CSVD which may last well beyond the pandemic era.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sabarisah Hashim
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Sanihah Abdul Halim
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Suhaila Idris
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nanthini Jayabalan
- Translational Neuroscience Lab, UQ Centre for Clinical Research, the University of Queensland, Herston, Brisbane, 4029, Australia
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, 6 Fucheng Rd, Beijing, 100048, China
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
- Hospital Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
24
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
25
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|
26
|
Gromadziński L, Paukszto Ł, Skowrońska A, Holak P, Smoliński M, Łopieńska-Biernat E, Lepiarczyk E, Lipka A, Jastrzębski JP, Majewska M. Transcriptomic Profiling of Femoral Veins in Deep Vein Thrombosis in a Porcine Model. Cells 2021; 10:1576. [PMID: 34206566 PMCID: PMC8304794 DOI: 10.3390/cells10071576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
Deep vein thrombosis (DVT) is a severe disease affecting the human venous system, accompanied by high morbidity and mortality rates caused by early and late complications. The study aimed at analyzing the changes in the transcriptome of the femoral vein caused by DVT in the porcine model based on the formation of the thrombus in vivo. The study was performed on 11 castrated male pigs: A thrombus was formed in each left femoral vein in six animals; the remaining five served as a control group. Total RNA was isolated from the left femoral veins of the experimental and control animals. High-throughput RNA sequencing was used to analyze the global changes in the transcriptome of veins with induced DVT. Applied multistep bioinformatics revealed 1474 differentially expressed genes (DEGs): 1019 upregulated and 455 downregulated. Functional Gene Ontology annotated 1220 of DEGs into 225 biological processes, 30 molecular functions and 40 cellular components categories. KEGG analysis disclosed TNF, NF-κB and apoptosis pathways' overexpression in DVT samples. A thorough analysis of the detected DEGs indicated that a dysregulated inflammatory response and disturbed balance between clotting and anti-clotting factors play a crucial role in the process of DVT.
Collapse
Affiliation(s)
- Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Agnieszka Skowrońska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| | - Piotr Holak
- Department of Surgery and Radiology with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Smoliński
- Clinic of Cardiology and Internal Diseases, University Clinical Hospital in Olsztyn, 10-082 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| | - Aleksandra Lipka
- Department of Gynecology and Obstetrics, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland;
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (A.S.); (E.L.)
| |
Collapse
|
27
|
Scarpa R, Caso F, Costa L, Passavanti S, Vitale MG, Trojaniello C, Del Puente A, Ascierto PA. May the analysis of 1918 influenza pandemic give hints to imagine the possible magnitude of Corona Virus Disease-2019 (COVID-19)? J Transl Med 2020; 18:489. [PMID: 33353549 PMCID: PMC7753514 DOI: 10.1186/s12967-020-02673-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND In 1918 an unknown infectious agent spread around the world infecting over one-third of the general population and killing almost 50 million people. Many countries were at war, the First World War. Since Spain was a neutral country and Spanish press could report about the infection without censorship, this condition is commonly remembered as "Spanish influenza". This review examines several aspects during the 1918 influenza pandemic to bring out evidences which might be useful to imagine the possible magnitude of the present coronavirus disease 2019 (COVID-19). METHODS In the first part of this review we will examine the origin of the SARS-Coronavirus-2 and 1918 Spanish Influenza Virus and the role played by host and environment in its diffusion. We will also include in our analysis an evaluation of different approaches utilized to restrain the spread of pandemic and to treat infected patients. In the second part, we will try to imagine the magnitude of the present COVID-19 pandemic and the possible measures able to restrain in the present environment its spread. RESULTS Several factors characterize the outcome in a viral pandemic infection. They include the complete knowledge of the virus, the complete knowledge of the host and of the environment where the host lives and the pandemic develops. CONCLUSION By comparing the situation seen in 1918 with the current one, we are now in a more favourable position. The experience of the past teaches us that their success is linked to a rapid, constant and lasting application. Then, rather than coercion, awareness of the need to observe such prevention measures works better.
Collapse
Affiliation(s)
- Raffaele Scarpa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy.
| | - Francesco Caso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Luisa Costa
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Saverio Passavanti
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Maria Grazia Vitale
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Trojaniello
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Antonio Del Puente
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Via Sergio, Pansini 5, 80131, Naples, Italy
| | - Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| |
Collapse
|
28
|
Tang P, Liu H, Lin B, Yang W, Chen W, Lu Z, Li P, Gui S, Zhan Y, Lin B. Spatholobi Caulis dispensing granule reduces deep vein thrombus burden through antiinflammation via SIRT1 and Nrf2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153285. [PMID: 32707369 DOI: 10.1016/j.phymed.2020.153285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a kind of blood stasis syndrome. Spatholobi Caulis (SC) has been widely used for the treatment of blood stasis syndrome in China, but the underlying mechanism remains poorly understood. PURPOSE The aim of present study was to investigate the anti-DVT mechanism of Spatholobi Caulis dispensing granule (SCDG). STUDY DESIGN/METHODS A rat model of inferior vena cava (IVC) stenosis-induced DVT and a cell model of oxygen-glucose deprivation (OGD) were performed. Rats were orally administered with SCDG solution once daily for seven consecutive days. IVC stenosis-induced DVT was operated on the sixth day. Thrombi were harvested and weighed on the seventh day. Pathological changes were observed by hematoxylin-eosin (HE) staining. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β of serum were analyzed by enzyme-linked immunosorbent assay. C-reactive protein (CRP) was measured with turbidimetric immunoassay. Protein expressions in thrombosed IVCs and/or OGD-stimulated EA. hy926 cells were evaluated by western blot and/or immunofluorescence analyses. RESULTS SCDG dramatically decreased thrombus weight. SCDG decreased tissue factor (TF) protein expression, inflammatory cells influxes in thrombosed vein wall and serum levels of inflammatory cytokines and CRP. Further, SCDG up-regulated Sirtuin 1 (SIRT1) protein expression and down-regulated acetylated-NF-κB p65 (Ace-p65) protein expression. Moreover, SCDG up-regulated nuclear factor-erythroid 2 related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) protein expressions, and down-regulated phosphorylated-NF-κB p65 (p-p65) protein expression. In the OGD cell model, SCDG medicated serum decreased the protein expression of TF. SCDG medicated serum enhanced SIRT1 protein expression and reduced Ace-p65 nuclear protein expression. SCDG medicated serum promoted protein expressions of nuclear Nrf2 and total HO-1, and inhibited translocation of p65. Furthermore, inhibiting SIRT1 and Nrf2 reversed the protective effect of SCDG medicated serum on OGD-induced EA. hy926 cells. CONCLUSION SCDG may prevent DVT through antiinflammation via SIRT1 and Nrf2.
Collapse
Affiliation(s)
- Ping Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Han Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Bingqing Lin
- College of Mathematics and Statistics, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Drug Non-clinical Evaluation and Research, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangzhou, Guangdong, 510990, China
| | - Wenpei Chen
- Guangdong Provincial Key Laboratory of Drug Non-clinical Evaluation and Research, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangzhou, Guangdong, 510990, China
| | - Ziqi Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Peng Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Shuhua Gui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yaxian Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Baoqin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
29
|
Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, Wang D, Mao L, Jin H, Hu B. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol 2020; 5:279-284. [PMID: 32616524 PMCID: PMC7371480 DOI: 10.1136/svn-2020-000431] [Citation(s) in RCA: 552] [Impact Index Per Article: 110.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Apart from respiratory complications, acute cerebrovascular disease (CVD) has been observed in some patients with COVID-19. Therefore, we described the clinical characteristics, laboratory features, treatment and outcomes of CVD complicating SARS-CoV-2 infection. MATERIALS AND METHODS Demographic and clinical characteristics, laboratory findings, treatments and clinical outcomes were collected and analysed. Clinical characteristics and laboratory findings of patients with COVID-19 with or without new-onset CVD were compared. RESULTS Of 219 patients with COVID-19, 10 (4.6%) developed acute ischaemic stroke and 1 (0.5%) had intracerebral haemorrhage. COVID-19 with new onset of CVD were significantly older (75.7±10.8 years vs 52.1±15.3 years, p<0.001), more likely to present with severe COVID-19 (81.8% vs 39.9%, p<0.01) and were more likely to have cardiovascular risk factors, including hypertension, diabetes and medical history of CVD (all p<0.05). In addition, they were more likely to have increased inflammatory response and hypercoagulable state as reflected in C reactive protein (51.1 (1.3-127.9) vs 12.1 (0.1-212.0) mg/L, p<0.05) and D-dimer (6.9 (0.3-20.0) vs 0.5 (0.1-20.0) mg/L, p<0.001). Of 10 patients with ischemic stroke; 6 received antiplatelet treatment with aspirin or clopidogrel; and 3 of them died. The other four patients received anticoagulant treatment with enoxaparin and 2 of them died. As of 24 March 2020, six patients with CVD died (54.5%). CONCLUSION Acute CVD is not uncommon in COVID-19. Our findings suggest that older patients with risk factors are more likely to develop CVD. The development of CVD is an important negative prognostic factor which requires further study to identify optimal management strategy to combat the COVID-19 outbreak.
Collapse
Affiliation(s)
- Yanan Li
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man Li
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengdie Wang
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Zhou
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xian
- Duke Clinical Research Institute and Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - David Wang
- Neurovascular Division, Department of Neurology, Barrow Neurological Institute/Saint Joseph Hospital Medical Center, Phoenix, Arizona, USA
| | - Ling Mao
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijuan Jin
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Allain-Maillet S, Bosseboeuf A, Mennesson N, Bostoën M, Dufeu L, Choi EH, Cleyrat C, Mansier O, Lippert E, Le Bris Y, Gombert JM, Girodon F, Pettazzoni M, Bigot-Corbel E, Hermouet S. Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent Cytokines in Myeloproliferative Neoplasms. Cancers (Basel) 2020; 12:cancers12092446. [PMID: 32872203 PMCID: PMC7564615 DOI: 10.3390/cancers12092446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Inflammation plays a major role in myeloproliferative neoplasms (MPNs) as regulator of malignant cell growth and mediator of clinical symptoms. Yet chronic inflammation may also be an early event that facilitates the development of MPNs. Here we analysed 42 inflammatory cytokines and report that in patients as well as in UT-7 cell lines, interleukin-1β and interferon-induced protein 10 (IP-10) were the main inflammatory molecules found to be induced by JAK2V617F, the most frequent driving mutation in MPNs. All other inflammatory cytokines were not linked to JAK2V617F, which implies that inflammation likely precedes MPN development at least in subsets of MPN patients. Consistently, a possible cause of early, chronic inflammation may be auto-immunity against glucolipids: we report that 20% of MPN patients presented with anti-glucosylsphingoside auto-antibodies. Since existing treatments can reduce glucosylsphingoside, this lysosphingolipid could become a new therapeutic target for subsets of MPN patients, in addition to JAK2V617F and inflammation. Abstract Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1β, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1β, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1β and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.
Collapse
Affiliation(s)
- Sophie Allain-Maillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Adrien Bosseboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Nicolas Mennesson
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Mégane Bostoën
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Laura Dufeu
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
| | - Eun Ho Choi
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Cédric Cleyrat
- Department of Pathology & Comprehensive Cancer Center, University of New Mexico (NM) Health Sciences Center, Albuquerque, NM 87102 USA; (E.H.C.); (C.C.)
| | - Olivier Mansier
- Laboratoire d’Hématologie, CHU de Bordeaux, 33600 Pessac, France;
- INSERM U1034, Université de Bordeaux, UFR Sciences de la Vie et de la Santé, 33000 Bordeaux, France
| | - Eric Lippert
- Laboratoire d’Hématologie, CHU de Brest, 29200 Brest, France;
- INSERM, Etablissement Français du Sang (EFS), UMR 1078, GGB, Université de Brest, 29200 Brest, France
| | - Yannick Le Bris
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
| | | | - François Girodon
- Laboratoire d’Hématologie, CHU Dijon, 21034 Dijon, France;
- INSERM, UMR 1231, University of Bourgogne Franche-Comté, 21078 Dijon, France
| | - Magali Pettazzoni
- LBMMS, Service de Biochimie et Biologie Moléculaire Grand Est, UF des Maladies Héréditaires du Métabolisme, Hospices Civils de Lyon, 69677 Bron CEDEX, France;
| | - Edith Bigot-Corbel
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire de Biochimie, CHU de Nantes, 44093 Nantes, France
| | - Sylvie Hermouet
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 1232, CRCINA, University of Nantes, Institut de Recherche en Santé 2 (IRS-2), 22 Boulevard Benoni Goullin, 44200 Nantes, France; (S.A.-M.); (A.B.); (N.M.); (M.B.); (L.D.); (Y.L.B.); (E.B.-C.)
- Laboratoire d’Hématologie, CHU de Nantes, 44093 Nantes, France
- Correspondence: ; Tel.: +33-228080355
| |
Collapse
|
31
|
Wellmann IAM, Ibiapina HNS, Sachett JAG, Sartim MA, Silva IM, Oliveira SS, Tarragô AM, Moura-da-Silva AM, Lacerda MVG, Ferreira LCDL, Malheiro A, Monteiro WM, Costa AG. Correlating Fibrinogen Consumption and Profiles of Inflammatory Molecules in Human Envenomation's by Bothrops atrox in the Brazilian Amazon. Front Immunol 2020; 11:1874. [PMID: 32973773 PMCID: PMC7468254 DOI: 10.3389/fimmu.2020.01874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Snakebites are considered a major public health problem worldwide. In the Amazon region of Brazil, the snake Bothrops atrox (B. atrox) is responsible for 90% of the bites. These bites may cause local and systemic signs from acute inflammatory reaction and hemostatic changes, and present common hemorrhagic disorders. These alterations occur due the action of hemostatically active and immunogenic toxins which are capable of triggering a wide range of hemostatic and inflammatory events. However, the crosstalk between coagulation disorders and inflammatory reaction still has gaps in snakebites. Thus, the goal of this study was to describe the relationship between the consumption of fibrinogen and the profile of inflammatory molecules (chemokines and cytokines) in evenomations by B. atrox snakebites. A prospective study was carried out with individuals who had suffered B. atrox snakebites and presented different levels of fibrinogen consumption (normal fibrinogen [NF] and hypofibrinogenemia [HF]). Seventeen patients with NF and 55 patients with HF were eligible for the study, in addition to 50 healthy controls (CG). The molecules CXCL-8, CCL-5, CXCL-9, CCL-2, CXCL-10, IL-6, TNF, IL-2, IL-10, IFN-γ, IL-4, and IL-17A were quantified in plasma using the CBA technique at three different times (pre-antivenom therapy [T0], 24 h [T1], and 48 h [T2] after antivenom therapy). The profile of the circulating inflammatory response is different between the groups studied, with HF patients having higher concentrations of CCL-5 and lower IFN-γ. In addition, antivenom therapy seems to have a positive effect, leading to a profile of circulating inflammatory response similar in quantification of T1 and T2 on both groups. Furthermore, these results suggest that a number of interactions of CXCL-8, CXCL-9, CCL-2, IL-6, and IFN-γ in HF patients are directly affected by fibrinogen levels, which may be related to the inflammatory response and coagulation mutual relationship induced by B. atrox venom. The present study is the first report on inflammation-coagulation crosstalk involving snakebite patients and supports the better understanding of envenomation's pathophysiology mechanisms and guides in the search for novel biomarkers and prospective therapies.
Collapse
Affiliation(s)
- Irmgardt Alicia María Wellmann
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Hiochelson Najibe Santos Ibiapina
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Jacqueline Almeida Gonçalves Sachett
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Marco Aurélio Sartim
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Iran Mendonça Silva
- Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Sâmella Silva Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Ana Maria Moura-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisas Leônidas e Maria Deane, FIOCRUZ-Amazônia, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Adriana Malheiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema (IPCCB), Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| |
Collapse
|
32
|
Altable M, de la Serna JM. Cerebrovascular disease in COVID-19: Is there a higher risk of stroke? Brain Behav Immun Health 2020; 6:100092. [PMID: 32835295 PMCID: PMC7297683 DOI: 10.1016/j.bbih.2020.100092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023] Open
Abstract
The presence of stroke has been observed in young adults (under fifty years of age) without cardiovascular risk factors who are suffering from COVID-19. It is speculated that there is really a significant increase, as a few cases have yet to be described, or that the infection favors his development. Cerebrovascular events are more common in older patients with stroke risk factors, such as hypertension and diabetes mellitus, and those who have elevated fibrin D-dimers. Multiple case reports and series about cerebrovascular disease (CVD) in COVID-19 has been informed. The mechanism that causes cerebral ischemia in COVID-19 remains undiscovered. However, progressively there is increasing evidence of hypercoagulability that can be or contribute to the cause. We review the current literature about CVD both epidemiology and etiology. More studies are needed to understand.
Collapse
Affiliation(s)
- Marcos Altable
- Private Practice of Neurology, Neuroceuta. (Virgen de África Clinic), Ceuta, Spain
| | | |
Collapse
|
33
|
Allegra A, Pioggia G, Tonacci A, Musolino C, Gangemi S. Cancer and SARS-CoV-2 Infection: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2020; 12:cancers12061581. [PMID: 32549297 PMCID: PMC7352319 DOI: 10.3390/cancers12061581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
In late December 2019, a new infectious viral disease appeared. A new betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), has been recognized as the pathogen responsible for this infection. Patients affected by tumors are more vulnerable to infection owing to poor health status, concomitant chronic diseases, and immunosuppressive conditions provoked by both the cancer and antitumor therapies. In this review, we have analyzed some lesser known aspects of the relationship between neoplasms and SARS-CoV-2 infection, starting from the different expression of the ACE2 receptor of the virus in the various neoplastic pathologies, and the roles that different cytokine patterns could have in vulnerability to infection and the appearance of complications. This review also reports the rationale for a possible use of drugs commonly employed in neoplastic therapy, such as bevacizumab, ibrutinib, selinexor, thalidomide, carfilzomib, and PD-1 inhibitors, for the treatment of SARS-CoV-2 infection. Finally, we have highlighted some diagnostic challenges in the recognition of SARS-CoV-2 infection in cancer-infected patients. The combination of these two health problems-tumors and a pandemic virus-could become a catastrophe if not correctly handled. Careful and judicious management of cancer patients with SARS-Cov-2 could support a better outcome for these patients during the current pandemic.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- COVID Centre AOU Policlinic G. Martino Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +390902212364
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
34
|
Raucci F, Mansour AA, Casillo GM, Saviano A, Caso F, Scarpa R, Mascolo N, Iqbal AJ, Maione F. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun Rev 2020; 19:102572. [PMID: 32376393 PMCID: PMC7252120 DOI: 10.1016/j.autrev.2020.102572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Federica Raucci
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Guraiger, Abha 62529, Saudi Arabia
| | - Gian Marco Casillo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Nicola Mascolo
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
35
|
Najem MY, Couturaud F, Lemarié CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost 2020; 18:1009-1019. [PMID: 32020753 DOI: 10.1111/jth.14759] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/15/2020] [Accepted: 02/03/2020] [Indexed: 12/27/2022]
Abstract
Morbidity and mortality from venous thromboembolism (VTE), which refers to deep vein thrombosis and pulmonary embolism, have a substantial effect on the global burden of disease. The field of venous thrombosis research has been dramatically changed over the past 10 years with the improvement of animal models that shed some light on the interaction between inflammation and thrombosis. Important recent advances provided evidence of the implication of the innate immune system in venous thrombosis. In this review, we highlighted the cytokines and chemokines that regulate mechanisms of thrombus formation and resolution. Cytokines are pleiotropic, redundant, and multifunctional endogenous mediators orchestrating the inflammatory responses leading to thrombus formation or resolution. The use of experimental models has revealed the pro-thrombotic activity of some cytokines including interferon-γ, interleukin (IL)-6, chemokine ligand 2, IL-17A, IL-9, IL-1β, and transforming growth factor-β. Other cytokines such as IL-10, tumor necrosis factor-α, and IL-8 appear to promote thrombus resolution in late phase of venous thromboembolism. The purpose of this review is to bring together the current knowledge regarding the cytokines and chemokines that have been involved in thrombosis formation and resolution. We postulate that an imbalance between pro-thrombotic and anti-thrombotic cytokines/chemokines may be involved in the pathophysiology of VTE. However, in-depth basic and clinical research in venous thrombosis is still require to fully understand the precise mechanism of action of these cytokines.
Collapse
Affiliation(s)
- Maria Y Najem
- EA3878 (GETBO), Brest Hospital, Univ Brest, Brest, France
| | | | - Catherine A Lemarié
- EA3878 (GETBO), Brest Hospital, Univ Brest, Brest, France
- INSERM 1078, Brest, France
| |
Collapse
|
36
|
Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Patients With Lung Cancer: The Potential Role of Interleukin-17 Target Therapy. J Thorac Oncol 2020; 15:e101-e103. [PMID: 32353597 PMCID: PMC7185017 DOI: 10.1016/j.jtho.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/28/2022]
Abstract
The coronavirus disease 2019 outbreak is evolving rapidly worldwide. The lungs are the target of the primary infection and patients with lung cancer seem to have a poor prognosis. To our knowledge, this is the first reported investigation of a possible role of interleukin-17 target therapy in patients with lung cancer and concomitant severe acute respiratory syndrome–coronavirus-2 infection.
Collapse
|
37
|
Liang W, Wei F, Yang C, Xie F, Shuai XX, Wang M, Yu M. GDF-15 is associated with thrombus burden in patients with deep venous thrombosis. Thromb Res 2020; 187:148-153. [PMID: 32000030 DOI: 10.1016/j.thromres.2020.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/04/2020] [Accepted: 01/19/2020] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Growth differentiation factor-15 (GDF-15) has been identified as a predictor in cardiovascular diseases and acute pulmonary embolism. However, the association of GDF-15 and deep venous thrombosis (DVT) remains unclear. This study aimed to investigate levels of GDF-15 in patients with DVT, and determine its association with the thrombus burden. MATERIALS AND METHODS 72 newly diagnosed DVT patients and 30 healthy volunteers were enrolled, and the levels of plasma GDF-15 were detected. To explore the relationship between GDF-15 and thrombus severity, we analyzed the thrombus burden and the association with pulmonary embolism of DVT patients. In vitro, the effect of GDF-15 on platelet aggregation and thrombin/antithrombin activity were investigated. RESULTS We found that the mean levels of plasma GDF-15 in DVT patients were significantly higher than those in healthy controls (1448.78 ± 61.98 pg/ml VS 805.70 ± 112.95 pg/ml, P < 0.001). Furthermore, GDF-15 showed an increase with more venous segments with thrombus (P < 0.001), and the patients with higher levels of GDF-15 and more thrombus segments showed higher scores of Wells-PE and Geneva and increased incidence of pulmonary embolism (P < 0.05). In vitro, we confirmed that GDF-15 significantly reduced platelet aggregation induced by ADP and the effect was concentration-dependent (P < 0.001). However, GDF-15 showed no direct effect on thrombin and anti-thrombin activity. CONCLUSIONS Increased GDF-15 level was associated with more thrombus severity of DVT patients and GDF-15 could inhibit platelet aggregation induced by ADP in vitro. These findings suggest that GDF-15 might not only be an indicator for thrombus severity but also be a potential treatment target in DVT.
Collapse
Affiliation(s)
- Wei Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fen Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Yang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fen Xie
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin-Xin Shuai
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Miao Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
38
|
Budnik I, Brill A. Immune Factors in Deep Vein Thrombosis Initiation. Trends Immunol 2018; 39:610-623. [PMID: 29776849 PMCID: PMC6065414 DOI: 10.1016/j.it.2018.04.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Deep vein thrombosis (DVT) is a major origin of morbidity and mortality. While DVT has long been considered as blood coagulation disorder, several recent lines of evidence demonstrate that immune cells and inflammatory processes are involved in DVT initiation. Here, we discuss these mechanisms, in particular, the role of immune cells in endothelial activation, and the immune cascades leading to expression of adhesion receptors on endothelial cells. We analyze the specific recruitment and functional roles of different immune cells, such as mast cells and leukocytes, in DVT. Importantly, we also speculate how immune modulation could be used for DVT prevention with a lower risk of bleeding complications than conventional therapeutic approaches.
Collapse
Affiliation(s)
- Ivan Budnik
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Brill
- Department of Pathophysiology, Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|