1
|
Shi K, Xu JM, Cui HL, Cheng HY, Liang B, Wang AJ. Microbiome regulation for sustainable wastewater treatment. Biotechnol Adv 2024; 77:108458. [PMID: 39343082 DOI: 10.1016/j.biotechadv.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sustainable wastewater treatment is essential for attaining clean water and sanitation, aligning with UN Sustainable Development Goals. Wastewater treatment plants (WWTPs) have utilized environmental microbiomes in biological treatment processes in this effort for over a century. However, the inherent complexity and redundancy of microbial communities, and emerging chemical and biological contaminants, challenge the biotechnology applications. Over the past decades, understanding and utilization of microbial energy metabolism and interaction relationships have revolutionized the biological system. In this review, we discuss how microbiome regulation strategies are being used to generate actionable performance for low-carbon pollutant removal and resource recovery in WWTPs. The engineering application cases also highlight the real feasibility and promising prospects of the microbiome regulation approaches. In conclusion, we recommend identifying environmental risks associated with chemical and biological contaminants transformation as a prerequisite. We propose the integration of gene editing and enzyme design to precisely regulate microbiomes for the synergistic control of both chemical and biological risks. Additionally, the development of integrated technologies and engineering equipment is crucial in addressing the ongoing water crisis. This review advocates for the innovation of conventional wastewater treatment biotechnology to ensure sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jia-Min Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Han-Lin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Yang N, Xiong X, Liu M, Jiang X, Lei Y. Revealing the performance of aerotolerant anodes for electroactive nitrification/denitrification and current production under coexistence of oxygen and nitrate conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122588. [PMID: 39299122 DOI: 10.1016/j.jenvman.2024.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The coexistence of oxygen and/or nitrate at anode usually affects the biofilm activities of traditional anaerobic anode, thereby deteriorating wastewater treatment performance of microbial fuel cells (MFCs). Improving the aerotolerant responses of anode biofilms is a challenge for field application. In this study, we report that using the electroactive nitrifying/denitrifying inoculum and air-cathode expansion could fabricate the aerotolerant anode biofilms (AAB) under affordable nitrate stress (90 ± 5 mg/L). The highest average removal efficiencies were 99% for chemical oxygen demand (COD), NH4+-N and total nitrogen. The highest average current output of 0.69 mA and power density of 290 mW/m2 were obtained. The average current was confirmed to be reduced 10%-78% but the power density remained almost stable except the quart-air-cathodes MFC by increasing dissolved oxygen concentration with expansion of the air-cathode area. The higher oxygen concentration also contributed to oxidation of ammonium through electroactive autotrophic nitrification. The facultative anaerobic bacteria including Thauera, Microsillaceae, Shinella, Blastocatellaceae, Rhodobacter, Comamonadaceae, Caldilineaceae were enriched, which forms the AAB to remove nitrogen and produce current. Therefore, an easy-to-use method to fabricate AAB is evaluated to realize practical applications of MFCs in wastewater treatment.
Collapse
Affiliation(s)
- Nuan Yang
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China.
| | - Xia Xiong
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| | - Ming Liu
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| | - Xiaomei Jiang
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| | - Yunhui Lei
- MARA Key Laboratory of Development and Application of Rural Renewable Energy, Sichuan Institute of Rural Human Settlements, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), 13 Section 4 South Renmin Rd, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Agricultural Academy of Sciences, 13 Section 4 South Renmin Rd, Chengdu, 610041, China
| |
Collapse
|
3
|
Chen H, Xia A, Yan H, Huang Y, Zhu X, Zhu X, Liao Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100480. [PMID: 39309319 PMCID: PMC11416670 DOI: 10.1016/j.ese.2024.100480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Biofilm reactors, known for utilizing biofilm formation for cell immobilization, offer enhanced biomass concentration and operational stability over traditional planktonic systems. However, the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products, making mass transfer efficiency a critical issue in these systems. Recent advancements have unveiled the intricate, heterogeneous architecture of biofilms, contradicting the earlier view of them as uniform, porous structures with consistent mass transfer properties. In this review, we explore six biofilm reactor configurations and their potential combinations, emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance. Furthermore, we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance. This review highlights the role of biofilm reactors in environmental and energy sectors, paving the way for future innovations in biofilm-based technologies and their broader applications.
Collapse
Affiliation(s)
- Huize Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Huchao Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing, 400044, China
- Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Shi K, Liang B, Cheng HY, Wang HC, Liu WZ, Li ZL, Han JL, Gao SH, Wang AJ. Regulating microbial redox reactions towards enhanced removal of refractory organic nitrogen from wastewater. WATER RESEARCH 2024; 258:121778. [PMID: 38795549 DOI: 10.1016/j.watres.2024.121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024]
Abstract
Biotechnology for wastewater treatment is mainstream and effective depending upon microbial redox reactions to eliminate diverse contaminants and ensure aquatic ecological health. However, refractory organic nitrogen compounds (RONCs, e.g., nitro-, azo-, amide-, and N-heterocyclic compounds) with complex structures and high toxicity inhibit microbial metabolic activity and limit the transformation of organic nitrogen to inorganic nitrogen. This will eventually result in non-compliance with nitrogen discharge standards. Numerous efforts suggested that applying exogenous electron donors or acceptors, such as solid electrodes (electrostimulation) and limited oxygen (micro-aeration), could potentially regulate microbial redox reactions and catabolic pathways, and facilitate the biotransformation of RONCs. This review provides comprehensive insights into the microbial regulation mechanisms and applications of electrostimulation and micro-aeration strategies to accelerate the biotransformation of RONCs to organic amine (amination) and inorganic ammonia (ammonification), respectively. Furthermore, a promising approach involving in-situ hybrid anaerobic biological units, coupled with electrostimulation and micro-aeration, is proposed towards engineering applications. Finally, employing cutting-edge methods including multi-omics analysis, data science driven machine learning, technology-economic analysis, and life-cycle assessment would contribute to optimizing the process design and engineering implementation. This review offers a fundamental understanding and inspiration for novel research in the enhanced biotechnology towards RONCs elimination.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Zong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing-Long Han
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
5
|
Yang J, Xu P, Li H, Gao H, Cheng S, Shen C. Enhancing Extracellular Electron Transfer of a 3D-Printed Shewanella Bioanode with Riboflavin-Modified Carbon Black Bioink. ACS APPLIED BIO MATERIALS 2024; 7:2734-2740. [PMID: 38651321 DOI: 10.1021/acsabm.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
3D printing of a living bioanode holds the potential for the rapid and efficient production of bioelectrochemistry systems. However, the ink (such as sodium alginate, SA) that formed the matrix of the 3D-printed bioanode may hinder extracellular electron transfer (EET) between the microorganism and conductive materials. Here, we proposed a biomimetic design of a 3D-printed Shewanella bioanode, wherein riboflavin (RF) was modified on carbon black (CB) to serve as a redox substance for microbial EET. By introducing the medicated EET pathways, the 3D-printed bioanode obtained a maximum power density of 252 ± 12 mW/m2, which was 1.7 and 60.5 times higher than those of SA-CB (92 ± 10 mW/m2) and a bare carbon cloth anode (3.8 ± 0.4 mW/m2). Adding RF reduced the charge-transfer resistance of a 3D-printed bioanode by 75% (189.5 ± 18.7 vs 47.3 ± 7.8 Ω), indicating a significant acceleration in the EET efficiency within the bioanode. This work provided a fundamental and instrumental concept for constructing a 3D-printed bioanode.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Pengcheng Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Haoming Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
6
|
Veerubhotla R, Marzocchi U. Examining the resistance and resilience of anode-respiring Shewanella oneidensis biohybrid using microsensors. CHEMOSPHERE 2024; 350:141109. [PMID: 38176592 DOI: 10.1016/j.chemosphere.2024.141109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Immobilizing electro-active microbes within polymer matrices (thereby forming biohybrids) is a promising approach to accelerate microbial attachment to electrodes and increase the biofilm robustness. However, little is known on the fine scale chemical environment that develops within the electro-active biohybrids. Herein, we develop a biohybrid by immobilizing a culture of Shewanella oneidensis MR1 in agar matrix on the surface of a graphite electrode poised at +0.25 V. The resulting bioanode (3-6 mm thick) was grown under anoxic conditions and produced a steady current of 40 μA. Oxygen and pH distribution within the biohybrid were characterized in-situ using microsensors. As Shewanella is a facultative aerobe, it will halt the current production in the presence of oxygen. Thus, in addition, we investigated the alteration of the microenvironment during and after aeration of the medium to evaluate the oxygen tolerance of the system. During aeration, oxygen was effectively consumed in the top layers of the biofilm, leaving a 400-900 μm thick anoxic zone on the anode surface, that sustained >60% of the initial current. Current production recovered to pre-oxic condition within 5 h after the aeration was stopped, showing that immobilization can promote both high resistance and resilience of the system. Despite the absence of strong buffering conditions, pH profiles indicated a maximum drop of 0.2 units across the biohybrid. Characterizing the chemical microenvironment helps to elucidate the mechanistic functioning of artificial biofilms and hold a great potential for the designing of future, more effective biohybrid electrodes.
Collapse
Affiliation(s)
- Ramya Veerubhotla
- Aarhus University Center for Water Technology WATEC, Department of Biology, Aarhus University, Denmark.
| | - Ugo Marzocchi
- Aarhus University Center for Water Technology WATEC, Department of Biology, Aarhus University, Denmark; Center for Electromicrobiology CEM, Department of Biology, Aarhus University, Denmark
| |
Collapse
|
7
|
Shi K, Cheng H, Cornell CR, Wu H, Gao S, Jiang J, Liu T, Wang A, Zhou J, Liang B. Micro-aeration assisted with electrogenic respiration enhanced the microbial catabolism and ammonification of aromatic amines in industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130943. [PMID: 36860074 DOI: 10.1016/j.jhazmat.2023.130943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pollutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron transfer. Additionally, network analysis indicated the aniline degraders were positively associated with electroactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic respiration.
Collapse
Affiliation(s)
- Ke Shi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Haoyi Cheng
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Haiwei Wu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jiandong Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Tiejun Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA; School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, USA; School of Computer Science, University of Oklahoma, Norman, OK 73019, USA; Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
8
|
Accelerated antibiotic susceptibility testing of pseudomonas aeruginosa by monitoring extracellular electron transfer on a 3-D paper-based cell culture platform. Biosens Bioelectron 2022; 216:114604. [DOI: 10.1016/j.bios.2022.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022]
|
9
|
Santoro C, Bollella P, Erable B, Atanassov P, Pant D. Oxygen reduction reaction electrocatalysis in neutral media for bioelectrochemical systems. Nat Catal 2022. [DOI: 10.1038/s41929-022-00787-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
10
|
Jia T, Zhang L, Zhao Q, Peng Y. The effect of biofilm growth on the sulfur oxidation pathway and the synergy of microorganisms in desulfurization reactors under different pH conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128638. [PMID: 35306408 DOI: 10.1016/j.jhazmat.2022.128638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Biofilm growth affects the oxygen transfer in biofilm and thus the oxidation pathway of sulfur and the synergy of microorganisms. In this study, the effect of biofilm growth on the oxidation pathway of H2S and the synergy of microorganisms in desulfurization reactors under different pH conditions was first discussed to enhance the understanding of desulfurization process. A biotrickling filter (BTF) was operated for 168 days under acidic condition (pH<4.7) and 32 days under alkaline condition (7.0 <pH<10.2). In acidic period, the average growth mass (AGM) of biofilm was 0.04 g/L-BTF/d, and most of S-H2S was converted to S-SO42- (>89.0%). In alkaline period, the AGM raised to 0.97 g/L-BTF/d, and 77.0% of S-H2S was transferred to elemental sulfur (S0) and polysulfanes (R-Sx-R) accumulated in biofilm. The increase of biofilm and sulfur-oxidizing bacteria activity limited the oxygen transfer in alkaline biofilm, leading to the accumulation of S0 and the emergence of an obligate anaerobe- Acetoanaerobium (8.1%). The formation of R-Sx-R may be due to the reaction of S0 with thiols produced by a thiol-producing bacterium- Pseudomonas (6.7%). The uneven distribution of oxygen in biofilm caused by biofilm growth complicated the transfer pathway of sulfur and the synergy of microorganisms in desulfurization system.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Häuser L, Erben J, Pillot G, Kerzenmacher S, Dreher W, Küstermann E. In vivo characterization of electroactive biofilms inside porous electrodes with MR Imaging. RSC Adv 2022; 12:17784-17793. [PMID: 35765339 PMCID: PMC9199086 DOI: 10.1039/d2ra01162j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Identifying the limiting processes of electroactive biofilms is key to improve the performance of bioelectrochemical systems (BES). For modelling and developing BES, spatial information of transport phenomena and biofilm distribution are required and can be determined by Magnetic Resonance Imaging (MRI) in vivo, in situ and in operando even inside opaque porous electrodes. A custom bioelectrochemical cell was designed that allows MRI measurements with a spatial resolution of 50 μm inside a 500 μm thick porous carbon electrode. The MRI data showed that only a fraction of the electrode pore space is colonized by the Shewanella oneidensis MR-1 biofilm. The maximum biofilm density was observed inside the porous electrode close to the electrode-medium interface. Inside the biofilm, mass transport by diffusion is lowered down to 45% compared to the bulk growth medium. The presented data and the methods can be used for detailed models of bioelectrochemical systems and for the design of improved electrode structures. The use of magnetic resonance imaging can contribute to a better understanding of limiting processes occurring in electroactive biofilms especially inside opaque porous electrodes.![]()
Collapse
Affiliation(s)
- Luca Häuser
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | | | - Guillaume Pillot
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Sven Kerzenmacher
- Center for Environmental Research and Sustainable Technology (UFT), University of Bremen 28359 Bremen Germany
| | - Wolfgang Dreher
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| | - Ekkehard Küstermann
- In-vivo-MR Group, Faculty 02 (Biology/Chemistry), University of Bremen 28359 Bremen Germany
| |
Collapse
|
12
|
Jia T, Sun S, Zhao Q, Peng Y, Zhang L. Extremely acidic condition (pH<1.0) as a novel strategy to achieve high-efficient hydrogen sulfide removal in biotrickling filter: Biomass accumulation, sulfur oxidation pathway and microbial analysis. CHEMOSPHERE 2022; 294:133770. [PMID: 35101433 DOI: 10.1016/j.chemosphere.2022.133770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Extremely acidic conditions (pH < 1.0) during hydrogen sulfide (H2S) biotreatment significantly reduce the cost of pH regulation; however, there remain challenges to its applications. The present study investigated the H2S removal and biomass variations in biotrickling filter (BTF) under long-term highly acidic conditions. A BTF operated for 144 days at pH 0.5-1.0 achieved an H2S elimination capacity (EC) of 109.9 g/(m3·h) (removal efficiency = 97.0%) at an empty bed retention time of 20 s, with an average biomass concentration at 20.6 g/L-BTF. The biomass concentration at neutral pH increased from 22.3 to 49.5 g/L-BTF within 28 days. In this case, elemental sulfur (S0) accumulated due to insufficient oxygen transfer in biofilm, which aggravated the BTF blockage problem. After long-term domestication under extremely acidic conditions, a mixotrophic acidophilic sulfur-oxidizing bacteria (SOB) Alicyclobacillus (abundance 55.4%) were enriched in the extremely acidic biofilm, while non-aciduric bacteria were eliminated, which maintained the balance of biofilm thickness. Biofilm with optimum thickness ensured oxygen transfer and H2S oxidation, avoiding the accumulation of S0. The BTF performance improved due to the enrichment of active mixotrophic SOB with high abundance under extremely acidic conditions. The mixotrophic SOB is expected to be further enriched under extremely acidic conditions by adding carbohydrates to enhance H2S removal.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
13
|
Wang S, Xu M, Jin B, Wünsch UJ, Su Y, Zhang Y. Electrochemical and microbiological response of exoelectrogenic biofilm to polyethylene microplastics in water. WATER RESEARCH 2022; 211:118046. [PMID: 35030360 DOI: 10.1016/j.watres.2022.118046] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Exoelectrogenic biofilm and the associated microbial electrochemical processes have recently been intensively studied for water treatment, but their response to and interaction with polyethylene (PE) microplastics which are widespread in various aquatic environments has never been reported. Here, we investigated how and to what extent PE microplastics would affect the electrochemistry and microbiology of exoelectrogenic biofilm in both microbial fuel cells (MFCs) and microbial electrolysis cells (MECs). When the PE microplastics concentration was increased from 0 to 75 mg/L in the MECs, an apparent decline in the maximum current density (from 1.99 to 0.74 A/m2) and abundance of electroactive bacteria (EAB) in the exoelectrogenic biofilm was noticed. While in the MFCs, the current output was not significantly influenced and the abundance of EAB lightly increased at 25 mg/L microplastics. In addition, PE microplastics restrained the viability of the exoelectrogenic biofilms in both systems, leading to a higher system electrode resistance. Moreover, the microbial community richness and the microplastics-related operational taxonomic units decreased with PE microplastics. Furthermore, the electron transfer-related genes (e.g., pilA and mtrC) and cytochrome c concentration decreased after adding microplastics. This study provides the first glimpse into the influence of PE microplastics on the exoelectrogenic biofilm with the potential mechanisms revealed at the gene level, laying a methodological foundation for the future development of efficient water treatment technologies.
Collapse
Affiliation(s)
- Song Wang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Urban J Wünsch
- Section for Oceans and Arctic, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Kongens Lyngby 2800, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, Valby 2500, Denmark.
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
14
|
Noori MT, Thatikayala D, Pant D, Min B. A critical review on microbe-electrode interactions towards heavy metal ion detection using microbial fuel cell technology. BIORESOURCE TECHNOLOGY 2022; 347:126589. [PMID: 34929327 DOI: 10.1016/j.biortech.2021.126589] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Implicit interaction of electroactive microbes with solid electrodes is an interesting phenomenon in nature, which supported development of bioelectrochemical systems (BESs), especially the microbial fuel cell (MFCs) for valorization of low-value waste streams into bioelectricity. Intriguingly, the metabolism of interacted microbes with electrode is affected by the microenvironment at electrodes, which influences the current response. For instance, when heavy metal ions (HMIs) are imposed in the medium, the current production decreases due to their intrinsic toxic effect. This event provides an immense opportunity to utilize MFC as a sensor to selectively detect HMIs in the environment, which has been explored vastly in recent decade. In this review, we have concisely discussed the microbial interaction with electrodes and mechanism of detection of HMIs using an MFC. Recent advancement in sensing elements and their application is elaborated with a future perspective section for follow-up research and development in this field.
Collapse
Affiliation(s)
- Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Dayakar Thatikayala
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University - Global Campus, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
15
|
Liu SH, Lin HH, Lin CW. Gaseous isopropanol removal in a microbial fuel cell with deoxidizing anode: Performance, anode characteristics and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127200. [PMID: 34537644 DOI: 10.1016/j.jhazmat.2021.127200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
A deoxidizing packing material (DPM) with an encapsulated deoxidizing agent (DA) was developed to construct the packed anodes of a trickle-bed microbial fuel cell (TB-MFC) for treating waste gas. The encapsulated DA can consume O2 in waste gas and increase the voltage output and power density (PD) of the constructed TB-MFC. The DPM effectively enables the circulating water in TB-MFC for maintaining a low level of dissolved oxygen for 80 h. The results revealed that when the concentration of isopropanol (IPA) in waste gas was 0.74 g/m3, the TB-MFC (DPM with DA) exhibited an IPA removal efficiency (RE) of up to 99.7%. When DPM with DA was used as the packing material of the TB-MFC (486.6 mW/m3), the PD was 2.54 times that obtained when using coke as the packing material (191.6 mW/m3). The next-generation sequencing results demonstrated that because the oxygen content of the MFC anode chamber decreased over time in the TB-MFC, the richness of anaerobic electrogens (Pseudoxanthomonas, Flavobacterium, and Ferruginibacter) in the packing materials was increased. These electrogens mainly attached to the DPM, and IPA-degraders appeared in the circulating water of the TB-MFC. This enabled the TB-MFC to simultaneously achieve a high voltage output and IPA RE.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Hsin-Hui Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC.
| |
Collapse
|
16
|
Yang J, Cheng S, Zhang S, Han W, Jin B. Modifying Ti 3C 2 MXene with NH 4+ as an excellent anode material for improving the performance of microbial fuel cells. CHEMOSPHERE 2022; 288:132502. [PMID: 34626659 DOI: 10.1016/j.chemosphere.2021.132502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Poor anode performance is one of the main bottlenecks in the development of microbial fuel cells (MFCs) for practical applications. Multilayered Ti3C2 MXene (m-MXene) is an alternative anode modification material because of its high specific surface area and electrical conductivity. However, the multilayered structure, negatively charged surface, and electropositivity of m-MXene could limit its modification effects. In this work, we used a solution-phase flocculation method (ammonium ion method) to restack and aggregate MXene nanosheets as an anode modification material (n-MXene). The n-MXene-modified anode had a higher specific surface area, surface hydrophilicity and surface electropositivity than the m-MXene-modified anode. The n-MXene-modified anode obtained a maximum current density of 2.1 A m-2, which was 31.2% and 61.5% higher than that of the m-MXene-modified anode (1.6 A m-2) and bare carbon fiber cloth anode (1.3 A m-2). This improved anode performance was attributed to both the decrease in the charge transfer resistance and diffusion resistance, which were related to the increased quantity of biomass and microbial nanowire (or pili)-shaped filaments on the electrode surface. This work provides a simple and cost-effective approach to prepare MXene nanosheets for the modification of MFC anodes.
Collapse
Affiliation(s)
- Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Shenglong Zhang
- Department of Material Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Weiqiang Han
- Department of Material Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Beichen Jin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
17
|
Liu SH, Lin HH. Enhancement of isopropanol removal with concomitant power generation by microbial fuel cells: Optimization of deoxidizing composite anodes using response surface methodology. CHEMOSPHERE 2022; 286:131732. [PMID: 34364227 DOI: 10.1016/j.chemosphere.2021.131732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
This study used a response surface method to develop a deoxidizing anode, which was introduced into microbial fuel cells (MFCs) to treat isopropanol (IPA) wastewater and waste gas. By embedding a deoxidizing agent (DA) into the anode of MFCs, a hypoxic environment can be created to enable anaerobic electrogens to be effectively attached to the anode surface and grow. Consequently, MFC power generation performance can be enhanced. The optimal coke and conductive carbon black ratio of an anode and percentage of DA added were 3.61 g/g and 3.15 %, respectively. The research design concurrently achieved the maximum deoxygenation efficiency (0.86 mg O2/bead), minimum disintegration ratio (3.51 %), and minimum resistance (30.2 Ω). The regression model had high prediction power (R2 > 0.93) for anode performance. As determined through multi-objective optimization, the results highly satisfied the target expectation (desirability = 0.82). The optimized deoxidizing anode was filled into an air-cathode MFC, which had a higher IPA removal efficiency (1.15-fold) and voltage output (1.24-fold) than an MFC filled with coke. The results for the trickling-bed MFC filled with a deoxidizing anode revealed that when the inlet concentration was 0.74 g/m3, the voltage output and power density were highest at 416.3 mV and 486.6 mW/m3, respectively. The deoxidizing anode developed has the potential to increase the MFC voltage output and the pollutant removal.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| | - Hsin-Hui Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| |
Collapse
|
18
|
Yang J, Cheng S. External resistance acclimation regulates bio-anode: new perspective from biofilm structure and its correlation with anode performance. Bioprocess Biosyst Eng 2021; 45:269-277. [PMID: 34689231 DOI: 10.1007/s00449-021-02658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
External resistance is important for the anode and cell performance. However, little attentions were paid on the effect of external resistance on the variation of biofilm structure. Here, we used external resistance ranged from 4000 to 500 Ω for anodic acclimation to investigate the correlation between anode performance and biofilm structure. With the reduce of external resistance, the maximum current density of anode increased from 1.0 to 3.4 A/m2, which was resulted from a comprehensive effect of reduced charge transfer resistance and increased diffusion resistance. Biological analysis showed that with the reduce of external resistance, biomass and extracellular polymeric substances content increased by 109 and 286%, cell viability increased by 22.7%, which contributed to the reduced charge transfer resistance. But the porosity of anodic biofilm decreased by 27.8%, which led to an increased diffusion resistance of H+. This work provided a clear correlation between the electrochemical performance and biofilm structure.
Collapse
Affiliation(s)
- Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
19
|
Liu SH, Tsai SL, Lai YR, Lin CW, Huang YW. Improving the performance of biotrickling filter microbial fuel cells in treating exhaust gas by adjusting the oxygen content of the anode tank. CHEMOSPHERE 2021; 278:130390. [PMID: 33819893 DOI: 10.1016/j.chemosphere.2021.130390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
A biotrickling filter (BTF) was combined with a microbial fuel cell (MFC) to remove ethyl acetate from exhaust gas while generating electricity in the process. The results indicated that the use of carbide porous ceramic rings (CPCR) as auxiliary anodes produced more biomass and exhibited a high average removal efficiency (98%), making it a superior microorganism growth carrier compared with carbon coke. When CPCR was used as the cathode in the BTF-MFC, the maximum power density (PD) was 5.64-14.8% of that achieved when carbon cloth was used as the cathode, revealing that CPCR is not a suitable cathode. The maximum elimination capacity (EC) and output voltage of the two-stage BTF-MFC (tBTF-MFC) were only 69.4% and 68.4% of those of the single-stage BTF-MFC (sBTF-MFC), presumably because of voltage reversal. Although the output voltage and EC in the tBTF-MFC were less than those in the sBTF-MFC, the follow-up field application involves stacking multiple small MFCs to remove high-concentration pollutants and generate a high power output. Additionally, continuously adding sodium sulfite decreased the average dissolved oxygen; generated an averaged closed-circuit voltage of 477 mV; and produced a maximum PD of 71.7 mW/m3. These findings demonstrated that the aforementioned method can effectively improve the problem of oxygen and MFC anodes competing for electrons, thus delivering a method that enhances MFC performance through controlling the amount of oxygen in practical applications.
Collapse
Affiliation(s)
- Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, ROC
| | - Yang-Ru Lai
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| | - Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC.
| | - Yu-Wen Huang
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, 64002, Taiwan, ROC
| |
Collapse
|
20
|
Speers AM, Reguera G. Competitive advantage of oxygen-tolerant bioanodes of Geobacter sulfurreducens in bioelectrochemical systems. Biofilm 2021; 3:100052. [PMID: 34222855 PMCID: PMC8242959 DOI: 10.1016/j.bioflm.2021.100052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 10/31/2022] Open
Abstract
Oxidative stress greatly limits current harvesting from anode biofilms in bioelectrochemical systems yet insufficient knowledge of the antioxidant responses of electricigens prevents optimization. Using Geobacter sulfurreducens PCA as a model electricigen, we demonstrated enhanced oxygen tolerance and reduced electron losses as the biofilms grew in height on the anode. To investigate the molecular basis of biofilm tolerance, we developed a genetic screening and isolated 11 oxygen-tolerant (oxt) strains from a library of transposon-insertion mutants. The aggregative properties of the oxt mutants promoted biofilm formation and oxygen tolerance. Yet, unlike the wild type, none of the mutants diverted respiratory electrons to oxygen. Most of the oxt mutations inactivated pathways for the detoxification of reactive oxygen species that could have triggered compensatory chronic responses to oxidative stress and inhibit aerobic respiration. One of the mutants (oxt10) also had a growth advantage with Fe(III) oxides and during the colonization of the anode electrode. The enhanced antioxidant response in this mutant reduced the system's start-up and promoted current harvesting from bioanodes even in the presence of oxygen. These results highlight a hitherto unknown role of oxidative stress responses in the stability and performance of current-harvesting biofilms of G. sulfurreducens and identify biological and engineering approaches to grow electroactive biofilms with the resilience needed for practical applications.
Collapse
Affiliation(s)
- Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, USA
| |
Collapse
|
21
|
Lin Z, Cheng S, Yu Z, Yang J, Huang H, Sun Y. Enhancing bio-cathodic nitrate removal through anode-cathode polarity inversion together with regulating the anode electroactivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142809. [PMID: 33097251 DOI: 10.1016/j.scitotenv.2020.142809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Bio-cathodic nitrate removal uses autotrophic nitrate-reducing bacteria as catalysts to realize the nitrate removal process and has been considered as a cost-effective way to remove nitrate contamination. However, the present bio-cathodic nitrate removal process has problems with long start-up time and low performance, which are urgently required to improve for its application. In this study, we investigated an anode-cathode polarity inversion method for rapidly cultivating high-performance nitrate-reducing bio-cathode by regulating bio-anodic bio-oxidation electroactivities under different external resistances and explored at the first time the correlation between the oxidation performance and the reduction performance of one mixed-bacteria bioelectrode. A high bio-electrochemical nitrate removal rate of 2.74 ± 0.03 gNO3--N m-2 d-1 was obtained at the bioelectrode with high bio-anodic bio-oxidation electroactivity, which was 4.0 times that of 0.69 ± 0.03 gNO3--N m-2 d-1 at the bioelectrode with low bio-oxidation electroactivity, and which was 1.3-7.9 times that of reported (0.35-2.04 gNO3--N m-2 d-1). 16S rRNA gene sequences and bacterial biomass analysis showed higher bio-cathodic nitrate removal came from higher bacterial biomass of electrogenic bacteria and nitrate-reducing bacteria. A good linear correlation between the bio-cathodic nitrate removal performance and the reversed bio-anodic bio-oxidation electroactivity was presented and likely implied that electrogenic biofilm had either action as autotrophic nitrate reduction or promotion to the development of autotrophic nitrate removal system. This study provided a novel strategy not only to rapidly cultivate high-performance bio-cathode but also to possibly develop the bio-cathode with specific functions for substance synthesis and pollutant detection.
Collapse
Affiliation(s)
- Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haobin Huang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
22
|
Sun Y, Cheng S, Lin Z, Yang J, Li C, Gu R. Combination of plasma oxidation process with microbial fuel cell for mineralizing methylene blue with high energy efficiency. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121307. [PMID: 31629597 DOI: 10.1016/j.jhazmat.2019.121307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Plasma advanced oxidation process (PAOP) has great ability to break recalcitrant pollutants into small molecular compounds but suffers from poor performance and low energy efficiency for mineralizing dyeing pollutants. Combining advanced oxidation process with biodegradation process is an effective strategy to improve mineralization performance and reduce cost. In this study, a combined process using PAOP as pre-treatment followed by microbial fuel cell (MFC) treatment was investigated to mineralize methylene blue (MB). The PAOP could degrade MB by 97.7%, but only mineralize MB by 23.2% under the discharge power of 35 W for 10 min. Besides, BOD5/COD ratio of MB solution raised from 0.04 to 0.38 while inhibition on E. coli growth decreased from 85.5% to 28.3%. The following MFC process increased MB mineralization percentage to 63.0% with a maximum output power density of 519 mW m-2. The combined process achieved a mineralization energy consumption of 0.143 KWh gTOC-1 which was only 41.8% of that of PAOP. FT-IR, UV-vis and pH variation demonstrated that PAOP could break the aromatic and heterocyclic structures in MB molecule to form organic acids. Possible degradation pathways of MB were accordingly proposed based on LC-MS, GC-MS, and density functional theory calculation.
Collapse
Affiliation(s)
- Yi Sun
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Zhufan Lin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Jiawei Yang
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Chaochao Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
23
|
Kabutey FT, Antwi P, Ding J, Zhao QL, Quashie FK. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26829-26843. [PMID: 31300989 DOI: 10.1007/s11356-019-05874-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Sediment microbial fuel cell (SMFC) and constructed wetlands with macrophytes have been independently employed for the removal of heavy metals from polluted aquatic ecosystems. Nonetheless, the coupling of macrophytes at the cathode of SMFCs for efficient and synchronous heavy metal removal and bioelectricity generation from polluted river sediment has not been fully explored. Therefore, a novel macrophyte biocathode SMFC (mSMFC) was proposed, developed, and evaluated for heavy metals/organics removal as well as bioelectricity generation in an urban polluted river. With macrophyte-integrated cathode, higher heavy metal removals of Pb 99.58%, Cd 98.46%, Hg 95.78%, Cr 92.60%, As 89.18%, and Zn 82.28% from the sediments were exhibited after 120 days' operation. Total chemical oxygen demand, total suspended solids, and loss on ignition reached 73.27%, 44.42 ± 4.4%, and 5.87 ± 0.4%, respectively. A maximum voltage output of 0.353 V, power density of 74.16 mW/m3, columbic efficiency of 19.1%, normalized energy recovery of 0.028 kWh/m3, and net energy production of 0.015 kWh/m3 were observed in the Lemna minor L. SMFC. Heavy metal and organic removal pathways included electrochemical reduction, precipitation and recovery, bioaccumulation by macrophyte from the surface water, and bioelectrochemical reduction in the sediment. This study established that mSMFC proved as an efficient system for the remediation of heavy metals Pb, Cd, Hg, Cr, As, and Zn, and TCOD in polluted rivers along with bioelectricity generation.
Collapse
Affiliation(s)
- Felix Tetteh Kabutey
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China
- Council for Scientific and Industrial Research-Institute for Scientific and Technological Information (CSIR-INSTI), P. O. Box, M-32, Accra, Ghana
| | - Philip Antwi
- Jiangxi Key Laboratory of Mining and Metallurgy Environmental Pollution Control, School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, People's Republic of China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China
| | - Qing-Liang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China.
| | - Frank Koblah Quashie
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|