1
|
Aparicio L, Crowley L, Christin JR, Laplaca CJ, Hibshoosh H, Rabadan R, Shen MM. Meta-analyses of mouse and human prostate single-cell transcriptomes reveal widespread epithelial plasticity in tissue regression, regeneration, and cancer. Genome Med 2025; 17:5. [PMID: 39825401 PMCID: PMC11740708 DOI: 10.1186/s13073-025-01432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Despite extensive analysis, the dynamic changes in prostate epithelial cell states during tissue homeostasis as well as tumor initiation and progression have been poorly characterized. However, recent advances in single-cell RNA-sequencing (scRNA-seq) technology have greatly facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate. METHODS We have performed meta-analyses of new and previously published scRNA-seq datasets for mouse and human prostate tissues to identify and compare cell populations across datasets in a uniform manner. Using random matrix theory to denoise datasets, we have established reference cell type classifications for the normal mouse and human prostate and have used optimal transport to compare the cross-species transcriptomic similarities of epithelial cell populations. In addition, we have integrated analyses of single-cell transcriptomic states with copy number variants to elucidate transcriptional programs in epithelial cells during human prostate cancer progression. RESULTS Our analyses demonstrate transcriptomic similarities between epithelial cell states in the normal prostate, in the regressed prostate after androgen-deprivation, and in primary prostate tumors. During regression in the mouse prostate, all epithelial cells shift their expression profiles toward a proximal periurethral (PrU) state, demonstrating an androgen-dependent plasticity that is restored to normal during androgen restoration and gland regeneration. In the human prostate, we find substantial rewiring of transcriptional programs across epithelial cell types in benign prostate hyperplasia and treatment-naïve prostate cancer. Notably, we detect copy number variants predominantly within luminal acinar cells in prostate tumors, suggesting a bias in their cell type of origin, as well as a larger field of transcriptomic alterations in non-tumor cells. Finally, we observe that luminal acinar tumor cells in treatment-naïve prostate cancer display heterogeneous androgen receptor (AR) signaling activity, including a split between AR-positive and AR-low profiles with similarity to PrU-like states. CONCLUSIONS Taken together, our analyses of cellular heterogeneity and plasticity provide important translational insights into the origin and treatment response of prostate cancer. In particular, the identification of AR-low tumor populations suggests that castration-resistance and predisposition to neuroendocrine differentiation may be pre-existing properties in treatment-naïve primary tumors that are selected for by androgen-deprivation therapies.
Collapse
Affiliation(s)
- Luis Aparicio
- Program for Mathematical Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Laura Crowley
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - John R Christin
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Caroline J Laplaca
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Biomedical Informatics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Michael M Shen
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Department of Urology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
2
|
Patel Y, Prajapati A. Unveiling LGR5: Prostate cancer's hidden stem cell and treatment target. Urol Oncol 2024; 42:438-446. [PMID: 39406640 DOI: 10.1016/j.urolonc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/20/2024]
Abstract
Prostate cancer poses a significant risk to the well-being and way of life of countless men, with an increased likelihood of relapse recorded following modern treatment. This highlights the need for innovative approaches, specifically targeting LGR5. This systematic review aims to establish a connection between LGR5 and the various signaling pathways involved in the progression of prostate cancer. LGR5, a gene targeted by Wnt signaling, encodes a receptor protein that serves as a prognostic biomarker for stem cells and indicates the presence of cancer stem cells in colorectal and gastrointestinal cancers. The functions of LGR5 include processes such as cell proliferation, differentiation, and signaling pathways. Any modifications to the LGR5 gene, whether caused by mutations or mechanical stimuli, can lead to the development of treatment-resistant stem cell cancers. This review examines the molecular mechanisms associated with LGR5 and emphasizes methodologies aimed at targeting LGR5 to enhance understanding and promote the development of LGR5-specific therapies.
Collapse
Affiliation(s)
- Yashvi Patel
- Department of Life Science, Biotechnology Division, School of Science, GSFC University, Vadodara, 391750, Gujarat, India
| | - Akhilesh Prajapati
- Department of Life Science, Biotechnology Division, School of Science, GSFC University, Vadodara, 391750, Gujarat, India.
| |
Collapse
|
3
|
Pakula H, Pederzoli F, Fanelli GN, Nuzzo PV, Rodrigues S, Loda M. Deciphering the Tumor Microenvironment in Prostate Cancer: A Focus on the Stromal Component. Cancers (Basel) 2024; 16:3685. [PMID: 39518123 PMCID: PMC11544791 DOI: 10.3390/cancers16213685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer progression is significantly affected by its tumor microenvironment, in which mesenchymal cells play a crucial role. Stromal cells are modified by cancer mutations, response to androgens, and lineage plasticity, and in turn, engage with epithelial tumor cells via a complex array of signaling pathways and ligand-receptor interactions, ultimately affecting tumor growth, immune interaction, and response to therapy. The metabolic rewiring and interplay in the microenvironment play an additional role in affecting the growth and progression of prostate cancer. Finally, therapeutic strategies and novel clinical trials with agents that target the stromal microenvironment or disrupt the interaction between cellular compartments are described. This review underscores cancer-associated fibroblasts as essential contributors to prostate cancer biology, emphasizing their potential as prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA 02215, USA
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
4
|
Li Z, Li Z, Luo Y, Chen W, Fang Y, Xiong Y, Zhang Q, Yuan D, Yan B, Zhu J. Application and new findings of scRNA-seq and ST-seq in prostate cancer. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:23. [PMID: 39470950 PMCID: PMC11522250 DOI: 10.1186/s13619-024-00206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
Prostate cancer is a malignant tumor of the male urological system with the highest incidence rate in the world, which seriously threatens the life and health of middle-aged and elderly men. The progression of prostate cancer involves the interaction between tumor cells and tumor microenvironment. Understanding the mechanisms of prostate cancer pathogenesis and disease progression is important to guide diagnosis and therapy. The emergence of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (ST-seq) technologies has brought breakthroughs in the study of prostate cancer. It makes up for the defects of traditional techniques such as fluorescence-activated cell sorting that are difficult to elucidate cell-specific gene expression. This review summarized the heterogeneity and functional changes of prostate cancer and tumor microenvironment revealed by scRNA-seq and ST-seq, aims to provide a reference for the optimal diagnosis and treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhuang Li
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Zhengnan Li
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Yuanyuan Luo
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Weiming Chen
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yinyi Fang
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China
| | - Yuliang Xiong
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China
| | - Qinyi Zhang
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Bo Yan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China
| | - Jianguo Zhu
- Department of Urology, Affiliated Hospital of Guizhou Medical University, Guiyang city, 550004, Guizhou Province, China.
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang city, 550002, Guizhou Province, China.
- Graduate School of Zunyi Medical University, Zunyi City, 563099, Guizhou Province, China.
- Medical College of Guizhou University, Guiyang city, 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Di Carlo E, Sorrentino C. The multifaceted role of the stroma in the healthy prostate and prostate cancer. J Transl Med 2024; 22:825. [PMID: 39238004 PMCID: PMC11378418 DOI: 10.1186/s12967-024-05564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
Prostate cancer (PC) is an age-related disease and represents, after lung cancer, the second cause of cancer death in males worldwide. Mortality is due to the metastatic disease, which mainly involves the bones, lungs, and liver. In the last 20 years, the incidence of metastatic PC has increased in Western Countries, and a further increase is expected in the near future, due to the population ageing. Current treatment options, including state of the art cancer immunotherapy, need to be more effective to achieve long-term disease control. The most significant anatomical barrier to overcome to improve the effectiveness of current and newly designed drug strategies consists of the prostatic stroma, in particular the fibroblasts and the extracellular matrix, which are the most abundant components of both the normal and tumor prostatic microenvironment. By weaving a complex communication network with the glandular epithelium, the immune cells, the microbiota, the endothelium, and the nerves, in the healthy prostatic microenvironment, the fibroblasts and the extracellular matrix support organ development and homeostasis. However, during inflammation, ageing and prostate tumorigenesis, they undergo dramatic phenotypic and genotypic changes, which impact on tumor growth and progression and on the development of therapy resistance. Here, we focus on the characteristics and functions of the prostate associated fibroblasts and of the extracellular matrix in health and cancer. We emphasize their roles in shaping tumor behavior and the feasibility of manipulating and/or targeting these stromal components to overcome the limitations of current treatments and to improve precision medicine's chances of success.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy.
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy.
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti- Pescara, Via dei Vestini, Chieti, 66100, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Via L. Polacchi 11, Chieti, 66100, Italy
| |
Collapse
|
6
|
Kirk JS, Wang J, Long M, Rosario S, Tracz A, Ji Y, Kumar R, Liu X, Jamroze A, Singh PK, Puzanov I, Chatta G, Cheng Q, Huang J, Wrana JL, Lovell J, Yu H, Liu S, Shen MM, Liu T, Tang DG. Integrated single-cell analysis defines the epigenetic basis of castration-resistant prostate luminal cells. Cell Stem Cell 2024; 31:1203-1221.e7. [PMID: 38878775 PMCID: PMC11297676 DOI: 10.1016/j.stem.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024]
Abstract
Understanding prostate response to castration and androgen receptor signaling inhibitors (ARSI) is critical to improving long-term prostate cancer (PCa) patient survival. Here, we use a multi-omics approach on 229,794 single cells to create a mouse single-cell reference atlas for interpreting mouse prostate biology and castration response. Our reference atlas refines single-cell annotations and provides a chromatin context, which, when coupled with mouse lineage tracing, demonstrates that castration-resistant luminal cells are distinct from the pre-existent urethra-proximal stem/progenitor cells. Molecular pathway analysis and therapeutic studies further implicate AP1 (JUN/FOS), WNT/β-catenin, FOXQ1, NF-κB, and JAK/STAT pathways as major drivers of castration-resistant luminal populations with relevance to human PCa. Our datasets, which can be explored through an interactive portal (https://visportal.roswellpark.org/data/tang/), can aid in developing combination treatments with ARSI for advanced PCa patients.
Collapse
Affiliation(s)
- Jason S Kirk
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Jie Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Amanda Tracz
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Yibing Ji
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rahul Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Xiaozhuo Liu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anmbreen Jamroze
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Prashant K Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Gurkamal Chatta
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Jonathan Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Han Yu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Michael M Shen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
7
|
Thomas R, Jerome JM, Krieger KL, Ashraf N, Rowley DR. The reactive stroma response regulates the immune landscape in prostate cancer. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:249-77. [DOI: 10.20517/jtgg.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Prostate cancer remains the most commonly diagnosed and the second leading cause of cancer-related deaths in men in the United States. The neoplastic transformation of prostate epithelia, concomitant with modulations in the stromal compartment, known as reactive stromal response, is critical for the growth, development, and progression of prostate cancer. Reactive stroma typifies an emergent response to disrupted tissue homeostasis commonly observed in wound repair and pathological conditions such as cancer. Despite the significance of reactive stroma in prostate cancer pathobiology, our understanding of the ontogeny, phenotypic and functional heterogeneity, and reactive stromal regulation of the immune microenvironment in prostate cancer remains limited. Traditionally characterized to have an immunologically "cold" tumor microenvironment, prostate cancer presents significant challenges for advancing immunotherapy compared to other solid tumors. This review explores the detrimental role of reactive stroma in prostate cancer, particularly its immunomodulatory function. Understanding the molecular characteristics and dynamic transcriptional program of the reactive stromal populations in tandem with tumor progression could offer insights into enhancing immunotherapy efficacy against prostate cancer.
Collapse
|
8
|
Sharkey C, Long X, Al-Faouri R, Strand D, Olumi AF, Wang Z. Enhanced prostatic Esr1 + luminal epithelial cells in the absence of SRD5A2. J Pathol 2024; 263:300-314. [PMID: 38606616 PMCID: PMC11166526 DOI: 10.1002/path.6283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 04/13/2024]
Abstract
Steroid 5α reductase 2 (SRD5A2) converts testosterone to dihydrotestosterone and is crucial for prostatic development. 5α reductase inhibitors (5ARI) reduce prostate size in benign prostate hyperplasia (BPH) and ameliorate lower urinary tract symptoms secondary to BPH. However, the mechanisms of 5ARI functioning are still not fully understood. Here, we used a Srd5a2-/- mouse model and employed single-cell RNA sequencing to explore the impact of SRD5A2 absence on prostate cellular heterogeneity. Significant alterations in luminal epithelial cell (LE) populations were observed, alongside an increased proportion and proliferative phenotype of estrogen receptor 1 (ESR1)+ LE2 cells, following an SRD5A2-independent ESR1 differentiation trajectory. LE2 cells exhibited enhanced estrogen response gene signatures, suggesting an alternative pathway for prostate growth when SRD5A2 is absent. Human prostate biopsy analysis revealed an inverse correlation between the expressions of SRD5A2 and LE2 markers (ESR1/PKCα), and an inverse correlation between SRD5A2 and the clinical efficiency of 5ARI. These findings provide insights into 5ARI resistance mechanisms and potential alternative therapies for BPH-related lower urinary tract symptoms. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christina Sharkey
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xingbo Long
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Ra’ad Al-Faouri
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Douglas Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Aria F. Olumi
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Zongwei Wang
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Li Y, Li J, Zhou L, Wang Z, Jin L, Cao J, Xie H, Wang L. Aberrant activation of TGF-β/ROCK1 enhances stemness during prostatic stromal hyperplasia. Cell Commun Signal 2024; 22:257. [PMID: 38711089 PMCID: PMC11071275 DOI: 10.1186/s12964-024-01644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor β (TGF-β)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-β/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-β/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.
Collapse
Affiliation(s)
- Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhenxing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Jin
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
Bian X, Wang W, Abudurexiti M, Zhang X, Ma W, Shi G, Du L, Xu M, Wang X, Tan C, Sun H, He X, Zhang C, Zhu Y, Zhang M, Ye D, Wang J. Integration Analysis of Single-Cell Multi-Omics Reveals Prostate Cancer Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305724. [PMID: 38483933 PMCID: PMC11095148 DOI: 10.1002/advs.202305724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/25/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is an extensive heterogeneous disease with a complex cellular ecosystem in the tumor microenvironment (TME). However, the manner in which heterogeneity is shaped by tumors and stromal cells, or vice versa, remains poorly understood. In this study, single-cell RNA sequencing, spatial transcriptomics, and bulk ATAC-sequence are integrated from a series of patients with PCa and healthy controls. A stemness subset of club cells marked with SOX9highARlow expression is identified, which is markedly enriched after neoadjuvant androgen-deprivation therapy (ADT). Furthermore, a subset of CD8+CXCR6+ T cells that function as effector T cells is markedly reduced in patients with malignant PCa. For spatial transcriptome analysis, machine learning and computational intelligence are comprehensively utilized to identify the cellular diversity of prostate cancer cells and cell-cell communication in situ. Macrophage and neutrophil state transitions along the trajectory of cancer progression are also examined. Finally, the immunosuppressive microenvironment in advanced PCa is found to be associated with the infiltration of regulatory T cells (Tregs), potentially induced by an FAP+ fibroblast subset. In summary, the cellular heterogeneity is delineated in the stage-specific PCa microenvironment at single-cell resolution, uncovering their reciprocal crosstalk with disease progression, which can be helpful in promoting PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaojie Bian
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Wenfeng Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Mierxiati Abudurexiti
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of UrologyShanghai Pudong New Area Gongli HospitalShanghai200135China
| | - Xingming Zhang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Weiwei Ma
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Guohai Shi
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Leilei Du
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Midie Xu
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xin Wang
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Cong Tan
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Hui Sun
- Department of PathologyFudan University Shanghai Cancer CenterShanghai200032China
| | - Xiadi He
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| | - Chenyue Zhang
- Department of Integrated TherapyFudan University Shanghai Cancer CenterShanghai200032China
| | - Yao Zhu
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Min Zhang
- Pediatric Translational Medicine Institute and Pediatric Congenital Heart Disease InstituteShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Dingwei Ye
- Department of UrologyFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jianhua Wang
- Cancer InstituteShanghai Urological Cancer InstituteFudan University Shanghai Cancer CenterDepartment of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
11
|
Booijink R, Terstappen LWMM, Dathathri E, Isebia K, Kraan J, Martens J, Bansal R. Identification of functional and diverse circulating cancer-associated fibroblasts in metastatic castration-naïve prostate cancer patients. Mol Oncol 2024. [PMID: 38634185 DOI: 10.1002/1878-0261.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) promote tumor progression, drug resistance, and metastasis. Although circulating tumor cells are studied as prognostic and diagnostic markers, little is known about other circulating cells and their association with PCa metastasis. Here, we explored the presence of circulating CAFs (cCAFs) in metastatic castration-naïve prostate cancer (mCNPC) patients. cCAFs were stained with fibroblast activation protein (FAP), epithelial cell adhesion molecule (EpCAM), and receptor-type tyrosine-protein phosphatase C (CD45), then FAP+EpCAM- cCAFs were enumerated and sorted using fluorescence-activated cell sorting. FAP+EpCAM- cCAFs ranged from 60 to 776 (389 mean ± 229 SD) per 2 × 108 mononuclear cells, whereas, in healthy donors, FAP+ EpCAM- cCAFs ranged from 0 to 71 (28 mean ± 22 SD). The mCNPC-derived cCAFs showed positivity for vimentin and intracellular collagen-I. They were viable and functional after sorting, as confirmed by single-cell collagen-I secretion after 48 h of culturing. Two cCAF subpopulations, FAP+CD45- and FAP+CD45+, were identified, both expressing collagen-I and vimentin, but with distinctly different morphologies. Collectively, this study demonstrates the presence of functional and viable circulating CAFs in mCNPC patients, suggesting the role of these cells in prostate cancer.
Collapse
Affiliation(s)
- Richell Booijink
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Leon W M M Terstappen
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
- Department of General, Visceral and Pediatric Surgery, University Hospital Düsseldorf, Heinrich-Heine University, Germany
| | - Eshwari Dathathri
- Department of Medical Cell BioPhysics, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Khrystany Isebia
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - John Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ruchi Bansal
- Personalized Diagnostics and Therapeutics, Department of Bioengineering Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
12
|
Huang Q, Ge Y, He Y, Wu J, Tong Y, Shang H, Liu X, Ba X, Xia D, Peng E, Chen Z, Tang K. The Application of Nanoparticles Targeting Cancer-Associated Fibroblasts. Int J Nanomedicine 2024; 19:3333-3365. [PMID: 38617796 PMCID: PMC11012801 DOI: 10.2147/ijn.s447350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/23/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer-associated fibroblasts (CAF) are the most abundant stromal cells in the tumor microenvironment (TME), especially in solid tumors. It has been confirmed that it can not only interact with tumor cells to promote cancer progression and metastasis, but also affect the infiltration and function of immune cells to induce chemotherapy and immunotherapy resistance. So, targeting CAF has been considered an important method in cancer treatment. The rapid development of nanotechnology provides a good perspective to improve the efficiency of targeting CAF. At present, more and more researches have focused on the application of nanoparticles (NPs) in targeting CAF. These studies explored the effects of different types of NPs on CAF and the multifunctional nanomedicines that can eliminate CAF are able to enhance the EPR effect which facilitate the anti-tumor effect of themselves. There also exist amounts of studies focusing on using NPs to inhibit the activation and function of CAF to improve the therapeutic efficacy. The application of NPs targeting CAF needs to be based on an understanding of CAF biology. Therefore, in this review, we first summarized the latest progress of CAF biology, then discussed the types of CAF-targeting NPs and the main strategies in the current. The aim is to elucidate the application of NPs in targeting CAF and provide new insights for engineering nanomedicine to enhance immune response in cancer treatment.
Collapse
Affiliation(s)
- Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiao Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
13
|
Kawaguchi Y, Ohta K, Hiroshige T, Uemura KI, Togo A, Nakamura KI, Igawa T. Sheet-like interstitial cells connect epithelial and smooth muscle cells in the mouse prostate. Acta Histochem 2024; 126:152153. [PMID: 38484443 DOI: 10.1016/j.acthis.2024.152153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/24/2024] [Accepted: 03/01/2024] [Indexed: 04/24/2024]
Abstract
Epithelial-stromal relationship in the prostate gland is crucial for maintaining homeostasis, including functional differentiation, proliferation, and quiescence. Pathological stromal changes are believed to cause benign prostatic hyperplasia (BPH). The prostate stromal tissue is known to have several subtypes of interstitial cells that connect the epithelium and smooth muscle. However, the characteristics of their morphology and connection patterns are not fully understood. Therefore, we aimed to investigated the three-dimensional morphology and intercellular interactions of interstitial cells in the prostate ventral lobe of mature wild-type mice using immunohistochemistry and focused ion beam-scanning electron microscopy tomography (FIB-SEM tomography). The prostate interstitial cells exhibited immunohistochemical subtypes, including PDGFRα single-positive, CD34 single-positive, and CD34 and PDGFRα double-positive. PDGFRα single-positive cells were observed as elongated cells just below the epithelium, CD34 single-positive cells were observed as polygonal cells in the area away from the epithelium, and double-positive cells were observed as elongated cells situated slightly deeper than PDGFRα single-positive cells. Furthermore, connexin43-immunoreactive puncta were observed on interstitial cells just beneath the epithelium, suggestive of possible electrical connections among the PDGFRα single-positive interstitial cells. Three-dimensional structural analysis using FIB-SEM tomography revealed sheet-like multilayered interstitial cells that appear to separate the glandular terminal from the deeper interstitial tissue, which includes smooth muscle and capillaries. Further, epithelial cells might be indirectly connected to the smooth muscle and nerve fibers via these sheet-like multilayered interstitial cellular networks. These findings suggest that the cellular network that separates the glandular terminals from the deep interstitial tissue functionally bridges the epithelium and smooth muscle, possibly playing a pivotal role in prostate tissue homeostasis through the epithelial-smooth muscle or epithelial-stromal relationships.
Collapse
Affiliation(s)
- Yoshihiro Kawaguchi
- Department of Urology, Saiseikai Futsukaichi Hospital, 3-13-1 Yu-machi, Chikushino-shi, Fukuoka 818-8516, Japan; Department of Urology, Kurume University School of Medicine, 67 Asahi-machi, Kurume-shi, Fukuoka, Kurume 830-0011, Japan.
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, 67 Asahi-machi, Kurume-shi, Fukuoka, Kurume 830-0011, Japan
| | - Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, 67 Asahi-machi, Kurume-shi, Fukuoka, Kurume 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Departmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, 67 Asahi-machi, Kurume-shi, Fukuoka, Kurume 830-0011, Japan
| |
Collapse
|
14
|
Aparicio L, Crowley L, Christin JR, Laplaca CJ, Hibshoosh H, Rabadan R, Shen MM. Meta-analyses of mouse and human prostate single-cell transcriptomes reveal widespread epithelial plasticity in tissue regression, regeneration, and cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578066. [PMID: 38352515 PMCID: PMC10862785 DOI: 10.1101/2024.01.30.578066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Recent advances in single-cell RNA-sequencing (scRNA-seq) technology have facilitated studies of cell states and plasticity in tissue maintenance and cancer, including in the prostate. Here we present meta-analyses of multiple new and published scRNA-seq datasets to establish reference cell type classifications for the normal mouse and human prostate. Our analyses demonstrate transcriptomic similarities between epithelial cell states in the normal prostate, in the regressed prostate after androgen-deprivation, and in primary prostate tumors. During regression in the mouse prostate, all epithelial cells shift their expression profiles towards a proximal periurethral (PrU) state, demonstrating an androgen-dependent plasticity that is restored to normal during androgen restoration and regeneration. In the human prostate, we find progressive rewiring of transcriptional programs across epithelial cell types in benign prostate hyperplasia and treatment-naïve prostate cancer. Notably, we detect copy number variants predominantly within Luminal Acinar cells in prostate tumors, suggesting a bias in their cell type of origin, as well as a larger field of transcriptomic alterations in non-tumor cells. Finally, we observe that Luminal Acinar tumor cells in treatment-naïve prostate cancer display heterogeneous androgen receptor (AR) signaling activity, including a split between high-AR and low-AR profiles with similarity to PrU-like states. Taken together, our analyses of cellular heterogeneity and plasticity provide important translational insights into the origin and treatment response of prostate cancer.
Collapse
Affiliation(s)
- Luis Aparicio
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Laura Crowley
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - John R. Christin
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Caroline J. Laplaca
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Michael M. Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY
- Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
- Department of Urology, Columbia University Irving Medical Center, New York, NY
- Department of Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
15
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Socciarelli F, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Dinalankara W, Jere M, Valencia I, Saladino C, Stone J, Unkenholz C, Garner R, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. Nat Commun 2024; 15:363. [PMID: 38191471 PMCID: PMC10774315 DOI: 10.1038/s41467-023-44210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
In the complex tumor microenvironment (TME), mesenchymal cells are key players, yet their specific roles in prostate cancer (PCa) progression remain to be fully deciphered. This study employs single-cell RNA sequencing to delineate molecular changes in tumor stroma that influence PCa progression and metastasis. Analyzing mesenchymal cells from four genetically engineered mouse models (GEMMs) and correlating these findings with human tumors, we identify eight stromal cell populations with distinct transcriptional identities consistent across both species. Notably, stromal signatures in advanced mouse disease reflect those in human bone metastases, highlighting periostin's role in invasion and differentiation. From these insights, we derive a gene signature that predicts metastatic progression in localized disease beyond traditional Gleason scores. Our results illuminate the critical influence of stromal dynamics on PCa progression, suggesting new prognostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nicholas J Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Wikum Dinalankara
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Itzel Valencia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher Saladino
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jason Stone
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richard Garner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mohammad K Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francisca Nunes de Almeida
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cory Abate-Shen
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Urology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY, 10021, USA.
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA.
- University of Oxford, Nuffield Department of Surgical Sciences, Oxford, UK.
| |
Collapse
|
16
|
Dos Santos L, Carbone F, Pacreau E, Diarra S, Luka M, Pigat N, Baures M, Navarro E, Anract J, Barry Delongchamps N, Cagnard N, Bost F, Nemazanyy I, Petitjean O, Hamaï A, Ménager M, Palea S, Guidotti JE, Goffin V. Cell Plasticity in a Mouse Model of Benign Prostate Hyperplasia Drives Amplification of Androgen-Independent Epithelial Cell Populations Sensitive to Antioxidant Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:30-51. [PMID: 37827216 DOI: 10.1016/j.ajpath.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Benign prostate hyperplasia (BPH) is caused by the nonmalignant enlargement of the transition zone of the prostate gland, leading to lower urinary tract symptoms. Although current medical treatments are unsatisfactory in many patients, the limited understanding of the mechanisms driving disease progression prevents the development of alternative therapeutic strategies. The probasin-prolactin (Pb-PRL) transgenic mouse recapitulates many histopathological features of human BPH. Herein, these alterations parallel urodynamic disturbance reminiscent of lower urinary tract symptoms. Single-cell RNA-sequencing analysis of Pb-PRL mouse prostates revealed that their epithelium mainly includes low-androgen signaling cell populations analogous to Club/Hillock cells enriched in the aged human prostate. These intermediate cells are predicted to result from the reprogramming of androgen-dependent luminal cells. Pb-PRL mouse prostates exhibited increased vulnerability to oxidative stress due to reduction of antioxidant enzyme expression. One-month treatment of Pb-PRL mice with anethole trithione (ATT), a specific inhibitor of mitochondrial ROS production, reduced prostate weight and voiding frequency. In human BPH-1 epithelial cells, ATT decreased mitochondrial metabolism, cell proliferation, and stemness features. ATT prevented the growth of organoids generated by sorted Pb-PRL basal and LSCmed cells, the two major BPH-associated, androgen-independent epithelial cell compartments. Taken together, these results support cell plasticity as a driver of BPH progression and therapeutic resistance to androgen signaling inhibition, and identify antioxidant therapy as a promising treatment of BPH.
Collapse
Affiliation(s)
- Leïla Dos Santos
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Francesco Carbone
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Emeline Pacreau
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Sekou Diarra
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Marine Luka
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France
| | - Natascha Pigat
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Manon Baures
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Emilie Navarro
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Julien Anract
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Barry Delongchamps
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France; Urology Department, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nicolas Cagnard
- Bioinformatics Core Platform, Université Paris Cité, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Frédéric Bost
- C3M, INSERM U1065, Université Côte d'Azur, Equipe Labélisée Ligue Nationale contre le Cancer, Nice, France
| | - Ivan Nemazanyy
- Metabolomics Core Facility, Université de Paris-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | | | - Ahmed Hamaï
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Mickaël Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Imagine Institute, Université Paris Cité, Atip-Avenir Team, INSERM UMR 1163, Paris, France; Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Stefano Palea
- Humana Biosciences SAS, Prologue Biotech, Labège, France
| | - Jacques-Emmanuel Guidotti
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France
| | - Vincent Goffin
- Institut Necker Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Paris, France.
| |
Collapse
|
17
|
Zhou Z, Jia D, Kwon O, Li S, Sun H, Roudier MP, Lin DW, True L, Morrissey C, Creighton CJ, Lee JK, Xin L. Androgen-regulated stromal complement component 7 (C7) suppresses prostate cancer growth. Oncogene 2023; 42:2428-2438. [PMID: 37400528 PMCID: PMC10802183 DOI: 10.1038/s41388-023-02759-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
The complement system is a major component of the innate immune system that works through the cytolytic effect of the membrane attack complex (MAC). Complement component 7 (C7) is essential for MAC assembly and its precisely regulated expression level is crucial for the cytolytic activity of MAC. We show that C7 is specifically expressed by the stromal cells in both mouse and human prostates. The expression level of C7 inversely correlates with clinical outcomes in prostate cancer. C7 is positively regulated by androgen signaling in the mouse prostate stromal cells. The androgen receptor directly transcriptionally regulates the mouse and human C7. Increasing C7 expression in the C57Bl/6 syngeneic RM-1 and Pten-Kras allografts suppresses tumor growth in vivo. Conversely, C7 haploinsufficiency promotes tumor growth in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Interestingly, replenishing C7 in androgen-sensitive Pten-Kras tumors during androgen depletion only slightly enhances cellular apoptosis, highlighting the diverse mechanisms employed by tumors to counteract complement activity. Collectively, our research indicates that augmenting complement activity could be a promising therapeutic approach to impede the development of castration resistance in prostate cancer.
Collapse
Affiliation(s)
- Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Deyong Jia
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Ohjoon Kwon
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Shan Li
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Huiyun Sun
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Daniel W Lin
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Lawrence True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Pakula H, Omar M, Carelli R, Pederzoli F, Fanelli GN, Pannellini T, Van Emmenis L, Rodrigues S, Fidalgo-Ribeiro C, Nuzzo PV, Brady NJ, Jere M, Unkenholz C, Alexanderani MK, Khani F, de Almeida FN, Abate-Shen C, Greenblatt MB, Rickman DS, Barbieri CE, Robinson BD, Marchionni L, Loda M. Distinct mesenchymal cell states mediate prostate cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534769. [PMID: 37034687 PMCID: PMC10081210 DOI: 10.1101/2023.03.29.534769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alterations in tumor stroma influence prostate cancer progression and metastatic potential. However, the molecular underpinnings of this stromal-epithelial crosstalk are largely unknown. Here, we compare mesenchymal cells from four genetically engineered mouse models (GEMMs) of prostate cancer representing different stages of the disease to their wild-type (WT) counterparts by single-cell RNA sequencing (scRNA-seq) and, ultimately, to human tumors with comparable genotypes. We identified 8 transcriptionally and functionally distinct stromal populations responsible for common and GEMM-specific transcriptional programs. We show that stromal responses are conserved in mouse models and human prostate cancers with the same genomic alterations. We noted striking similarities between the transcriptional profiles of the stroma of murine models of advanced disease and those of of human prostate cancer bone metastases. These profiles were then used to build a robust gene signature that can predict metastatic progression in prostate cancer patients with localized disease and is also associated with progression-free survival independent of Gleason score. Taken together, this offers new evidence that stromal microenvironment mediates prostate cancer progression, further identifying tissue-based biomarkers and potential therapeutic targets of aggressive and metastatic disease.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohamed Omar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ryan Carelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Laboratory Medicine, Pisa University Hospital, Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56126, Italy
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lucie Van Emmenis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caroline Fidalgo-Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pier V. Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Nicholas J. Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Madhavi Jere
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Caitlin Unkenholz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mohammad K. Alexanderani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Francisca Nunes de Almeida
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Departments of Molecular Pharmacology and Therapeutics, Urology, Medicine, Pathology & Cell Biology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - David S. Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Christopher E. Barbieri
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Urology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
19
|
Pederzoli F, Raffo M, Pakula H, Ravera F, Nuzzo PV, Loda M. "Stromal cells in prostate cancer pathobiology: friends or foes?". Br J Cancer 2023; 128:930-939. [PMID: 36482187 PMCID: PMC10006214 DOI: 10.1038/s41416-022-02085-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
The genomic, epigenetic and metabolic determinants of prostate cancer pathobiology have been extensively studied in epithelial cancer cells. However, malignant cells constantly interact with the surrounding environment-the so-called tumour microenvironment (TME)-which may influence tumour cells to proliferate and invade or to starve and die. In that regard, stromal cells-including fibroblasts, smooth muscle cells and vasculature-associated cells-constitute an essential fraction of the prostate cancer TME. However, they have been largely overlooked compared to other cell types (i.e. immune cells). Indeed, their importance in prostate physiology starts at organogenesis, as the soon-to-be prostate stroma determines embryonal epithelial cells to commit toward prostatic differentiation. Later in life, the appearance of a reactive stroma is linked to the malignant transformation of epithelial cells and cancer progression. In this Review, we discuss the main mesenchymal cell populations of the prostate stroma, highlighting their dynamic role in the transition of the healthy prostate epithelium to cancer. A thorough understanding of those populations, their phenotypes and their transcriptional programs may improve our understanding of prostate cancer pathobiology and may help to exploit prostate stroma as a biomarker of patient stratification and as a therapeutic target.
Collapse
Affiliation(s)
- Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.
| | - Massimiliano Raffo
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Vita-Salute San Raffaele University, Milan, Italy
| | - Hubert Pakula
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Francesco Ravera
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Department of Internal Medicine, Università Degli Studi di Genova, Genova, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
20
|
Charytonowicz D, Brody R, Sebra R. Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Nat Commun 2023; 14:1350. [PMID: 36906603 PMCID: PMC10008582 DOI: 10.1038/s41467-023-36961-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
We introduce UniCell: Deconvolve Base (UCDBase), a pre-trained, interpretable, deep learning model to deconvolve cell type fractions and predict cell identity across Spatial, bulk-RNA-Seq, and scRNA-Seq datasets without contextualized reference data. UCD is trained on 10 million pseudo-mixtures from a fully-integrated scRNA-Seq training database comprising over 28 million annotated single cells spanning 840 unique cell types from 898 studies. We show that our UCDBase and transfer-learning models achieve comparable or superior performance on in-silico mixture deconvolution to existing, reference-based, state-of-the-art methods. Feature attribute analysis uncovers gene signatures associated with cell-type specific inflammatory-fibrotic responses in ischemic kidney injury, discerns cancer subtypes, and accurately deconvolves tumor microenvironments. UCD identifies pathologic changes in cell fractions among bulk-RNA-Seq data for several disease states. Applied to lung cancer scRNA-Seq data, UCD annotates and distinguishes normal from cancerous cells. Overall, UCD enhances transcriptomic data analysis, aiding in assessment of cellular and spatial context.
Collapse
Affiliation(s)
- Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, New York, NY, USA.
- Black Family Stem Cell Institute, New York, NY, USA.
| |
Collapse
|
21
|
Zeng F, Gao M, Liao S, Zhou Z, Luo G, Zhou Y. Role and mechanism of CD90 + fibroblasts in inflammatory diseases and malignant tumors. Mol Med 2023; 29:20. [PMID: 36747131 PMCID: PMC9900913 DOI: 10.1186/s10020-023-00616-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Fibroblasts are highly heterogeneous mesenchymal stromal cells, and different fibroblast subpopulations play different roles. A subpopulation of fibroblasts expressing CD90, a 25-37 kDa glycosylphosphatidylinositol anchored protein, plays a dominant role in the fibrotic and pro-inflammatory state. In this review, we focused on CD90+ fibroblasts, and their roles and possible mechanisms in disease processes. First, the main biological functions of CD90+ fibroblasts in inducing angiogenesis and maintaining tissue homeostasis are described. Second, the role and possible mechanism of CD90+ fibroblasts in inducing pulmonary fibrosis, inflammatory arthritis, inflammatory skin diseases, and scar formation are introduced, and we discuss how CD90+ cancer-associated fibroblasts might serve as promising cancer biomarkers. Finally, we propose future research directions related to CD90+ fibroblasts. This review will provide a theoretical basis for the diagnosis and treatment CD90+ fibroblast-related disease.
Collapse
Affiliation(s)
- Feng Zeng
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078 Hunan China
| | - Mengxiang Gao
- grid.216417.70000 0001 0379 7164NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078 Hunan China
| | - Shan Liao
- grid.216417.70000 0001 0379 7164Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan China
| | - Zihua Zhou
- grid.508130.fDepartment of Oncology, Loudi Central Hospital, Loudi, 417000 China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, No. 88 of Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China. .,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
22
|
Graham MK, Chikarmane R, Wang R, Vaghasia A, Gupta A, Zheng Q, Wodu B, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Wheelan S, Simons BW, Bieberich C, Nelson WG, DeWeese TL, De Marzo AM, Yegnasubramanian S. Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in the mouse prostate. Prostate 2023; 83:286-303. [PMID: 36373171 DOI: 10.1002/pros.24460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Evaluating the complex interplay of cell types in the tissue microenvironment is critical to understanding the origin and progression of diseases in the prostate and potential opportunities for intervention. Mouse models are an essential tool to investigate the molecular and cell-type-specific contributions of prostate disease at an organismal level. While there are well-documented differences in the extent, timing, and nature of disease development in various genetically engineered and exposure-based mouse models in different mouse strains and prostate lobes within each mouse strain, the underlying molecular phenotypic differences in cell types across mouse strains and prostate lobes are incompletely understood. METHODS In this study, we used single-cell RNA-sequencing (scRNA-seq) methods to assess the single-cell transcriptomes of 6-month-old mouse prostates from two commonly used mouse strains, friend virus B/NIH jackson (FVB/NJ) (N = 2) and C57BL/6J (N = 3). For each mouse, the lobes of the prostate were dissected (anterior, dorsal, lateral, and ventral), and individual scRNA-seq libraries were generated. In situ and pathological analyses were used to explore the spatial and anatomical distributions of novel cell types and molecular markers defining these cell types. RESULTS Data dimensionality reduction and clustering analysis of scRNA-seq data revealed that basal and luminal cells possessed strain-specific transcriptomic differences, with luminal cells also displaying marked lobe-specific differences. Gene set enrichment analysis comparing luminal cells by strain showed enrichment of proto-Oncogene targets in FVB/NJ mice. Additionally, three rare populations of epithelial cells clustered independently of strain and lobe: one population of luminal cells expressing Foxi1 and components of the vacuolar ATPase proton pump (Atp6v0d2 and Atp6v1g3), another population expressing Psca and other stem cell-associated genes (Ly6a/Sca-1, Tacstd2/Trop-2), and a neuroendocrine population expressing Chga, Chgb, and Syp. In contrast, stromal cell clusters, including fibroblasts, smooth muscle cells, endothelial cells, pericytes, and immune cell types, were conserved across strain and lobe, clustering largely by cell type and not by strain or lobe. One notable exception to this was the identification of two distinct fibroblast populations that we term subglandular fibroblasts and interstitial fibroblasts based on their strikingly distinct spatial distribution in the mouse prostate. CONCLUSIONS Altogether, these data provide a practical reference of the transcriptional profiles of mouse prostate from two commonly used mouse strains and across all four prostate lobes.
Collapse
Affiliation(s)
- Mindy K Graham
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roshan Chikarmane
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rulin Wang
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ajay Vaghasia
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anuj Gupta
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bulouere Wodu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xin Pan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicole Castagna
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jianyong Liu
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer Meyers
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza Skaist
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah Wheelan
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Charles Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, Maryland, USA
| | - William G Nelson
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Theodore L DeWeese
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Angelo M De Marzo
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Srinivasan Yegnasubramanian
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
- School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Pan J, Ma Z, Liu B, Qian H, Shao X, Liu J, Wang Q, Xue W. Identification of cancer-associated fibroblasts subtypes in prostate cancer. Front Immunol 2023; 14:1133160. [PMID: 37033924 PMCID: PMC10080037 DOI: 10.3389/fimmu.2023.1133160] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Cancer-associated fibroblasts (CAFs) are one of the most abundant cell types in tumor microenvironment. However, the phenotypic and functional heterogeneities among CAFs have not been sufficiently investigated in prostate cancer. Methods We obtained and analyzed the single-cell RNA-sequencing data from 26 hormone-sensitive prostate cancer samples and 8 castration-resistant prostate cancer samples, along with the analysis of bulk-sequencing datasets. Furthermore, we performed multicolor immunofluorescence staining to verify the findings from the data analysis. Results We identified two major CAFs subtypes with distinct molecular characteristics and biological functions in prostate cancer microenvironment, namely αSMA+ CAV1+ CAFs-C0 and FN1+ FAP+ CAFs-C1. Another single-cell RNA-sequencing dataset containing 7 bone metastatic prostate cancer samples demonstrated that osteoblasts in the bone metastatic lesions comprised two subtypes with molecular characteristics and biological functions similar to CAFs-C0 and CAFs-C1 in the primary tumor sites. In addition, we discovered a transcriptional factor regulatory network depending on CAFs-C1. CAFs-C1, but not CAFs-C0, was associated with castration resistance and poor prognosis. We also found that CAFs-C1 signature was involved in treatment resistance to immune checkpoint inhibitors. Discussion In summary, our results identified the presence of heterogeneous CAFs subtypes in prostate cancer microenvironment and the potential of specific CAFs subtype as therapeutic target for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Jiahua Pan
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zehua Ma
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyang Qian
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Shao
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiazhou Liu
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Qi Wang, ; Wei Xue,
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Qi Wang, ; Wei Xue,
| |
Collapse
|
24
|
Moline DC, Zenner ML, Burr A, Vellky JE, Nonn L, Vander Griend DJ. Single-cell RNA-Seq identifies factors necessary for the regenerative phenotype of prostate luminal epithelial progenitors. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:425-439. [PMID: 36636696 PMCID: PMC9831919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
Benign prostate hyperplasia and prostate cancer are common diseases that involve the overgrowth of prostatic tissue. Although their pathologies and symptoms differ, both diseases show aberrant activation of prostate progenitor cell phenotypes in a tissue that should be relatively quiescent. This phenomenon prompts a need to better define the normal prostate progenitor cell phenotype and pursue the discovery of causal networks that could yield druggable targets to combat hyperplastic prostate diseases. We used single-cell (sc) RNA-Seq analysis to confirm the identity of a luminal progenitor cell population in both the hormonally intact and castrated mouse prostate. Using marker genes from our scRNA-Seq analysis, we identified factors necessary for the regeneration phenotype of prostate organoids derived from mice and humans in vitro. These data outline potential factors necessary for prostate regeneration and utilization of scRNA-Seq approaches for the identification of pharmacologic strategies targeting critical cell populations that drive prostate disease.
Collapse
Affiliation(s)
- Daniel C Moline
- Committee on Development, Regeneration, and Stem Cell Biology (DRSB), The University of ChicagoChicago, IL 60612, USA
| | - Morgan L Zenner
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Alex Burr
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Jordan E Vellky
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, The University of Illinois at ChicagoChicago, IL 60612, USA
| | | |
Collapse
|
25
|
Jia D, Zhou Z, Kwon OJ, Zhang L, Wei X, Zhang Y, Yi M, Roudier MP, Regier MC, Dumpit R, Nelson PS, Headley M, True L, Lin DW, Morrissey C, Creighton CJ, Xin L. Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity. Nat Commun 2022; 13:6828. [PMID: 36369237 PMCID: PMC9652358 DOI: 10.1038/s41467-022-34665-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) mediate an immunosuppressive effect, but the underlying mechanism remains incompletely defined. Here we show that increasing prostatic stromal Foxf2 suppresses the growth and progression of both syngeneic and autochthonous mouse prostate cancer models in an immunocompetent context. Mechanistically, Foxf2 moderately attenuates the CAF phenotype and transcriptionally downregulates Cxcl5, which diminish the immunosuppressive myeloid cells and enhance T cell cytotoxicity. Increasing prostatic stromal Foxf2 sensitizes prostate cancer to the immune checkpoint blockade therapies. Augmenting lung stromal Foxf2 also mediates an immunosuppressive milieu and inhibits lung colonization of prostate cancer. FOXF2 is expressed higher in the stroma of human transition zone (TZ) than peripheral zone (PZ) prostate. The stromal FOXF2 expression level in primary prostate cancers inversely correlates with the Gleason grade. Our study establishes Foxf2 as a stromal transcription factor modulating the tumor immune microenvironment and potentially explains why cancers are relatively rare and indolent in the TZ prostate.
Collapse
Affiliation(s)
- Deyong Jia
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Zhicheng Zhou
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Li Zhang
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Xing Wei
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mingyang Yi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Mary C Regier
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Ruth Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mark Headley
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lawrence True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Daniel W Lin
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Hiroto A, Kim WK, Pineda A, He Y, Lee DH, Le V, Olson AW, Aldahl J, Nenninger CH, Buckley AJ, Xiao GQ, Geradts J, Sun Z. Stromal androgen signaling acts as tumor niches to drive prostatic basal epithelial progenitor-initiated oncogenesis. Nat Commun 2022; 13:6552. [PMID: 36323713 PMCID: PMC9630272 DOI: 10.1038/s41467-022-34282-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The androgen receptor (AR)-signaling pathways are essential for prostate tumorigenesis. Although significant effort has been devoted to directly targeting AR-expressing tumor cells, these therapies failed in most prostate cancer patients. Here, we demonstrate that loss of AR in stromal sonic-hedgehog Gli1-lineage cells diminishes prostate epithelial oncogenesis and tumor development using in vivo assays and mouse models. Single-cell RNA sequencing and other analyses identified a robust increase of insulin-like growth factor (IGF) binding protein 3 expression in AR-deficient stroma through attenuation of AR suppression on Sp1-regulated transcription, which further inhibits IGF1-induced Wnt/β-catenin activation in adjacent basal epithelial cells and represses their oncogenic growth and tumor development. Epithelial organoids from stromal AR-deficient mice can regain IGF1-induced oncogenic growth. Loss of human prostate tumor basal cell signatures reveals in basal cells of stromal AR-deficient mice. These data demonstrate a distinct mechanism for prostate tumorigenesis and implicate co-targeting stromal and epithelial AR-signaling for prostate cancer.
Collapse
Affiliation(s)
- Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ariana Pineda
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yongfeng He
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christian H Nenninger
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alyssa J Buckley
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Guang-Qian Xiao
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
27
|
Frégeau-Proulx L, Lacouture A, Weidmann C, Jobin C, Audet-Walsh É. FACS-Free isolation and purification protocol of mouse prostate epithelial cells for organoid primary culture. MethodsX 2022; 9:101843. [PMID: 36147450 PMCID: PMC9486617 DOI: 10.1016/j.mex.2022.101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
This protocol enables the generation of mouse prostate organoids without using flow cytometry, facilitating its implementation in most research laboratories. Usage of prostate organoids allows the study of complex in vivo phenotypes, beyond what can be done with immortalized cell lines.
The prostate is a gland that contributes to men's fertility. It is highly responsive to androgens and is often the site of carcinogenesis, as prostate cancer is the most frequent cancer in men in over a hundred countries. To study the normal prostate, few in vitro models exist, and most of them do not express the androgen receptor (AR). To overcome this issue, prostate epithelial cells can be grown in primary culture ex vivo in 2- and 3-dimensional culture (organoids). However, methods to purify these cells often require flow cytometry, thus necessitating specialized instruments and expertise. Herein, we present a detailed protocol for the harvest, purification, and primary culture of mouse prostate epithelial cells to grow prostate organoids ex vivo. This protocol does not require flow cytometry approaches, facilitating its implementation in most research laboratories, and organoids grown with this protocol are highly responsive to androgens. In summary, we present a new simple method that can be used to grow prostate organoids that recapitulate the androgen response of this gland in vivo.
Collapse
Affiliation(s)
- Lilianne Frégeau-Proulx
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.,Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.,Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Cynthia Jobin
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.,Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, CHU de Québec - Université Laval Research Center, Québec, QC, Canada.,Department of molecular medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, Québec, QC, Canada
| |
Collapse
|
28
|
Wei X, Zhang L, Zhang Y, Cooper C, Brewer C, Tsai CF, Wang YT, Glaz M, Wessells HB, Que J, Titus MA, Cirulli V, Glaser A, Liu T, Reder NP, Creighton CJ, Xin L. Ablating Lgr5-expressing prostatic stromal cells activates the ERK-mediated mechanosensory signaling and disrupts prostate tissue homeostasis. Cell Rep 2022; 40:111313. [PMID: 36070687 PMCID: PMC9491244 DOI: 10.1016/j.celrep.2022.111313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/12/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023] Open
Abstract
Functional implication of stromal heterogeneity in the prostate remains incompletely understood. Using lineage tracing and light-sheet imaging, we show that some fibroblast cells at the mouse proximal prostatic ducts and prostatic urethra highly express Lgr5. Genetic ablation of these anatomically restricted stromal cells, but not nonselective ablation of prostatic stromal cells, rapidly induces prostate epithelial turnover and dedifferentiation that are reversed following spontaneous restoration of the Lgr5+ stromal cells. RNA sequencing (RNA-seq) analysis indicates that ablating the Lgr5+ stromal cells activates a mechanosensory response. Ablating the Lgr5+ stromal cells impairs the control of prostatic ductal outlet, increases prostate tissue stiffness, and activates the mitogen-activated protein kinase (MAPK). Suppressing MAPK overrides the elevated epithelial proliferation. In summary, the Lgr5+ stromal cells regulate prostate tissue homeostasis and maintain its functional integrity in a long-distance manner. Our study implies that the cells at organ junctions most likely control organ homeostasis by sustaining a balanced mechanoforce.
Collapse
Affiliation(s)
- Xing Wei
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Li Zhang
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cody Cooper
- Alpenglow Biosciences, Inc., Seattle, WA 98103, USA
| | - Chris Brewer
- Alpenglow Biosciences, Inc., Seattle, WA 98103, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Micah Glaz
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98109, USA
| | - Hunter B Wessells
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston TX 77030, USA
| | - Vincenzino Cirulli
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Adam Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | | | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Xin
- Department of Urology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Genitourinary Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston TX 77030, USA.
| |
Collapse
|
29
|
Lavie D, Ben-Shmuel A, Erez N, Scherz-Shouval R. Cancer-associated fibroblasts in the single-cell era. NATURE CANCER 2022; 3:793-807. [PMID: 35883004 PMCID: PMC7613625 DOI: 10.1038/s43018-022-00411-z] [Citation(s) in RCA: 284] [Impact Index Per Article: 94.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/14/2022] [Indexed: 01/28/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are central players in the microenvironment of solid tumors, affecting cancer progression and metastasis. CAFs have diverse phenotypes, origins and functions and consist of distinct subpopulations. Recent progress in single-cell RNA-sequencing technologies has enabled detailed characterization of the complexity and heterogeneity of CAF subpopulations in multiple tumor types. In this Review, we discuss the current understanding of CAF subsets and functions as elucidated by single-cell technologies, their functional plasticity, and their emergent shared and organ-specific features that could potentially be harnessed to design better therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Dor Lavie
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aviad Ben-Shmuel
- Department of Biomolecular Sciences, the Weizmann Institute of Science, Rehovot, Israel
| | - Neta Erez
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, the Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol 2022; 82:68-93. [PMID: 34844845 PMCID: PMC9106849 DOI: 10.1016/j.semcancer.2021.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCa) is a prevalent malignancy that occurs primarily in old males. Prostate tumors in different patients manifest significant inter-patient heterogeneity with respect to histo-morphological presentations and molecular architecture. An individual patient tumor also harbors genetically distinct clones in which PCa cells display intra-tumor heterogeneity in molecular features and phenotypic marker expression. This inherent PCa cell heterogeneity, e.g., in the expression of androgen receptor (AR), constitutes a barrier to the long-term therapeutic efficacy of AR-targeting therapies. Furthermore, tumor progression as well as therapeutic treatments induce PCa cell plasticity such that AR-positive PCa cells may turn into AR-negative cells and prostate tumors may switch lineage identity from adenocarcinomas to neuroendocrine-like tumors. This induced PCa cell plasticity similarly confers resistance to AR-targeting and other therapies. In this review, I first discuss PCa from the perspective of an abnormal organ development and deregulated cellular differentiation, and discuss the luminal progenitor cells as the likely cells of origin for PCa. I then focus on intrinsic PCa cell heterogeneity in treatment-naïve tumors with the presence of prostate cancer stem cells (PCSCs). I further elaborate on PCa cell plasticity induced by genetic alterations and therapeutic interventions, and present potential strategies to therapeutically tackle PCa cell heterogeneity and plasticity. My discussions will make it clear that, to achieve enduring clinical efficacy, both intrinsic PCa cell heterogeneity and induced PCa cell plasticity need to be targeted with novel combinatorial approaches.
Collapse
Affiliation(s)
- Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Experimental Therapeutics (ET) Graduate Program, The University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
31
|
Liu Y, Wang J, Horton C, Yu C, Knudsen B, Stefanson J, Hu K, Stefanson O, Green J, Guo C, Xie Q, Wang ZA. Stromal AR inhibits prostate tumor progression by restraining secretory luminal epithelial cells. Cell Rep 2022; 39:110848. [PMID: 35613593 PMCID: PMC9175887 DOI: 10.1016/j.celrep.2022.110848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/03/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Androgen receptor (AR) is expressed in both the prostate epithelium and the prostate stroma and plays diverse roles in prostate physiology. Although low expression of stromal AR is clinically associated with advanced cancer stage and worse outcome, whether stromal AR inhibits or promotes prostate cancer progression remains controversial. Here, we specifically delete AR in smooth muscle cells of the adult mouse prostate under two tumorigenic conditions, namely, the Hi-Myc genetic model and the T + E2 hormonal carcinogenesis model. Histology analyses show that stromal AR deletion exacerbates tumor progression phenotypes in both models. Furthermore, single-cell analyses of the tumor samples reveal that secretory luminal cells are the cell population particularly affected by stromal AR deletion, as they transition to a cellular state of potentiated PI3K-mTORC1 activities. Our results suggest that stromal AR normally inhibits prostate cancer progression by restraining secretory luminal cells and imply possible unintended negative effects of androgen deprivation therapy.
Collapse
Affiliation(s)
- Yueli Liu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jiawen Wang
- Sequencing Center, National Institute of Biological Sciences, Beijing 102206, China
| | - Corrigan Horton
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chuan Yu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Beatrice Knudsen
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kevin Hu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ofir Stefanson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan Green
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charlene Guo
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Qing Xie
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Zhu A Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
32
|
Wei X, Roudier MP, Kwon OJ, Lee JD, Kong K, Dumpit R, True L, Morrissey C, Lin DW, Nelson PS, Xin L. Paracrine Wnt signaling is necessary for prostate epithelial proliferation. Prostate 2022; 82:517-530. [PMID: 35014711 PMCID: PMC8866211 DOI: 10.1002/pros.24298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022]
Abstract
INTRODUCTION The Wnt proteins play key roles in the development, homeostasis, and disease progression of many organs including the prostate. However, the spatiotemporal expression patterns of Wnt proteins in prostate cell lineages at different developmental stages and in prostate cancer remain inadequately characterized. METHODS We isolated the epithelial and stromal cells in the developing and mature mouse prostate by flow cytometry and determined the expression levels of Wnt ligands. We used Visium spatial gene expression analysis to determine the spatial distribution of Wnt ligands in the mouse prostatic glands. Using laser-capture microscopy in combination with gene expression analysis, we also determined the expression patterns of Wnt signaling components in stromal and cancer cells in advanced human prostate cancer specimens. To investigate how the stroma-derived Wnt ligands affect prostate development and homeostasis, we used a Col1a2-CreERT2 mouse model to disrupt the Wnt transporter Wntless specifically in prostate stromal cells. RESULTS We showed that the prostate stromal cells are a major source of several Wnt ligands. Visium spatial gene expression analysis revealed a distinct spatial distribution of Wnt ligands in the prostatic glands. We also showed that Wnt signaling components are highly expressed in the stromal compartment of primary and advanced human prostate cancer. Blocking stromal Wnt secretion attenuated prostate epithelial proliferation and regeneration but did not affect cell survival and lineage maintenance. DISCUSSION Our study demonstrates a critical role of stroma-derived Wnt ligands in prostate development and homeostasis.
Collapse
Affiliation(s)
- Xing Wei
- Department of Urology, University of Washington, Seattle, WA, USA 98109
| | | | - Oh-Joon Kwon
- Department of Urology, University of Washington, Seattle, WA, USA 98109
| | - Justin Daho Lee
- Molecular Engineering Ph.D. Program, University of Washington, Seattle, WA, USA 98109
- Department of Bioengineering, University of Washington, Seattle, WA, USA 98109
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA 98109
| | - Kevin Kong
- Department of Biology, University of Washington, Seattle, WA, USA 98109
| | - Ruth Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 98109
| | - Lawrence True
- Department of Urology, University of Washington, Seattle, WA, USA 98109
- Department of Pathology, University of Washington, Seattle, WA, USA 98109
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA 98109
| | - Daniel W. Lin
- Department of Urology, University of Washington, Seattle, WA, USA 98109
| | - Peter S. Nelson
- Department of Urology, University of Washington, Seattle, WA, USA 98109
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 98109
- Department of Pathology, University of Washington, Seattle, WA, USA 98109
| | - Li Xin
- Department of Urology, University of Washington, Seattle, WA, USA 98109
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA 98109
| |
Collapse
|
33
|
Moskwa N, Mahmood A, Nelson DA, Altrieth AL, Forni PE, Larsen M. Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids. Development 2022; 149:dev200167. [PMID: 35224622 PMCID: PMC8977102 DOI: 10.1242/dev.200167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Stromal cells can direct the differentiation of epithelial progenitor cells during organ development. Fibroblast growth factor (FGF) signaling is essential for submandibular salivary gland development. Through stromal fibroblast cells, FGF2 can indirectly regulate proacinar cell differentiation in organoids, but the mechanisms are not understood. We performed single-cell RNA-sequencing and identified multiple stromal cell subsets, including Pdgfra+ stromal subsets expressing both Fgf2 and Fgf10. When combined with epithelial progenitor cells in organoids, magnetic-activated cell-sorted PDGFRα+ cells promoted proacinar cell differentiation similarly to total stroma. Gene expression analysis revealed that FGF2 increased the expression of multiple stromal genes, including Bmp2 and Bmp7. Both BMP2 and BMP7 synergized with FGF2, stimulating proacinar cell differentiation but not branching. However, stromal cells grown without FGF2 did not support proacinar organoid differentiation and instead differentiated into myofibroblasts. In organoids, TGFβ1 treatment stimulated myofibroblast differentiation and inhibited the proacinar cell differentiation of epithelial progenitor cells. Conversely, FGF2 reversed the effects of TGFβ1. We also demonstrated that adult salivary stromal cells were FGF2 responsive and could promote proacinar cell differentiation. These FGF2 signaling pathways may have applications in future regenerative therapies.
Collapse
Affiliation(s)
- Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ayma Mahmood
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Amber L. Altrieth
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
34
|
Crowley L, Shen MM. Heterogeneity and complexity of the prostate epithelium: New findings from single-cell RNA sequencing studies. Cancer Lett 2022; 525:108-114. [PMID: 34728312 PMCID: PMC8629925 DOI: 10.1016/j.canlet.2021.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/30/2023]
Abstract
The recent advent of single-cell RNA-sequencing technology has provided new fundamental insights into the heterogeneity of the prostate epithelium. Several independent studies have described extensive heterogeneity of the luminal epithelial compartment, including a major division between a novel population of luminal cells located in the proximal region of the prostate ducts versus luminal cells located more distally. Proximal luminal cells as well as novel periurethral cells display increased progenitor potential in organoid culture and tissue reconstitution assays, but not in lineage-tracing analyses during prostate homeostasis, suggesting context-dependent plasticity of these populations. Here we describe and synthesize recent findings regarding the epithelial cell populations in the mouse prostate, draw comparisons to the human prostate, and address the relevance of these findings to prostate diseases and cancer.
Collapse
Affiliation(s)
| | - Michael M. Shen
- Author for correspondence at: phone: (212) 851-4723; fax: (212) 851-4572;
| |
Collapse
|
35
|
ChallaSivaKanaka S, Vickman RE, Kakarla M, Hayward SW, Franco OE. Fibroblast heterogeneity in prostate carcinogenesis. Cancer Lett 2022; 525:76-83. [PMID: 34715252 PMCID: PMC8788937 DOI: 10.1016/j.canlet.2021.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 01/30/2023]
Abstract
Our understanding of stromal components, specifically cancer-associated fibroblasts (CAF), in prostate cancer (PCa), has evolved from considering these cells as inert bystanders to acknowledging their significance as players in prostate tumorigenesis. CAF are multifaceted-they promote cancer cell growth, migration and remodel the tumor microenvironment. Although targeting CAF could be a promising strategy for PCa treatment, they incorporate a high but undefined degree of intrinsic cellular heterogeneity. The interaction between CAF subpopulations, with the normal and tumor epithelium and with other cell types is not yet characterized. Defining these interactions and the critical signaling nodes that support tumorigenesis will enable the development of novel strategies to control prostate cancer progression. Here we will discuss the origins, molecular and functional heterogeneity of CAF in PCa. We highlight the challenges associated with delineating CAF heterogeneity and discuss potential areas of research that would assist in expanding our knowledge of CAF and their role in PCa tumorigenesis.
Collapse
Affiliation(s)
- Sathyavathi ChallaSivaKanaka
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Renee E Vickman
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Mamatha Kakarla
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Simon W Hayward
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA
| | - Omar E Franco
- Department of Surgery, NorthShore University HealthSystem, Research Institute, 1001 University Place, Evanston, IL, 60201, USA. http://
| |
Collapse
|
36
|
Olson AW, Le V, Wang J, Hiroto A, Kim WK, Lee DH, Aldahl J, Wu X, Kim M, Cunha GR, You S, Sun Z. Stromal androgen and hedgehog signaling regulates stem cell niches in pubertal prostate development. Development 2021; 148:271928. [PMID: 34427305 DOI: 10.1242/dev.199738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh-responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen signaling-initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate previously unidentified mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.
Collapse
Affiliation(s)
- Adam W Olson
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Vien Le
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Jinhui Wang
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010-3000, USA
| | - Alex Hiroto
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Dong-Hoon Lee
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| | - Xiwei Wu
- Integrative Genomics Core, City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA 91010-3000, USA
| | - Minhyung Kim
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gerald R Cunha
- Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Sungyong You
- Division of Cancer Biology and Therapeutics, Departments of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zijie Sun
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010-3000, USA
| |
Collapse
|
37
|
Sanches BDA, Maldarine JS, Vilamaior PSL, Felisbino SL, Carvalho HF, Taboga SR. Stromal cell interplay in prostate development, physiology, and pathological conditions. Prostate 2021; 81:926-937. [PMID: 34254335 DOI: 10.1002/pros.24196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Advances in prostatic stroma studies over the past few decades have demonstrated that the stroma not only supports and nourishes the gland's secretory epithelium but also participates in key aspects of morphogenesis, in the prostate's hormonal metabolism, and in the functionality of the secretory epithelium. Furthermore, the stroma is implicated in the onset and progression of prostate cancer through the formation of the so-called reactive stroma, which corresponds to a tumorigenesis-permissive microenvironment. Prostatic stromal cells are interconnected and exchange paracrine signals among themselves in a gland that is highly sensitive to endocrine hormones. There is a growing body of evidence that telocytes, recently detected interstitial cells that are also present in the prostate, are involved in stromal organization, so that their processes form a network of interconnections with both the epithelium and the other stromal cells. The present review provides an update on the different types of prostate stromal cells, their interrelationships and implications for prostate development, physiology and pathological conditions.
Collapse
Affiliation(s)
- Bruno D A Sanches
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana S Maldarine
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Patricia S L Vilamaior
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, São Paulo State University-UNESP, São José do Rio Preto, Brazil
| | - Sergio L Felisbino
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Institute of Biosciences, São Paulo State University-UNESP, Botucatu, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Sebastião R Taboga
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Department of Biological Sciences, Laboratory of Microscopy and Microanalysis, São Paulo State University-UNESP, São José do Rio Preto, Brazil
| |
Collapse
|
38
|
Joseph DB, Henry GH, Malewska A, Reese JC, Mauck RJ, Gahan JC, Hutchinson RC, Malladi VS, Roehrborn CG, Vezina CM, Strand DW. Single-cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions. J Pathol 2021; 255:141-154. [PMID: 34173975 DOI: 10.1002/path.5751] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 11/06/2022]
Abstract
Stromal-epithelial interactions are critical to the morphogenesis, differentiation, and homeostasis of the prostate, but the molecular identity and anatomy of discrete stromal cell types is poorly understood. Using single-cell RNA sequencing, we identified and validated the in situ localization of three smooth muscle subtypes (prostate smooth muscle, pericytes, and vascular smooth muscle) and two novel fibroblast subtypes in human prostate. Peri-epithelial fibroblasts (APOD+) wrap around epithelial structures, whereas interstitial fibroblasts (C7+) are interspersed in extracellular matrix. In contrast, the mouse displayed three fibroblast subtypes with distinct proximal-distal and lobe-specific distribution patterns. Statistical analysis of mouse and human fibroblasts showed transcriptional correlation between mouse prostate (C3+) and urethral (Lgr5+) fibroblasts and the human interstitial fibroblast subtype. Both urethral fibroblasts (Lgr5+) and ductal fibroblasts (Wnt2+) in the mouse contribute to a proximal Wnt/Tgfb signaling niche that is absent in human prostate. Instead, human peri-epithelial fibroblasts express secreted WNT inhibitors SFRPs and DKK1, which could serve as a buffer against stromal WNT ligands by creating a localized signaling niche around individual prostate glands. We also identified proximal-distal fibroblast density differences in human prostate that could amplify stromal signaling around proximal prostate ducts. In human benign prostatic hyperplasia, fibroblast subtypes upregulate critical immunoregulatory pathways and show distinct distributions in stromal and glandular phenotypes. A detailed taxonomy of leukocytes in benign prostatic hyperplasia reveals an influx of myeloid dendritic cells, T cells and B cells, resembling a mucosal inflammatory disorder. A receptor-ligand interaction analysis of all cell types revealed a central role for fibroblasts in growth factor, morphogen, and chemokine signaling to endothelia, epithelia, and leukocytes. These data are foundational to the development of new therapeutic targets in benign prostatic hyperplasia. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Ryan J Mauck
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey C Gahan
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ryan C Hutchinson
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Venkat S Malladi
- Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Claus G Roehrborn
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
39
|
Iakovlev M, Faravelli S, Becskei A. Gene Families With Stochastic Exclusive Gene Choice Underlie Cell Adhesion in Mammalian Cells. Front Cell Dev Biol 2021; 9:642212. [PMID: 33996799 PMCID: PMC8117012 DOI: 10.3389/fcell.2021.642212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Exclusive stochastic gene choice combines precision with diversity. This regulation enables most T-cells to express exactly one T-cell receptor isoform chosen from a large repertoire, and to react precisely against diverse antigens. Some cells express two receptor isoforms, revealing the stochastic nature of this process. A similar regulation of odorant receptors and protocadherins enable cells to recognize odors and confer individuality to cells in neuronal interaction networks, respectively. We explored whether genes in other families are expressed exclusively by analyzing single-cell RNA-seq data with a simple metric. This metric can detect exclusivity independently of the mean value and the monoallelic nature of gene expression. Chromosomal segments and gene families are more likely to express genes concurrently than exclusively, possibly due to the evolutionary and biophysical aspects of shared regulation. Nonetheless, gene families with exclusive gene choice were detected in multiple cell types, most of them are membrane proteins involved in ion transport and cell adhesion, suggesting the coordination of these two functions. Thus, stochastic exclusive expression extends beyond the prototypical families, permitting precision in gene choice to be combined with the diversity of intercellular interactions.
Collapse
|
40
|
Joseph DB, Turco AE, Vezina CM, Strand DW. Progenitors in prostate development and disease. Dev Biol 2021; 473:50-58. [PMID: 33529704 DOI: 10.1016/j.ydbio.2020.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
The prostate develops by epithelial budding and branching processes that occur during fetal and postnatal stages. The adult prostate demonstrates remarkable regenerative capacity, with the ability to regrow to its original size over multiple cycles of castration and androgen administration. This capacity for controlled regeneration prompted the search for an androgen-independent epithelial progenitor in benign prostatic hyperplasia (BPH) and prostate cancer (PCa). BPH is hypothesized to be a reawakening of ductal branching, resulting in the formation of new proximal glands, all while androgen levels are decreasing in the aging male. Advanced prostate cancer can be slowed with androgen deprivation, but resistance eventually occurs, suggesting the existence of an androgen-independent progenitor. Recent studies indicate that there are multiple castration-insensitive epithelial cell types in the proximal area of the prostate, but not all act as progenitors during prostate development or regeneration. This review highlights how recent cellular and anatomical studies are changing our perspective on the identity of the prostate progenitor.
Collapse
Affiliation(s)
- Diya B Joseph
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Anne E Turco
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Chad M Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
41
|
Lee DH, Olson AW, Wang J, Kim WK, Mi J, Zeng H, Le V, Aldahl J, Hiroto A, Wu X, Sun Z. Androgen action in cell fate and communication during prostate development at single-cell resolution. Development 2021; 148:dev.196048. [PMID: 33318148 DOI: 10.1242/dev.196048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Androgens/androgen receptor (AR)-mediated signaling pathways are essential for prostate development, morphogenesis and regeneration. Specifically, stromal AR signaling has been shown to be essential for prostatic initiation. However, the molecular mechanisms underlying AR-initiated mesenchymal-epithelial interactions in prostate development remain unclear. Here, using a newly generated mouse model, we have directly addressed the fate and role of genetically marked AR-expressing cells during embryonic prostate development. Androgen signaling-initiated signaling pathways were identified in mesenchymal niche populations at single-cell transcriptomic resolution. The dynamic cell-signaling networks regulated by stromal AR were additionally characterized in relation to prostatic epithelial bud formation. Pseudotime analyses further revealed the differentiation trajectory and fate of AR-expressing cells in both prostatic mesenchymal and epithelial cell populations. Specifically, the cellular properties of Zeb1-expressing progenitors were assessed. Selective deletion of AR signaling in a subpopulation of mesenchymal rather than epithelial cells dysregulated the expression of the master regulators and significantly impaired prostatic bud formation. These data provide novel, high-resolution evidence demonstrating the important role of mesenchymal androgen signaling in the cellular niche controlling prostate early development by initiating dynamic mesenchyme-epithelia cell interactions.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hong Zeng
- Transgenic, Knockout and Tumor Model Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
42
|
Goodwin K, Nelson CM. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Curr Top Dev Biol 2020; 143:239-280. [PMID: 33820623 DOI: 10.1016/bs.ctdb.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) and related technologies to identify cell types and measure gene expression in space, in time, and within lineages have multiplied rapidly in recent years. As these techniques proliferate, we are seeing an increase in their application to the study of developing tissues. Here, we focus on single-cell investigations of branching morphogenesis. Branched organs are highly complex but typically develop recursively, such that a given developmental stage theoretically contains the entire spectrum of cell identities from progenitor to terminally differentiated. Therefore, branched organs are a highly attractive system for study by scRNA-seq. First, we provide an update on advances in the field of scRNA-seq analysis, focusing on spatial transcriptomics, computational reconstruction of differentiation trajectories, and integration of scRNA-seq with lineage tracing. In addition, we discuss the possibilities and limitations for applying these techniques to studying branched organs. We then discuss exciting advances made using scRNA-seq in the study of branching morphogenesis and differentiation in mammalian organs, with emphasis on the lung, kidney, and mammary gland. We propose ways that scRNA-seq could be used to address outstanding questions in each organ. Finally, we highlight the importance of physical and mechanical signals in branching morphogenesis and speculate about how scRNA-seq and related techniques could be applied to study tissue morphogenesis beyond just differentiation.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
43
|
Brennen WN, J Thorek DL, Jiang W, Krueger TE, Antony L, Denmeade SR, Isaacs JT. Overcoming stromal barriers to immuno-oncological responses via fibroblast activation protein-targeted therapy. Immunotherapy 2020; 13:155-175. [PMID: 33148078 DOI: 10.2217/imt-2020-0066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment contributes to disease progression through multiple mechanisms, including immune suppression mediated in part by fibroblast activation protein (FAP)-expressing cells. Herein, a review of FAP biology is presented, supplemented with primary data. This includes FAP expression in prostate cancer and activation of latent reservoirs of TGF-β and VEGF to produce a positive feedback loop. This collectively suggests a normal wound repair process subverted during cancer pathophysiology. There has been immense interest in targeting FAP for diagnostic, monitoring and therapeutic purposes. Until recently, this development has outpaced an understanding of the biology; impeding optimal translation into the clinic. A summary of these applications is provided with an emphasis on eliminating tumor-infiltrating FAP-positive cells to overcome stromal barriers to immuno-oncological responses.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63310, USA.,Department of Biomedical Engineering, Washington University School of Medicine, Saint Louis, MO 63310, USA
| | - Wen Jiang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Timothy E Krueger
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lizamma Antony
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Crowley L, Cambuli F, Aparicio L, Shibata M, Robinson BD, Xuan S, Li W, Hibshoosh H, Loda M, Rabadan R, Shen MM. A single-cell atlas of the mouse and human prostate reveals heterogeneity and conservation of epithelial progenitors. eLife 2020; 9:e59465. [PMID: 32915138 PMCID: PMC7529463 DOI: 10.7554/elife.59465] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/10/2020] [Indexed: 01/06/2023] Open
Abstract
Understanding the cellular constituents of the prostate is essential for identifying the cell of origin for prostate adenocarcinoma. Here, we describe a comprehensive single-cell atlas of the adult mouse prostate epithelium, which displays extensive heterogeneity. We observe distal lobe-specific luminal epithelial populations (LumA, LumD, LumL, and LumV), a proximally enriched luminal population (LumP) that is not lobe-specific, and a periurethral population (PrU) that shares both basal and luminal features. Functional analyses suggest that LumP and PrU cells have multipotent progenitor activity in organoid formation and tissue reconstitution assays. Furthermore, we show that mouse distal and proximal luminal cells are most similar to human acinar and ductal populations, that a PrU-like population is conserved between species, and that the mouse lateral prostate is most similar to the human peripheral zone. Our findings elucidate new prostate epithelial progenitors, and help resolve long-standing questions about anatomical relationships between the mouse and human prostate.
Collapse
Affiliation(s)
- Laura Crowley
- Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Urology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Francesco Cambuli
- Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Urology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Luis Aparicio
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Biomedical Informatics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Maho Shibata
- Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Urology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell UniversityNew YorkUnited States
| | - Shouhong Xuan
- Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Urology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Weiping Li
- Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Urology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - Hanina Hibshoosh
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pathology and Cell Biology, Columbia University Irving Medical CenterNew YorkUnited States
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell UniversityNew YorkUnited States
| | - Raul Rabadan
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Biomedical Informatics, Columbia University Irving Medical CenterNew YorkUnited States
| | - Michael M Shen
- Department of Medicine, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Genetics and Development, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Urology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
45
|
Silva JAF, Calmasini F, Siqueira-Berti A, Moraes-Vieira PMM, Quintar A, Carvalho HF. Prostate immunology: A challenging puzzle. J Reprod Immunol 2020; 142:103190. [PMID: 32853844 DOI: 10.1016/j.jri.2020.103190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Mucosal immunity defines the relationship of surfaces in contact with the environment and integrates diverse tissues such as epidermis, gum, nose, gut, uterus and prostate with the immune system. Although considered part of a system, each mucosa presents specific immune features beyond the barrier and secretory functions. Information regarding the mucosal immunology of the male reproductive tract and the prostate gland in particular is scarce. In this review, we approach the prostate as an epithelial barrier and as part of the mucosal immune system. Finally, we also raise a series of questions that will improve the understanding of this gland, its role in reproduction and its sensitivity/resistance to disease.
Collapse
Affiliation(s)
- Juliete Aparecida F Silva
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiano Calmasini
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Aline Siqueira-Berti
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Pedro M M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Amado Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil; National Institute of Science and Technology of Photonics Applied to Cell Biology - INFABiC, Campinas, SP, Brazil.
| |
Collapse
|
46
|
Crowell PD, Giafaglione JM, Hashimoto T, Goldstein AS. Distinct cell-types in the prostate share an aging signature suggestive of metabolic reprogramming. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2020; 8:140-151. [PMID: 32929410 PMCID: PMC7486537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Age is a significant risk factor for disease of the prostate. However, the mechanisms by which age increases disease risk have not been well described. We previously reported age-related changes within the inflammatory and luminal compartments of the mouse prostate. Old mouse prostates exhibit an expansion of the population of Trop2+ luminal progenitor cells and a reduction in the frequency and functional capacity of Trop2- luminal cells, indicating that different cell-types have distinct responses to aging. Whether distinct cell-types in the prostate share a common signature of aging has not been established. We transcriptionally profiled four distinct cell-types in young adult and old mouse prostates: stromal, basal, Trop2+ luminal progenitor and Trop2- luminal cells. Motif analysis of genes upregulated in old prostate cell-types pointed to transcriptional regulators of inflammatory and hypoxia-related signaling. Glutathione metabolism and the antioxidant response emerged as a common signature of aging across prostatic lineages. Expression of genes implicated in mouse prostate aging, including the antioxidant response gene Hmox1, correlates with age of diagnosis in primary prostate tumors from the TCGA cohort. These findings reveal a common signature shared by distinct cell-types in the old prostate reflective of age-associated metabolic reprogramming.
Collapse
Affiliation(s)
- Preston D Crowell
- Molecular Biology Interdepartmental Program, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Jenna M Giafaglione
- Molecular Biology Interdepartmental Program, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| | - Andrew S Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Department of Urology, David Geffen School of Medicine, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of CaliforniaLos Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of CaliforniaLos Angeles, Los Angeles, CA, USA
| |
Collapse
|
47
|
Chauhan G, Mehta A, Gupta S. Stromal-AR influences the growth of epithelial cells in the development of benign prostate hyperplasia. Mol Cell Biochem 2020; 471:129-142. [PMID: 32504365 DOI: 10.1007/s11010-020-03773-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/31/2020] [Indexed: 11/24/2022]
Abstract
Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, β-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India
| | - Avani Mehta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.,Division of Biological Sciences, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Sarita Gupta
- Department of Biochemistry, The M. S. University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
48
|
Karthaus WR, Hofree M, Choi D, Linton EL, Turkekul M, Bejnood A, Carver B, Gopalan A, Abida W, Laudone V, Biton M, Chaudhary O, Xu T, Masilionis I, Manova K, Mazutis L, Pe'er D, Regev A, Sawyers CL. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science 2020; 368:497-505. [PMID: 32355025 PMCID: PMC7313621 DOI: 10.1126/science.aay0267] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/14/2020] [Indexed: 01/20/2023]
Abstract
Androgen deprivation is the cornerstone of prostate cancer treatment. It results in involution of the normal gland to ~90% of its original size because of the loss of luminal cells. The prostate regenerates when androgen is restored, a process postulated to involve stem cells. Using single-cell RNA sequencing, we identified a rare luminal population in the mouse prostate that expresses stemlike genes (Sca1 + and Psca +) and a large population of differentiated cells (Nkx3.1 +, Pbsn +). In organoids and in mice, both populations contribute equally to prostate regeneration, partly through androgen-driven expression of growth factors (Nrg2, Rspo3) by mesenchymal cells acting in a paracrine fashion on luminal cells. Analysis of human prostate tissue revealed similar differentiated and stemlike luminal subpopulations that likewise acquire enhanced regenerative potential after androgen ablation. We propose that prostate regeneration is driven by nearly all persisting luminal cells, not just by rare stem cells.
Collapse
Affiliation(s)
- Wouter R Karthaus
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matan Hofree
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Danielle Choi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eliot L Linton
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mesruh Turkekul
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alborz Bejnood
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Brett Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wassim Abida
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vincent Laudone
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katia Manova
- Molecular Cytology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
49
|
Nash C, Boufaied N, Badescu D, Wang YC, Paliouras M, Trifiro M, Ragoussis I, Thomson AA. Genome-wide analysis of androgen receptor binding and transcriptomic analysis in mesenchymal subsets during prostate development. Dis Model Mech 2019; 12:12/7/dmm039297. [PMID: 31350272 PMCID: PMC6679388 DOI: 10.1242/dmm.039297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate development is controlled by androgens, the androgen receptor (AR) and mesenchymal–epithelial signalling. We used chromatin immunoprecipitation sequencing (ChIP-seq) to define AR genomic binding in the male and female mesenchyme. Tissue- and single-cell-based transcriptional profiling was used to define mesenchymal AR target genes. We observed significant AR genomic binding in females and a strong enrichment at proximal promoters in both sexes. In males, there was greater AR binding to introns and intergenic regions as well as to classical AR binding motifs. In females, there was increased proximal promoter binding and involvement of cofactors. Comparison of AR-bound genes with transcriptomic data enabled the identification of novel sexually dimorphic AR target genes. We validated the dimorphic expression of AR target genes using published datasets and confirmed regulation by androgens using ex vivo organ cultures. AR targets showed variable expression in patients with androgen insensitivity syndrome. We examined AR function at single-cell resolution using single-cell RNA sequencing (scRNA-seq) in male and female mesenchyme. Surprisingly, both AR and target genes were distributed throughout cell subsets, with few positive cells within each subset. AR binding was weakly correlated with target gene expression. Summary: A study of how androgens lead to sexually dimorphic development of the prostate using transcription factor genome binding and transcriptome analysis in mesenchymal subsets.
Collapse
Affiliation(s)
- Claire Nash
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Nadia Boufaied
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Dunarel Badescu
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Yu Chang Wang
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Miltiadis Paliouras
- Division of Endocrinology, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, 5750 Côte-des-Neiges Rd, Montreal, QC, Canada H3S 1Y9
| | - Mark Trifiro
- Division of Endocrinology, Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, 5750 Côte-des-Neiges Rd, Montreal, QC, Canada H3S 1Y9
| | - Ioannis Ragoussis
- McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - Axel A Thomson
- Department of Surgery, Division of Urology, McGill University and the Cancer Research Program of the Research Institute of McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
50
|
Civenni G, Albino D, Shinde D, Vázquez R, Merulla J, Kokanovic A, Mapelli SN, Carbone GM, Catapano CV. Transcriptional Reprogramming and Novel Therapeutic Approaches for Targeting Prostate Cancer Stem Cells. Front Oncol 2019; 9:385. [PMID: 31143708 PMCID: PMC6521702 DOI: 10.3389/fonc.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common malignancy in men and the second cause of cancer-related deaths in western countries. Despite the progress in the treatment of localized prostate cancer, there is still lack of effective therapies for the advanced forms of the disease. Most patients with advanced prostate cancer become resistant to androgen deprivation therapy (ADT), which remains the main therapeutic option in this setting, and progress to lethal metastatic castration-resistant prostate cancer (mCRPC). Current therapies for prostate cancer preferentially target proliferating, partially differentiated, and AR-dependent cancer cells that constitute the bulk of the tumor mass. However, the subpopulation of tumor-initiating or tumor-propagating stem-like cancer cells is virtually resistant to the standard treatments causing tumor relapse at the primary or metastatic sites. Understanding the pathways controlling the establishment, expansion and maintenance of the cancer stem cell (CSC) subpopulation is an important step toward the development of more effective treatment for prostate cancer, which might enable ablation or exhaustion of CSCs and prevent treatment resistance and disease recurrence. In this review, we focus on the impact of transcriptional regulators on phenotypic reprogramming of prostate CSCs and provide examples supporting the possibility of inhibiting maintenance and expansion of the CSC pool in human prostate cancer along with the currently available methodological approaches. Transcription factors are key elements for instructing specific transcriptional programs and inducing CSC-associated phenotypic changes implicated in disease progression and treatment resistance. Recent studies have shown that interfering with these processes causes exhaustion of CSCs with loss of self-renewal and tumorigenic capability in prostate cancer models. Targeting key transcriptional regulators in prostate CSCs is a valid therapeutic strategy waiting to be tested in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlo V. Catapano
- Institute of Oncology (IOR), Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|