1
|
Feng N, Huang X, Jia Y. Small extracellular vesicles from adipose derived stem cells alleviate microglia activation and improve motor deficit of Parkinson's disease via miR-100-5p/DTX3L/STAT1 signaling axis. Exp Neurol 2025; 389:115250. [PMID: 40194649 DOI: 10.1016/j.expneurol.2025.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Dopaminergic neuron loss caused by microglia activation is an important pathological factor of Parkinson's disease (PD). Previously, we reported that small extracellular vesicle from adipose derived stem cells (ADSC-sEVs) could inhibit the activation of microglia and protect neuron apoptosis from microglia activation. However, whether ADSC-sEVs have protective effect on the motor deficit of PD mouse and the exact mechanism remains unknown. In this study, ADSC-sEVs were delivered to experimental model of Parkinson's disease by tail vein injection to explore the in vivo effect of ADSC-sEVs on PD. Next, the potential key microRNA in ADSC-sEVs was screened by RNA sequencing (RNA-seq), and the exact mechanism was further explored. We found that ADSC-sEVs greatly alleviated the activation of microglia and reduced the loss of dopaminergic neurons in the substantia nigra of PD mice, the motor deficit was also significantly improved. By RNA-seq analysis, miR-100-5p was verified as a potential microRNA in this process, because knockdown of miR-100-5p in ADSC-sEVs weakened the protective effect of ADSC-sEVs on PD mouse as well as the anti-inflammatory effect on microglia activation. Finally, we found that miR-100-5p could target Deltex E3 ubiquitin ligase 3 L (DTX3L) and suppress its expression, which then decreased the expression and phosphorylation of Signal Transducers and Activators of Transcription 1 (STAT1), as well as alleviating the activation of microglia. Our findings illustrate that ADSC-sEVs are an effective therapy for PD, and it could be a promising therapy for the treatment of PD.
Collapse
Affiliation(s)
- Nianhua Feng
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China.
| | - Xiaoxi Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Yanjun Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, China
| |
Collapse
|
2
|
Yang D, Kang JS, Zhong H, Liu HM, Nian S, Qing KX. IRF1 regulates autophagy and microglia polarization in retinal ischemia-reperfusion through NCOA1/Wnt/β-catenin signalling pathway. Cell Signal 2025; 131:111746. [PMID: 40096931 DOI: 10.1016/j.cellsig.2025.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Interferon regulatory factor 1 (IRF1) is an important regulatory factor in the development of eyes, and it has been proved to be involved in the regulation of ischemia-reperfusion process. But its role in retinal ischemia-reperfusion (RIR) remains unclear. METHODS RIR rat model was induced by increasing intraocular pressure. Hematoxylin and eosin (HE) staining, immunofluorescence (IF) staining, and western blot experiments were used to explore the levels of IRF1, autophagy, and microglia polarization in RIR. Western blot, transmission electron microscope, IF, and ELISA assays were used to explore the effects of IRF1, Nuclear receptor coactivator 1 (NCOA1), and Wnt/β-catenin signalling pathways in OGD/R-induced autophagy and polarization of rat retinal microglia. CHIP and dual-luciferase experiments verify the interaction between IRF1 and NCOA1. CHIP and dual-luciferase experiments were used to verify the interaction between IRF1 and NCOA1. Adeno-associated viruses interfering with IRF1 and NCOA1 were injected into the vitreous of rats to explore the functions of IRF1 and NCOA1 in RIR rats. RESULTS IRF1 and M1-type markers of microglia in retina of RIR rats increased, and autophagy level decreased. Knockdown of IRF1 and NCOA1 increased autophagy of OGD/R-induced retinal microglia, inhibited M1-type polarization and inflammatory cytokines, alleviated RIR injury in rats, and inhibited the activation of Wnt/β-catenin signalling pathway. The Wnt/β-catenin signalling pathway activator HLY78 partially reversed the effect of knocking down NCOA1 on retinal microglia. Mechanically, knockdown of IRF1 inhibited the activation of Wnt/β-catenin signalling pathway by inhibiting the transcription of NCOA1. CONCLUSION Inhibition of IRF1 has a protective effect on RIR damage by regulating NCOA1/Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jian-Shu Kang
- Department of ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Hua Zhong
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Hong-Mei Liu
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Shen Nian
- Department of Pathology, Xi'an Medical University, Xi'an 710021, Shanxi Province, China
| | - Kai-Xiong Qing
- Department of Cardiac & Vascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
3
|
Saadh MJ, Saeed TN, Alfarttoosi KH, Sanghvi G, Roopashree R, Thakur V, Lakshmi L, Kubaev A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomes and MicroRNAs: key modulators of macrophage polarization in sepsis pathophysiology. Eur J Med Res 2025; 30:298. [PMID: 40247413 PMCID: PMC12007276 DOI: 10.1186/s40001-025-02561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sepsis is a highly dangerous and complex condition that can result in death. It is characterized by a strong reaction to an infection, causing dysfunction in multiple bodily systems and a high risk of mortality. The transformation of macrophages is a vital stage in the procedure as they possess the capability to interchange between two separate types: M1, which promotes inflammation, and M2, which inhibits inflammation. The choice greatly affects the immune response of the host. This analysis underscores the rapidly expanding roles of exosomes and microRNAs (miRNAs) in regulating the trajectory of macrophage polarization during episodes of sepsis. Exosomes, extremely small extracellular vesicles, facilitate cellular communication by transferring biologically active compounds, including miRNAs, proteins, and lipids. We investigate the impact of changes in exosome production and composition caused by sepsis on macrophage polarization and function. Unique microRNAs present in exosomes play a significant role in controlling crucial signaling pathways that govern the phenotype of macrophages. Through thorough examination of recent progress in this area, we clarify the ways in which miRNAs derived from exosomes can either aggravate or alleviate the inflammatory reactions that occur during sepsis. This revelation not only deepens our comprehension of the underlying mechanisms of sepsis, but it also reveals potential new biomarkers and targets for treatment. This assessment aims to amalgamate diverse research investigations and propose potential avenues for future investigations on the influence that exosomes and miRNAs have on macrophage polarization and the body's response to sepsis. These entities are essential for controlling the host's reaction to sepsis and hold important functions in this mechanism.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - L Lakshmi
- Department of Nursing, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
4
|
Zhou Q, Chi J, Yang J, Dong X, Guo J, Lian F, Mamun AA, Chen T, Zhang H, Chen J, Tao Y, Ma Y, Shi K, Xiao J. Natural, safety immunomodulatory derivatives of lactobacillus biofilms promote diabetic wound healing by metabolically regulating macrophage phenotype and alleviating local inflammation. J Adv Res 2025:S2090-1232(25)00220-6. [PMID: 40187726 DOI: 10.1016/j.jare.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/24/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
INTRODUCTION Long-term inflammatory microenvironment further impairs the healing process of diabetic wounds. Many studies have shown that Lactobacillus can regulate immune function and promote injured tissue repair. However, the immunomodulatory function and safety of Lactobacillus biofilm (LB) on wounds need further investigation. OBJECTIVES In this present research, we proposed a "bacteria-free biofilm derivative therapy" and successfully extracted Lactobacillus biofilm derivatives (LBDs) by ultrasonic separation and filtration technology for the natural and safe treatment of diabetic wounds. METHODS The study first cultured Lactobacillus anaerobically and extracted LBDs using ultrasound separation combined with filtration technology. LBDs were characterized via scanning electron microscopy, Concanavalin A fluorescence staining, and protein gel electrophoresis. In vivo diabetic wound model, wound closure rates were dynamically monitored, and tissue sections were analyzed using hematoxylin-eosin and immunofluorescence staining to evaluate LBDs' healing effects. An in vitro macrophage inflammation model was established, employing immunofluorescence, flow cytometry, and Western blotting techniques to explore the molecular mechanisms underlying LBDs' effects on macrophage phenotypes. Furthermore, whole-genome sequencing and proteomics of LBDs-treated macrophages were performed to further elucidate the intrinsic molecular mechanisms through which LBDs regulate macrophage phenotypes. RESULTS LBDs were effectively extracted utilizing ultrasonic separation coupled with filtration technology. Studies revealed that LBDs modulate the systemic metabolic reprogramming in wound-site macrophages, suppress JAK-STAT1 signaling pathway, alleviate the local inflammatory microenvironment, promote neovascularization and ultimately accelerate wound healing. CONCLUSION The LBDs retains most bioactive components of the LB. As a natural, safe and immunomodulatory agent, LBDs promote diabetic wound healing by metabolically reprogramming macrophage phenotypes and improving the local immune microenvironment, offering promising potential for regenerative applications in diabetic wound management.
Collapse
Affiliation(s)
- Qingwei Zhou
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Medicine Department, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing 311800, China
| | - Junjie Chi
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 3250035, China
| | - Jintao Yang
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 3250035, China; Medicine Department, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing 311800, China
| | - Xiaoyu Dong
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiali Guo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Feifei Lian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tianling Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haijuan Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiaojiao Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yibing Tao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yunmiao Ma
- Medicine Department, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing 311800, China.
| | - Keqing Shi
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 3250035, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
6
|
Wang G, Tao H, Zhou L, Zhang J, Pu W, Xu T, Wen C, Peng Y, Wu M, Zheng X, Dai Y. scRNA-seq reveals involvement of monocytes in immune response in SLE patients. Genomics 2025; 117:110994. [PMID: 39818255 DOI: 10.1016/j.ygeno.2025.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets. RESULTS Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers. A significant increase in monocytes was observed in peripheral blood of SLE patients. Flow cytometry was employed to validate the types and quantities of circulating immune cells in SLE, corroborating the scRNA-seq results. Monocyte highly expressed IRF1 (interferon regulatory factor 1) in SLE. Previous research proves that IRF1 is widely involved in immune regulation and inflammatory response, and can promote the transcription of a variety of pro-inflammatory cytokines. Additionally, Inflammatory factors secreted by monocytes in serum were measured. The results demonstrated a significant upregulation of IFN-γ, TNF-α, IL-2, IL-6, IL-8, IL-10, IL-1β in the sera of SLE patients compared to healthy controls. CONCLUSION Our results demonstrate upregulation of monocyte inflammation in circulating immune cells in SLE patients and expands the current understanding of circulating immune cells in SLE. Our study provides a blueprint for future exploration of SLE monocytes, revealing the pathogenesis and inventing new immunotherapies.
Collapse
Affiliation(s)
- Guoying Wang
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Huihui Tao
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China.
| | - Lingling Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Junning Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Wenjun Pu
- Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Tiantian Xu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Chunmei Wen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Yali Peng
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Mengyao Wu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Xuejia Zheng
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China
| | - Yong Dai
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China.
| |
Collapse
|
7
|
Yuan Z, Yu T, Wang X, Meng K, Wang T, Wang B, Xi Y, Wang C, Zeng C, Hu S, Tian Y, Xiong H, Wang Q, Zou W, Wang X, Gao Y, Fu X, Li L. Glutamine deprivation confers immunotherapy resistance by inhibiting IFN-γ signaling in cancer cells. Pharmacol Res 2025; 213:107643. [PMID: 39909124 DOI: 10.1016/j.phrs.2025.107643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Glutamine metabolism is emerging as a target for improving immunotherapy efficacy. However, the outcomes remain inconclusive. Given that the tumor-intrinsic response to interferon-γ (IFN-γ) is a key determinant of immunotherapy efficacy, we investigated whether and how glutamine deprivation in cancer cells affects their response to IFN-γ. By using human lung cancer cell lines, patient-derived tumor explants, and a syngeneic mouse model of lung cancer, we demonstrated that glutamine deprivation reduced the IFN-γ-driven response in cancer cells by promoting autophagy-dependent IFN-γ receptor (IFNGR1) degradation and rendering tumors resistant to anti-PD-1 or anti-PD-L1 therapy. Treatment with V9302, an inhibitor of the alanine-serine-cysteine transporter (ASCT2), enhanced the IFN-γ-driven response of cancer cells and increased the efficacy of PD-1 blockade therapy. Mechanistic analysis revealed that V9302 inhibited autophagy by impairing lysosomal activity independent of glutamine deprivation, likely because of its physiochemical properties, thereby preventing IFNGR1 degradation. Moreover, V9302 also increased Glut1 expression through the inhibition of lysosomal pathway-dependent degradation of Glut1 and consequently increased cancer cell glucose uptake, in turn retaining the levels of intracellular alpha-ketoglutarate (α-KG) and ATP, which are involved in maintaining IFN-γ signal transduction in cancer cells. In support of these findings, targeting lysosomal activity with chloroquine (CQ) also increased IFNGR1 expression and the IFN-γ-driven response in cancer cells. The administration of CQ increased the sensitivity of ASCT2-deficient tumors to anti-PD-L1 therapy. Glutamine deprivation per se leads to resistance to immunotherapy, whereas V9302 treatment results in increased immunotherapy efficacy through impaired lysosomal activity, which is independent of glutamine deprivation.
Collapse
Affiliation(s)
- Zhiwei Yuan
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taiyan Yu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kelin Meng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianlai Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boyu Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xi
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Congjian Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxi Zeng
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Hu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yitao Tian
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xiong
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Zou
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Wang
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Gao
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangning Fu
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lequn Li
- Thoracic Surgery Laboratory, Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Wang L, Zhang Y, Ji F, Si Z, Liu C, Wu X, Wang C, Chang H. Identification of crucial genes for polycystic ovary syndrome and atherosclerosis through comprehensive bioinformatics analysis and machine learning. Int J Gynaecol Obstet 2025. [PMID: 39981695 DOI: 10.1002/ijgo.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/22/2025]
Abstract
OBJECTIVE To identify potential biomarkers in patients with polycystic ovary syndrome (PCOS) and atherosclerosis, and to explore the common pathologic mechanisms between these two diseases in response to the increased risk of cardiovascular diseases in patients with PCOS. METHODS PCOS and atherosclerosis data sets were downloaded from the GEO database, and their differentially expressed genes were identified. Weighted gene co-expression network analysis was used to obtain intersection genes, and then protein-protein interaction and functional enrichment analysis were performed. Machine learning algorithms were used to select the key genes, which were then validated through external data sets. We constructed a nomogram to predict the risk of atherosclerosis in women with PCOS. Finally, the CIBERSORT algorithm was used to analyze the infiltration of immune cells in the atherosclerosis group. RESULTS We identified six hub genes (CD163, LAPTM5, TNFSF13B, MS4A4A, FGR, and IRF1) that exhibited excellent diagnostic value in validation data sets. Gene ontology terms and KEGG signaling pathway analysis revealed that key genes were associated with immune responses and inflammatory reactions. Abnormal immune cell infiltration was also found in the atherosclerosis group and was correlated with the six hub genes. CONCLUSION Common therapeutic targets of PCOS and atherosclerosis were preliminarily identified through bioinformatics analysis and machine learning techniques. These findings provide new treatment ideas for reducing the risk that PCOS will develop into atherosclerosis.
Collapse
Affiliation(s)
- Lirong Wang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yanli Zhang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Ji
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhenmin Si
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengdong Liu
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, Heilongjiang Provincial Hospital, Harbin, China
| | - Chichiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Chang
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
10
|
Wu JP, Wu C, Ma YJ, Zhu JB, Ma LL, Kong FJ. AIM2 Deficiency Alleviates Cardiac Inflammation and Hypertrophy in HFD/STZ-Induced Diabetic Mice by Inhibiting the NLRC4/IRF1 Signaling Pathway. J Cardiovasc Transl Res 2025; 18:94-109. [PMID: 39230659 DOI: 10.1007/s12265-024-10556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Absent in melanoma 2(AIM2) exacerbates atherosclerosis by inflammasome assembly. However, AIM2-mediated inflammation in diabetic cardiomyopathy remains incompletely understood. Here we investigate the role of AIM2 in high glucose (HG)- and diabetes-induced inflammatory cardiomyopathy. By RNA-seq, we found that AIM2 were significantly upregulated in HG-induced macrophages, upregulation of AIM2 in cardiac infiltrating macrophages was confirmed in a high-fat diet (HFD)/streptozotocin (STZ)-induceddiabetic mouse model . Therefore, AIM2 knockout mice were constructed. Compared to WT mice, HFD/STZ-induced cardiac hypertrophy and dysfunction were significantly improved in AIM2-/- mice, despite no changes in blood glucose and body weight. Further, AIM2 deficiency inhibited cardiac recruitment of M1-macrophages and cytokine production. Mechanistically, AIM2-deficient macrophgaes reduced IL-1β and TNF-α secretion, which impaired the NLRC4/IRF1 signaling in cardiomyocytes, and reduced further recruitment of macrophages, attenuated cardiac inflammation and hypertrophy, these effects were confirmed by silencing IRF1 in WT mice, and significantly reversed by overexpression of IRF1 in AIM2-/- mice. Taken together, our findings suggest that AIM2 serves as a novel target for the treatment of diabetic cardiomyopathy.
Collapse
MESH Headings
- Animals
- Signal Transduction
- Calcium-Binding Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/chemically induced
- Mice, Knockout
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/prevention & control
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/physiopathology
- Apoptosis Regulatory Proteins/metabolism
- Apoptosis Regulatory Proteins/genetics
- Diet, High-Fat
- Mice, Inbred C57BL
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/metabolism
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Interferon Regulatory Factor-1/metabolism
- Interferon Regulatory Factor-1/genetics
- CARD Signaling Adaptor Proteins/metabolism
- Ventricular Function, Left
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Ventricular Remodeling
- Inflammasomes/metabolism
- Inflammation Mediators/metabolism
- Mice
Collapse
Affiliation(s)
- Jian-Ping Wu
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Cheng Wu
- Department of Anesthesiology and Pain Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuan-Ji Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Yi Xue Yuan Rd, Xu Hui District, Shanghai, 200032, China
| | - Jian-Bing Zhu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Yi Xue Yuan Rd, Xu Hui District, Shanghai, 200032, China
| | - Lei-Lei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Yi Xue Yuan Rd, Xu Hui District, Shanghai, 200032, China.
| | - Fei-Juan Kong
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Wu Jin Rd, Hong Kou District, Shanghai, 200032, China.
| |
Collapse
|
11
|
Wang J, Tao X, Liu Z, Yan Y, Cheng P, Liu B, Du H, Niu B. Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications. Pharmacol Res 2025; 212:107596. [PMID: 39800175 DOI: 10.1016/j.phrs.2025.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction caused by a dysregulated host response to infection. Sepsis-associated acute liver injury (SA-ALI) is a frequent and serious complication of sepsis that considerably impacts both short-term and long-term survival outcomes. In intensive care units (ICUs), the mortality rate of patients with SA-ALI remains high, mostly due to the absence of effective early diagnostic markers and suitable therapeutic strategies. Recent studies have demonstrated the importance of non-coding RNAs (ncRNAs) in the development and progression of SA-ALI. This review focuses on the critical roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating "cytokine storms", oxidative stress, mitochondrial dysfunction, and programmed cell death in SA-ALI, and summarizes the current state and limitations of existing studies on lncRNAs and circRNAs in SA-ALI. By integrating advancements in high-throughput sequencing technologies, this review provides novel insights into the dual potential of ncRNAs as diagnostic biomarkers and therapeutic targets, offers new ideas for SA-ALI diagnosis and treatment research and highlights potential challenges in clinical translation.
Collapse
Affiliation(s)
- Jialian Wang
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Xingyu Tao
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Zhengyang Liu
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400016, China
| | - Yuan Yan
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Peifeng Cheng
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Bin Liu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Bailin Niu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China.
| |
Collapse
|
12
|
Lv W, Zhou Z, Xie L, Wang X, Zhou Y, Gui L, Xu X, Shen Y, Li J, Qiu J. Pathological and Molecular Characterization of Grass Carp Co-Infected with Two Aeromonas Species. Animals (Basel) 2025; 15:263. [PMID: 39858263 PMCID: PMC11762554 DOI: 10.3390/ani15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
The grass carp (Ctenopharyngodon idella) is highly susceptible to infections caused by Aeromonas species, particularly A. hydrophila and A. veronii. However, the immunological mechanisms underlying co-infection by these pathogens remain largely uncharted. This study investigated the pathogenesis and host immune response in grass carp following concurrent infection with A. hydrophila and A. veronii. Mortality was observed as early as 24 h post-infection, with cumulative mortality reaching 68%. Quantitative analysis demonstrated significantly elevated bacterial loads in hepatic tissue at 3 days post-infection (dpi). Histopathological evaluation revealed severe hepatic lesions characterized by cellular necrosis, cytoplasmic vacuolization, and hemorrhagic manifestations. Comparative transcriptomic analysis of hepatic tissues between co-infected and control specimens identified 868 and 411 differentially expressed genes (DEGs) at 1 and 5 dpi, respectively. Gene ontology and KEGG pathway analyses revealed significant enrichment of immune-related genes primarily associated with Toll-like receptor signaling and TNF signaling cascades. Notably, metabolic pathways showed substantial suppression while immune responses were significantly activated after infected. These findings provide novel insights into the host-pathogen interactions during Aeromonas co-infection in grass carp, which may facilitate the development of effective prevention and control strategies.
Collapse
Affiliation(s)
- Wenyao Lv
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zhijie Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xinyue Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yifei Zhou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (W.L.); (Z.Z.); (L.X.); (X.W.); (Y.Z.); (L.G.); (X.X.); (Y.S.); (J.L.)
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
13
|
Yang L, Xu Z, Wang Z, Ding F, Wu Z, Shi X, Wang J, Ma Y, Jin J. Increased pro-SFTPB in HDL promotes the pro-inflammatory transition of HDL and represents a sign of poor prognosis in ARDS patients. J Transl Med 2025; 23:75. [PMID: 39819672 PMCID: PMC11740663 DOI: 10.1186/s12967-025-06100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is causatively associated with excessive alveolar inflammation involving deregulated pro-inflammatory macrophage polarization. High-density lipoprotein (HDL) showed critical anti-inflammatory roles by modulating macrophage function, and its adverse transition to pro-inflammation has an important role in the pathogenesis of ARDS. However, the relationship between HDL protein constituents and functional remodeling is unknown in ARDS. METHODS Proteomic techniques were applied to examine the protein profile changes in HDL from septic-ARDS patients versus HDL from healthy controls across two distinct cohorts: a discovery cohort (8 patients and 8 healthy controls) and a validation cohort (22 patients and 10 healthy controls). The changed components significantly associated with prognosis were identified. Luminex assessed the levels of 38 plasma cytokines and chemokines. The in vitro constructed pro-SFTPB enriched HDL was applied to confirm the effect on M1 polarization of THP1-derived macrophage. RESULTS 18 proteins were validated from 102 changed HDL proteins identified in the discovery cohort, including HDL particle components, such as apolipoproteins, pro-inflammatory substances known as serum amyloid As (SAAs), and anti-oxidative proteins like paraoxonases (PONs). Among these proteins, only the increase of pro-SFTPB in HDL was significantly associated with poor prognosis of ARDS patients. Notably, HDL-pro-SFTPB level was correlated with plasma pro-inflammatory cytokines and chemokines levels. The correlation assay of pro-SFTPB with other HDL components showed that it was positively and negatively correlated with SAA2 and PON3, respectively. Furthermore, the in vitro studies confirmed that the pro-SFTPB enriched HDL significantly promoted M1 polarization of monocyte-derived macrophages. CONCLUSIONS The increase of HDL-pro-SFTPB promotes HDL pro-inflammatory transition during septic ARDS, leading to exacerbated progression of ARDS through enhancing M1 macrophage polarization. HDL-pro-SFTPB could be a useful prognostic biomarker for septic ARDS.
Collapse
Affiliation(s)
- Liu Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Zhuo Xu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Zhenyan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Fangping Ding
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Zhipeng Wu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China
| | - Xiaoqian Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No.8 Xi Tou Tiao, Youanmen Wai, Beijing, China.
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China.
- Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, N0.5 Jingyuan Road, Beijing, China.
| |
Collapse
|
14
|
Hou FF, Mi JH, Wang Q, Tao YL, Guo SB, Ran GH, Wang JC. Macrophage polarization in sepsis: Emerging role and clinical application prospect. Int Immunopharmacol 2025; 144:113715. [PMID: 39626538 DOI: 10.1016/j.intimp.2024.113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/15/2024]
Abstract
Sepsis is a severe, potentially fatal condition defined by organ dysfunction due to excessive inflammation. Its complex pathogenesis and poor therapeutic outcomes pose significant challenges in treatment. Macrophages, with their high heterogeneity and plasticity, play crucial roles in both the innate and adaptive immune systems. They can polarize into M1-like macrophages, which promote pro-inflammatory responses, or M2-like macrophages, which mediate anti-inflammatory responses, positioning them as critical mediators in the immune response during sepsis.Macrophages are the main regulators of inflammatory responses, and their polarization is also regulated by inflammatory signaling pathways. This review highlights recent advances in the inflammatory signaling pathways involved in sepsis, mechanism of macrophage polarization mediated by inflammation-related signaling pathways in sepsis, and the role of signaling pathway mediated macrophage polarization in organ dysfunction involved in sepsis. We also explore the therapeutic potential of targeting macrophage polarization for immunotherapy, offering new perspectives on macrophage-targeted treatments for sepsis.
Collapse
Affiliation(s)
- Fei Fei Hou
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Jun Hao Mi
- Liuzhou Maternity and Child Healthcare Hospital, Liuzhou 545001, China
| | - Qiong Wang
- Burn and Plastic Surgery Department of Hohhot First Hospital, Hohhot 010030, China
| | - Yan Lin Tao
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Shuai Bin Guo
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Guang He Ran
- Chongqing Changshou Traditional Cinese Medicine Hospital, 401200 Chongqing, China.
| | - Jing Chao Wang
- Intensive Care Unit Inner Mongolia Medical University Affiliated Hospital, Hohhot 010050, China.
| |
Collapse
|
15
|
Huang X, Zhu W, Zhang H, Qiu S, Shao H. SARS-CoV-2 N protein induces alveolar epithelial apoptosis via NLRP3 pathway in ARDS. Int Immunopharmacol 2025; 144:113503. [PMID: 39591821 DOI: 10.1016/j.intimp.2024.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/10/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a severe inflammatory condition often resulting from sepsis and viral infections, including (Severe Acute Respiratory Syndrome Coronavirus 2) SARS-CoV-2. This study investigates the molecular mechanisms by which the SARS-CoV-2 nucleocapsid (N) protein influences alveolar macrophage activation, leading to alveolar epithelial cell apoptosis and exacerbating ARDS. Single-cell RNA sequencing data from ARDS patients were analyzed to identify cell subpopulations and their interactions, revealing significant macrophage-epithelial cell communication through the (NOD-like receptor family pyrin domain containing 3) NLRP3 pathway. Differential gene expression in SARS-CoV-2-infected macrophages highlighted key genes, with WGCNA pinpointing core modules. In vitro experiments demonstrated that N protein overexpression in MH-S macrophages activates the NLRP3 pathway, promoting M1 macrophage polarization and inducing apoptosis in co-cultured MLE-12 epithelial cells. Immunoprecipitation, pull-down assays, Enzyme-Linked Immunosorbent Assay (ELISA), RT-qPCR, Western blotting, and flow cytometry confirmed these findings. In vivo, ARDS mouse models induced by CLP surgery or N protein administration showed increased M1 macrophage infiltration, heightened inflammatory responses, and significant epithelial cell damage, as evidenced by H&E staining, immunofluorescence, RNA-ISH, and ELISA. These results suggest that the SARS-CoV-2 N protein activates the NLRP3 signaling pathway, driving M1 macrophage polarization and the release of pro-inflammatory factors, thereby inducing alveolar epithelial cell apoptosis and worsening ARDS. Targeting this pathway may provide new therapeutic avenues for treating ARDS associated with SARS-CoV-2.
Collapse
Affiliation(s)
- Xiaopei Huang
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine,Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Wenliang Zhu
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine,Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Huifeng Zhang
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine,Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Shi Qiu
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine,Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Huanzhang Shao
- Department of Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
16
|
Lv K, Liang Q. Macrophages in sepsis-induced acute lung injury: exosomal modulation and therapeutic potential. Front Immunol 2025; 15:1518008. [PMID: 39840035 PMCID: PMC11746006 DOI: 10.3389/fimmu.2024.1518008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses. Emerging researchers have identified exosomes as crucial mediators that modulate macrophage activity during sepsis-induced ALI. This review explores the role of exosomes in modulating macrophage functions, focusing on the cellular interactions within the lung microenvironment and their potential as therapeutic targets. It highlights the regulation of macrophages by exosomes derived from pathogenic germs, neutrophils, alveolar epithelial cells, and mesenchymal stromal cells. By understanding these mechanisms, it aims to uncover innovative therapeutic strategies for sepsis-induced ALI.
Collapse
Affiliation(s)
- Kaiying Lv
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qun Liang
- Department of Critical Care Medicine, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Jing G, Ma Y. OGT-mediated O-GlcNAcylation regulates macrophage polarization in heart failure via targeting IRF1. BMC Cardiovasc Disord 2024; 24:757. [PMID: 39736588 DOI: 10.1186/s12872-024-04429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Heart failure (HF) is a syndrome with complex etiology and high mortality in the world. Macrophage-related inflammation is involved in HF development. O-GlcNAcylation is a post-translational modification that affects pathological processes. This study aimed to investigate the role of O-GlcNAcylation in HF, especially its effect on macrophage polarization. METHODS Raw264.7 cells were treated with lipopolysaccharide (LPS) to induce pro-inflammatory macrophages. HF mice were generated by transverse aortic constriction (TAC). After knockdown of OGT or overexpressing IRF1, macrophage polarization was evaluated using quantitative real-time polymerase chain reaction and flow cytometry. Underlying mechanism was analyzed using bioinformatic analysis, co-immunoprecipitation (co-IP), IP, and western blotting. RESULTS The results showed that O-GlcNAcylation and OGT levels were high in LPS-treated Raw264.7 cells. OGT knockdown inhibited pro-inflammatory macrophage polarization and promoted anti-inflammatory macrophage polarization caused by LPS, and alleviated TAC-induced cardiac dysfunction and fibrosis. Mechanistically, OGT silence suppressed O-GlcNAcylation of IRF1 at Ser (S)283 site. IRF1 overexpression reversed macrophage polarization modulated by OGT knockdown. CONCLUSION Silencing of OGT promotes macrophage polarization from pro-inflammatory to anti-inflammatory phenotype to alleviate HF through O-GlcNAcylation of IRF1. The findings suggest that O-GlcNAcylation has the potential to treat HF.
Collapse
Affiliation(s)
- Guoqiang Jing
- Department of Cardiovascular Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China
| | - Yuhong Ma
- Department of General Medicine, The Affiliated Hospital of Inner Mongolia Medical University, No.1, Tongdao North Road, Huimin District, Hohhot, Inner Mongolia, 010050, China.
| |
Collapse
|
18
|
Sun W, Cao K, Wang S, Lu M, Ma J, Wu C, Zhao Y. Pan-cancer analysis of IRF1 focusing on prognostic and immunological roles in non-small cell lung cancer. Heliyon 2024; 10:e39861. [PMID: 39605834 PMCID: PMC11600070 DOI: 10.1016/j.heliyon.2024.e39861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Interferon regulatory factor 1 (IRF1) significantly affects tumour occurrence and development. This study aimed to analyse its function as a pan-cancer prognostic indicator. We compared IRF1 expression and prognostic significance in normal and tumour samples from different databases. Accordingly, we performed in vitro experiments and immunohistochemistry (IHC) to investigate the role of IRF1 in non-small cell lung cancer (NSCLC). Our findings indicate that IRF1 expression is significantly correlated with prognosis, the tumour microenvironment, and immune cell infiltration. Furthermore, receiver operating characteristic (ROC) analysis revealed that IRF1 had high accuracy in distinguishing cancerous tissues from normal ones. Notably, IRF1 expression was linked to immune-related and immune checkpoint genes. Cell proliferation, invasion, and migration were significantly related to IRF1 expression. IHC indicated that IRF1 was downregulated in NSCLC tissues. Our study provides comprehensive bioinformatic analysis and experimental verification of IRF1, suggesting its potential as a prognostic biomarker in cancer.
Collapse
Affiliation(s)
- Weiling Sun
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
- Department of Endoscope, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Kui Cao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Siran Wang
- Department of Preventive Dentistry, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, 510182, Guangzhou, China
| | - Mengdi Lu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Chunlong Wu
- Department of Endoscope, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| | - Yanbin Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, China
| |
Collapse
|
19
|
Zhang S, Chen H, Xie J, Huang L. RIG012 assists in the treatment of pneumonia by inhibiting the RIG-I-like receptor signaling pathway. Front Med (Lausanne) 2024; 11:1501761. [PMID: 39554500 PMCID: PMC11563779 DOI: 10.3389/fmed.2024.1501761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Objective Pneumonia is a common clinical condition primarily treated with antibiotics and organ support. Exploring the pathogenesis to identify therapeutic targets may aid in the adjunct treatment of pneumonia and improve survival rates. Methods Transcriptomic data from peripheral blood of 183 pneumonia patients were analyzed using Gene Set Variation Analysis (GSVA) and univariate Cox regression analysis to identify signaling pathways associated with pneumonia mortality. A pneumonia mouse model was established via airway injection of Klebsiella pneumoniae, and pathway-specific blockers were administered via tail vein infusion to assess whether the identified signaling pathways impact the mortality in pneumonia. Results The combination of GSVA and Cox analysis revealed 17 signaling pathways significantly associated with 28-day mortality in pneumonia patients (P < 0.05). Notably, the RIG-I-like receptor signaling pathway exhibited the highest hazard ratio of 2.501 with a 95% confidence interval of [1.223-5.114]. Infusion of RIG012 via the tail vein effectively inhibited the RIG-I-like receptor signaling pathway, significantly ameliorated lung injury in pneumonia mice, reduced pulmonary inflammatory responses, and showed a trend toward improved survival rates. Conclusion RIG012 may represent a novel adjunctive therapeutic agent for pneumonia.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hanbing Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lili Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Li X, Li X, Huang P, Zhang F, Du JK, Kong Y, Shao Z, Wu X, Fan W, Tao H, Zhou C, Shao Y, Jin Y, Ye M, Chen Y, Deng J, Shao J, Yue J, Cheng X, Chinn YE. Acetylation of TIR domains in the TLR4-Mal-MyD88 complex regulates immune responses in sepsis. EMBO J 2024; 43:4954-4983. [PMID: 39294473 PMCID: PMC11535217 DOI: 10.1038/s44318-024-00237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024] Open
Abstract
Activation of the Toll-like receptor 4 (TLR4) by bacterial endotoxins in macrophages plays a crucial role in the pathogenesis of sepsis. However, the mechanism underlying TLR4 activation in macrophages is still not fully understood. Here, we reveal that upon lipopolysaccharide (LPS) stimulation, lysine acetyltransferase CBP is recruited to the TLR4 signalosome complex leading to increased acetylation of the TIR domains of the TLR4 signalosome. Acetylation of the TLR4 signalosome TIR domains significantly enhances signaling activation via NF-κB rather than IRF3 pathways. Induction of NF-κB signaling is responsible for gene expression changes leading to M1 macrophage polarization. In sepsis patients, significantly elevated TLR4-TIR acetylation is observed in CD16+ monocytes combined with elevated expression of M1 macrophage markers. Pharmacological inhibition of HDAC1, which deacetylates the TIR domains, or CBP play opposite roles in sepsis. Our findings highlight the important role of TLR4-TIR domain acetylation in the regulation of the immune responses in sepsis, and we propose this reversible acetylation of TLR4 signalosomes as a potential therapeutic target for M1 macrophages during the progression of sepsis.
Collapse
Affiliation(s)
- Xue Li
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China.
- Life Science Research Institute, Zhejiang University, Hangzhou, China.
| | - Xiangrong Li
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Pengpeng Huang
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Facai Zhang
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Juanjuan K Du
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Kong
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqiang Shao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xinxing Wu
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weijiao Fan
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Houquan Tao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chuanzan Zhou
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Shao
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yanling Jin
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meihua Ye
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yan Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jong Deng
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China
| | - Jimin Shao
- Department of Pathology and Pathophysiology, Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Yue
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.
| | - Y Eugene Chinn
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou, China.
- Yantai Peninsular Cancer Center, Binzhou Medical University, Yantai, China.
| |
Collapse
|
21
|
Ma W, Zheng J, Wu B, Wang M, Kang Z. Regulatory mechanism of TRIM21 in sepsis-induced acute lung injury by promoting IRF1 ubiquitination. Clin Exp Pharmacol Physiol 2024; 51:e13911. [PMID: 39360626 DOI: 10.1111/1440-1681.13911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is characterized by inflammatory damage to pulmonary endothelial and epithelial cells. The aim of this study is to probe the significance and mechanism of tripartite motif-containing protein 21 (TRIM21) in sepsis-induced ALI. The sepsis-induced ALI mouse model was established by cecum ligation and puncture. The mice were infected with lentivirus and treated with proteasome inhibitor MG132. The lung respiratory damage, levels of interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), IL-10 and pathological changes were observed. The expression levels of TRIM21, interferon regulatory factors 1 (IRF1) and triggering receptor expressed on myeloid cells 2 (TREM2) were measured and their interactions were analysed. The ubiquitination level of IRF1 was detected. TRIM21 and TREM2 were downregulated and IRF1 was upregulated in sepsis-induced ALI mice. TRIM21 overexpression eased inflammation and lung injury. TRIM21 promoted IRF1 degradation via ubiquitination modification. IRF1 bonded to the TREM2 promoter to inhibit its transcription. Overexpression of IRF1 or silencing TREM2 reversed the improvement of TRIM21 overexpression on lung injury in mice. In conclusion, TRIM21 reduced IRF1 expression by ubiquitination to improve TREM2 expression and ameliorate sepsis-induced ALI.
Collapse
Affiliation(s)
- Wenjie Ma
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Jie Zheng
- Department of Laboratory, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Bin Wu
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Meitang Wang
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Zhoujun Kang
- Department of Emergency, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| |
Collapse
|
22
|
Yi L, Chen Y, Zhang Y, Huang H, Li J, Qu Y, Weng T, Chai J. Deleting fibroblast growth factor 2 in macrophages aggravates septic acute lung injury by increasing M1 polarization and inflammatory cytokine secretion. MOLECULAR BIOMEDICINE 2024; 5:50. [PMID: 39436561 PMCID: PMC11496435 DOI: 10.1186/s43556-024-00203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
Septic lung injury is strongly associated with polarization of M1 macrophages and excessive cytokine release. Fibroblast growth factor (FGF) signaling plays a role in both processes. However, the impact of FGF2 deficiency on macrophage polarization and septic acute lung injury remains unclear. To investigate this, we obtained macrophages from FGF2 knockout mice and examined their polarization and inflammatory cytokine expression. We also eliminated endogenous macrophages using clodronate liposomes and administered FGF2 knockout or WT macrophages intravenously in conjunction with cecal ligation and puncture (CLP) surgery to induce sepsis. In vitro analysis by flow cytometry and real-time PCR analysis demonstrated that FGF2 deficiency resulted in increased expression of M1 markers (iNOS and CD86) and inflammatory cytokines (CXCL1, IL1β, and IL6), especially after LPS stimulation. Additionally, immunofluorescence demonstrated increased nuclear translocation of p65 NF-κB in FGF2 knockout macrophages and RNA-seq analysis showed enrichment of differentially expressed genes in the IL17 and TNFα inflammatory signaling pathways. Furthermore, in vivo experiments revealed that depletion of FGF2 in macrophages worsened sepsis-induced lung inflammation, lung vascular leak, and lung histological injury, accompanied by an increase in CD86-positive cells and apoptosis. Our study suggests that FGF2 deficiency in macrophages plays a critical role in the pathogenesis of septic ALI, possibly because of the enhanced M1 macrophage polarization and production of proinflammatory cytokines. These findings provide empirical evidence for potential therapeutic interventions targeting FGF2 signaling to modulate the polarization of M1 and M2 macrophages in the management of sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Lingxian Yi
- Department of Emergency, the Ninth Medical Centre of Chinese PLA General Hospital;Chinese PLA Medical School, Beijing, 100101, PR China
- The Fourth Medical Centre of Chinese PLA General Hospital; Chinese PLA Medical School, Beijing, 100048, PR China
| | - Yu Chen
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Yaoyang Zhang
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Haiquan Huang
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Jiahui Li
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China
| | - Yirui Qu
- The Fourth Medical Centre of Chinese PLA General Hospital; Chinese PLA Medical School, Beijing, 100048, PR China
| | - Tujun Weng
- Senior Department of Orthopaedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, PR China.
| | - Jiake Chai
- The Fourth Medical Centre of Chinese PLA General Hospital; Chinese PLA Medical School, Beijing, 100048, PR China.
| |
Collapse
|
23
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
24
|
Yang Z, Xia H, Lai J, Qiu L, Lin J. Artesunate alleviates sepsis-induced liver injury by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis. Diagn Microbiol Infect Dis 2024; 110:116383. [PMID: 38889486 DOI: 10.1016/j.diagmicrobio.2024.116383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The present study aimed to explore the regulatory effects of artesunate on macrophage polarization in sepsis. METHODS Cell models and mice models were established using lipopolysaccharide (LPS), followed by treatment with various concentrations of artesunate. The phenotype of the macrophages was determined by flow cytometry. RNA immunoprecipitation was used to confirm the binding between MALAT1 and polypyrimidine tract-binding protein 1 (PTBP1), as well as between PTBP1 and interferon-induced helicase C domain-containing protein 1 (IFIH1). RESULTS Treatment with artesunate inhibited M1 macrophage polarization in Kupffer cells subjected to LPS stimulation by downregulating MALAT1. Furthermore, MALAT1 abolished the inhibitory effect of artesunate on M1 macrophage polarization by recruiting PTBP1 to promote IFIH. In vivo experiments confirmed that artesunate alleviated septic liver injury by affecting macrophage polarization via MALAT1. CONCLUSION The present study showed that artesunate alleviates LPS-induced sepsis in Kupffer cells by regulating macrophage polarization via the lncRNA MALAT1/PTBP1/IFIH1 axis.
Collapse
Affiliation(s)
- Zhaobin Yang
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Hao Xia
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Jiawei Lai
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China
| | - Luzhen Qiu
- Department of Medical Intensive Care Unit, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou City, Fujian Province, China.
| | - Jiandong Lin
- Department of Intensive Care Unit, The First Affiliated Hospital of Fujian Medical University, Fuzhou City, Fujian Province, China.
| |
Collapse
|
25
|
Hao Y, Fu H, Li K, Zou X, Zhou X, Tang X, Liu C, Zhou F. Inhibition of GBP1 alleviates pyroptosis of human pulmonary microvascular endothelial cells through STAT1/NLRP3/GSDMD pathway. Mol Immunol 2024; 173:1-9. [PMID: 38996607 DOI: 10.1016/j.molimm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/16/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Restoring and maintaining the function of endothelial cells is critical for acute respiratory distress syndrome (ARDS). Guanylate binding protein 1(GBP1) is proved to elevated in ARDS patients, but its role and mechanism remains unclear. The objective of this study is to investigate the internal mechanism of GBP1 in lung injury. Our study showed that when the LPS and IFN-γ induced human Pulmonary Microvascular Endothelial Cells (HPMECs) injury model was established, cell viability was significantly reduced, and the levels of GBP1 levels and inflammatory factors were significantly increased. When transfection with si-GBP1, low expression of GBP1 promoted cell proliferation and migration, and decreased the expression of downstream inflammatory factors. Furthermore, the inhibition of GBP1 significantly reduced the occurrence of cell pyroptosis and the expression of NLRP3 and STAT1. Our study indicated that GBP1 alleviates endothelial pyroptosis and inflammation through STAT1 / NLRP3/GSDMD signaling pathway, and GBP1 may be a new target in the treatment of lung injury in the future.
Collapse
Affiliation(s)
- Yingting Hao
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Hongxue Fu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Kaili Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuan Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xin Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xiyue Tang
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Chang Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
26
|
Zhang S, Huang W, Wu X, Chen H, Wang L, Chao J, Xie J, Qiu H. IBR1, a novel endogenous IFIH1-binding dsRNA, governs IFIH1 activation and M1 macrophage polarisation in ARDS. Clin Transl Med 2024; 14:e70027. [PMID: 39313944 PMCID: PMC11420289 DOI: 10.1002/ctm2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Uncontrolled inflammation caused by macrophages and monocytes plays a crucial role in worsening acute respiratory distress syndrome (ARDS). Previous studies have highlighted the importance of IFIH1 in regulating macrophage polarisation in ARDS triggered by pneumonia. However, the mechanisms by which IFIH1 is activated in ARDS remain unclear. METHODS In this study, we utilised multiomics sequencing and molecular interaction experiments to explore the molecular mechanisms underlying IFIH1 activation in ARDS. Through the use of conditional gene knockout mice and primary cells, we demonstrated the significant role of these mechanisms in the development of ARDS. Additionally, we validated the associations between these mechanisms and ARDS by quantitative PCR analysis of CD14+ cells obtained from the peripheral blood of 140 ARDS patients. RESULTS Our investigation revealed that lipopolysaccharide, a critical component derived from Gram-negative bacteria, activated IFIH1 by upregulating a novel transcript known as IFIH1-binding RNA1 (IBR1) in monocytes and macrophages. Specifically, as an endogenous double-stranded RNA, IBR1 bind to the helicase domain of IFIH1 because of its unique double-stranded structure. Deletion of IBR1 significantly reduced the activation of IFIH1, M1 polarisation of macrophages, and inflammatory lung injury in ARDS. Moreover, IBR1 directly induced M1 polarisation of macrophages and ARDS, whereas deletion of IFIH1 inhibited IBR1-induced macrophage M1 polarisation and inflammatory lung injury. Importantly, we observed a notable increase in IBR1 expression in ARDS patients with pneumonia caused by Gram-negative bacteria. Furthermore, we demonstrated that the delivery of IFIH1 mutants through exosomes effectively counteracted IBR1, thereby reducing pulmonary inflammation and alleviating lung injury. CONCLUSIONS This study revealed a novel mechanism involving IBR1, an endogenous double-stranded RNA (dsRNA) that binds to IFIH1, shedding light on the complex process of macrophage polarisation in ARDS. The administration of IFIH1 variants has the potential to eliminate pulmonary dsRNA and alleviate inflammatory lung injury in ARDS. HIGHLIGHTS In monocytes and macrophages, the endogenous double-stranded RNA, IFIH1-binding RNA 1 (IBR1), binds to the helicase domain of IFIH1 because of its unique double-stranded structure. IBR1 plays a significant role in macrophage polarisation and the development of acute respiratory distress syndrome (ARDS) induced by Gram-negative bacteria or lipopolysaccharide (LPS). Administration of IFIH1 variants has potential for eliminating pulmonary IBR1 and reducing inflammatory lung injury in ARDS patients.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Respiratory and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xueling Wu
- Department of Respiratory and Critical Care Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanbing Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Wang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Chao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
27
|
Liu Z, Ting Y, Li M, Li Y, Tan Y, Long Y. From immune dysregulation to organ dysfunction: understanding the enigma of Sepsis. Front Microbiol 2024; 15:1415274. [PMID: 39252831 PMCID: PMC11381394 DOI: 10.3389/fmicb.2024.1415274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Sepsis is a syndrome precipitated by immune dysregulation in response to infection, and represents a pivotal factor in global mortality attributed to diseases. The recent consensus delineates sepsis as a perilous state of organ dysfunction arising from the host's maladaptive reaction to infection. It masks the complexity and breadth of the immune mechanisms involved in sepsis, which is characterized by simultaneous hyperinflammation and immunosuppression. Sepsis is highly correlated with the dysregulation of immune response, which is mainly mediated by various immune cells and their interactions. This syndrome can lead to a plethora of complications, encompassing systemic inflammatory response, metabolic disturbances, infectious shock, MODS, and DIC. Furthermore, more research studies have been conducted on sepsis in the past few years. The pathological characteristics of sepsis have been improved or treated by targeting signaling pathways like NF-B, JAK-STAT, PI3K-Akt, and p38-MAPK. Combined drug therapy is better than single drug therapy for sepsis. This article will review the latest progress in the pathogenesis and treatment of sepsis.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yuan Ting
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Miao Li
- Jishou University Zhuzhou Clinical College, Medical College, Jishou University, Zhuzhou, China
- Medical College, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture, Zhuzhou, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yingzheng Tan
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| | - Yunzhu Long
- Department of Infectious Disease, Graduate Collaborative Training Base of Zhuzhou, Hengyang Medical School, University of South China, Hengyang, China
- Department of Infectious Disease, Zhuzhou Central Hospital, Xiangya Hospital Zhuzhou Central South University, Central South University, Zhuzhou, China
| |
Collapse
|
28
|
Ramsey HE, Gorska AE, Smith BN, Monteith AJ, Fuller L, Arrate MP, Savona MR. TLR3 agonism augments CD47 inhibition in acute myeloid leukemia. Haematologica 2024; 109:2111-2121. [PMID: 38152031 PMCID: PMC11215363 DOI: 10.3324/haematol.2023.283850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023] Open
Abstract
CD47-SIRPa is a myeloid check point pathway that promotes phagocytosis of cells lacking markers for self-recognition. Tumor cells can overexpress CD47 and bind to SIRPa on macrophages, preventing phagocytosis. CD47 expression is enhanced and correlated with a negative prognosis in acute myeloid leukemia (AML), with its blockade leading to cell clearance. ALX90 is an engineered fusion protein with high affinity for CD47. Composed of the N-terminal D1 domain of SIRPα genetically linked to an inactive Fc domain from human immunoglobulin (Ig) G, ALX90 is designed to avoid potential toxicity of CD47-expressing red blood cells. Venetoclax (VEN) is a specific B-cell lymphoma-2 (BCL-2) inhibitor that can restore apoptosis in malignant cells. In AML, VEN is combined with azanucleosides to induce superior remission rates, however treatment for refractory/relapse is an unmet need. We questioned whether the anti-tumor activity of a VENbased regimen can be augmented through CD47 inhibition (CD47i) in AML and how this triplet may be enhanced. Human AML cell lines were sensitive to ALX90 and its addition increased efficacy of a VEN plus azacitidin (VEN+AZA) regimen in vivo. However, CD47i failed to clear bone marrow tumor burden in PDX models. We hypothesized that the loss of resident macrophages in the bone marrow in AML reduced efficiency of CD47i. Therefore, we attempted to enhance this medullary macrophage population with agonism of TLR3 via polyinosinic:polycytidylic acid (poly(I:C)), which led to expansion and activation of medullary macrophages in in vivo AML PDX models and potentiated CD47i. In summary, the addition of poly(I:C) can enhance medullary macrophage populations to potentiate the phagocytosis merited by therapeutic inhibition of CD47.
Collapse
MESH Headings
- CD47 Antigen/metabolism
- CD47 Antigen/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Humans
- Animals
- Mice
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Macrophages/metabolism
- Macrophages/drug effects
- Sulfonamides/pharmacology
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/antagonists & inhibitors
- Antigens, Differentiation/metabolism
- Phagocytosis/drug effects
- Poly I-C/pharmacology
Collapse
Affiliation(s)
- Haley E Ramsey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN; Program in Cancer Biology
| | - Agnieszka E Gorska
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Andrew J Monteith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Londa Fuller
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Maria P Arrate
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN; Center for Immunobiology; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN.
| |
Collapse
|
29
|
Wu Y, Wang L, Li Y, Cao Y, Wang M, Deng Z, Kang H. Immunotherapy in the context of sepsis-induced immunological dysregulation. Front Immunol 2024; 15:1391395. [PMID: 38835773 PMCID: PMC11148279 DOI: 10.3389/fimmu.2024.1391395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Sepsis is a clinical syndrome caused by uncontrollable immune dysregulation triggered by pathogen infection, characterized by high incidence, mortality rates, and disease burden. Current treatments primarily focus on symptomatic relief, lacking specific therapeutic interventions. The core mechanism of sepsis is believed to be an imbalance in the host's immune response, characterized by early excessive inflammation followed by late immune suppression, triggered by pathogen invasion. This suggests that we can develop immunotherapeutic treatment strategies by targeting and modulating the components and immunological functions of the host's innate and adaptive immune systems. Therefore, this paper reviews the mechanisms of immune dysregulation in sepsis and, based on this foundation, discusses the current state of immunotherapy applications in sepsis animal models and clinical trials.
Collapse
Affiliation(s)
- Yiqi Wu
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yun Li
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Cao
- Department of Emergency Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Wang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Graduate School of The People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
30
|
Oliveira L, Silva MC, Gomes AP, Santos RF, Cardoso MS, Nóvoa A, Luche H, Cavadas B, Amorim I, Gärtner F, Malissen B, Mallo M, Carmo AM. CD5L as a promising biological therapeutic for treating sepsis. Nat Commun 2024; 15:4119. [PMID: 38750020 PMCID: PMC11096381 DOI: 10.1038/s41467-024-48360-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Sepsis results from systemic, dysregulated inflammatory responses to infection, culminating in multiple organ failure. Here, we demonstrate the utility of CD5L for treating experimental sepsis caused by cecal ligation and puncture (CLP). We show that CD5L's important features include its ability to enhance neutrophil recruitment and activation by increasing circulating levels of CXCL1, and to promote neutrophil phagocytosis. CD5L-deficient mice exhibit impaired neutrophil recruitment and compromised bacterial control, rendering them susceptible to attenuated CLP. CD5L-/- peritoneal cells from mice subjected to medium-grade CLP exhibit a heightened pro-inflammatory transcriptional profile, reflecting a loss of control of the immune response to the infection. Intravenous administration of recombinant CD5L (rCD5L) in immunocompetent C57BL/6 wild-type (WT) mice significantly ameliorates measures of disease in the setting of high-grade CLP-induced sepsis. Furthermore, rCD5L lowers endotoxin and damage-associated molecular pattern (DAMP) levels, and protects WT mice from LPS-induced endotoxic shock. These findings warrant the investigation of rCD5L as a possible treatment for sepsis in humans.
Collapse
Affiliation(s)
- Liliana Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - M Carolina Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- Universidade de Aveiro, Aveiro, Portugal
| | - Ana P Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- ESS, Politécnico do Porto, Porto, Portugal
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Hervé Luche
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Bruno Cavadas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Bernard Malissen
- Centre d'Immunophénomique (CIPHE), Aix Marseille Université, INSERM, CNRS, 13288, Marseille, France
| | - Moisés Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexandre M Carmo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| |
Collapse
|
31
|
Yang Z, Kao X, Huang N, Yuan K, Chen J, He M. Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. J Inflamm Res 2024; 17:1941-1956. [PMID: 38562657 PMCID: PMC10984196 DOI: 10.2147/jir.s452608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Sepsis-induced lung injury (SLI) is a serious complication of sepsis. PANoptosis, a novel form of inflammatory programmed cell death that is not yet to be fully investigated in SLI. Our research aims to screen and validate the signature genes of PANoptosis in SLI by bioinformatics and in vivo experiment. Methods SLI-related datasets were downloaded from NCBI Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of SLI were identified and intersected with the PANoptosis gene set to obtain DEGs related to PANoptosis (SPAN_DEGs). Then, Protein-Protein Interaction (PPI) network and functional enrichment analysis were conducted based on SPAN_DEGs. SVM-REF, LASSO and RandomForest three algorithms were combined to identify the signature genes. The Nomogram and ROC curves were performed to predict diagnostic value. Immune infiltration analysis, correlation analysis and differential expression analysis were used to explore the immunological characterization, correlation and expression levels of the signature genes. Finally, H&E staining and qRT-PCR were conducted for further verification in vivo experiment. Results Twenty-four SPAN_DEGs were identified by intersecting 675 DEGs with the 277 PANoptosis genes. Four signature genes (CD14, GSDMD, IL1β, and FAS) were identified by three machine learning algorithms, which were highly expressed in the SLI group, and had high diagnostic value in the diagnostic model. Moreover, immune infiltration analysis showed that most immune cells and immune-related functions were higher in the SLI group than those in the control group and were closely associated with the signature genes. Finally, it was confirmed that the cecum ligation and puncture (CLP) group mice showed significant pathological damage in lung tissues, and the mRNA expression levels of CD14, IL1β, and FAS were significantly higher than the sham group. Conclusion CD14, FAS, and IL1β may be the signature genes in PANoptosis to drive the progression of SLI and involved in regulating immune processes.
Collapse
Affiliation(s)
- Zhen Yang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Xingyu Kao
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Na Huang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Kang Yuan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| |
Collapse
|
32
|
Chen L, Tang Z, Fu L, Xie Y, Xu J, Xia H, Xia T, Wang M. The Critical Role of Pyroptosis in Peri-Implantitis. J Inflamm Res 2024; 17:1621-1642. [PMID: 38495343 PMCID: PMC10944294 DOI: 10.2147/jir.s450706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Background Peri-implantitis (PI) is a prevalent complication of implant treatment. Pyroptosis, a distinctive inflammatory programmed cell death, is crucial to the pathophysiology of PI. Despite its importance, the pyroptosis-related genes (PRGs) influencing PI's progression remain largely unexplored. Methods This study conducted histological staining and transcriptome analyze from three datasets. The intersection of differentially expressed genes (DEGs) and PRGs was identified as pyroptosis-related differentially expressed genes (PRDEGs). Functional enrichment analyses were conducted to shed light on potential underlying mechanisms. Weighted Gene Co-expression Network Analysis (WGCNA) and a pyroptotic macrophage model were utilized to identify and validate hub PRDEGs. Immune cell infiltration in PI and its relationship with hub PRDEGs were also examined. Furthermore, consensus clustering was performed to identify new PI subtypes. Protein-protein interaction (PPI) network, competing endogenous RNA (ceRNA) network, mRNA-mRNA binding protein regulatory (RBP) network, and mRNA-drugs regulatory network of hub PRDEGs were also analyzed. Results Eight hub PRDEGs were identified: PGF, DPEP1, IL36B, IFIH1, TCEA3, RIPK3, NET7, and TLR3, which are instrumental in the PI's progression. Two PI subtypes were distinguished, with Cluster 1 exhibiting higher immune cell activation. The exploration of regulatory networks provided novel mechanisms and therapeutic targets in PI. Conclusion Our research highlights the critical role of pyroptosis and identifies eight hub PRDEGs in PI's progression, offering insights into novel immunotherapy targets and laying the foundation for advanced diagnostic and treatment strategies. This contributes to our understanding of PI and underscores the potential for personalized clinical management.
Collapse
Affiliation(s)
- Liangwen Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Ziqiao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Liangliang Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Yang Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Junyi Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Ting Xia
- Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Department of Oral Implantology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
33
|
Jiang Y, Yu W, Hu T, Peng H, Hu F, Yuan Y, Liu X, Lai S, Zhou J, Dong X. Unveiling macrophage diversity in myocardial ischemia-reperfusion injury: identification of a distinct lipid-associated macrophage subset. Front Immunol 2024; 15:1335333. [PMID: 38449872 PMCID: PMC10915075 DOI: 10.3389/fimmu.2024.1335333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024] Open
Abstract
Background and objective Macrophages play a crucial and dichotomous role cardiac repair following myocardial ischemia-reperfusion, as they can both facilitate tissue healing and contribute to injury. This duality is intricately linked to environmental factors, and the identification of macrophage subtypes within the context of myocardial ischemia-reperfusion injury (MIRI) may offer insights for the development of more precise intervention strategies. Methods Specific marker genes were used to identify macrophage subtypes in GSE227088 (mouse single-cell RNA sequencing dataset). Genome Set Enrichment Analysis (GSEA) was further employed to validate the identified LAM subtypes. Trajectory analysis and single-cell regulatory network inference were executed using the R packages Monocle2 and SCENIC, respectively. The conservation of LAM was verified using human ischemic cardiomyopathy heart failure samples from the GSE145154 (human single-cell RNA sequencing dataset). Fluorescent homologous double-labeling experiments were performed to determine the spatial localization of LAM-tagged gene expression in the MIRI mouse model. Results In this study, single-cell RNA sequencing (scRNA-seq) was employed to investigate the cellular landscape in ischemia-reperfusion injury (IRI). Macrophage subtypes, including a novel Lipid-Associated Macrophage (LAM) subtype characterized by high expression of Spp1, Trem2, and other genes, were identified. Enrichment and Progeny pathway analyses highlighted the distinctive functional role of the SPP1+ LAM subtype, particularly in lipid metabolism and the regulation of the MAPK pathway. Pseudotime analysis revealed the dynamic differentiation of macrophage subtypes during IRI, with the activation of pro-inflammatory pathways in specific clusters. Transcription factor analysis using SCENIC identified key regulators associated with macrophage differentiation. Furthermore, validation in human samples confirmed the presence of SPP1+ LAM. Co-staining experiments provided definitive evidence of LAM marker expression in the infarct zone. These findings shed light on the role of LAM in IRI and its potential as a therapeutic target. Conclusion In conclusion, the study identifies SPP1+ LAM macrophages in ischemia-reperfusion injury and highlights their potential in cardiac remodeling.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenpeng Yu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tie Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hanzhi Peng
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fajia Hu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yong Yuan
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xufeng Liu
- Department of Haematology, Ganzhou People’s Hospital, Ganzhou, China
| | - Songqing Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Wu Y, Caldwell B, Wang J, Zhang Y, Li L. Alleviation of monocyte exhaustion by BCG derivative mycolic acid. iScience 2024; 27:108978. [PMID: 38323001 PMCID: PMC10845070 DOI: 10.1016/j.isci.2024.108978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Monocyte exhaustion with sustained pathogenic inflammation and immune-suppression, a hallmark of sepsis resulting from systemic infections, presents a challenge with limited therapeutic solutions. This study identified Methoxy-Mycolic Acid (M-MA), a branched mycolic acid derived from Mycobacterium bovis Bacillus Calmette-Guérin (BCG), as a potent agent in alleviating monocyte exhaustion and restoring immune homeostasis. Co-treatment of monocytes with M-MA effectively blocked the expansion of Ly6Chi/CD38hi/PD-L1hi monocytes induced by LPS challenges and restored the expression of immune-enhancing CD86. M-MA treatment restored mitochondrial functions of exhausted monocytes and alleviated their suppressive activities on co-cultured T cells. Independent of TREM2, M-MA blocks Src-STAT1-mediated inflammatory polarization and reduces the production of immune suppressors TAX1BP1 and PLAC8. Whole genome methylation analyses revealed M-MA's ability to erase the methylation memory of exhausted monocytes, particularly restoring Plac8 methylation. Together, our data suggest M-MA as an effective agent in restoring monocyte homeostasis with a therapeutic potential for treating sepsis.
Collapse
Affiliation(s)
- Yajun Wu
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Blake Caldwell
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech; Blacksburg, VA 24061-0910, USA
| |
Collapse
|
35
|
Nie X, Deng W, Zhou H, Wang Z. Long noncoding RNA MCM3AP-AS1 attenuates sepsis-induced cardiomyopathy by improving inflammation, oxidative stress, and mitochondrial function through mediating the miR-501-3p/CADM1/STAT3 axis. Int Immunopharmacol 2024; 128:111500. [PMID: 38237222 DOI: 10.1016/j.intimp.2024.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Oxidative stress and inflammation are highly important for sepsis-mediated myocardial damage. The long noncoding RNA (lncRNA) MCM3AP-AS1 is involved in inflammatory diseases, but its function in acute myocardial injury during sepsis has not been fully elucidated. LPS and cecal ligation and puncture (CLP) were used to construct in vitro and in vivo sepsis-induced myocardial damage models, respectively. qRT-PCR was used to evaluate alterations in MCM3AP-AS1 and miR-501-3p alterations. After the MCM3AP-AS1 and miR-501-3p knockdown or overexpression models were established, the viability, apoptosis, inflammation, oxidative stress, and mitochondrial function of the myocardial cells were examined. Dual luciferase activity assay, RNA immunoprecipitation, and fluorescence in situ hybridization (FISH) confirmed the correlation among MCM3AP-AS1, miR-501-3p, and CADM1. Previous studies revealed that MCM3AP-AS1 was downregulated in sepsis patients, myocardial cells treated with LPS, and in the CLP mouse sepsis model, whereas miR-501-3p expression was increased. MCM3AP-AS1 overexpression hampered myocardial damage mediated by LPS and abated inflammation, oxidative stress, and mitochondrial dysfunction in myocardial cells and THP-1 cells. In contrast, MCM3AP-AS1 knockdown or miR-501-3p overexpression promoted all the effects of LPS. In vivo, MCM3AP-AS1 overexpression increased the survival rate of CLP mice; ameliorated myocardial injury; decreased the levels of TNF-α, IL-1β, IL-6, iNOS, COX2, ICAM1, VCAM1, PGE2, and MDA; and increased the levels of SOD, GSH-PX, Nrf2, and HO-1. Mechanistic studies demonstrated that MCM3AP-AS1 acted as a competitive endogenous RNA to repress miR-501-3p, enhance CADM1 expression, and dampen STAT3/nuclear factor-kappaB (NF-κB) activation. MCM3AP-AS1 suppresses myocardial injury elicited by sepsis by mediating the miR-501-3p/CADM1/STAT3/NF-κB axis.
Collapse
Affiliation(s)
- Xiangbi Nie
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Wu Deng
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Han Zhou
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China
| | - Zenggeng Wang
- Department of Emergency, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, NanChang 330006, Jiangxi, China.
| |
Collapse
|
36
|
Chen L, Meng J, Zheng J, Zhao T, Li Q, Lu C. Role of CCRL2 in the Pathogenesis of Experimental Autoimmune Myocarditis via P21-Activated Kinase 1/NOD-Like Receptor Protein 3 Pathway. Int Heart J 2024; 65:339-348. [PMID: 38556341 DOI: 10.1536/ihj.23-527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myocarditis, a severe inflammatory disease, is becoming a worldwide public health concern. This study aims to elucidate the effect of Chemokine (C C motif) receptor-like 2 (CCRL2) in experimental autoimmune myocarditis (EAM) occurrence and its potential regulatory mechanisms.EAM was simulated in a mouse model injected with α-myosin-heavy chain. The changes on EAM were assessed through histological staining of heart tissues, including measuring cardiac troponin I (cTnI), proinflammatory cytokines, transferase-mediated dUTP nick end labeling (TUNEL) assay, and cardiac function. Then, the heart tissues from the EAM mouse model and control groups were analyzed through transcriptome sequencing to identify the differential expressed genes (DEGs) and hub genes related to pyroptosis. Downregulation of CCRL2 further verified the function of CCRL2 on EAM and p21-activated kinase 1/NOD-like receptor protein 3 (PAK/NLRP3) signaling pathways in vivo.The EAM model was constructed successfully, with the heart weight/body weight ratio, serum level of cTnI, and concentrations of proinflammatory cytokines elevation. Moreover, cell apoptosis was also significantly increased. Transcriptome sequencing revealed 696 and 120 upregulated and downregulated DEGs, respectively. After functional enrichment, CCRL2 was selected as a potential target. Then, we verified that CCRL2 knockdown improved cardiac function, alleviated EAM occurrence, and reduced PAK/NLRP3 protein expression.CCRL2 may act as a novel potential treatment target in EAM by regulating the PAK1/NLRP3 pathway.
Collapse
Affiliation(s)
- Lin Chen
- The First Central Clinical School, Tianjin Medical University
- Department of Cardiology, The People's Hospital of Rizhao
| | - Jing Meng
- Department of Cardiology, The People's Hospital of Rizhao
| | - Jia Zheng
- Department of Cardiology, Tianjin First Center Hospital
| | - Tingting Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Qi Li
- School of Medicine, Nankai University
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital
| |
Collapse
|
37
|
Chaterjee O, Sur D. Artificially induced in situ macrophage polarization: An emerging cellular therapy for immuno-inflammatory diseases. Eur J Pharmacol 2023; 957:176006. [PMID: 37611840 DOI: 10.1016/j.ejphar.2023.176006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Macrophages are the mature form of monocytes that have high plasticity and can shift from one phenotype to another by the process of macrophage polarization. Macrophage has several vital pharmacological tasks like eliminating microorganism invasion, clearing dead cells, causing inflammation, repairing damaged tissues, etc. The function of macrophages is based on their phenotype. M1 macrophages are mostly responsible for the body's immune responses and M2 macrophages have healing properties. Inappropriate activation of any one of the phenotypes often leads to ROS-induced tissue damage and affects wound healing and angiogenesis. Therefore, maintaining tissue macrophage homeostasis is necessary. Studies are being done to find techniques for macrophage polarization. But, the process of macrophage polarization is very complex as it involves multiple signalling pathways involving innate immunity. Thus, identifying the right pathways for macrophage polarization is essential to apply the polarizing technique for the treatment of various inflammatory diseases where macrophage physiology influences the disease pathology. In this review, we highlighted the various techniques so far used to change macrophage plasticity. We believe that soon macrophage targeting therapeutics will hit the market for the management of inflammatory disease. Hence this review will help macrophage researchers choose suitable methods and materials/agents to polarize macrophages artificially in various disease models.
Collapse
Affiliation(s)
- Oishani Chaterjee
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India.
| |
Collapse
|
38
|
Li Y, Dong X, He W, Quan H, Chen K, Cen C, Wei W. Ube2L6 Promotes M1 Macrophage Polarization in High-Fat Diet-Fed Obese Mice via ISGylation of STAT1 to Trigger STAT1 Activation. Obes Facts 2023; 17:24-36. [PMID: 37820603 PMCID: PMC10836867 DOI: 10.1159/000533966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
INTRODUCTION In obesity-related type 2 diabetes mellitus (T2DM), M1 macrophages aggravate chronic inflammation and insulin resistance. ISG15-conjugation enzyme E2L6 (Ube2L6) has been demonstrated as a promoter of obesity and insulin resistance. This study investigated the function and mechanism of Ube2L6 in M1 macrophage polarization in obesity. METHODS Obesity was induced in Ube2L6AKO mice and age-matched Ube2L6flox/flox control mice by high-fat diet (HFD). Stromal vascular cells were isolated from the epididymal white adipose tissue of mice. Polarization induction was performed in mouse bone marrow-derived macrophages (BMDMs) by exposure to IFN-γ, lipopolysaccharide, or IL-4. F4/80 expression was assessed by immunohistochemistry staining. Expressions of M1/M2 macrophage markers and target molecules were determined by flow cytometry, RT-qPCR, and Western blotting, respectively. Protein interaction was validated by co-immunoprecipitation (Co-IP) assay. The release of TNF-α and IL-10 was detected by ELISA. RESULTS The polarization of pro-inflammatory M1 macrophages together with an increase in macrophage infiltration was observed in HFD-fed mice, which could be restrained by Ube2L6 knockdown. Additionally, Ube2L6 deficiency triggered the repolarization of BMDMs from M1 to M2 phenotypes. Mechanistically, Ube2L6 promoted the expression and activation of signal transducer and activator of transcription 1 (STAT1) through interferon-stimulated gene 15 (ISG15)-mediated ISGlylation, resulting in M1 macrophage polarization. CONCLUSION Ube2L6 exerts as an activator of STAT1 via post-translational modification of STAT1 by ISG15, thereby triggering M1 macrophage polarization in HFD-fed obese mice. Overall, targeting Ube2L6 may represent an effective therapeutic strategy for ameliorating obesity-related T2DM.
Collapse
Affiliation(s)
- Yunqian Li
- Center of Gerontology and Geriatrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiao Dong
- Center of Gerontology and Geriatrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Wenqian He
- Department of Endocrinology, Hainan Medical College, Haikou, China
| | - Huibiao Quan
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kaining Chen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chaoping Cen
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weiping Wei
- Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
39
|
Zhu H, Xu J, Li K, Chen M, Wu Y, Zhang X, Chen H, Chen D. DOCK8 inhibits the immune function of neutrophils in sepsis by regulating aerobic glycolysis. Immun Inflamm Dis 2023; 11:e965. [PMID: 37647440 PMCID: PMC10461417 DOI: 10.1002/iid3.965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION This study endeavored to investigate the role of DOCK8 in modulating the immune function triggered by sepsis. METHODS Expression of DOCK8 in the whole blood of sepsis patients and its enrichment pathways were assayed by bioinformatics. Pearson analysis was used to predict the relationship between glycolytic signaling pathway and its relevance to neutrophil function in sepsis. A sepsis mouse model was then built by performing cecal ligation and puncture treatment on male mice. Neutrophils were isolated, and their purity was tested by flow cytometry. Neutrophils were then stimulated by lipopolysaccharide to build a sepsis cell model. Next, quantitative reverse transcription polymerase chain reaction and CCK-8 were applied to test the expression of DOCK8 and cell viability, western blot to assay the expression of HK-2, PKM2, and LDHA proteins, ELISA to measure the concentrations of TNF-α, IL-1β, and IL-6, Transwell to detect the chemotaxis of neutrophils and flow cytometry to detect the phagocytic activity of neutrophils. Finally, in different treatment groups, we used Seahorse XF 96 to analyze the extracellular acidification rate (ECAR) of sepsis cells and used enzyme-linked immunosorbent assay to detect the contents of pyruvic acid, lactic acid, and ATP in sepsis cells. RESULTS DOCK8 was downregulated in sepsis blood and activated neutrophils. Aerobic glycolysis was positively correlated with sepsis. Activated neutrophils promoted the expression of inflammatory factors TNF-α, IL-1β, and IL-6. Low expression of DOCK8 facilitated the proliferation, chemotaxis, and phagocytic activity of sepsis cells and promoted the expression of inflammatory factors. Bioinformatics analysis revealed that DOCK8 was enriched in the glycolytic signaling pathway. Low expression of DOCK8 induced ECAR, promoted the protein expression of HK-2, PKM2 and LDHA, and favored the increase of pyruvate, lactate, and ATP contents. While 2-DG treatment could restore these effects. CONCLUSION DOCK8 may inhibit sepsis-induced neutrophil immune function by regulating aerobic glycolysis and causing excessive inflammation, which helps to explore potential therapeutic targets.
Collapse
Affiliation(s)
- Hongjun Zhu
- Clinical Laboratory, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Junlong Xu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Ke Li
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Miaomiao Chen
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Yueming Wu
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Xian Zhang
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Hua Chen
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| | - Deyuan Chen
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical UniversityLishui People's HospitalLishui CityChina
| |
Collapse
|
40
|
Zhao X, Jiang Y, Luo S, Zhao Y, Zhao H. Intercellular communication involving macrophages at the maternal-fetal interface may be a pivotal mechanism of URSA: a novel discovery from transcriptomic data. Front Endocrinol (Lausanne) 2023; 14:973930. [PMID: 37265689 PMCID: PMC10231036 DOI: 10.3389/fendo.2023.973930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Unexplained recurrent spontaneous abortion (URSA) is a severe challenge to reproductive females worldwide, and its etiology and pathogenesis have not yet been fully clarified. Abnormal intercellular communication between macrophages (Mφ) and decidual stromal cells (DSCs) or trophoblasts has been supposed to be the key to URSA. However, the exact molecular mechanisms in the crosstalk are not yet well understood. This study aimed to explore the potential molecule mechanism that may be involved in the communication between Mφ and DSC or trophoblast cells and determine their diagnostic characteristics by using the integrated research strategy of bioinformatics analysis, machine learning and experiments. First, microarrays of decidual tissue (GSE26787, GSE165004) and placenta tissue (GSE22490) in patients with URSA, as well as microarrays involving induced decidualization (GSE94644) and macrophage polarization in vitro (GSE30595) were derived from the gene expression omnibus (GEO) database. And 721 decidua-differentially expressed genes (DEGs), 613 placenta-DEGs, 510 Mφ polarization DEGs were obtained in URSA by differential expression analysis. Then, the protein-protein interaction (PPI) network was constructed, and the hub genes were identified by CytoHubba in Cytoscape software and validated by real-time PCR assay. Subsequently, immune enrichment analysis on decidua-DEGs and placenta-DEGs by ClueGO verified their regulation effects on Mφ. Besides, functional enrichment analysis was performed on Mφ polarization DEGs and the essential module genes derived from the weighted gene co-expression network analysis (WGCNA) to uncover the biological function that were related to abnormal polarization of Mφ. Furthermore, we screened out 29, 43 and 22 secreted protein-encoding genes from DSC-DEGs, placenta-DEGs and Mφ polarization DEGs, respectively. Besides, the hub secreted-protein-encoding genes were screened by CytoHubba. Moreover, we conducted functional enrichment analysis on these genes. And spearman correlation analysis between hub secreted-protein-encoding genes from donor cells and hub genes in recipient cells was performed to further understand the molecular mechanism of intercellular communication further. Moreover, signature genes with diagnostic value were screened from secreted protein-encoding genes by machine learning and validated by immunofluorescence co-localization analysis with clinical samples. Finally, three biomarkers of DSCs (FGF9, IL1R2, NID2) and three biomarkers of Mφ (CFB, NID2, CXCL11) were obtained. In conclusion, this project provides new ideas for understanding the mechanism regulatory network of intercellular communication involving macrophages at the maternal-fetal interface of URSA. Also, it provides innovative insights for the diagnosis and treatment of URSA.
Collapse
Affiliation(s)
- Xiaoxuan Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuepeng Jiang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiling Luo
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Zhao
- Department of Traditional Chinese Medicine (TCM) Gynecology, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|