1
|
dos Santos E, Gomes RG, Mangolin CA, Machado MDFPDS. A review of mandacaru fruit phytochemicals, its pharmacotherapeutic benefits and uses in food technology. Food Sci Biotechnol 2025; 34:1789-1803. [PMID: 40196331 PMCID: PMC11972249 DOI: 10.1007/s10068-024-01749-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 04/09/2025] Open
Abstract
The Cereus genus includes medicinal plants native to the Neotropical region. Although their colorful fruits are consumed in arid and semi-arid areas, these are underused industrially due to limited knowledge. This review presents recent studies on the chemical, physicochemical, and bioactive aspects of Cereus fruits, along with pharmacotherapeutic benefits and potential applications of peel, pulp, and seed compounds. Cereus fruits exhibit high nutritional value and richness in bioactive compounds. Their peel has the highest antioxidant concentration, mainly phenolics, flavonoids, and carotenoids. Their pulp offers significant dietary fiber and energy. Seed flour and oil are rich in minerals (K, P and Mg), and also contain oleic, linoleic, and palmitic acids. Most studies focus on Cereus jamacaru, indicating the need to explore other Cereus species for their varied compositions, in addition to innovative physicochemical analyses to uncover relevant compounds.
Collapse
Affiliation(s)
- Everaldo dos Santos
- Graduate Program in Agronomy, State University of Maringá, Maringá, PR Brazil
| | | | | | | |
Collapse
|
2
|
He M, Zhong W, Dai R, Long S, Zhou Y, Zhang T, Zhou B, Tang T, Yang L, Jiang S, Xiao W, Fu Y, Guo J, Gao Z. Linalool exhibit antimicrobial ability against Elizabethkingia miricola by disrupting cellular and metabolic functions. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100380. [PMID: 40225044 PMCID: PMC11986607 DOI: 10.1016/j.crmicr.2025.100380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Elizabethkingia miricola is a gram-negative bacillus, a life-threatening pathogen in humans and animals. Linalool, a naturally occurring monoterpene alcohol found in plant volatile oils, exhibits highly effective antibacterial properties. This study investigated the antibacterial activity and mechanism of linalool against E. miricola. Initially, linalool showed potent antibacterial activity against E. miricola, with inhibition zone (ZOI), MIC, and MBC values of 36.41 ± 1.23 mm, 0.125 % (v/v, 1.0775 mg/mL), and 0.125 % (v/v, 1.0775 mg/mL), respectively. Secondly, it was observed by electron microscopy that linalool caused crumpling, depression, and size reduction of the cells. Linalool affected cell membrane integrity, causing membrane damage and rupture. Thirdly, transcriptome analysis suggested that linalool affected C5-branched-chain dicarboxylic acid metabolism and the biosynthesis of valine, leucine, and isoleucine, result in increased energy production to linalool stress. Linalool disrupted cell division and RNA function in E. miricola, and the cells responded to linalool-induced oxidative damage by up-regulating the expression of msrB and katG genes. Fourthly, metabolome analysis revealed an increase in metabolites related to the glycerophospholipid metabolic pathway and NADP content in E. miricola, which may be a metabolic response to linalool stress. Taken together, these findings provide a theoretical basis for the antibacterial mechanism of linalool and suggest potential applications for preventing E. miricola infections.
Collapse
Affiliation(s)
- Mingwang He
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Weiming Zhong
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Rongsi Dai
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Su Long
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Ying Zhou
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Tongping Zhang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Boyang Zhou
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Tao Tang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Linlin Yang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Sifan Jiang
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Wenbin Xiao
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - YanJiao Fu
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute, Dongting Laboratory; International Joint Lab on Fruits &Vegetables Processing, Quality and Safety; Hunan Provincial Key Laboratory of Fruits &Vegetables Storage, Processing, Quality and Safety; Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan Province, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| |
Collapse
|
3
|
Alserhani GS, Mohamed ME, Younis NS. Mitigating cyclophosphamide-induced hepatorenal toxicity: Linalool's role in modulating oxidative stress, inflammation, and apoptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04042-w. [PMID: 40100375 DOI: 10.1007/s00210-025-04042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Cyclophosphamide (CP) is associated with detrimental side effect including hepatic and renal toxicities. Linalool (LIN), acyclic monoterpene alcohol, is acquired from several plants' essential oils. Rats were disseminated into four groups. Group 1: Normal and Cyclophosphamide (CP) groups in which rats were given normal saline or CP intraperitoneally (200 mg/kg, ip on 12nd). Group 3 and 4 (LIN 50 + CP and LIN 100 + CP) groups in which rats were administered LIN (50 or 100 mg/kg) orally for 14 days and CP (200 mg/kg, ip on 12nd). Assessment of hepatic and renal function tests and histopathological examination were performed. Oxidative stress indicators, inflammatory mediators, and apoptosis markers in hepatic and renal homogenates were assessed. JAK2/STAT3/NFκB gene expression was measured. The network pharmacology study suggests JAK2 as one the targets so molecular docking of LIN against JAK2 was accomplished. LIN administration with CP resulted in a significant reduction in liver function test including ALT, AST, LDL, bilirubin, and γGTT1 and in renal function markers including BUN, creatinine, uric acid, Kim-1, NGAL, and CysC. Also, LIN increases in antioxidant ability via enhancing GST, GSH-Px, GSH-R, SOD, and catalase as well as a declining NO, MDA levels. Furthermore, LIN significantly diminished JAK2/STAT3/NFκB gene expressions with subsequent reduction in the inflammatory markers including TNF-α, MPO, ICAM-1, IL-6, and IL-1β levels and the apoptotic markers Bax and cleavage caspase-3 and 9. LIN protected the hepatic and renal tissues from ROS damage and mitigated JAK2/STAT3/NFκB with subsequent anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Gharam Saad Alserhani
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Pharmaceutical Care Management, Aljouf Health Cluster, Aljouf, Saudi Arabia
| | - Maged E Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
4
|
Rai A, Subramaniyan Y, Fathima F, Rekha PD. Broad-spectrum antimicrobial properties of linalool: supporting its pharmacological use in chronic wound infections by pathogens within the ESKAPE group and polymicrobial biofilms. World J Microbiol Biotechnol 2025; 41:99. [PMID: 40063328 DOI: 10.1007/s11274-025-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Chronic wound infections are caused by biofilm forming opportunistic pathogenic bacteria. The persistence of infection, co-infecting pathogens and prolonged use of antibiotics promote antibiotic resistance hampering healing process due to increased inflammation. Hence, we tested the broad range antibacterial activity of linalool, a bioactive monoterpene commonly present in many essential oils having anti-inflammatory and antimicrobial activities to target different opportunistic pathogens commonly found in the chronic wound. We included some of the common pathogens such as Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus, to study the broad range antimicrobial efficacy of linalool. The in vitro effect of linalool on biofilm was quantified in pre-treatment, post-treatment, repetitive treatment, and polymicrobial biofilm scenarios. Time-kill and XTT (2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2 H-tetrazolium-5-carboxanilide) assays were performed to confirm the efficacy of linalool against wound infections, and these results were further validated using simulated wound exudates medium (WEM) which mimics the wound environment. The mechanism of bactericidal action was determined using assays for membrane integrity and oxidative stress. The results indicated the broad range antimicrobial activity of linalool with minimum inhibitory concentration (MIC) ranging from 2.5 to 5 µL/mL against E. coli, A. baumannii, E. faecalis, S. aureus, and K. pneumoniae, while for P. aeruginosa the MIC was 20 µL/mL. Linalool was most effective against E. coli, E. faecalis, K. pneumoniae, A. baumannii, and S. aureus, and could inhibit the growth and biofilm by more than 90% and 80%, respectively, at 5 µL/mL. The XTT assay confirmed the MIC results, showing a significant reduction in the metabolic activity of the pathogens (p < 0.001). In the simulated WEM similar response of the bacteria to linalool treatment was observed. At 5 to 20 µL/mL concentrations, linalool significantly inhibited the polymicrobial biofilm consisting of P. aeruginosa, A. baumannii, and S. aureus in two species combinations. The mechanism of bactericidal action was associated with the increased reactive oxygen species production and disruption in the membrane integrity leading to release of cellular content. The anti-inflammatory activity of linalool, assessed using the albumin denaturation method showed significant activity at the tested concentrations. In conclusion, the findings suggest the therapeutic potential of linalool in treating biofilm associated chronic wound infections due to its versatile broad spectrum activity.
Collapse
Affiliation(s)
- Akshatha Rai
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
5
|
But VM, Rus V, Ilyés T, Gherman ML, Stănescu IC, Bolboacă SD, Bulboacă AE. Therapeutic Effects of Lavender Oil on Streptozotocin-Induced Diabetes Mellitus and Experimental Thrombosis. Antioxidants (Basel) 2025; 14:166. [PMID: 40002353 PMCID: PMC11851820 DOI: 10.3390/antiox14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Diabetes mellitus is a metabolic disorder associated with oxidative stress, inflammation, and coagulation disturbances, which contribute to microvascular and macrovascular complications. We evaluated the therapeutic effects of lavender oil (Lavandula angustifolia) in a streptozotocin (STZ)-induced rat model of type 1 diabetes mellitus (T1DM) with experimentally induced thrombosis. Sixty male Wistar rats were divided into control, thrombosis, diabetes, thrombosis-diabetes, and lavender oil pretreatment groups (100 and 200 mg/kg body weight [bw]). Lavender oil exhibited dose-dependent benefits, with the 200 mg/kg bw dose leading to significant reductions in proinflammatory cytokines (e.g., tumor necrosis factor α (TNF-α); regulated upon activation, normal T cell expressed and secreted (RANTES); and monocyte chemoattractant protein-1 (MCP-1)) and oxidative stress, along with improved glycemic control, the partial restoration of C-peptide levels, and the attenuation of matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9) activity (p < 0.0001). Histopathological and coagulation analyses confirmed its organ-protective and antithrombotic effects, including reduced tissue damage, vascular inflammation, and thrombus formation, and prolonged bleeding and clotting times. Our findings suggest that lavender oil exhibits dose-dependent antioxidant, anti-inflammatory, hypoglycemic, and organ-protective effects, indicating its potential as a complementary therapy for managing inflammation in T1DM with or without thrombosis.
Collapse
Affiliation(s)
- Valeriu Mihai But
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, 400012 Cluj-Napoca, Romania; (V.M.B.); (A.E.B.)
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur, No. 3-5, 400374 Cluj-Napoca, Romania;
| | - Tamás Ilyés
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Mădălina Luciana Gherman
- Experimental Center, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Ioana Cristina Stănescu
- Department of Neurology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Street, No. 43, 400012 Cluj-Napoca, Romania;
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, 400012 Cluj-Napoca, Romania; (V.M.B.); (A.E.B.)
| |
Collapse
|
6
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee BH, Lee SY, Shin HS, Kim TG, Song CH, Chai OH. Undaria pinnatifida extract attenuates combined allergic rhinitis and asthma syndrome by the modulation of epithelial cell dysfunction and oxidative stress. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39719880 DOI: 10.3724/abbs.2024190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Undaria pinnatifida ( U. pinnatifida) has long been a part of the human diet and medicine. Although U. pinnatifida has been reported to have immunomodulatory, anti-inflammatory, anti-diabetic and antibacterial activities, its specific effect on patients with combined allergic rhinitis and asthma syndrome (CARAS) has not been clarified. In this study, the anti-allergic and anti-inflammatory effects of U. pinnatifida extract (UPE) are investigated in a mouse model of ovalbumin (OVA)-induced CARAS. The oral administration of UPE inhibits allergic responses by reducing OVA-specific immunoglobulin levels. As a result, the symptoms of early reactions are also improved. UPE inhibits the accumulation of inflammatory cells and attenuates the expression of Th2 cytokines in both nasal and bronchoalveolar lavage fluid. Furthermore, UPE treatment inhibits the NF-κB/MAPK signaling pathway in lung homogenates. Additionally, UPE prevents shedding of the nasal mucosal epithelium, protects the integrity of the epithelium, enhances the expression of E-cadherin at the junction of epithelial cells, and inhibits the degradation of ZO-1 and occludin in the airway epithelium. In addition, UPE ameliorates dysfunction of the nasal epithelial barrier by enhancing antioxidant properties and downregulating the expression of the inflammatory factor IL-33. These results suggest that UPE may treat CARAS by modulating epithelial cell dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Yan Jing Fan
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- School of Medicine, Liaocheng University, Liaocheng 252000, China
| | - Thi Van Nguyen
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Chun Hua Piao
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Byung-Hoo Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Republic of Korea
- Food Biotechnology Program, Korea University of Science and Technology, Daejeon 305-350, Republic of Korea
| | - Tae-Geum Kim
- Department of Bio-Convergence Science, Jeongup Campus of Jeonbuk National University, Jeongup 56212, Republic of Korea
| | - Chang Ho Song
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ok Hee Chai
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Institute for Medical Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Baptista A, Menicucci F, Brunetti C, Dos Santos Nascimento LB, Pasquini D, Alderotti F, Detti C, Ferrini F, Gori A. Unlocking the Hidden Potential of Rosemary ( Salvia rosmarinus Spenn.): New Insights into Phenolics, Terpenes, and Antioxidants of Mediterranean Cultivars. PLANTS (BASEL, SWITZERLAND) 2024; 13:3395. [PMID: 39683188 DOI: 10.3390/plants13233395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024]
Abstract
Rosemary (Salvia rosmarinus Spenn. syn. Rosmarinus officinalis L.) is a Mediterranean aromatic species used both as an official herb and as a spice. Different cultivars may exhibit diverse phytochemical compositions, making a comprehensive chemical characterization pivotal for a targeted selection of valuable cultivars. This study aimed to characterize and compare the phenolic and terpene composition and content of leaf extracts of six Mediterranean rosemary cultivars: 'Alba', 'Arp' 'Ginger', 'Gorizia', 'Tuscan Blue', and 'Roseus'. HPLC-DAD analysis revealed a similar phenolic composition in all the cultivars, but quantitative differences were observed. The main compounds were carnosic acid derivatives, flavonoids (e.g., luteolin, apigenin, and quercetin glucosides), rosmarinic acid, caffeic acid, and other hydroxycinnamic acid derivatives. The highest phenolic content was found in 'Alba', with a predominance of carnosic acid derivatives, whereas the lowest was found in 'Ginger' and 'Gorizia'. The GC-MS analysis evidenced quantitative differences among the cultivars. Particularly, 'Alba' contained the highest terpene content, whereas 'Arp' and 'Gorizia' showed the lowest values. Regarding the antioxidant activity, 'Alba' exhibited the highest values as regards phenols, while for terpenes, the highest ones were obtained for 'Ginger' and 'Tuscan Blue'. Significant Pearson correlations were obtained between the total phenol/terpene content and the antioxidant activity. The chemical characterization of these cultivars provides relevant information to produce the rosemary phytocomplexes, finding multiple industrial applications.
Collapse
Affiliation(s)
- Andrea Baptista
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Felicia Menicucci
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
| | - Cecilia Brunetti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | | | - Dalila Pasquini
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Francesca Alderotti
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Cassandra Detti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Francesco Ferrini
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| | - Antonella Gori
- Institute for Sustainable Plant Protection, National Research Council of Italy (CNR), Via Madonna del Piano 10, Sesto F.no, I-50019 Florence, Italy
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Viale delle Idee 30, Sesto F.no, I-50019 Florence, Italy
| |
Collapse
|
8
|
Oh ES, Lee JW, Song YN, Kim MO, Lee RW, Kang MJ, Lee J, Yun SH, Hong ST, Ro H, Lee SU. Tangeretin inhibits airway inflammatory responses by reducing early growth response 1 (EGR1) expression in mice exposed to cigarette smoke and lipopolysaccharide. Heliyon 2024; 10:e39797. [PMID: 39553588 PMCID: PMC11564960 DOI: 10.1016/j.heliyon.2024.e39797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024] Open
Abstract
Background Tangeretin, a natural polymethoxyflavone compound, possesses potent anti-inflammatory activity that improves respiratory inflammation in chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms underlying the anti-COPD effects of tangeretin remain unclear. In this study, we aimed to investigate the key molecular mechanisms by which tangeretin suppresses COPD-related inflammatory responses. Methods We conducted the investigation in phorbol-12-myristate-13-acetate (PMA)-stimulated human airway epithelial cells (in vitro) and cigarette smoke (CS)/lipopolysaccharide (LPS)-exposed mice (in vivo). Results Tangeretin decreased the release of inflammatory mediators, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and mucin 5AC (MUC5AC), by suppressing early growth response 1 (EGR1) expression in vitro. Tangeretin and EGR1 small interfering ribonucleic acid (siRNA) combination showed a synergistic reduction in MUC5AC and TNF-α secretion. Tangeretin administration significantly inhibited the levels of reactive oxygen species (ROS) production, elastase activity, TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) secretion, and macrophage and neutrophil numbers in the bronchoalveolar lavage fluid of CS/LPS-exposed mice. Tangeretin also prevented CS/LPS-induced abnormal pathological changes and excessive MUC5AC and EGR1 expression in lung tissue. Conclusion Comprehensively, tangeretin inhibits the lung inflammatory response associated with COPD by reducing EGR1 expression in PMA-induced human epithelial cells and in a CS/LPS-stimulated mouse model. This study shows that tangeretin has anti-COPD properties and can be a promising alternative (or complementary) treatment for inflammatory lung disease.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seok Han Yun
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, 266, Munhwa-Ro, Daejeon, 35015, Republic of Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
9
|
Babaeenezhad E, Dezfoulian O, Moradi Sarabi M, Ahmadvand H. Monoterpene linalool restrains gentamicin-mediated acute kidney injury in rats by subsiding oxidative stress, apoptosis, and the NF-κB/iNOS/TNF-α/IL-1β pathway and regulating TGF-β. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5701-5714. [PMID: 38294506 DOI: 10.1007/s00210-024-02978-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
The clinical use of gentamicin (GM) is restricted by its nephrotoxic effects. This study aimed for the first time to elucidate the ameliorative effects of the monoterpene linalool (Lin) against GM-mediated acute kidney injury in rats. A total of thirty-two rats were subdivided into four equal groups: control (saline), Lin (100 mg/kg/day), GM (100 mg/kg/day), and GM + Lin (100 and 100 mg/kg/day). Lin and GM were intraperitoneally administered for 12 days. Our results illustrated that Lin ameliorated GM-mediated renal histopathological abnormalities and reduced serum urea and creatinine levels in rats exposed to GM. Lin treatment mitigated oxidative stress in nephrotoxic animals as manifested by reducing serum and renal levels of malondialdehyde and increasing the activities of serum and renal glutathione peroxidase and renal catalase. Moreover, Lin markedly inhibited GM-triggered inflammation by downregulating NF-κB, iNOS, TNF-α, and IL-1β and reducing renal myeloperoxidase activity and nitric oxide levels. Interestingly, Lin repressed GM-induced apoptosis, as reflected by a marked downregulation of Bax and caspase-3 expression, concurrent with the upregulation of Bcl2 expression. Finally, Lin administration led to a significant downregulation of TGF-β expression in nephrotoxic animals. In summary, Lin ameliorated GM-mediated nephrotoxicity in rats, at least through its antioxidant, anti-inflammatory, and anti-apoptotic activities and by modulating TGF-β.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Mostafa Moradi Sarabi
- Razi Herbal Medicines Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Hassan Ahmadvand
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Singh S, Mishra A. Linalool: Therapeutic Indication And Their Multifaceted Biomedical Applications. Drug Res (Stuttg) 2024; 74:255-268. [PMID: 38968949 DOI: 10.1055/a-2321-9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| |
Collapse
|
11
|
Nguyen HM, Pham TV, Vo HQ, Nguyen HT, Nguyen LTK, Nguyen BC, Chung KL, Ho DV. Essential Oil from Vietnamese Peperomia leptostachya Hook. & Arn. (Piperaceae): Chemical Composition, Antioxidant, Anti-Inflammatory, Cytotoxic Activities, and In Silico Analysis. Molecules 2024; 29:2808. [PMID: 38930872 PMCID: PMC11206796 DOI: 10.3390/molecules29122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
This study is the first to investigate the chemical composition and antioxidant, anti-inflammatory, and cytotoxic activities of Peperomia leptostachya leaf oil. A yellow oil was obtained through hydro-distillation, with a yield of 0.1% (w/w). The GC-MS analysis revealed 66 compounds, constituting 99.6% of the oil. Sesquiterpene hydrocarbons predominated (70.4%), followed by monoterpene hydrocarbons (13.2%), oxygenated sesquiterpenes (12.4%), non-terpenic compounds (2.0%), and oxygenated monoterpenes (1.6%). Major constituents included germacrene D (25.1%), (E)-caryophyllene (17.4%), bicyclogermacrene (6.6%), α-pinene (6.2%), and β-pinene (4.7%). The assessment of antioxidant capacity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay yielded a weak effect, with an IC50 value > 100 µg/mL. The inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells was quantified using the MTT assay, showing an IC50 value of 15.15 ± 0.68 µg/mL. Furthermore, cytotoxic effects on SK-LU-1 cell line growth were evaluated using the sulforhodamine B assay, resulting in an IC50 value of 37.45 ± 2.43 μg/mL. The anti-inflammatory activity was notable among the analyzed bioactivities of this oil. By employing a computational model, the predominant secondary metabolites in the essential oil were selected as candidates for interaction analysis with cyclooxygenase-2, an enzyme implicated in the inflammatory response. Our findings suggest that P. leptostachya leaf oil could serve as a potential source of natural compounds with prospective therapeutic effects in treating inflammatory conditions.
Collapse
Affiliation(s)
- Hien Minh Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (H.M.N.); (K.L.C.)
| | - Ty Viet Pham
- Faculty of Chemistry, University of Education, Hue University, 34 Le Loi, Hue 530000, Vietnam
| | - Hung Quoc Vo
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue 530000, Vietnam; (H.Q.V.); (H.T.N.); (L.T.K.N.)
| | - Hoai Thi Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue 530000, Vietnam; (H.Q.V.); (H.T.N.); (L.T.K.N.)
| | - Linh Thuy Khanh Nguyen
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue 530000, Vietnam; (H.Q.V.); (H.T.N.); (L.T.K.N.)
| | - Bao Chi Nguyen
- Department of Science, Technology & International Relations, Hue University, 04 Le Loi, Hue 530000, Vietnam;
| | - Khanh Linh Chung
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam; (H.M.N.); (K.L.C.)
| | - Duc Viet Ho
- Faculty of Pharmacy, Hue University of Medicine and Pharmacy, Hue University, 06 Ngo Quyen, Hue 530000, Vietnam; (H.Q.V.); (H.T.N.); (L.T.K.N.)
| |
Collapse
|
12
|
Zyburtowicz K, Bednarczyk P, Nowak A, Muzykiewicz-Szymańska A, Kucharski Ł, Wesołowska A, Ossowicz-Rupniewska P. Medicinal Anti-Inflammatory Patch Loaded with Lavender Essential Oil. Int J Mol Sci 2024; 25:6171. [PMID: 38892359 PMCID: PMC11173169 DOI: 10.3390/ijms25116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Transdermal drug delivery offers a promising alternative for administering medications like ibuprofen, known for its analgesic and anti-inflammatory properties, with reduced gastrointestinal side effects compared to oral administration. This study explored the potential synergistic effects of combining ibuprofen with lavender essential oil (LEO) in transdermal patches. The composition of LEO was analyzed, revealing predominant compounds such as linalyl acetate and linalool, which are known for their analgesic and anti-inflammatory properties. The physicochemical properties of the patches were investigated, indicating improved cohesion with the addition of LEO. Additionally, thermal stability assessments demonstrated enhanced stability with LEO incorporation with an increase in onset decomposition temperature from 49.0 to 67.9 °C. The antioxidant activity of patches containing LEO was significantly higher with a free radical scavenging ability of 79.13% RSA compared to 60% RSA in patches without LEO. Release and permeation studies showed that patches with LEO exhibited an increased permeation of ibuprofen through the skin with 74.40% of the drug released from LEO-containing patches compared to 36.29% from patches without LEO after 24 h. Moreover, the permeation rate was notably faster with LEO, indicating quicker therapeutic effects. The inclusion of LEO in transdermal patches containing ibuprofen holds promise for enhancing drug delivery efficiency and therapeutic effectiveness, offering a potential strategy for improved pain management with reduced side effects.
Collapse
Affiliation(s)
- Karolina Zyburtowicz
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Paulina Bednarczyk
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland
| | - Anna Muzykiewicz-Szymańska
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland
| | - Aneta Wesołowska
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| |
Collapse
|
13
|
Alqudah A, Qnais E, Gammoh O, Bseiso Y, Wedyan M, Alqudah M, Oqal M, Abudalo R, Abdalla SS. Exploring the therapeutic potential of Anastatica hierochuntica essential oil in DSS-induced colitis. Inflammopharmacology 2024; 32:2035-2048. [PMID: 38520575 DOI: 10.1007/s10787-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/23/2024] [Indexed: 03/25/2024]
Abstract
The aim of this investigation was to explore the protective impacts and mechanisms of Anastatica hierochuntica essential oil (EOAH) against dextran sulfate sodium (DSS)-induced experimental colitis in mice. EOAH demonstrated a reduction in DSS-induced body weight decline, disease activity index (DAI), colon length reduction, colonic tissue damage, and myeloperoxidase (MPO) activity. The essential oil significantly mitigated the production of pro-inflammatory agents including TNF-α, IL-1β, and IL-12. Further analysis revealed that EOAH's anti-inflammatory effects involved the regulation of NF-κB and PPARγ pathways, as well as the inhibition of NLRP3 activation in colitis mice. Notably, EOAH treatment elevated the levels of beneficial commensal bacteria such as Lactobacillus and Bifidobacteria, while reducing Escherichia coli levels in the mice's feces. In addition, EOAH restored the expression of occludin and ZO-1 proteins in colonic tissues affected by ulcerative colitis (UC). These findings indicate that supplementing with EOAH might offer a novel therapeutic approach for UC prevention.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama, Bahrain
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Muna Oqal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Rawan Abudalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Shtaywy S Abdalla
- Department of Biological Sciences, Faculty of Science, University of Jordan, Amman, Jordan
| |
Collapse
|
14
|
Zhou Y, Chen B, Fu Y, Wan C, Li H, Wang L, Huang X, Wu Z, Li G, Xiong L, Qin D. Cang-ai volatile oil alleviates nasal inflammation via Th1/Th2 cell imbalance regulation in a rat model of ovalbumin-induced allergic rhinitis. Front Pharmacol 2024; 15:1332036. [PMID: 38835658 PMCID: PMC11148258 DOI: 10.3389/fphar.2024.1332036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
We previously revealed that Cang-ai volatile oil (CAVO) regulates T-cell activity, enhancing the immune response in people with chronic respiratory diseases. However, the effects of CAVO on allergic rhinitis (AR) have not been investigated. Herein, we established an ovalbumin (OVA)-induced AR rat model to determine these effects. Sprague-Dawley (SD) rats were exposed to OVA for 3 weeks. CAVO or loratadine (positive control) was given orally once daily for 2 weeks to OVA-exposed rats. Behavior modeling nasal allergies was observed. Nasal mucosa, serum, and spleen samples of AR rats were analyzed. CAVO treatment significantly reduced the number of nose rubs and sneezes, and ameliorated several hallmarks of nasal mucosa tissue remodeling: inflammation, eosinophilic infiltration, goblet cell metaplasia, and mast cell hyperplasia. CAVO administration markedly upregulated expressions of interferon-γ, interleukin (IL)-2, and IL-12, and downregulated expressions of serum tumor necrosis factor-α, IL-4, IL-5, IL-6, IL-13, immunoglobulin-E, and histamine. CAVO therapy also increased production of IFN-γ and T-helper type 1 (Th1)-specific T-box transcription factor (T-bet) of the cluster of differentiation-4+ T-cells in splenic lymphocytes, and protein and mRNA expressions of T-bet in nasal mucosa. In contrast, levels of the Th2 cytokine IL-4 and Th2-specific transcription factor GATA binding protein-3 were suppressed by CAVO. These cumulative findings demonstrate that CAVO therapy can alleviate AR by regulating the balance between Th1 and Th2 cells.
Collapse
Affiliation(s)
- Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Bojun Chen
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Yi Fu
- The Third Affiliated Hospital, Yunnan University of Chinese Medicine, Kunming, China
| | - Chunping Wan
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Huayan Li
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Lin Wang
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhao Wu
- School of Pharmacy, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Lei Xiong
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention at Yunnan University of TCM, Kunming, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
15
|
Yu ZN, Fan YJ, Nguyen TV, Piao CH, Lee B, Lee S, Shin HS, Song CH, Chai OH. Undaria pinnatifida ameliorates nasal inflammation by inhibiting eosinophil and mast cell activation and modulating the NF-κB/MAPKs signaling pathway. Immun Inflamm Dis 2024; 12:e1215. [PMID: 38488697 PMCID: PMC10941681 DOI: 10.1002/iid3.1215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Allergic rhinitis (AR) is the most prevalent form of atopic disease. Undaria pinnatifida has potent antioxidative, antidiabetic, and anti-inflammatory properties. AIMS We investigated the immunomodulatory effect of Undaria pinnatifida extract (UPE) on allergic inflammation in an AR mouse model. MATERIALS & METHODS Mice were sensitized and intranasally challenged with ovalbumin (OVA), and the Th1/Th2 and Th17/Treg-related cytokines and histopathology were exanimated after UPE treatments. Enzyme-linked immunosorbent assay was performed using serum samples and NALF to detect OVA-specific immunoglobulins and inflammatory cytokines. Mitogen-activated protein kinases (MAPKs) were measured by western blotting analysis, and an in vitro study measured mast cell activation induced by compound 48/80. RESULTS After UPE treatment, nasal and lung allergy symptoms, nasal mucosal swelling, and goblet cell hyperplasia were ameliorated. Oral UPE regulated the balance of Th1/Th2 and Th17/Treg cell differentiation in AR mice in a dose-dependent manner. In addition, UPE attenuated the migration of eosinophils and mast cells to the nasal mucosa by suppressing nuclear factor kappa B (NF-κB)/MAPKs. The levels of anti-OVA IgE and IgG1 were also decreased. DISCUSSION UPE inhibited inflammation by regulating the NF-κB/MAPKs signaling pathway and supressing the activation of critical immune cells such as eosinophils and mast cells. CONCLUSION UPE may have therapeutic potential for AR.
Collapse
Affiliation(s)
- Zhen Nan Yu
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Yan Jing Fan
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Basic Medicine, School of MedicineLiaocheng UniversityLiaochengShandongChina
| | - Thi Van Nguyen
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
| | - Chun Hua Piao
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Department of Pulmonary and Critical Care MedicineYantai Yuhuangding HospitalYantaiChina
| | - Byung‐Hoo Lee
- Department of Food Science and BiotechnologyGachon UniversitySeongnamSouth Korea
| | - So‐Young Lee
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Hee Soon Shin
- Division of Food Functionality ResearchKorea Food Research InstituteWanjuSouth Korea
- Division of Food Biotechnology ProgramKorea University of Science and TechnologyDaejeonSouth Korea
| | - Chang Ho Song
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| | - Ok Hee Chai
- Department of AnatomyJeonbuk National University Medical SchoolJeonjuSouth Korea
- Institute for Medical SciencesJeonbuk National UniversityJeonjuSouth Korea
| |
Collapse
|
16
|
Dugan D, Bell RJ, Brkljača R, Rix C, Urban S. A Review of the Ethnobotanical Use, Chemistry and Pharmacological Activities of Constituents Derived from the Plant Genus Geijera ( Rutaceae). Metabolites 2024; 14:81. [PMID: 38392973 PMCID: PMC11154539 DOI: 10.3390/metabo14020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Geijera Schott is a plant genus of the Rutaceae Juss. (rue and citrus) family, comprising six species which are all native to Oceania. Of the plants belonging to this genus, the most significant species that has a customary use is Geijera parviflora, which was used by Indigenous Australians, primarily as a pain reliever. Herein, a comprehensive review of the literature published on the genus Geijera from 1930 to 2023 was conducted. This is the first review for this plant genus, and it highlights the chemical constituents reported to date, together with the range of pharmacological properties described from the various species and different parts of the plant. These properties include anti-inflammatory, anti-microbial, anti-parasitic, insect repellent, analgesic, neuroactive, and anti-cancer activities. Finally, a reflection on some of the important areas for future focused studies of this plant genus is provided.
Collapse
Affiliation(s)
- Deepika Dugan
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Rachael J. Bell
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Robert Brkljača
- Monash Biomedical Imaging, Monash University, Clayton, VIC 3168, Australia;
| | - Colin Rix
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| | - Sylvia Urban
- Marine and Terrestrial Natural Product (MATNAP) Research Group, School of Science (Applied Chemistry and Environmental Science), RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia; (D.D.); (R.J.B.); (C.R.)
| |
Collapse
|
17
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Park JM, Park JW, Lee J, Kim SH, Seo DY, Ahn KS, Han SB, Lee JW. Aromadendrin inhibits PMA-induced cytokine formation/NF-κB activation in A549 cells and ovalbumin-induced bronchial inflammation in mice. Heliyon 2023; 9:e22932. [PMID: 38125474 PMCID: PMC10730751 DOI: 10.1016/j.heliyon.2023.e22932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Hyperproduction of immune cell-derived inflammatory molecules and recruitment of immune cells promote the development of allergic asthma (AA). Aromadendrin (ARO) has various biological properties including anti-inflammatory effects. In this study, we evaluated the ameliorative effects of ARO on the development of AA in vitro and in vivo. Phorbol 12-myristate 13-acetate (PMA, 100 nM) was used to induce inflammation in A549 airway epithelial cells. The cohesion of A549 and eosinophil EOL-1 cells was studied. Ovalbumin (30 or 60 μg)/Alum (3 mg) mixture was adapted for AA induction in mice. ARO (5 or 10 mg/kg, p. o.) was administered to mice to investigate its ameliorative effect on AA development. Enzyme-linked immunosorbent assay, western blotting, and hematoxylin and eosin/periodic acid Schiff staining were performed to study the ameliorative effect of ARO on bronchial inflammation. In PMA-stimulated A549 cells, the upregulation of cytokines (interleukin [IL]-1β/IL-6/tumor necrosis factor alpha [TNF-α]/monocyte chemoattractant protein [MCP]-1]) and nuclear factor kappa B (NF-κB) activation was effectively reduced by ARO pretreatment. ARO suppressed the adhesion of A549 cells and eosinophils. In ovalbumin-induced AA mice, the levels of cells, such as eosinophils, Th2 cytokines, MCP-1 in bronchoalveolar lavage fluid, IgE in serum, and inducible nitric oxide synthase/cyclooxygenase-2 expression in the lung tissue were upregulated, which were all suppressed by ARO. In addition, the increase in cell inflow and mucus formation in the lungs of AA mice was reversed by ARO as per histological analysis. ARO also modulated NF-κB activation in the lungs of AA mice. Overall, the anti-inflammatory properties of ARO in vitro/in vivo studies of AA were notable. Thus, ARO has a modulatory effect on bronchial inflammation and may be a potential adjuvant for AA treatment.
Collapse
Affiliation(s)
- Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Won Park
- Practical Research Division, Honam National Institute of Biological Resources (HNIBR), 99, Gohadoan-gil, Mokpo-si, Jeollanam-do, 58762, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung-Ho Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| |
Collapse
|
19
|
But VM, Bulboacă AE, Rus V, Ilyés T, Gherman ML, Bolboacă SD. Anti-inflammatory and antioxidant efficacy of lavender oil in experimentally induced thrombosis. Thromb J 2023; 21:85. [PMID: 37559057 PMCID: PMC10410829 DOI: 10.1186/s12959-023-00516-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Lavender oil (LO) possesses anti-inflammatory, antioxidant, antifungal, antibacterial, sedative, cardio-protective, and antinociceptive properties. Thrombosis and inflammation are interplayed processes that interact and influence one another. Our research compared three routes of administration to assess the efficacy of pretreatment with LO on carrageenan-induced thrombosis in rat tail. MATERIALS AND METHODS Wistar-Bratislava white rats were randomly divided into five groups of ten rats each and pretreated 3 consecutive days prior the inducement of thrombosis to with one dose of LO (150 mg/kg body weight (b.w.)): per os by gavage (TLOPO group), intraperitoneal (TIPLO group) and subcutaneous (TSCLO group). We also have a control (C, received saline solution 0.9% and DMSO (vehicle) 1 ml intraperitoneal (i.p.)) group and a group with thrombosis (T group, received saline solution 0.9% plus vehicle 1 ml i.p.). Histopathological examinations were conducted together with measurements of the circulating levels of three oxidative stress markers, antioxidant effect (TAC and THIOL), and three proinflammatory cytokines (TNF- α, RANTES, and MCP-1). RESULTS When administered intraperitoneally, lavender oil has the best efficacy on circulating levels of oxidative stress parameters (MDA, NOx, TOS), one oxidative stress marker (THIOL), and all studied proinflammatory cytokines (p-values < 0.02). Moreover, TIPLO displayed the closest values for bleeding and clotting time to the C group, as well as the lowest length of the thrombus than the T, TPOLO, and TSCLO groups (p-values < 0.001). The TIPLO group has histological appearance comparable to the C group, with the exception of the presence of oedema. CONCLUSIONS Lavender oil pretreatment with intraperitoneal administration as three days, one-dose per day, showed anti-inflammatory and antioxidant efficacy in experimentally induced thrombosis.
Collapse
Affiliation(s)
- Valeriu Mihai But
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| | - Adriana Elena Bulboacă
- Department of Pathophysiology, “Iuliu Haţieganu” University of Medicine and Pharmacy, Victor Babeş Street, No. 2-4, Cluj-Napoca, 400012 Romania
| | - Vasile Rus
- Department of Cell Biology, Histology and Embryology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400374 Romania
| | - Tamás Ilyés
- Department of Medical Biochemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| | - Mădălina Luciana Gherman
- Experimental Center, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, 400012 Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, “Iuliu Haţieganu” University of Medicine and Pharmacy, Louis Pasteur Street, No. 6, Cluj-Napoca, 400349 Romania
| |
Collapse
|
20
|
Oh ES, Ryu HW, Kim MO, Lee JW, Song YN, Park JY, Kim DY, Ro H, Lee J, Kim TD, Hong ST, Lee SU, Oh SR. Verproside, the Most Active Ingredient in YPL-001 Isolated from Pseudolysimachion rotundum var. subintegrum, Decreases Inflammatory Response by Inhibiting PKCδ Activation in Human Lung Epithelial Cells. Int J Mol Sci 2023; 24:ijms24087229. [PMID: 37108390 PMCID: PMC10138391 DOI: 10.3390/ijms24087229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease which causes breathing problems. YPL-001, consisting of six iridoids, has potent inhibitory efficacy against COPD. Although YPL-001 has completed clinical trial phase 2a as a natural drug for COPD treatment, the most effective iridoid in YPL-001 and its mechanism for reducing airway inflammation remain unclear. To find an iridoid most effectively reducing airway inflammation, we examined the inhibitory effects of the six iridoids in YPL-001 on TNF or PMA-stimulated inflammation (IL-6, IL-8, or MUC5AC) in NCI-H292 cells. Here, we show that verproside among the six iridoids most strongly suppresses inflammation. Both TNF/NF-κB-induced MUC5AC expression and PMA/PKCδ/EGR-1-induced IL-6/-8 expression are successfully reduced by verproside. Verproside also shows anti-inflammatory effects on a broad range of airway stimulants in NCI-H292 cells. The inhibitory effect of verproside on the phosphorylation of PKC enzymes is specific to PKCδ. Finally, in vivo assay using the COPD-mouse model shows that verproside effectively reduces lung inflammation by suppressing PKCδ activation and mucus overproduction. Altogether, we propose YPL-001 and verproside as candidate drugs for treating inflammatory lung diseases that act by inhibiting PKCδ activation and its downstream pathways.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Jae-Won Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinhyuk Lee
- Disease Target Structure Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Don Kim
- Immunotherapy Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju 28116, Republic of Korea
| |
Collapse
|
21
|
Vassiliou E, Awoleye O, Davis A, Mishra S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int J Mol Sci 2023; 24:ijms24086936. [PMID: 37108100 PMCID: PMC10138399 DOI: 10.3390/ijms24086936] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Thyme oil (TO) is derived from the flowers of various plants belonging to the genus Thymus. It has been used as a therapeutic agent since ancient times. Thymus comprises numerous molecular species exhibiting diverse therapeutic properties that are dependent on their biologically active concentrations in the extracted oil. It is therefore not surprising that oils extracted from different thyme plants present different therapeutic properties. Furthermore, the phenophase of the same plant species has been shown to yield different anti-inflammatory properties. Given the proven efficacy of TO and the diversity of its constituents, a better understanding of the interactions of the various components is warranted. The aim of this review is to gather the latest research findings regarding TO and its components with respect to their immunomodulatory properties. An optimization of the various components has the potential to yield more effective thyme formulations with increased potency.
Collapse
Affiliation(s)
- Evros Vassiliou
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Oreoluwa Awoleye
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Amanda Davis
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| | - Sasmita Mishra
- Department of Biological Sciences, Kean University, Union, NJ 07083, USA
| |
Collapse
|
22
|
Hsien Li P, Shih YJ, Lu WC, Huang PH, Wang CCR. Antioxidant, antibacterial, anti-inflammatory, and anticancer properties of Cinnamomum kanehirae Hayata leaves extracts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
23
|
Izadi B, Joulaei H, Lankarani KB, Tabrizi R, Taherifard E, Sadeghpour A, Vali M, Akbari M. The effect of green cardamom on blood pressure and inflammatory markers among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized clinical trials. Phytother Res 2023; 37:679-688. [PMID: 36181264 DOI: 10.1002/ptr.7648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
Research shows that herbal spices, including seeds of Elettaria cardamomum, may exert beneficial effects on unhealthy metabolic status. This study is a systematic review of the effect of green cardamom in patients with metabolic syndrome and its related disorders. PubMed/Medline, Scopus, EMBASE, Web of Science, and Cochrane Library were searched to identify the relevant randomized clinical trials. The data were pooled using the random-effects model, and weighted mean difference (WMD) was considered as summary effect size. Of 625 clinical trials, eight reports with 595 patients (299 in intervention group and 296 in control group) were included. The findings indicated that green cardamom significantly decreased diastolic blood pressure (WMD: -0.91 mmHg, 95%CI; -1.19, -0.62), high-sensitivity C-reactive protein (WMD: -1.21 mg/L, 95%CI; -2.18, -0.24), interleukin 6 levels (WMD: -2.41 ng/L, 95%CI; -4.35, -0.47). However, cardamom supplementation did not significantly affect systolic blood pressure. This meta-analysis demonstrated that green cardamom could improve blood pressure control and exert antiinflammatory effects which could help patients with unhealthy metabolic profile better manage their health. Importantly, there were few eligible randomized trials with quite a low number of participants. Further prospective studies on larger sample sizes and longer duration of supplementation are warranted for its widespread use.
Collapse
Affiliation(s)
- Bahareh Izadi
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Joulaei
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Tabrizi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Clinical Research Development Unit, Valiasr Hospital, Fasa University of Medical Sciences, Fasa, Iran
| | - Erfan Taherifard
- Shiraz School for Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sadeghpour
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohebat Vali
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Akbari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
24
|
Zhao Q, Zhu L, Wang S, Gao Y, Jin F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115829. [PMID: 36252876 DOI: 10.1016/j.jep.2022.115829] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant essential oils (PEOs) extracted from aromatic compounds of the plant contain complex mixtures of volatile and lipophilic bioactive compounds. In ancient Egypt, Arabia, Greece, and China, PEOs were traditional used in aromatherapy for various health disorders, including pain and inflammation. AIM OF THE STUDY In this review, we provide an overview of the anti-inflammatory effects of PEOs and the underlying mechanisms associated with anti-inflammatory effects using in vitro and in vivo models. Further, clinical trials associated with PEOs were explored. MATERIALS AND METHODS The literature search was performed using various web-based tools and databases like Google Scholar, Web of Science, PubMed, CNKI and SCOPUS. The keywords used for conducting the literature review were general terms like "essential oils" followed by (AND) the subject of interest like "in vitro and/or in vivo anti-inflammatory models," "inflammatory response," "inflammatory indicators," "pro-inflammatory cytokines," "signaling pathway," "anti-inflammatory mechanism," "toxicology and side effects" and "clinical trials." The articles selected were published between 2017 and 2022. The articles prior to 2017 were only considered if they were associated with molecular mechanisms or signaling pathways involved in the inflammatory responses. RESULTS In vitro and in vivo inflammation models have been used to study the anti-inflammatory effects of 48 PEOs. Studies have reported that PEOs targets and inhibit multiple dysregulated signaling pathways associated with inflammation, including Toll-like receptors, nuclear transcription factor-κ B, mitogen-activated protein kinases, Nod-like receptor family pyrin domain containing 3, and auxiliary pathways like the nuclear factor erythroid 2-related factor 2/antioxidant response element and Janus kinase/signal transducers and activators of transcription) signaling pathways. CONCLUSION PEOs extracted from different plant materials had varied qualitative and quantitative compositions of biologically active compounds. Different anti-inflammatory potentials and different molecular signal transduction have been attributed to PEOs-derived bioactive compounds with different chemical structures. The data on therapeutic efficacy and the long-term side effects of PEOs as an anti-inflammatory drug are still unknown due to the lack of clinical trials on PEOs. There is still insufficient evidence to draw conclusions on anti-inflammatory properties of PEOs without promising outcomes from clinical trials.
Collapse
Affiliation(s)
- Qian Zhao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China.
| | - Liyun Zhu
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China.
| | - Sunan Wang
- Canadian Food and Wine Institute, Niagara College Canada, 135 Taylor Road, Niagara-on-the-Lake, Ontario, L0S1J0, Canada
| | - Yongsheng Gao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China
| | - Fei Jin
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China
| |
Collapse
|
25
|
Correa N, Orlando R. Extract of Laurus nobilis attenuates inflammation and epithelial ulcerations in an experimental model of inflammatory bowel disease. WIKIJOURNAL OF MEDICINE 2023. [DOI: 10.15347/wjm/2023.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are classified as chronic inflammatory disorders and typically require anti-inflammatory drug therapies, such as glucocorticoid regimens, non-steroidal anti-inflammatory drugs, and biologics, aimed at reducing inflammation in the bowel wall. However, each of these therapies is accompanied by a list of possible serious side effects. Because of this, there remains an urgent need to identify new pharmacologic options to reduce or prevent the pro-inflammatory events of IBD while minimizing adverse side effects, and to make available more cost-effective treatment modalities. We have previously identified several herbal extracts that demonstrate potent bio-inhibitory activity of the innate immune response. In particular, Laurus nobilis (LN), or more commonly called bay laurel, demonstrated significant anti-inflammatory function by inhibiting nuclear factor-κB activation. Based upon our original in vitro findings, we have now examined the effects of this herbal extract on a murine dextran sodium sulfate (DSS) model of IBD. Hematoxylin and eosin-stained paraffin sections prepared from DSS treated animals show clear epithelial damage, including ulcerations, extensive neutrophil infiltration into the mucosal layer, and granuloma formation. Tissue from DSS treated animals that also received LN extract showed improved tissue morphology more closely resembling that from control animals. In addition, DSS treated mice with co-administration of LN extract showed a significant reduction in CD4+ antibody staining within the mucosal layer in colonic sections indicating reduced lymphocyte infiltration. Based on these findings, we believe that administration of LN extracts may be effective in reducing the intestinal epithelial damage seen in human IBD and warrants further investigation through clinical trials. Lay Summary: Inflammatory bowel diseases (IBD), such as Crohn's disease (CD) and ulcerative colitis (UC), manifest as chronic inflammation and ulceration of tissues lining the digestive tract. CD involves inflammation of the deeper layers of the digestive tract, including both the small and large intestines, and less commonly, the upper digestive tract. UC involves inflammation along the lining of the colon and rectum. Steroid or biologic treatments for IBD are common, however, are limited due to significant side effects and/or prohibitive cost. In the present study, we provide evidence for use of the natural product, Laurus nobilis (bay leaf), as a safe and effective anti-inflammatory therapy for IBD.
Collapse
|
26
|
Wei M, Liu F, Raka RN, Xiang J, Xiao J, Han T, Guo F, Yang S, Wu H. In vitro and in silico analysis of 'Taikong blue' lavender essential oil in LPS-induced HaCaT cells and RAW264.7 murine macrophages. BMC Complement Med Ther 2022; 22:324. [PMID: 36474235 PMCID: PMC9727978 DOI: 10.1186/s12906-022-03800-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND 'Taikong blue' lavender, a space-bred cultivar of Lavandula angustifolia, is one of the main lavender essential oil production crops in Xinjiang Province, China. Several cases of local usage indicated that 'Taikong blue' lavender essential oil (TLEO) had excellent anti-inflammatory and antioxidant properties for skin problems. However, to date, substantial data on these functions are lacking. In this study, we aimed to investigate the composition and bioactivities of TLEO and the potential underlying mechanisms through LPS-induced inflammatory models of HaCaT and RAW264.7 cells. METHODS The composition of TLEO was determined by GC‒MS. To study the anti-inflammatory and antioxidative properties of TLEO, we induced HaCaT and RAW264.7 cells by LPS. TLEO (0.001%-0.1%, v/v) was used to treat inflamed cells with dexamethasone (DEX, 10 μg/mL) as the standard drug. A variety of tests were carried out, including biochemical assays, ELISA, RT‒PCR, and western blotting. Docking of components was performed to predict potential ligands. RESULTS The GC‒MS analysis revealed that 53 compounds (> 0.01%) represented 99.76% of the TLEO, and the majority of them were esters. TLEO not only reduced the levels of oxidative stress indicators (NO, ROS, MDA, and iNOS at the mRNA and protein levels) but also protected the SOD and CAT activities. According to the RT‒PCR, ELISA, and Western blot results, TLEO decreased inflammation by inhibiting the expression of TNF-α, IL-1β, IL-6, and key proteins (IκBα, NF-кB p65, p50, JNK, and p38 MAPK) in MAPK-NF-кB signaling. Molecular docking results showed that all of the components (> 1% in TLEO) were potent candidate ligands for further research. CONCLUSION The theoretical evidence for TLEO in this study supported its use in skin care as a functional ingredient for cosmetics and pharmaceutics.
Collapse
Affiliation(s)
- Mengya Wei
- grid.411615.60000 0000 9938 1755Beijing Technology and Business University, Beijing, 100048 China
| | - Fei Liu
- Shandong Freda Biotech Co., Ltd, Ji’nan, 250101 Shandong China ,Xinjiang Eprhan Spices Co., Ltd, Cocodala, 835213 Xinjiang China
| | - Rifat Nowshin Raka
- grid.411615.60000 0000 9938 1755Beijing Technology and Business University, Beijing, 100048 China
| | - Jie Xiang
- grid.411615.60000 0000 9938 1755Beijing Technology and Business University, Beijing, 100048 China
| | - Junsong Xiao
- grid.411615.60000 0000 9938 1755Beijing Technology and Business University, Beijing, 100048 China
| | - Tingting Han
- Shandong Freda Biotech Co., Ltd, Ji’nan, 250101 Shandong China ,Xinjiang Eprhan Spices Co., Ltd, Cocodala, 835213 Xinjiang China
| | - Fengjiao Guo
- Shandong Freda Biotech Co., Ltd, Ji’nan, 250101 Shandong China ,Xinjiang Eprhan Spices Co., Ltd, Cocodala, 835213 Xinjiang China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Ji’nan, 250101 Shandong China ,Xinjiang Eprhan Spices Co., Ltd, Cocodala, 835213 Xinjiang China
| | - Hua Wu
- grid.411615.60000 0000 9938 1755Beijing Technology and Business University, Beijing, 100048 China
| |
Collapse
|
27
|
Miao Z, Dong M, Wang Z, Ma J, Lin Y, Wu Y. Linalool inhibits the progression of osteoarthritis via the Nrf2/HO-1 signal pathway both in vitro and in vivo. Int Immunopharmacol 2022; 113:109338. [DOI: 10.1016/j.intimp.2022.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
28
|
Park JW, Choi J, Lee J, Park JM, Kim SM, Min JH, Seo DY, Goo SH, Kim JH, Kwon OK, Lee K, Ahn KS, Oh SR, Lee JW. Methyl P-Coumarate Ameliorates the Inflammatory Response in Activated-Airway Epithelial Cells and Mice with Allergic Asthma. Int J Mol Sci 2022; 23:ijms232314909. [PMID: 36499236 PMCID: PMC9736825 DOI: 10.3390/ijms232314909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Methyl p-coumarate (methyl p-hydroxycinnamate) (MH) is a natural compound found in a variety of plants. In the present study, we evaluated the ameliorative effects of MH on airway inflammation in an experimental model of allergic asthma (AA). In this in vitro study, MH was found to exert anti-inflammatory activity on PMA-stimulated A549 airway epithelial cells by suppressing the secretion of IL-6, IL-8, MCP-1, and ICAM-1. In addition, MH exerted an inhibitory effect not only on NF-κB (p-NF-κB and p-IκB) and AP-1 (p-c-Fos and p-c-Jun) activation but also on A549 cell and EOL-1 cell (eosinophil cell lines) adhesion. In LPS-stimulated RAW264.7 macrophages, MH had an inhibitory effect on TNF-α, IL-1β, IL-6, and MCP-1. The results from in vivo study revealed that the increases in eosinophils/Th2 cytokines/MCP-1 in the bronchoalveolar lavage fluid (BALF) and IgE in the serum of OVA-induced mice with AA were effectively inhibited by MH administration. MH also exerted a reductive effect on the immune cell influx, mucus secretion, and iNOS/COX-2 expression in the lungs of mice with AA. The effects of MH were accompanied by the inactivation of NF-κB. Collectively, the findings of the present study indicated that MH attenuates airway inflammation in mice with AA, suggesting its potential as an adjuvant in asthma therapy.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jinseon Choi
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Juhyun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Mi Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jae-Hong Min
- Laboratory Animal Resources Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong Health Technology Administration Complex, Cheongju 28159, Republic of Korea
| | - Da-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Soo-Hyeon Goo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ju-Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
| | - Kihoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, Cheonju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Correspondence: (S.-R.O.); (J.-W.L.)
| |
Collapse
|
29
|
Biltekin S, Karadaǧ AE, Demirci B, Demirci F. ACE2 and LOX Enzyme Inhibitions of Different Lavender Essential Oils and Major Components Linalool and Camphor. ACS OMEGA 2022; 7:36561-36566. [PMID: 36278093 PMCID: PMC9583641 DOI: 10.1021/acsomega.2c04518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/21/2022] [Indexed: 05/30/2023]
Abstract
In this present study, Lavandula angustifolia, Lavandula stoechas, and Lavandula × heterophylla essential oils and their main compounds linalool and camphor were evaluated in vitro for lipoxygenase enzyme (LOX) and for angiotensin converting enzyme 2 (ACE2) inhibition potential. The chemical compositions of L. angustifolia, L. stoechas, and L. heterophylla essential oils were confirmed both by gas chromatography-mass spectrometry and gas chromatography-flame ionization detection, where 22.4, 0.9, and 30.6% linalool and 17.8, 54.7, and 15% camphor were identified for each oil among other components, respectively. Enzyme inhibitory activity studies were performed at 20 μg/mL for the tested essential oils, whereas for linalool and camphor concentrations, 5 μg/mL was used. The ACE2 inhibitions of L. angustifolia, L. stoechas, and L. heterophylla essential oils were 25.4, 34.1, and 27.1%, while the LOX inhibitions were observed as 79, 49.1, and 86.7%, respectively. In addition, linalool and camphor showed remarkable ACE2 inhibition with 77.1 and 85.1%, whereas the LOX inhibition was observed at 92 and 67.2%, respectively. In conclusion of the initial findings, further detailed in vivo studies are needed to confirm the safe use.
Collapse
Affiliation(s)
- Sevde
Nur Biltekin
- Department
of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Beykoz, Istanbul 34810, Turkey
- Institute
of Sciences, Istanbul University, Istanbul 34116, Turkey
| | - Ayşe Esra Karadaǧ
- Department
of Pharmacognosy, School of Pharmacy, Istanbul
Medipol University, Beykoz, Istanbul 34810, Turkey
- Graduate
School of Health Sciences, Anadolu University, Eskişehir 26470, Turkey
| | - Betül Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Turkey
| | - Fatih Demirci
- Department
of Pharmacognosy, Faculty of Pharmacy, Anadolu
University, Eskişehir 26470, Turkey
- Faculty of
Pharmacy, Eastern Mediterranean University, N. Cyprus, Mersin 10, Famagusta 99450, Turkey
| |
Collapse
|
30
|
Ali G, Ara T. Synthesis, Characterization, and Biological Activity of Linalool-Based α-Aminophosphonates. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022090160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Rai VK, Chanda D, Chanotiya CS, Yadav NP. A combination of linalool and linalyl acetate synergistically alleviates imiquimod-induced psoriasis-like skin inflammation in BALB/c mice. Front Pharmacol 2022; 13:913174. [PMID: 35991888 PMCID: PMC9388787 DOI: 10.3389/fphar.2022.913174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation and differentiation with increased immune cell infiltration. The anti-psoriatic effect of lavender oil has been reported. However, its phytoconstituents, linalool (L) and linalyl acetate (LA), showed a distinctive affinity with psoriasis targets. Objectives: This investigation was aimed to determine the combined effect of L and LA in ameliorating psoriasis-like skin inflammation and its safety in long-term topical uses. Methods: The combined effect of L and LA was compared with their individual effects. The anti-psoriatic activity was performed using imiquimod (IMQ)-induced psoriasis in BALB/c mice and evaluated to reduce PASI and CosCam scores and Th-1 and Th-17 cell-specific cytokine levels. The acute and repeated dose dermal toxicities were investigated as per the OECD guidelines. Results: L and LA combination (LLA) in the 1:1 w/w ratio at 2% concentration showed a synergistic effect. The combination showed 76.31% and 71.29% recovery in PASI and CosCam Scores; however, L2% and LA2% showed 64.28% and 47.61% recovery in PASI and 64.75 and 56.76% recovery in CosCam scores, respectively. It showed >90% and >100% recovery in Th-17 and Th-1 cell-specific cytokines, respectively, and restored epidermal hyperplasia and parakeratosis toward normal compared with psoriatic mice. A marked reduction in NF-κB, cck6, and the IL-17 expression was also observed in the LLA-treated group. This combination was safe in a therapeutically effective dose for 28 days as no significant changes were observed in organ and body weights, liver and kidney parameters, and differential leukocyte counts. Conclusion: This study proves the synergy between L and LA in a 1:1 w/w ratio at 2% in the treatment of psoriasis-like skin inflammation and provides strong scientific evidence for its safe topical use.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U. P., India
| | - Debabrata Chanda
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U. P., India
| | - Chandan Singh Chanotiya
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U. P., India
| | - Narayan Prasad Yadav
- Bio-prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, U. P., India
- *Correspondence: Narayan Prasad Yadav, ,
| |
Collapse
|
32
|
Maleš I, Dragović-Uzelac V, Jerković I, Zorić Z, Pedisić S, Repajić M, Garofulić IE, Dobrinčić A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants (Basel) 2022; 11:antiox11061140. [PMID: 35740037 PMCID: PMC9220411 DOI: 10.3390/antiox11061140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023] Open
Abstract
Functional beverages based on herbal extracts are highly demanded products due to the presence of bioactives with promising health benefits and interesting and characteristic sensory properties. Mediterranean medicinal and aromatic herbs contain a wide range of bioactives (non-volatile polyphenols, volatile terpenes) that are important constituents of herbal extracts and essential oils. The antioxidant capacity and potential health benefits of these bioactives could be associated with their synergistic effects. Therefore, this study aimed to characterize the non-volatile and volatile bioactives of sage (Salvia officinalis L.), wild thyme (Thymus serpyllum L.) and laurel (Laurus nobilis L.) aqueous extracts and their two- and three-component mixtures as well as their antioxidant capacity. The content of total phenols, flavonoids, hydroxycinnamic acids and flavonols was determined spectrophotometrically. Individual polyphenols were analyzed by LC-MS/MS, the volatiles were analyzed by HS-SPME/GC-MS, and the antioxidant capacity was analyzed by ORAC and DPPH assays. The results showed that aqueous extracts of all examined herbs and their mixtures contained a high content of phenolic compounds ranging from 0.97 to 2.79 g L-1 of the sample, among which the most common were flavonols. At the same time, mono- and sesquiterpenes were the main volatiles. All extracts showed high antioxidant capacity, especially L. nobilis (781.62 ± 5.19 μmol TE mL-1 of the sample in the DPPH assay; 1896.10 ± 8.77 μmol TE mL-1 of the sample in the ORAC assay) and the two-component mixture of L. nobilis and T. serpyllum (679.12 ± 5.19 μmol TE mL-1 in the DPPH assay; 1913.38 ± 8.77 μmol TE mL-1 in the ORAC assay). Mixtures of herbal extracts have been shown to possess additive or synergistic effects, consequently contributing to higher antioxidant capacity. Therefore, two-component mixtures of herbal extracts showed promising potential for the production of functional beverages.
Collapse
Affiliation(s)
- Ivanka Maleš
- Department of Pharmacy, The School of Medicine, University of Split, 21000 Split, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
- Correspondence: (V.D.-U.); (A.D.)
| | - Igor Jerković
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia;
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
| | - Ana Dobrinčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (Z.Z.); (S.P.); (M.R.); (I.E.G.)
- Correspondence: (V.D.-U.); (A.D.)
| |
Collapse
|
33
|
de Freitas Junior RA, Lossavaro PKDMB, Kassuya CAL, Paredes-Gamero EJ, Farias Júnior NC, Souza MIL, Silva-Comar FMDS, Cuman RKN, Silva DB, Toffoli-Kadri MC, Silva-Filho SE. Effect of Ylang-Ylang ( Cananga odorata Hook. F. & Thomson) Essential Oil on Acute Inflammatory Response In Vitro and In Vivo. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123666. [PMID: 35744789 PMCID: PMC9231162 DOI: 10.3390/molecules27123666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022]
Abstract
The aim of this study is to evaluate the phytochemical profile, oral acute toxicity, and the effect of ylang-ylang (Cananga odorata Hook. F. & Thomson) essential oil (YEO) on acute inflammation. YEO was analyzed by gas chromatography/mass spectrometry. For in vitro tests, YEO was assessed using cytotoxicity, neutrophil chemotaxis induced by N-formyl methionyl leucyl phenylalanine (fMLP), and phagocytic activity tests. YEO was orally administered in zymosan-induced peritonitis, carrageenan-induced leukocyte rolling, and adhesion events in the in situ microcirculation model and in carrageenan-induced paw edema models. YEO (2000 mg/kg) was also tested using an acute toxicity test in Swiss mice. YEO showed a predominance of benzyl acetate, linalool, benzyl benzoate, and methyl benzoate. YEO did not present in vitro cytotoxicity. YEO reduced the in vitro neutrophil chemotaxis induced by fMLP and reduced the phagocytic activity. The oral treatment with YEO reduced the leukocyte recruitment and nitric oxide production in the zymosan-induced peritonitis model, reduced rolling and adherent leukocyte number induced by carrageenan in the in situ microcirculation model, and reduced carrageenan-induced edema and mechanical hyperalgesia. YEO did not present signs of toxicity in the acute toxicity test. In conclusion, YEO affected the leukocyte activation, and presented antiedematogenic, anti-hyperalgesic, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Robson Araújo de Freitas Junior
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | - Paloma Kênia de Moraes Berenguel Lossavaro
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | | | - Edgar Julian Paredes-Gamero
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | | | - Maria Inês Lenz Souza
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Roberto Kenji Nakamura Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá 87020-900, Brazil; (F.M.d.S.S.-C.); (R.K.N.C.)
| | - Denise Brentan Silva
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | - Mônica Cristina Toffoli-Kadri
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (R.A.d.F.J.); (P.K.d.M.B.L.); (E.J.P.-G.); (D.B.S.); (M.C.T.-K.)
- Correspondence:
| |
Collapse
|
34
|
dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, Maia CDSF. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr Neuropharmacol 2022; 20:1073-1092. [PMID: 34544345 PMCID: PMC9886818 DOI: 10.2174/1570159x19666210920094504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is a prevalent disease worldwide, limiting psychosocial functioning and thequality of life. Linalool is the main constituent of some essential oils from aromatic plants, representing about 70% of these volatile concentrates. Evidence of the linalool activity on the central nervous system, mainly acting as an antidepressant agent, is increasingly abundant. This review aimed to extend the knowledge of linalool's antidepressant action mechanisms, which is fundamental for future research, intending to highlight this natural compound as a new antidepressant phytomedication. A critical analysis is proposed here with probable hypotheses of the synergic mechanisms that support the evidence of antidepressant effects of the linalool. The literature search has been conducted in databases for published scientific articles before December 2020, using relevant keywords. Several pieces of evidence point to the anticonvulsant, sedative, and anxiolytic actions. In addition to these activities, other studies have revealed that linalool acts on the monoaminergic and neuroendocrine systems, inflammatory process, oxidative stress, and neurotrophic factors, such as BDNF, resulting in considerable advances in the knowledge of the etiology of depression. In this context, linalool emerges as a promising bioactive compound in the therapeutic arsenal, capable of interacting with numerous pathophysiological factors and acting on several targets. This review claims to contribute to future studies, highlighting the gaps in the linalool knowledge, such as its kinetics, doses, routes of administration, and multiple targets of interaction, to clarify its antidepressant activity.
Collapse
Affiliation(s)
- Éverton Renan Quaresma dos Santos
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; ,Address correspondence to this author at the Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Rua Augusto Corrêa 1, Campus do Guamá, Belém-Pará 66075-900, Brazil; Tel: +55 (91) 3201-7202; E-mails: ;
| |
Collapse
|
35
|
Zhang N, Bian Y, Yao L. Essential Oils of Gardenia jasminoides J. Ellis and Gardenia jasminoides f. longicarpa Z.W. Xie & M. Okada Flowers: Chemical Characterization and Assessment of Anti-Inflammatory Effects in Alveolar Macrophage. Pharmaceutics 2022; 14:pharmaceutics14050966. [PMID: 35631552 PMCID: PMC9145545 DOI: 10.3390/pharmaceutics14050966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Alveolar macrophage is the predominant cell type in the lung and is thought to be the major target for anti-inflammatory therapy in chronic obstructive pulmonary disease (COPD). Aromatherapy using natural essential oils with anti-inflammatory effects for inhalable administration is a potential complementary and alternative therapy for COPD treatment. The Gardenia jasminoides flower is famous for its fragrance in East Asia and is used for treating colds and lung problems in folk medicine. Therefore, in the present study, flower essential oils from two main medicinal gardenia varieties (G. jasminoides J. Ellis and G. jasminoides f. longicarpa Z.W. Xie & M. Okada) were extracted by hydro-distillation, and their chemical components were analyzed by GC-MS. The anti-inflammatory effects of the two essential oils and their main ingredients were further studied on lipopolysaccharide (LPS)-induced models in murine alveolar macrophages (MH-S). The results indicated that the chemical constituents of the two gardenia varieties were quite different. Alcohol accounted for 53.8% of the G. jasminoides essential oil, followed by terpenes (16.01%). Terpenes accounted for 34.32% of the G. jasminoides f. longicarpa essential oil, followed by alcohols (19.6%) and esters (13.85%). Both the two gardenia essential oils inhibited the LPS-induced nitric oxide (NO) release and reduced the production of tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) in the MH-S cells. Linalool and α-farnesene dose-dependently reduced the NO release in the MH-S cells. Linalool and α-farnesene did not affect the PGE2 production but regulated the expression of TNF- α. In addition to linalool and α-farnesene, other components in the gardenia flower essential oils appeared to be able to act as anti-inflammatory agents and influence the PGE2 pathway.
Collapse
Affiliation(s)
- Nan Zhang
- School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China;
- Aromatic Plant R&D Center, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Ying Bian
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China;
| | - Lei Yao
- School of Design, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China;
- Aromatic Plant R&D Center, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
- Correspondence: ; Tel./Fax: +86-21-34206606
| |
Collapse
|
36
|
Ryu HW, Lee JW, Kim MO, Lee RW, Kang MJ, Kim SM, Min JH, Oh ES, Song YN, Jung S, Ro H, Kim DY, Park YJ, Lee SU, Hong ST, Oh SR. Daphnodorin C isolated from the stems of Daphne kiusiana Miquel attenuates airway inflammation in a mouse model of chronic obstructive pulmonary disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153848. [PMID: 34785110 DOI: 10.1016/j.phymed.2021.153848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Since long-term or high-dose use of COPD medication causes adverse effects in patients with COPD, more effective and safer ways to manage COPD symptoms are required. Daphne kiusiana Miquel is a medicinal plant, but its anti-COPD efficacy was little studied. PURPOSE We investigated the anti-COPD activity and molecular mechanism of action of active compounds isolated from D. kiusiana to find drug candidates for COPD. METHODS We isolated seven compounds (1-7) in an ethyl acetate (EtOAc) fraction from D. kiusiana, and determined that seven compounds effectively control the inflammatory responsiveness in both PMA-stimulated lung epithelial cells (in vitro) and/or in COPD model mice using cigarette smoke- and lipopolysaccharides-exposed animals in vivo. RESULTS We show that the ethyl acetate (EtOAc) fraction from D. kiusiana. suppresses inflammatory response in both PMA-stimulated human lung epithelial cells (in vitro) and COPD model mice (in vivo). The EtOAc fraction effectively suppresses various inflammatory responses, such as mucus secretion, ROS production, bronchial recruitment of inflammatory cells, and release of proinflammatory cytokines. Additionally, we isolated three compounds with anti-inflammatory efficacy from the EtOAc fraction, out of which daphnodorin C was the most effective. Finally, we demonstrated that daphnodorin C negatively regulates inflammatory gene expression by suppressing NF-κB and specific MAPK signaling pathways (JNK and p38) in vitro and in vivo. CONCLUSIONS These results suggest that daphnodorin C could be a promising therapeutic alternative for managing COPD symptoms.
Collapse
Affiliation(s)
- Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Mun-Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Ro Woon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Myung-Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Eun Sol Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Yu Na Song
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea; College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Sunin Jung
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Hyunju Ro
- College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, South Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Yhun Jung Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea.
| | - Sung-Tae Hong
- Departments of Anatomy & Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, 266, Munhwa-Ro, Daejeon 35015, South Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang, Cheongju, Chungbuk, 28116, South Korea.
| |
Collapse
|
37
|
Ghorani V, Beigoli S, Khazdair MR, Boskabady MH. The effect of Zataria multiflora on respiratory allergic and immunologic disorders, experimental and clinical evidence: A comprehensive review. Phytother Res 2022; 36:1135-1155. [PMID: 35080049 DOI: 10.1002/ptr.7382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022]
Abstract
Zataria multiflora (Z. multiflora) is used in traditional and modern medicine for therapeutic objectives especially in respiratory disorders. Therefore, updated experimental and clinical studies on the effects of Z. multiflora on respiratory, allergic, and immunologic disorders are reviewed. Various electronic search engines including PubMed, Science Direct, Scopus, and Google Scholar were searched using appropriate keywords until the end of November 2021. Books, thesis-hard copies of some articles were also included. The effects of Z. multiflora on respiratory disorders including asthma, chronic obstructive pulmonary disease (COPD), lung infection, and lung cancer were shown. Extracts of Z. multiflora showed the relaxant effect with various mechanisms. The preventive effects of Z. multiflora were also demonstrated by mechanisms such as antioxidant, immunomodulatory, and antiinflammatory properties in the experimental animal models of different respiratory diseases. Carvacrol and thymol are probably responsible for the therapeutic effect of plant among 56 constituents of Z. multiflora. In addition, bronchodilatory and preventive effects of the plant and its constituents on asthma, COPD, lung disorders due to noxious agents and allergic and immunologic disorders were shown in the clinical studies. Therefore Z. multiflora and its constituents may be considered as a preventive and/or relieving therapy in various respiratory diseases.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Beigoli
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Joshi MB, Kamath A, Nair AS, Yedehali Thimmappa P, Sriranjini SJ, Gangadharan GG, Satyamoorthy K. Modulation of neutrophil (dys)function by Ayurvedic herbs and its potential influence on SARS-CoV-2 infection. J Ayurveda Integr Med 2022; 13:100424. [PMID: 33746457 PMCID: PMC7962552 DOI: 10.1016/j.jaim.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/08/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, traditional medicines of Ayurveda have been in use to manage infectious and non-infectious diseases. The key embodiment of traditional medicines is the holistic system of approach in the management of human diseases. SARS-CoV-2 (COVID-19) infection is an ongoing pandemic, which has emerged as the major health threat worldwide and is causing significant stress, morbidity and mortality. Studies from the individuals with SARS-CoV-2 infection have shown significant immune dysregulation and cytokine overproduction. Neutrophilia and neutrophil to lymphocyte ratio has been correlated to poor outcome due to the disease. Neutrophils, component of innate immune system, upon stimulation expel DNA along with histones and granular proteins to form extracellular traps (NETs). Although, these DNA lattices possess beneficial activity in trapping and eliminating pathogens, NETs may also cause adverse effects by inducing immunothrombosis and tissue damage in diseases including Type 2 Diabetes and atherosclerosis. Tissues of SARS-CoV-2 infected subjects showed microthrombi with neutrophil-platelet infiltration and serum showed elevated NETs components, suggesting large involvement and uncontrolled activation of neutrophils leading to pathogenesis and associated organ damage. Hence, traditional Ayurvedic herbs exhibiting anti-inflammatory and antioxidant properties may act in a manner that might prove beneficial in targeting over-functioning of neutrophils and there by promoting normal immune homeostasis. In the present manuscript, we have reviewed and discussed pathological importance of NETs formation in SARS-CoV-2 infections and discuss how various Ayurvedic herbs can be explored to modulate neutrophil function and inhibit NETs formation in the context of a) anti-microbial activity to enhance neutrophil function, b) immunomodulatory effects to maintain neutrophil mediated immune homeostasis and c) to inhibit NETs mediated thrombosis.
Collapse
Affiliation(s)
- Manjunath B Joshi
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Archana Kamath
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Aswathy S Nair
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | | | - Sitaram J Sriranjini
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - G G Gangadharan
- Ramaiah Indic Speciality Ayurveda-Restoration Hospital, MSR Nagar, Mathikere, Bengaluru, 560 054, India
| | - Kapaettu Satyamoorthy
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
39
|
Alam A, jawaid T, Alam P. In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.2002550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Talha jawaid
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudia Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
40
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
41
|
Network Pharmacology-Based Identification of Potential Targets of Lonicerae japonicae Flos Acting on Anti-Inflammatory Effects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5507003. [PMID: 34595237 PMCID: PMC8478540 DOI: 10.1155/2021/5507003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 12/31/2022]
Abstract
Lonicerae japonicae flos (LJF) is widely used for the treatment of inflammation-related diseases in traditional Chinese medicine (TCM). To clarify the anti-inflammatory mechanism of LJF, 29 compounds with high content in LJF were selected for network pharmacology. Then, a comprehensive network pharmacology strategy was implemented, which involved compound-inflammation-target construction, protein-protein interaction (PPI) network analysis, and enrichment analysis. Finally, molecular docking and in vitro experiments were performed to verify the anti-inflammatory activity and targets of the key compound. As a result, 279 inflammation-associated proteins were identified, which are mainly involved in the AGE/RAGE signaling pathway in diabetic complications, the HIF-1 signaling pathway, the PI3K-AKT signaling pathway, and EGFR tyrosine kinase inhibitor resistance. A total of 12 compounds were linked to more than 35 targets, including apigenin, kaempferol, quercetin, luteolin, and ferulic acid. The results of molecular docking showed that AKT has the most binding activity, exhibiting certain binding activity with 10 compounds, including vanillic acid, protocatechuic acid, secologanic acid, quercetin, and luteolin; the results of qRT-PCR and WB confirmed that two key compounds, secologanic acid and luteolin, could significantly decrease the secretion of TNF-α and the AKT expression of RAW264.7 murine macrophages stimulated by LPS (lipopolysaccharide). These results demonstrate that the comprehensive strategy can serve as a universal method to illustrate the anti-inflammatory mechanisms of traditional Chinese medicine by identifying the pathways or targets.
Collapse
|
42
|
Kim MH, Lee SM, An KW, Lee MJ, Park DH. Usage of Natural Volatile Organic Compounds as Biological Modulators of Disease. Int J Mol Sci 2021; 22:ijms22179421. [PMID: 34502333 PMCID: PMC8430758 DOI: 10.3390/ijms22179421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
Plants produce a wide variety of natural volatile organic compounds (NVOCs), many of which are unique to each species. These compounds serve many purposes, such as fending off herbivores and adapting to changes in temperature and water supply. Interestingly, although NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore, many NVOCs are promising drug candidates for disease treatment and prevention. Given their volatile nature, these compounds can be administered to patients through inhalation, which is often more comfortable and convenient than other administration routes. However, the development of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds that appear generally safe might have toxic effects depending on their dose, and therefore their toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review focuses not only on the biological activities and therapeutic mode of action of representative NVOCs but also their toxic effects.
Collapse
Affiliation(s)
- Min-Hee Kim
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
| | - Seung-Min Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Ki-Wan An
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Jae Lee
- School of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju 58245, Korea;
- Correspondence: (M.-J.L.); (D.-H.P.)
| |
Collapse
|
43
|
Bouyahya A, Guaouguaou FE, El Omari N, El Menyiy N, Balahbib A, El-Shazly M, Bakri Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J Pharm Anal 2021; 12:35-57. [PMID: 35573886 PMCID: PMC9073245 DOI: 10.1016/j.jpha.2021.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents. Anti-inflammatory and analgesic effects of Moroccan medicinal plants were highlighted. Chemical nature of Moroccan medicinal plants with anti-inflammatory and analgesic effects was reported. Insights into anti-inflammatory mechanisms of bioactive compounds were highlighted. Toxicological investigations of Moroccan medicinal plants were reviewed.
Collapse
|
44
|
Tirpude NV, Sharma A, Joshi R, Kumari M, Acharya V. Vitex negundo Linn. extract alleviates inflammatory aggravation and lung injury by modulating AMPK/PI3K/Akt/p38-NF-κB and TGF-β/Smad/Bcl2/caspase/LC3 cascade and macrophages activation in murine model of OVA-LPS induced allergic asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113894. [PMID: 33516930 DOI: 10.1016/j.jep.2021.113894] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There is growing inclination towards developing bioactive molecule-based strategies for the management of allergic airway inflammation associated respiratory diseases. Vitex negundo Linn., also known as Nirgundi, is one such medicinal plant enriched with phytochemicals and used for inflammatory and respiratory disorders including asthma in traditional system of medicine. Preliminary studies have claimed anti-tussive and bronchodilator potential of V. negundo Linn. However, its attributes as well as molecular mechanism (s) in modulation of asthma mediated by allergic inflammation are yet to be delineated scientifically. AIM OF THE STUDY Present study attempted to assess the effectiveness of Vitex negundo leaf extract (VNLE) in mitigation of allergen induced inflammation associated asthmatic lung damage with emphasis to delineate its molecular mechanism (s). MATERIALS AND METHODS Allergic lung inflammation was established in Balb/c mice using Ovalbumin-lipopolysaccharide (OVA-LPS). Several allergic inflammatory parameters, histopathological changes, alveolar macrophage activation and signalling pathways were assessed to examine protective effects of VNLE. UHPLC-DAD-QTOF-ESI-IMS was used to characterize VLNE. RESULTS VNLE administration effectively attenuated LPS-induced oxi-inflammatory stress in macrophages suggesting its anti-inflammatory potential. Further, VNLE showed protective effect in mitigating asthmatic lung damage as evident by reversal of pathological changes including inflammatory cell influx, congestion, fibrosis, bronchial thickness and alveolar collapse observed in allergen group. VNLE suppressed expressions of inflammatory Th1/Th2 cytokines, chemokines, endopeptidases (MMPs), oxidative effector enzyme (iNOS), adhesion molecules, IL-4/IFN-γ release with simultaneous enhancement in levels of IL-10, IFN-γ, MUC3 and tight junction proteins. Subsequent mechanistic investigation revealed that OVA-LPS concomitantly enhanced phosphorylation of NF-κB, PI3K, Akt and p38MAPKs and downregulated AMPK which was categorically counteracted by VNLE treatment. VNLE also suppressed OVA-LPS induced fibrosis, apoptosis, autophagy and gap junction proteins which were affirmed by reduction in TGF-β, Smad2/3/4, Caspase9/3, Bax, LC3A/B, connexin 50, connexin 43 and enhancement in Bcl2 expression. Additionally, suppression of alveolar macrophage activation, inflammatory cells in blood and elevation of splenic CD8+T cells was demonstrated. UHPLC-DAD-QTOF-ESI-IMS revealed presence of iridoids glycoside and phenolics which might contribute these findings. CONCLUSION These findings confer protective effect of VNLE in attenuation of allergic lung inflammation and suggest that it could be considered as valuable medicinal source for developing safe natural therapeutics for mitigation of allergic inflammation during asthma.
Collapse
Affiliation(s)
- Narendra Vijay Tirpude
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| | - Anamika Sharma
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Monika Kumari
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India
| | - Vishal Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India.
| |
Collapse
|
45
|
Alam A, Singh V. Composition and pharmacological activity of essential oils from two imported Amomum subulatum fruit samples. J Taibah Univ Med Sci 2021; 16:231-239. [PMID: 33897328 PMCID: PMC8046960 DOI: 10.1016/j.jtumed.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 02/03/2023] Open
Abstract
Objective This work attempted to isolate, identify, and correlate the composition of essential oils (EOs) and pharmacological properties of two imported Amomum subulatum fruit samples. These samples were collected from Indian and KSA local supermarkets to ensure consistency in their therapeutic effects. Methods EOs were extracted from Indian and KSA A. subulatum fruit samples using a hydro-distillation method and identified by gas chromatography-mass spectrometry (GC–MS). Antimicrobial activity against gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii) was determined using minimum inhibitory (MIC) and minimum bactericidal concentration methods. Antioxidant and anti-inflammatory activities were determined using a 2,2-diphenyl-1-picrylhydrazyl-induced free radical assay, and a bovine albumin inhibitory assay, respectively. These analyses were performed to evaluate the pharmacological activities of the substances. Results GC–MS retention times of both samples demonstrated 56 bioactive ingredients with different percentages. The principal bioactive compounds in the Indian and Saudi Arabian EO samples were 1,8-cineole (44.24% and 46.22%, respectively), α-terpineol (7.47% and 7.04%, respectively), terpinen-4-ol (5.01% and 4.83%, respectively), geraniol D (4.05% and 3.54%, respectively), and β-pinene (3.38% and 3.98%, respectively). Superior antimicrobial activity against the selected strains was observed for both samples, with an MIC range of 0.5%–1%. Antioxidant assays demonstrated moderate activity in both samples. Moreover, the Indian and Saudi Arabian samples exhibited IC50 values of 53.12% and 55.26 μg/mL, respectively, in albumin denaturation inhibition assays. This indicated an outstanding anti-inflammatory potential comparable to ibuprofen. Conclusions The composition of EOs from both samples exhibited similar qualitative but different quantitative variability. No major variations in the pharmacological properties of EOs were observed. More studies are essential for further validation of our study findings.
Collapse
Affiliation(s)
- Aftab Alam
- School of Pharmacy, Department of Pharmacognosy, Sharda University, Greater Noida, UP, India
| | - Vijender Singh
- School of Pharmacy, Department of Pharmacognosy, Sharda University, Greater Noida, UP, India
| |
Collapse
|
46
|
Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS, Oh SR. The Role of Macrophages in the Development of Acute and Chronic Inflammatory Lung Diseases. Cells 2021; 10:897. [PMID: 33919784 PMCID: PMC8070705 DOI: 10.3390/cells10040897] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages play an important role in the innate and adaptive immune responses of organ systems, including the lungs, to particles and pathogens. Cumulative results show that macrophages contribute to the development and progression of acute or chronic inflammatory responses through the secretion of inflammatory cytokines/chemokines and the activation of transcription factors in the pathogenesis of inflammatory lung diseases, such as acute lung injury (ALI), acute respiratory distress syndrome (ARDS), ARDS related to COVID-19 (coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)), allergic asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). This review summarizes the functions of macrophages and their associated underlying mechanisms in the development of ALI, ARDS, COVID-19-related ARDS, allergic asthma, COPD, and IPF and briefly introduces the acute and chronic experimental animal models. Thus, this review suggests an effective therapeutic approach that focuses on the regulation of macrophage function in the context of inflammatory lung diseases.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Korea; (W.C.); (H.J.L.)
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Yun Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, Cheongju 28116, Korea; (J.-H.M.); (S.-M.K.); (J.-Y.S.)
| |
Collapse
|
47
|
Sangani R, Rojas E, Forte M, Zulfikar R, Prince N, Tasoglou A, Goldsmith T, Casuccio G, Boyd J, Olfert IM, Flanagan M, Sharma S. Electronic Cigarettes and Vaping-Associated Lung Injury (EVALI): A Rural Appalachian Experience. Hosp Pract (1995) 2021; 49:79-87. [PMID: 33136442 PMCID: PMC8371980 DOI: 10.1080/21548331.2020.1843282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Background: Electronic cigarette use has increased dramatically since their introduction in 2007. Respiratory complications, particularly lipoid pneumonia, have been reported as early as 2012. An outbreak of pulmonary injury in 2019 has been reported in patients using vaping products.Research Question: To describe a rural Appalachian tertiary center's experience of EVALI and to identify novel mechanisms of pulmonary injury patterns.Study Design and Methods: We present a consecutive case series of 17 patients admitted to our rural, academic, tertiary care institution with EVALI from August 2019 to March 2020. Demographics, baseline characteristics, co-morbidities, vaping behavior, and hospital course were recorded. Broncho-alveolar lavage specimens were assessed for lipid-laden macrophages and hemosiderin-laden macrophages with stains for Oil-Red-O (n = 15) and Prussian Blue (n = 14) respectively.The patient volunteered e-liquid materials (n = 6), and vapors were analyzed using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) to describe the chemical profile. Post-discharge interviews were conducted.Results: The most common CT finding was bilateral ground-glass opacities with a predilection for lower lung zones. The most frequent pulmonary injury pattern was lipoid pneumonia. The majority of EVALI patients were critically ill requiring ventilation or ECMO. The most severely ill patients were noted to be positive for iron stains in macrophages and showed higher volatile organic compound (VOC) levels in chemical analysis.Interpretation: Based on our experience, EVALI in rural Appalachia presented with relatively severe respiratory failure. Worse outcomes appear to be correlated to high levels of VOCs, iron deposition in lungs, and concomitant infection.
Collapse
Affiliation(s)
- Rahul Sangani
- Section of Pulmonary, Critical Care and Sleep Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Edward Rojas
- Section of Pulmonary, Critical Care and Sleep Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Michael Forte
- Section of Pulmonary, Critical Care and Sleep Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rafia Zulfikar
- Section of Pulmonary, Critical Care and Sleep Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nicole Prince
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
- Department of Orthopedics, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Travis Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Jonathan Boyd
- Department of Orthopedics, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Occupational and Environmental Health, West Virginia University School of Public Health, Morgantown, WV, USA
- Center of Inhalation Toxicology (Itox, WVU Robert C. Byrd Health Science Center, Morgantown, USA
| | - I. Mark Olfert
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center of Inhalation Toxicology (Itox, WVU Robert C. Byrd Health Science Center, Morgantown, USA
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, USA
| | - Melina Flanagan
- Department of Pathology, Anatomy, and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Sunil Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
48
|
Marinho BM, Fernandes DN, Chicoti MZ, Ribeiro GDJG, Almeida VGD, Santos MGD, Guimarães VHD, Marchioretto MS, Martins HR, de Melo GEBA, Gregorio LE. Phytochemical profile and antiproliferative activity of human lymphocytes of Gomphrena virgata Mart. (Amaranthaceae). Nat Prod Res 2021; 36:1641-1647. [PMID: 33764245 DOI: 10.1080/14786419.2021.1895151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Gomphrena virgata Mart. popularly known as 'Cangussu-branco', is used in Brazilian folk medicine to treat inflammations and infections. This work aimed to carry out phytochemical analysis and evaluate the anti-inflammatory potential of Gomphrena virgata. In the phytochemical investigation, in addition to the presence of two ecdysteroids, 20 R-dihydroxyecdysone and 20-hydroxyecdysone, identified by HPLC-PDA-MS and NMR, 22 compounds were identified by GC-MS. In the cytotoxicity study, the aqueous extract of the roots of this species did not show in vitro toxicity of PBMCs in the concentrations of 250, 500 and 1000 µg/mL when analyzed by the trypan blue exclusion method. Also, it was effective in reducing lymphocyte proliferation, stimulated with the mitogen PHA, by 26.02%, 48.57% and 50.49% when compared to dexamethasone, respectively. In this work we present information about the phytochemicals of G. virgata, showing that the species is promising in obtaining compounds with medicinal potential mainly anti-inflammatory potential.
Collapse
Affiliation(s)
- Barbhara Mota Marinho
- Laboratory of Phytochemistry - Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, Brazil
| | - Débora Nunes Fernandes
- Laboratory of Phytochemistry - Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, Brazil
| | - Mayara Zimmermann Chicoti
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil
| | - Giovane de Jesus Gomes Ribeiro
- Laboratory of Phytochemistry - Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, Brazil
| | - Valéria Gomes de Almeida
- Laboratory of Immunology - Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, Brazil
| | - Michaelle Geralda Dos Santos
- Laboratory of Immunology - Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, Brazil
| | - Victor Hugo Dantas Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, MG, Brazil
| | - Maria Salete Marchioretto
- Herbarium PACA/Anchietano Research Institute, University of Bells River Valley (UNISINOS), São Leopoldo, RS, Brazil
| | - Helen Rodrigues Martins
- Laboratory of Phytochemistry - Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, MG, Brazil
| | | | - Luiz Elidio Gregorio
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo - UNIFESP, Diadema, SP, Brazil
| |
Collapse
|
49
|
Linalool Alleviates A β42-Induced Neurodegeneration via Suppressing ROS Production and Inflammation in Fly and Rat Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8887716. [PMID: 33777322 PMCID: PMC7972854 DOI: 10.1155/2021/8887716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Terpenes are vital metabolites found in various plants and animals and known to be beneficial in the treatment of various diseases. Previously, our group identified terpenes that increased the survival of Alzheimer's disease (AD) model flies expressing human amyloid β (Aβ) and identified linalool as a neuroprotective terpene against Aβ toxicity. Linalool is a monoterpene that is commonly present as a constituent in essential oils from aromatic plants and is known to have anti-inflammatory, anticancer, antihyperlipidemia, antibacterial, and neuroprotective properties. Although several studies have shown the beneficial effect of linalool in AD animal models, the mechanisms underlying the beneficial effect of linalool on AD are yet to be elucidated. In the present study, we showed that linalool intake increased the survival of the AD model flies during development in a dose-dependent manner, while the survival of wild-type flies was not affected even at high linalool concentrations. Linalool also decreases Aβ-induced apoptosis in eye discs as well as the larval brain. Moreover, linalool intake was found to reduce neurodegeneration in the brain of adult AD model flies. However, linalool did not affect the total amount of Aβ42 protein or Aβ42 aggregation. Rather, linalool decreased Aβ-induced ROS levels, oxidative stress, and inflammatory response in the brains of AD model flies. Furthermore, linalool attenuated the induction of oxidative stress and gliosis by Aβ1-42 treatment in the rat hippocampus. Taken together, our data suggest that linalool exerts its beneficial effects on AD by reducing Aβ42-induced oxidative stress and inflammatory reactions.
Collapse
|
50
|
Kim SM, Ryu HW, Kwon OK, Hwang D, Kim MG, Min JH, Zhang Z, Kim SY, Paik JH, Oh SR, Ahn KS, Lee JW. Callicarpa japonica Thunb. ameliorates allergic airway inflammation by suppressing NF-κB activation and upregulating HO-1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113523. [PMID: 33129947 DOI: 10.1016/j.jep.2020.113523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Callicarpa japonica Thunb., as an herbal medicine has been used for the treatment of inflammatory diseases in China and Korea. MATERIALS AND METHODS Ultra performance liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometer (UPLC-PDA-QTof MS) was used to detect the major phenylethanoid glycosides in the C. japonica extract. BALB/c mice were intraperitoneally sensitized by ovalbumin (OVA) (on days 0 and 7) and challenged by OVA aerosol (on days 11-13) to induce airway inflammatory response. The mice were also administered with C. japonica Thunb. (CJT) (20 and 40 mg/kg Per oral) on days 9-13. CJT pretreatment was conducted in lipopolysaccharide (LPS)-stimulated RAW264.7 or phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells. RESULTS CJT administration significantly reduced the secretion of Th2 cytokines, TNF-α, IL-6, immunoglobulin E (IgE) and histamine, and the recruitment of eosinophils in an OVA-exposed mice. In histological analyses, the amelioration of inflammatory cell influx and mucus secretion were observed with CJT. The OVA-induced airway hyperresponsiveness (AHR), iNOS expression and NF-κB activation were effectively suppressed by CJT administration. In addition, CJT led to the upregulation of HO-1 expression. In an in vitro study, CJT pretreatment suppressed the LPS-induced TNF-α secretion in RAW264.7 cells and attenuated the PMA-induced IL-6, IL-8 and MCP-1 secretion in A549 cells. These effects were accompanied by downregulated NF-κB phosphorylation and by upregulated HO-1 expression. CONCLUSION These results suggested that CJT has protective activity against OVA-induced airway inflammation via downregulation of NF-κB activation and upregulation of HO-1, suggesting that CJT has preventive potential for the development of allergic asthma.
Collapse
Affiliation(s)
- Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Republic of Korea.
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Min Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea; College of Pharmacy, Chungbuk National University, Cheongju-si, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Zhiyun Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China.
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungbuk, 28116, Republic of Korea.
| |
Collapse
|