1
|
Li B, Sun C, Yang Y, Li C, Zheng T, Zhou J, Zhang Y. Spatial metabolomics revealed multi-organ toxicity and visualize metabolite changes induced by borneol in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178886. [PMID: 39986037 DOI: 10.1016/j.scitotenv.2025.178886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
This study focuses on the potential hazards of borneol (BO) to aquatic organisms and human health. BO has antibacterial, anti-inflammatory and antioxidant activities, and is widely used in medicine, cosmetics, and detergents. In this study, zebrafish was used as a model organism to systematically evaluate the effects of BO on the heart, liver, kidney, and nervous system. The effects of BO on metabolites of zebrafish were studied using MALDI-MSI. The results showed that a high concentration of BO (500 μM) could induce morphological abnormalities (swim-bladder loss, spinal curvature, body-length shortening), cardiotoxicity (decreased heart rate, increased SV-BA distance), hepatotoxicity (reduced liver area index), and neurotoxicity (impaired behavioral ability, and dopamine neuron development deficits), but there was no renal toxicity observed in zebrafish. Additionally, MALDI-MSI analysis showed that BO exposure significantly altered the levels of metabolites, including phospholipids, fatty acids, choline, and amino acids. The contents of PC-34:1, PC-34:2, PI-36:4, PE-36:1, LysoPE-22:5, LysoPC-18:1, FA-18:2, phenylalanine, lysine and glutathione were significantly increased, while the contents of PC-38:6 and PC-40:6 were significantly decreased. Notably, BO elicited a significant alteration in the mRNA expression levels of genes associated with phospholipid metabolism, fatty acid metabolism, choline metabolism, and amino acid metabolism (such as elovl5, chpt1, chka, setd7, hgd). This study revealed that BO exerted toxicity on multiple organs and demonstrated that BO causes metabolic dysregulation in zebrafish. These findings provide a novel insight into the toxicity of BO.
Collapse
Affiliation(s)
- Bin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China
| | - Chenglong Sun
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanan Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China
| | - Chenqinyao Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China
| | - Te Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China
| | - Jiashuo Zhou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Zaher A, Stephens SB. Breaking the Feedback Loop of β-Cell Failure: Insight into the Pancreatic β-Cell's ER-Mitochondria Redox Balance. Cells 2025; 14:399. [PMID: 40136648 PMCID: PMC11941261 DOI: 10.3390/cells14060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Pancreatic β-cells rely on a delicate balance between the endoplasmic reticulum (ER) and mitochondria to maintain sufficient insulin stores for the regulation of whole animal glucose homeostasis. The ER supports proinsulin maturation through oxidative protein folding, while mitochondria supply the energy and redox buffering that maintain ER proteostasis. In the development of Type 2 diabetes (T2D), the progressive decline of β-cell function is closely linked to disruptions in ER-mitochondrial communication. Mitochondrial dysfunction is a well-established driver of β-cell failure, whereas the downstream consequences for ER redox homeostasis have only recently emerged. This interdependence of ER-mitochondrial functions suggests that an imbalance is both a cause and consequence of metabolic dysfunction. In this review, we discuss the regulatory mechanisms of ER redox control and requirements for mitochondrial function. In addition, we describe how ER redox imbalances may trigger mitochondrial dysfunction in a vicious feed forward cycle that accelerates β-cell dysfunction and T2D onset.
Collapse
Affiliation(s)
- Amira Zaher
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
3
|
Nian S, Zeng Y, Heyden KE, Cagnone G, Yagi H, Boeck M, Lee D, Hirst V, Hua Z, Lee J, Wang C, Neilsen K, Joyal JS, Field MS, Fu Z. Folic Acid Supplementation Inhibits Proliferative Retinopathy of Prematurity. Biomolecules 2025; 15:309. [PMID: 40001612 PMCID: PMC11852370 DOI: 10.3390/biom15020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is the major cause of blindness in children. It is a biphasic disease with retinal vessel growth cessation and loss (Phase I) followed by uncontrolled retinal vessel growth (Phase II). Folate is an essential nutrient for fetal development and growth. Premature infants have a high risk for folate deficiency. However, the contribution of folate to ROP risk remains unknown. METHODS In mouse oxygen-induced retinopathy (OIR), the nursing dams were fed with a folic acid-deficient or control diet after delivery until the end of hyperoxia. Alternatively, pups received direct injection of either folic acid or vehicle during Phase I hyperoxia. Genes involved in the folate cycle and angiogenic responses were examined using real-time PCR. Total retinal folate levels were measured with the Lactobacillus casei assay. RESULTS Maternal folic acid deficiency in early life exacerbated pathological retinal vessel growth, while supplementation with folic acid suppressed it. Genes involved in the folate cycle were downregulated in Phase I OIR retinas and were highly expressed in Müller glia. Folic acid reduced pro-angiogenic signaling in cultured rat retinal Müller glia in vitro. CONCLUSIONS Appropriate supplementation of folic acid might be a new and safe treatment for ROP at an early stage.
Collapse
Affiliation(s)
- Shen Nian
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
- Department of Pathology, Xi’an Medical University, Xi’an 710021, China
| | - Yan Zeng
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Katarina E. Heyden
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (K.E.H.); (M.S.F.)
| | - Gaël Cagnone
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada (J.-S.J.)
| | - Hitomi Yagi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Myriam Boeck
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Deokho Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Victoria Hirst
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Zhanqing Hua
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Jeff Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Chaomei Wang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Katherine Neilsen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| | - Jean-Sébastien Joyal
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada (J.-S.J.)
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Martha S. Field
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; (K.E.H.); (M.S.F.)
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (S.N.); (Y.Z.); (H.Y.); (D.L.); (V.H.); (Z.H.); (C.W.); (K.N.)
| |
Collapse
|
4
|
Trejo-Solís C, Escamilla-Ramírez Á, Gómez-Manzo S, Castillo-Rodriguez RA, Palomares-Alonso F, Castillo-Pérez C, Jiménez-Farfán D, Sánchez-García A, Gallardo-Pérez JC. The pentose phosphate pathway (PPP) in the glioma metabolism: A potent enhancer of malignancy. Biochimie 2025; 232:117-126. [PMID: 39894336 DOI: 10.1016/j.biochi.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/04/2025]
Abstract
The glioma hallmark includes reprogramming metabolism to support biosynthetic and bioenergetic demands, as well as to maintain their redox equilibrium. It has been suggested that the pentose phosphate pathway (PPP) and glycolysis are directly involved in the dynamics and regulation of glioma cell proliferation and migration. The PPP is implicated in cellular redox homeostasis and the modulation of signaling pathways, which play a fundamental role in the progression of tumors to malignant grades, metastasis, and drug resistance. Several studies have shown that in glioblastoma cells, the activity, expression, and metabolic flux of some PPP enzymes increase, leading to heightened activity of the pathway. This generates higher levels of DNA, lipids, cholesterol, and amino acids, favoring rapid cell proliferation. Due to the crucial role played by the PPP in the development of glioma cells, enzymes from this pathway have been proposed as potential therapeutic targets. This review summarizes and highlights the role that the PPP plays in glioma cells and focuses on the key functions of the enzymes and metabolites generated by this pathway, as well as the regulation of the PPP. The studies described in this article enrich the understanding of the PPP as a therapeutic tool in the search for pharmacological targets for the development of a new generation of drugs to treat glioma.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico.
| | | | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, CDMX, 04530, Mexico.
| | - Rosa Angélica Castillo-Rodriguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, 62790, Xochitepec, Mexico.
| | - Francisca Palomares-Alonso
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico
| | - Carlos Castillo-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico.
| | - Dolores Jiménez-Farfán
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, 04510, Ciudad de Mexico, Mexico.
| | - Aurora Sánchez-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Unidad Periférica para el Estudio de la Neuroinflamación, Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurología y Neurocirugía, CDMX, 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología, 14080, Ciudad de Mexico, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Hlozkova K, Vasylkivska M, Boufersaoui A, Marzullo B, Kolarik M, Alquezar-Artieda N, Shaikh M, Alaei NF, Zaliova M, Zwyrtkova M, Bakardijeva-Mihaylova V, Alberich-Jorda M, Trka J, Tennant DA, Starkova J. Rewired glutamate metabolism diminishes cytostatic action of L-asparaginase. Cancer Lett 2024; 605:217242. [PMID: 39270769 DOI: 10.1016/j.canlet.2024.217242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
Collapse
Affiliation(s)
- Katerina Hlozkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic.
| | - Maryna Vasylkivska
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Adam Boufersaoui
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Bryan Marzullo
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Matus Kolarik
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Natividad Alquezar-Artieda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Mehak Shaikh
- Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nadia Fatemeh Alaei
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Martina Zwyrtkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Violeta Bakardijeva-Mihaylova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Meritxell Alberich-Jorda
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; Laboratory of Hemato-Oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julia Starkova
- Childhood Leukaemia Investigation Prague, Prague, Czech Republic; Second Faculty of Medicine, Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic; University Hospital Motol, Prague, Czech Republic.
| |
Collapse
|
6
|
Suresh S, Welch MJ, Munday PL, Ravasi T, Schunter C. Cross-talk between tissues is critical for intergenerational acclimation to environmental change in Acanthochromis polyacanthus. Commun Biol 2024; 7:1531. [PMID: 39558148 PMCID: PMC11574262 DOI: 10.1038/s42003-024-07241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
Organisms' responses to environmental changes involve complex, coordinated responses of multiple tissues and potential parental influences. Here using a multi-tissue approach we determine how variation in parental behavioural tolerance and exposure to elevated CO2 influences the developmental and intergenerational molecular responses of their offspring in the coral reef fish Acanthochromis polyacanthus to future ocean acidification (OA) conditions. Gills and liver showed the highest transcriptional response to OA in juvenile fish regardless of parental OA conditioning, while the brain and liver showed the greatest intergenerational acclimation signals. Developmentally induced signals of OA, such as altered neural function in the brain, were restored to control levels after intergenerational exposure. Intergenerational CO2 exposure also enabled the offspring to adjust their metabolic processes, potentially allowing them to better meet the energetic demands of a high CO2 environment. Furthermore, offspring of OA-exposed parents differentially expressed a new complement of genes, which may facilitate intergenerational acclimatory responses. A genetic component of intergenerational plasticity also played a crucial role, with the parental behavioural phenotype largely determining the offspring's transcriptional signals. Overall, our results reveal tissue-specific transcriptional changes underlying intergenerational plastic responses to elevated CO2 exposure, enhancing understanding of organismal acclimation to OA throughout the whole body.
Collapse
Affiliation(s)
- Sneha Suresh
- Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Megan J Welch
- School of Science and Engineering, James Cook University, Townsville, Australia
| | - Philip L Munday
- School of Science and Engineering, James Cook University, Townsville, Australia
| | - Timothy Ravasi
- School of Science and Engineering, James Cook University, Townsville, Australia
- Marine Climate Change Unit, Okinawa Institute of Science & Technology Graduate University, Onna-son, Japan
| | - Celia Schunter
- Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Nam YE, Kim HJ, Kwon O. Acute and prolonged effects of Bacillus amyloliquefaciens GF424-derived SOD on antioxidant defense in healthy individuals challenged with intense aerobic exercise. Free Radic Biol Med 2024; 224:484-493. [PMID: 39277120 DOI: 10.1016/j.freeradbiomed.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Reactive oxygen species (ROS) play a vital role in cellular functions but can lead to oxidative stress and contribute to degenerative diseases when produced in excess. Maintaining redox balance is essential and can be achieved through innate defense mechanisms or external antioxidants. Superoxide dismutase (SOD) is a key enzyme that mitigates intracellular oxidative stress by converting harmful free radicals into hydrogen peroxide, which is subsequently neutralized by catalase and glutathione peroxidase. Previous studies have demonstrated the antioxidant capabilities of SOD derived from Bacillus amyloquefaciens GF424 (BA-SOD) in murine models exposed to either irradiation or SOD1 gene deletion. In this study, a randomized clinical trial was conducted to evaluate the antioxidative benefits of BA-SOD in healthy individuals undergoing acute aerobic exercise (AAE). Eighty participants were randomly assigned to receive either BA-SOD or a placebo for 8 weeks. Antioxidant enzyme activities and glutathione levels were measured before, immediately after, and 30 min post-exercise. A single dose of BA-SOD significantly reduced ROS levels induced by AAE, primarily by enhancing SOD activity in erythrocytes and activating glutathione peroxidase. Continuous BA-SOD administration was associated with a sustained increase in catalase activity and elevated levels of reduced glutathione (GSH). Transcriptomic and metabolomic analyses revealed that a single BA-SOD dose facilitated GSH oxidation, as evidenced by decreased levels of serine, glutamine, and glycine, and increased pyroglutamate levels. Additionally, repeated dosing led to increased expression of genes encoding isocitrate dehydrogenase and malic enzyme, which are involved in NADPH synthesis, as well as nicotinamide phosphoribosyl transferase and NAD kinase, which are essential for NADP availability-critical for converting oxidized glutathione (GSSG) back to GSH. These molecular insights align with clinical observations, suggesting that both acute and long-term BA-SOD supplementation may effectively enhance antioxidant defenses and maintain redox balance under oxidative stress conditions.
Collapse
Affiliation(s)
- Yea-Eun Nam
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Hye Jin Kim
- Log(me) Corporation, 232 Saemunan-ro 5-gil, Jongno-gu, Seoul 03182, Republic of Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea; Log(me) Corporation, 232 Saemunan-ro 5-gil, Jongno-gu, Seoul 03182, Republic of Korea.
| |
Collapse
|
8
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
9
|
Kwolek-Mirek M, Maslanka R, Bednarska S, Przywara M, Kwolek K, Zadrag-Tecza R. Strategies to Maintain Redox Homeostasis in Yeast Cells with Impaired Fermentation-Dependent NADPH Generation. Int J Mol Sci 2024; 25:9296. [PMID: 39273244 PMCID: PMC11395483 DOI: 10.3390/ijms25179296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Redox homeostasis is the balance between oxidation and reduction reactions. Its maintenance depends on glutathione, including its reduced and oxidized form, GSH/GSSG, which is the main intracellular redox buffer, but also on the nicotinamide adenine dinucleotide phosphate, including its reduced and oxidized form, NADPH/NADP+. Under conditions that enable yeast cells to undergo fermentative metabolism, the main source of NADPH is the pentose phosphate pathway. The lack of enzymes responsible for the production of NADPH has a significant impact on yeast cells. However, cells may compensate in different ways for impairments in NADPH synthesis, and the choice of compensation strategy has several consequences for cell functioning. The present study of this issue was based on isogenic mutants: Δzwf1, Δgnd1, Δald6, and the wild strain, as well as a comprehensive panel of molecular analyses such as the level of gene expression, protein content, and enzyme activity. The obtained results indicate that yeast cells compensate for the lack of enzymes responsible for the production of cytosolic NADPH by changing the content of selected proteins and/or their enzymatic activity. In turn, the cellular strategy used to compensate for them may affect cellular efficiency, and thus, the ability to grow or sensitivity to environmental acidification.
Collapse
Affiliation(s)
- Magdalena Kwolek-Mirek
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Sabina Bednarska
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Michał Przywara
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Kornelia Kwolek
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 31-425 Krakow, Poland
| | - Renata Zadrag-Tecza
- Institute of Biology, College of Natural Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
10
|
Li M, Dong Y, Wang Z, Zhao Y, Dai Y, Zhang B. Engineering hypoxia-responsive 6-aminonicotinamide prodrugs for on-demand NADPH depletion and redox manipulation. J Mater Chem B 2024; 12:8067-8075. [PMID: 39129477 DOI: 10.1039/d4tb01338g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is a promising target in cancer therapy. However, poor cellular uptake and off-target toxicity have impeded the clinical translation of a canonical G6PD inhibitor (6-aminonicotinamide/6AN). Here, we report a prodrug strategy to address this issue. The tailored 6AN prodrug contains an azo-bearing protection moiety. The hydrophobic prodrug showed increased cellular uptake than 6AN and was vulnerable to hypoxia, resulting in NAD(P)H quinone dehydrogenase 1 (NQO1)-triggered cleavage of azo bonds. Intriguingly, the prodrug showed configuration-dependent anti-cancer potency. Despite the lower thermodynamic stability, the cis isomer showed enhanced cellular uptake compared to the trans counterpart due to the increased aqueous solubility. Moreover, the boosted potency of the cis isomer compared to the trans isomer arose from the enhancement of NOQ1-catalyzed 6AN release under hypoxia, a hallmark of solid tumors. The discovery of hypoxia-responsive 6AN prodrugs in the current work opens up new avenues for G6PD-targeting cancer medicines.
Collapse
Affiliation(s)
- Mingye Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Yuyu Dong
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Zheng Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Yanjun Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, School of Pharmaceutical Science & Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| | - Yujie Dai
- College of Biotechnology, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science & Technology, No. 29 of 13th Street, TEDA, Tianjin 300457, China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Huimin District, Hohhot, 010000, China.
| |
Collapse
|
11
|
Cheng D, Zhang M, Zheng Y, Wang M, Gao Y, Wang X, Liu X, Lv W, Zeng X, Belosludtsev KN, Su J, Zhao L, Liu J. α-Ketoglutarate prevents hyperlipidemia-induced fatty liver mitochondrial dysfunction and oxidative stress by activating the AMPK-pgc-1α/Nrf2 pathway. Redox Biol 2024; 74:103230. [PMID: 38875959 PMCID: PMC11226981 DOI: 10.1016/j.redox.2024.103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
α-Ketoglutarate (AKG), a crucial intermediate in the tricarboxylic acid cycle, has been demonstrated to mitigate hyperlipidemia-induced dyslipidemia and endothelial damage. While hyperlipidemia stands as a major trigger for non-alcoholic fatty liver disease, the protection of AKG on hyperlipidemia-induced hepatic metabolic disorders remains underexplored. This study aims to investigate the potential protective effects and mechanisms of AKG against hepatic lipid metabolic disorders caused by acute hyperlipidemia. Our observations indicate that AKG effectively alleviates hepatic lipid accumulation, mitochondrial dysfunction, and loss of redox homeostasis in P407-induced hyperlipidemia mice, as well as in palmitate-injured HepG2 cells and primary hepatocytes. Mechanistic insights reveal that the preventive effects are mediated by activating the AMPK-PGC-1α/Nrf2 pathway. In conclusion, our findings shed light on the role and mechanism of AKG in ameliorating abnormal lipid metabolic disorders in hyperlipidemia-induced fatty liver, suggesting that AKG, an endogenous mitochondrial nutrient, holds promising potential for addressing hyperlipidemia-induced fatty liver conditions.
Collapse
Affiliation(s)
- Danyu Cheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Mo Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yezi Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Min Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yilin Gao
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Xudong Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Konstantin N Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, Pl. Lenina 1, Yoshkar-Ola, 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290, Russia
| | - Jiacan Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Lin Zhao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, and Cardiometabolic Innovation Center of Ministry of Education, Department of Cardiology, and Department of Dermatology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266071, China.
| |
Collapse
|
12
|
Pan M, Deng Y, Qiu Y, Pi D, Zheng C, Liang Z, Zhen J, Fan W, Song Q, Pan J, Li Y, Yan H, Yang Q, Zhang Y. Shenling Baizhu powder alleviates non-alcoholic fatty liver disease by modulating autophagy and energy metabolism in high-fat diet-induced rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155712. [PMID: 38763008 DOI: 10.1016/j.phymed.2024.155712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has emerged as a burgeoning health problem worldwide, but no specific drug has been approved for its treatment. Shenling Baizhu powder (SL) is extensively used to treat NAFLD in Chinese clinical practice. However, the therapeutic components and pharmacological mechanisms of SL against NAFLD have not been thoroughly investigated. PURPOSE This study aimed to investigate the pharmacological impact and molecular mechanism of SL on NAFLD. METHODS First, we established an animal model of NAFLD by high-fat diet (HFD) feeding, and evaluated the therapeutic efficacy of SL on NAFLD by physiological, biochemical, pathological, and body composition analysis. Next, the effect of SL on autophagic flow in NAFLD rats was evaluated by ultrastructure, immunofluorescence staining, and western blotting. Moreover, an integrated strategy of targeted energy metabolomics and network pharmacology was performed to characterize autophagy-related genes and explore the synergistic effects of SL active compounds. UPLC-MS/MS, molecular docking combined with in vivo and in vitro experiments were conducted to verify the key compounds and genes. Finally, a network was established among SL-herb-compound-genes-energy metabolites-NAFLD, which explains the complicated regulating mechanism of SL on NAFLD. RESULTS We discovered that SL decreased hepatic lipid accumulation, hepatic steatosis, and insulin resistance, and improved systemic metabolic disorders and pathological abnormalities. Subsequently, an integrated strategy of targeted energy metabolomics and network pharmacology identified quercetin, ellagic acid, kaempferol, formononetin, stigmasterol, isorhamnetin and luteolin as key compounds; catalase (CAT), AKT serine/threonine kinase 1 (AKT), nitric oxide synthase 3 (eNOS), NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygenase 1 (HO-1) and hypoxia-inducible factor 1 subunit alpha (HIF-1α) were identified as key genes; while nicotinamide adenine dinucleotide phosphate (NADP) and succinate emerged as key energy metabolites. Mechanistically, we revealed that SL may exert its anti-NAFLD effect by inducing autophagy activation and forming a comprehensive regulatory network involving key compounds, key genes, and key energy metabolites, ultimately alleviating oxidative stress, endoplasmic reticulum stress, and mitochondrial dysfunction. CONCLUSION Our study demonstrated the therapeutic effect of SL in NAFLD models, and establishes a basis for the development of potential products from SL plant materials for the treatment of NAFLD.
Collapse
Affiliation(s)
- Maoxing Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yuanjun Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China; Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, Guangdong Province, China
| | - Yebei Qiu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Dajin Pi
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Chuiyang Zheng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zheng Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jianwei Zhen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Wen Fan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Qingliang Song
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jinyue Pan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yuanyou Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Haizhen Yan
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, Guangdong Province, China.
| | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China.
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong Province, China.
| |
Collapse
|
13
|
Rohli KE, Stubbe NJ, Walker EM, Pearson GL, Soleimanpour SA, Stephens SB. A metabolic redox relay supports ER proinsulin export in pancreatic islet β cells. JCI Insight 2024; 9:e178725. [PMID: 38935435 PMCID: PMC11383593 DOI: 10.1172/jci.insight.178725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
ER stress and proinsulin misfolding are heralded as contributing factors to β cell dysfunction in type 2 diabetes, yet how ER function becomes compromised is not well understood. Recent data identify altered ER redox homeostasis as a critical mechanism that contributes to insulin granule loss in diabetes. Hyperoxidation of the ER delays proinsulin export and limits the proinsulin supply available for insulin granule formation. In this report, we identified glucose metabolism as a critical determinant in the redox homeostasis of the ER. Using multiple β cell models, we showed that loss of mitochondrial function or inhibition of cellular metabolism elicited ER hyperoxidation and delayed ER proinsulin export. Our data further demonstrated that β cell ER redox homeostasis was supported by the metabolic supply of reductive redox donors. We showed that limiting NADPH and thioredoxin flux delayed ER proinsulin export, whereas thioredoxin-interacting protein suppression restored ER redox and proinsulin trafficking. Taken together, we propose that β cell ER redox homeostasis is buffered by cellular redox donor cycles, which are maintained through active glucose metabolism.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - Emily M Walker
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Gemma L Pearson
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
| | - Scott A Soleimanpour
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, and
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center
- Interdisciplinary Graduate Program in Genetics, and
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
14
|
Pye D, Scholey R, Ung S, Dawson M, Shahmalak A, Purba TS. Activation of the integrated stress response in human hair follicles. PLoS One 2024; 19:e0303742. [PMID: 38900734 PMCID: PMC11189182 DOI: 10.1371/journal.pone.0303742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFβ and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.
Collapse
Affiliation(s)
- Derek Pye
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Rachel Scholey
- Bioinformatics Core Facility, University of Manchester, Manchester, United Kingdom
| | - Sin Ung
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | - Madoc Dawson
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| | | | - Talveen S. Purba
- Division Musculoskeletal and Dermatological Sciences, Centre for Dermatology Research, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biosciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
15
|
Hammoud S, Ivanova A, Osaki Y, Funk S, Yang H, Viquez O, Delgado R, Lu D, Phillips Mignemi M, Tonello J, Colon S, Lantier L, Wasserman DH, Humphreys BD, Koenitzer J, Kern J, de Caestecker M, Finkel T, Fogo A, Messias N, Lodhi IJ, Gewin LS. Tubular CPT1A deletion minimally affects aging and chronic kidney injury. JCI Insight 2024; 9:e171961. [PMID: 38516886 PMCID: PMC11063933 DOI: 10.1172/jci.insight.171961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal β-oxidation when mitochondrial FAO is impaired.
Collapse
Affiliation(s)
- Safaa Hammoud
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alla Ivanova
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Yosuke Osaki
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Steven Funk
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Haichun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olga Viquez
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Rachel Delgado
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Dongliang Lu
- Division of Endocrinology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Jane Tonello
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Selene Colon
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Louise Lantier
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H. Wasserman
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin D. Humphreys
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jeffrey Koenitzer
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Justin Kern
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Agnes Fogo
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nidia Messias
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Leslie S. Gewin
- Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Medicine, Veterans Affairs Hospital, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Mai H, Yang X, Xie Y, Zhou J, Wang Q, Wei Y, Yang Y, Lu D, Ye L, Cui P, Liang H, Huang J. The role of gut microbiota in the occurrence and progression of non-alcoholic fatty liver disease. Front Microbiol 2024; 14:1257903. [PMID: 38249477 PMCID: PMC10797006 DOI: 10.3389/fmicb.2023.1257903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic liver disease worldwide, and gut microbes are associated with the development and progression of NAFLD. Despite numerous studies exploring the changes in gut microbes associated with NAFLD, there was no consistent pattern of changes. Method We retrieved studies on the human fecal microbiota sequenced by 16S rRNA gene amplification associated with NAFLD from the NCBI database up to April 2023, and re-analyzed them using bioinformatic methods. Results We finally screened 12 relevant studies related to NAFLD, which included a total of 1,189 study subjects (NAFLD, n = 654; healthy control, n = 398; obesity, n = 137). Our results revealed a significant decrease in gut microbial diversity with the occurrence and progression of NAFLD (SMD = -0.32; 95% CI -0.42 to -0.21; p < 0.001). Alpha diversity and the increased abundance of several crucial genera, including Desulfovibrio, Negativibacillus, and Prevotella, can serve as an indication of their predictive risk ability for the occurrence and progression of NAFLD (all AUC > 0.7). The occurrence and progression of NAFLD are significantly associated with higher levels of LPS biosynthesis, tryptophan metabolism, glutathione metabolism, and lipid metabolism. Conclusion This study elucidated gut microbes relevance to disease development and identified potential risk-associated microbes and functional pathways associated with NAFLD occurrence and progression.
Collapse
Affiliation(s)
- Huanzhuo Mai
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Xing Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yulan Xie
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Jie Zhou
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Qing Wang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yiru Wei
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Yuecong Yang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Dongjia Lu
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
| | - Li Ye
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Hao Liang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Nanning, China
- Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Gomez Solsona B, Horn H, Schmitt A, Xu W, Bucher P, Heinrich A, Kalmbach S, Kreienkamp N, Franke M, Wimmers F, Schuhknecht L, Rosenwald A, Zampieri M, Ott G, Lenz G, Schulze-Osthoff K, Hailfinger S. Inhibition of glutaminase-1 in DLBCL potentiates venetoclax-induced antitumor activity by promoting oxidative stress. Blood Adv 2023; 7:7433-7444. [PMID: 37934892 PMCID: PMC10758723 DOI: 10.1182/bloodadvances.2023010964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults, but first-line immunochemotherapy fails to produce a durable response in about one-third of the patients. Because tumor cells often reprogram their metabolism, we investigated the importance of glutaminolysis, a pathway converting glutamine to generate energy and various metabolites, for the growth of DLBCL cells. Glutaminase-1 (GLS1) expression was robustly detected in DLBCL biopsy samples and cell lines. Both pharmacological inhibition and genetic knockdown of GLS1 induced cell death in DLBCL cells regardless of their subtype classification, whereas primary B cells remained unaffected. Interestingly, GLS1 inhibition resulted not only in reduced levels of intermediates of the tricarboxylic acid cycle but also in a strong mitochondrial accumulation of reactive oxygen species. Supplementation of DLBCL cells with α-ketoglutarate or with the antioxidant α-tocopherol mitigated oxidative stress and abrogated cell death upon GLS1 inhibition, indicating an essential role of glutaminolysis in the protection from oxidative stress. Furthermore, the combination of the GLS1 inhibitor CB-839 with the therapeutic BCL2 inhibitor ABT-199 not only induced massive reactive oxygen species (ROS) production but also exhibited highly synergistic cytotoxicity, suggesting that simultaneous targeting of GLS1 and BCL2 could represent a novel therapeutic strategy for patients with DLBCL.
Collapse
Affiliation(s)
| | - Heike Horn
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany
| | - Anja Schmitt
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wendan Xu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Philip Bucher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Aylin Heinrich
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Sabrina Kalmbach
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany
- Dr. Margarete Fischer Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany
| | - Nina Kreienkamp
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Maik Franke
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Florian Wimmers
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Laurentz Schuhknecht
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Mattia Zampieri
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - German Ott
- Department of Clinical Pathology, Robert Bosch Hospital, Stuttgart, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Klaus Schulze-Osthoff
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
18
|
Sundaram TS, Addis MF, Giromini C, Rebucci R, Pisanu S, Pagnozzi D, Baldi A. Comprehensive proteomic analysis reveals omega-3 fatty acids to counteract endotoxin-stimulated metabolic dysregulation in porcine enterocytes. Sci Rep 2023; 13:21595. [PMID: 38062040 PMCID: PMC10703801 DOI: 10.1038/s41598-023-48018-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA), such as the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are reported to beneficially affect the intestinal immunity. The biological pathways modulated by n-3 PUFA during an infection, at the level of intestinal epithelial barrier remain elusive. To address this gap, we investigated the proteomic changes induced by n-3 PUFA in porcine enterocyte cell line (IPEC-J2), in the presence and absence of lipopolysaccharide (LPS) stress conditions using shotgun proteomics analysis integrated with RNA-sequencing technology. A total of 33, 85, and 88 differentially abundant proteins (DAPs) were identified in cells exposed to n-3 PUFA (DHA:EPA), LPS, and n-3 PUFA treatment followed by LPS stimulation, respectively. Functional annotation and pathway analysis of DAPs revealed the modulation of central carbon metabolism, including the glycolysis/gluconeogenesis, pentose phosphate pathway, and oxidative phosphorylation processes. Specifically, LPS caused metabolic dysregulation in enterocytes, which was abated upon prior treatment with n-3 PUFA. Besides, n-3 PUFA supplementation facilitated enterocyte development and lipid homeostasis. Altogether, this work for the first time comprehensively described the biological pathways regulated by n-3 PUFA in enterocytes, particularly during endotoxin-stimulated metabolic dysregulation. Additionally, this study may provide nutritional biomarkers in monitoring the intestinal health of human and animals on n-3 PUFA-based diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Maria Filippa Addis
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Carlotta Giromini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Raffaella Rebucci
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| | - Salvatore Pisanu
- Porto Conte Ricerche S.R.L, S.P. 55 Porto Conte/Capo Caccia, Loc. Tramariglio 15, 07041, Alghero, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche S.R.L, S.P. 55 Porto Conte/Capo Caccia, Loc. Tramariglio 15, 07041, Alghero, Italy
| | - Antonella Baldi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via Dell'Università 6, 26900, Lodi, Italy
| |
Collapse
|
19
|
Hill GE, Weaver RJ, Powers MJ. Carotenoid ornaments and the spandrels of physiology: a critique of theory to explain condition dependency. Biol Rev Camb Philos Soc 2023; 98:2320-2332. [PMID: 37563787 DOI: 10.1111/brv.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Even as numerous studies have documented that the red and yellow coloration resulting from the deposition of carotenoids serves as an honest signal of condition, the evolution of condition dependency is contentious. The resource trade-off hypothesis proposes that condition-dependent honest signalling relies on a trade-off of resources between ornamental display and body maintenance. By this model, condition dependency can evolve through selection for a re-allocation of resources to promote ornament expression. By contrast, the index hypothesis proposes that selection focuses mate choice on carotenoid coloration that is inherently condition dependent because production of such coloration is inexorably tied to vital cellular processes. These hypotheses for the origins of condition dependency make strongly contrasting and testable predictions about ornamental traits. To assess these two models, we review the mechanisms of production of carotenoids, patterns of condition dependency involving different classes of carotenoids, and patterns of behavioural responses to carotenoid coloration. We review evidence that traits can be condition dependent without the influence of sexual selection and that novel traits can show condition-dependent expression as soon as they appear in a population, without the possibility of sexual selection. We conclude by highlighting new opportunities for studying condition-dependent signalling made possible by genetic manipulation and expression of ornamental traits in synthetic biological systems.
Collapse
Affiliation(s)
- Geoffrey E Hill
- Department of Biological Sciences, 120 W. Samford Avenue, Auburn University, Auburn, AL, 36849, USA
| | - Ryan J Weaver
- Department of Ecology, Evolution, and Organismal Biology, 2200 Osborne Drive, Iowa State University, Ames, IA, USA
| | - Matthew J Powers
- Department of Integrative Biology, 4575 SW Research Way, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
20
|
Yiew NKH, Vazquez JH, Martino MR, Kennon-McGill S, Price JR, Allard FD, Yee EU, Layman AJ, James LP, McCommis KS, Finck BN, McGill MR. Hepatic pyruvate and alanine metabolism are critical and complementary for maintenance of antioxidant capacity and resistance to oxidative insult. Mol Metab 2023; 77:101808. [PMID: 37716594 PMCID: PMC10561123 DOI: 10.1016/j.molmet.2023.101808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE Mitochondrial pyruvate is a critical intermediary metabolite in gluconeogenesis, lipogenesis, and NADH production. As a result, the mitochondrial pyruvate carrier (MPC) complex has emerged as a promising therapeutic target in metabolic diseases. Clinical trials are currently underway. However, recent in vitro data indicate that MPC inhibition diverts glutamine/glutamate away from glutathione synthesis and toward glutaminolysis to compensate for loss of pyruvate oxidation, possibly sensitizing cells to oxidative insult. Here, we explored this in vivo using the clinically relevant acetaminophen (APAP) overdose model of acute liver injury, which is driven by oxidative stress. METHODS We used pharmacological and genetic approaches to inhibit MPC2 and alanine aminotransferase 2 (ALT2), individually and concomitantly, in mice and cell culture models and determined the effects on APAP hepatotoxicity. RESULTS We found that MPC inhibition sensitizes the liver to APAP-induced injury in vivo only with concomitant loss of alanine aminotransferase 2 (ALT2). Pharmacological and genetic manipulation of neither MPC2 nor ALT2 alone affected APAP toxicity, but liver-specific double knockout (DKO) significantly worsened APAP-induced liver damage. Further investigation indicated that DKO impaired glutathione synthesis and increased urea cycle flux, consistent with increased glutaminolysis, and these results were reproducible in vitro. Finally, induction of ALT2 and post-treatment with dichloroacetate both reduced APAP-induced liver injury, suggesting new therapeutic avenues. CONCLUSIONS Increased susceptibility to APAP toxicity requires loss of both the MPC and ALT2 in vivo, indicating that MPC inhibition alone is insufficient to disrupt redox balance. Furthermore, the results from ALT2 induction and dichloroacetate in the APAP model suggest new metabolic approaches to the treatment of liver damage.
Collapse
Affiliation(s)
- Nicole K H Yiew
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel H Vazquez
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Michael R Martino
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Stefanie Kennon-McGill
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jake R Price
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Felicia D Allard
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eric U Yee
- Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alexander J Layman
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura P James
- Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA; Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pathology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
21
|
de Baat A, Meier DT, Rachid L, Fontana A, Böni-Schnetzler M, Donath MY. Cystine/glutamate antiporter System x c- deficiency impairs insulin secretion in mice. Diabetologia 2023; 66:2062-2074. [PMID: 37650924 PMCID: PMC10541846 DOI: 10.1007/s00125-023-05993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/16/2023] [Indexed: 09/01/2023]
Abstract
AIMS/HYPOTHESIS Glutamate-induced cytotoxicity (excitotoxicity) has been detected in pancreatic beta cells. The cystine/glutamate antiporter System xc- exports glutamate to the extracellular space and is therefore implicated as driving excitotoxicity. As of yet, it has not been investigated whether System xc- contributes to pancreatic islet function. METHODS This study describes the implications of deficiency of System xc- on glucose metabolism in both constitutive and myeloid cell-specific knockout mice using metabolic tests and diet-induced obesity. Pancreatic islets were isolated and analysed for beta cell function, glutathione levels and ER stress. RESULTS Constitutive System xc- deficiency led to an approximately threefold decrease in glutathione levels in the pancreatic islets as well as cystine shortage characterised by upregulation of Chac1. This shortage further manifested as downregulation of beta cell identity genes and a tonic increase in endoplasmic reticulum stress markers, which resulted in diminished insulin secretion both in vitro and in vivo. Myeloid-specific deletion did not have a significant impact on metabolism or islet function. CONCLUSIONS/INTERPRETATION These findings suggest that System xc- is required for glutathione maintenance and insulin production in beta cells and that the system is dispensable for islet macrophage function.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Leila Rachid
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adriano Fontana
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Shah A, Huck I, Duncan K, Gansemer ER, Liu K, Adajar RC, Apte U, Stamnes MA, Rutkowski DT. Interference with the HNF4-dependent gene regulatory network diminishes endoplasmic reticulum stress in hepatocytes. Hepatol Commun 2023; 7:e0278. [PMID: 37820274 PMCID: PMC10578741 DOI: 10.1097/hc9.0000000000000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet, ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which are largely unknown. METHODS Here, we combined in silico machine learning, in vivo liver-specific deletion of the master regulator of hepatocyte differentiation HNF4α, and in vitro manipulation of hepatocyte differentiation state to determine how the UPR regulates hepatocyte identity and toward what end. RESULTS Machine learning identified a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. CONCLUSIONS Together, our findings suggest that the UPR regulates hepatocyte identity through HNF4α to protect ER homeostasis even at the expense of liver function.
Collapse
Affiliation(s)
- Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ian Huck
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Kaylia Duncan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Erica R. Gansemer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kaihua Liu
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Reed C. Adajar
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
23
|
Vue Z, Neikirk K, Vang L, Garza-Lopez E, Christensen TA, Shao J, Lam J, Beasley HK, Marshall AG, Crabtree A, Anudokem J, Rodriguez B, Kirk B, Bacevac S, Barongan T, Shao B, Stephens DC, Kabugi K, Koh HJ, Koh A, Evans CS, Taylor B, Reddy AK, Miller-Fleming T, Actkins KV, Zaganjor E, Daneshgar N, Murray SA, Mobley BC, Damo SM, Gaddy JA, Riggs B, Wanjalla C, Kirabo A, McReynolds M, Gomez JA, Phillips MA, Exil V, Dai DF, Hinton A. Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging. Am J Physiol Heart Circ Physiol 2023; 325:H965-H982. [PMID: 37624101 PMCID: PMC10977873 DOI: 10.1152/ajpheart.00202.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/26/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria breakdown and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the three-dimensional (3-D) networks in cardiac muscle samples of male mice at aging intervals of 3 mo, 1 yr, and 2 yr. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the three-dimensional (3-D) volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1, which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.NEW & NOTEWORTHY This article shows how mitochondria in murine cardiac changes, importantly elucidating age-related changes. It also is the first to show that the MICOS complex may play a role in outer membrane mitochondrial structure.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Trace A Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, Minnesota, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, United States
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Josephs Anudokem
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Serif Bacevac
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Dominique C Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, United States
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, United States
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Chantell S Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, United States
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Tyne Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ky'Era V Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| | - Nastaran Daneshgar
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, United States
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Tennessee Valley Healthcare Systems, United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Blake Riggs
- Department of Biology at San Francisco State University, San Francisco, California, United States
| | - Celestine Wanjalla
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, Pennsylvania, United States
| | - Jose A Gomez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Mark A Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States
| | - Vernat Exil
- Division of Cardiology, Department of Pediatrics, St. Louis University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Dao-Fu Dai
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
24
|
Zhang H, Zha X, Zheng Y, Liu X, Elsabagh M, Wang H, Jiang H, Wang M. Mechanisms underlying the role of endoplasmic reticulum stress in the placental injury and fetal growth restriction in an ovine gestation model. J Anim Sci Biotechnol 2023; 14:117. [PMID: 37691111 PMCID: PMC10494380 DOI: 10.1186/s40104-023-00919-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Exposure to bisphenol A (BPA), an environmental pollutant known for its endocrine-disrupting properties, during gestation has been reported to increase the risk of fetal growth restriction (FGR) in an ovine model of pregnancy. We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta, oxidative stress, inflammatory responses, autophagy and endoplasmic reticulum stress (ERS). However, precise mechanisms underlying the BPA-induced placental dysfunction, and subsequently, FGR, as well as the potential involvement of placental ERS in these complications, remain to be investigated. METHODS In vivo experiment, 16 twin-pregnant (from d 40 to 130 of gestation) Hu ewes were randomly distributed into two groups (8 ewes each). One group served as a control and received corn oil once a day, whereas the other group received BPA (5 mg/kg/d as a subcutaneous injection). In vitro study, ovine trophoblast cells (OTCs) were exposed to 4 treatments, 6 replicates each. The OTCs were treated with 400 μmol/L BPA, 400 μmol/L BPA + 0.5 μg/mL tunicamycin (Tm; ERS activator), 400 μmol/L BPA + 1 μmol/L 4-phenyl butyric acid (4-PBA; ERS antagonist) and DMEM/F12 complete medium (control), for 24 h. RESULTS In vivo experiments, pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency, progesterone (P4) level and fetal weight, and an increase in placental estrogen (E2) level, together with barrier dysfunctions, OS, inflammatory responses, autophagy and ERS in type A cotyledons. In vitro experiment, the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy, ERS, pro-apoptosis and inflammatory response, and a decrease in the P4 level and the related protein and gene expressions of antioxidant, anti-apoptosis and barrier function. Moreover, treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine (the increased E2 level and decreased P4 level), OS, inflammatory responses, autophagy, and ERS. However, treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above. CONCLUSIONS In general, the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs, and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine, OS, inflammatory responses, and autophagy. These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Honghua Jiang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
25
|
Deshmukh K, Apte U. The Role of Endoplasmic Reticulum Stress Response in Liver Regeneration. Semin Liver Dis 2023; 43:279-292. [PMID: 37451282 PMCID: PMC10942737 DOI: 10.1055/a-2129-8977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Exposure to hepatotoxic chemicals is involved in liver disease-related morbidity and mortality worldwide. The liver responds to damage by triggering compensatory hepatic regeneration. Physical agent or chemical-induced liver damage disrupts hepatocyte proteostasis, including endoplasmic reticulum (ER) homeostasis. Post-liver injury ER experiences a homeostatic imbalance, followed by active ER stress response signaling. Activated ER stress response causes selective upregulation of stress response genes and downregulation of many hepatocyte genes. Acetaminophen overdose, carbon tetrachloride, acute and chronic alcohol exposure, and physical injury activate the ER stress response, but details about the cellular consequences of the ER stress response on liver regeneration remain unclear. The current data indicate that inhibiting the ER stress response after partial hepatectomy-induced liver damage promotes liver regeneration, whereas inhibiting the ER stress response after chemical-induced hepatotoxicity impairs liver regeneration. This review summarizes key findings and emphasizes the knowledge gaps in the role of ER stress in injury and regeneration.
Collapse
Affiliation(s)
- Kshitij Deshmukh
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
26
|
Klyosova E, Azarova I, Buikin S, Polonikov A. Differentially Expressed Genes Regulating Glutathione Metabolism, Protein-Folding, and Unfolded Protein Response in Pancreatic β-Cells in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:12059. [PMID: 37569434 PMCID: PMC10418503 DOI: 10.3390/ijms241512059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Impaired redox homeostasis in the endoplasmic reticulum (ER) may contribute to proinsulin misfolding and thus to activate the unfolded protein response (UPR) and apoptotic pathways, culminating in pancreatic β-cell loss and type 2 diabetes (T2D). The present study was designed to identify differentially expressed genes (DEGs) encoding enzymes for glutathione metabolism and their impact on the expression levels of genes regulating protein folding and UPR in β-cells of T2D patients. The GEO transcriptome datasets of β-cells of diabetics and non-diabetics, GSE20966 and GSE81608, were analyzed for 142 genes of interest using limma and GREIN software, respectively. Diabetic β-cells showed dataset-specific patterns of DEGs (FDR ≤ 0.05) implicated in the regulation of glutathione metabolism (ANPEP, PGD, IDH2, and CTH), protein-folding (HSP90AB1, HSP90AA1, HSPA1B, HSPA8, BAG3, NDC1, NUP160, RLN1, and RPS19BP1), and unfolded protein response (CREB3L4, ERP27, and BID). The GCLC gene, encoding the catalytic subunit of glutamate-cysteine ligase, the first rate-limiting enzyme of glutathione biosynthesis, was moderately down-regulated in diabetic β-cells from both datasets (p ≤ 0.05). Regression analysis established that genes involved in the de novo synthesis of glutathione, GCLC, GCLM, and GSS affect the expression levels of genes encoding molecular chaperones and those involved in the UPR pathway. This study showed for the first time that diabetic β-cells exhibit alterations in the expression of genes regulating glutathione metabolism, protein-folding, and UPR and provided evidence for the molecular crosstalk between impaired redox homeostasis and abnormal protein folding, underlying ER stress in type 2 diabetes.
Collapse
Affiliation(s)
- Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (E.K.); (I.A.)
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Stepan Buikin
- Centre of Omics Technology, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya Street, 119991 Moscow, Russia;
- Department of Internal Diseases, Yaroslav the Wise Novgorod State University, 41 Bolshaya St. Petersburg Street, 173003 Veliky Novgorod, Russia
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
27
|
Haran A, Bergel M, Kleiman D, Hefetz L, Israeli H, Weksler-Zangen S, Agranovich B, Abramovich I, Ben-Haroush Schyr R, Gottlieb E, Ben-Zvi D. Differential effects of bariatric surgery and caloric restriction on hepatic one-carbon and fatty acid metabolism. iScience 2023; 26:107046. [PMID: 37389181 PMCID: PMC10300224 DOI: 10.1016/j.isci.2023.107046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Weight loss interventions, including dietary changes, pharmacotherapy, or bariatric surgery, prevent many of the adverse consequences of obesity, and may also confer intervention-specific benefits beyond those seen with decreased weight alone. We compared the molecular effects of different interventions on liver metabolism to understand the mechanisms underlying these benefits. Male rats on a high-fat, high-sucrose diet underwent sleeve gastrectomy (SG) or intermittent fasting with caloric restriction (IF-CR), achieving equivalent weight loss. The interventions were compared to ad-libitum (AL)-fed controls. Analysis of liver and blood metabolome and transcriptome revealed distinct and sometimes contrasting metabolic effects between the two interventions. SG primarily influenced one-carbon metabolic pathways, whereas IF-CR increased de novo lipogenesis and glycogen storage. These findings suggest that the unique metabolic pathways affected by SG and IF-CR contribute to their distinct clinical benefits, with bariatric surgery potentially influencing long-lasting changes through its effect on one-carbon metabolism.
Collapse
Affiliation(s)
- Arnon Haran
- Department of Hematology, Haddasah Medical Center, Jerusalem, Israel
| | - Michael Bergel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Doron Kleiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Liron Hefetz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Hadar Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | | | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rachel Ben-Haroush Schyr
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Danny Ben-Zvi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
28
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
29
|
Zerbato B, Gobbi M, Ludwig T, Brancato V, Pessina A, Brambilla L, Wegner A, Chiaradonna F. PGM3 inhibition shows cooperative effects with erastin inducing pancreatic cancer cell death via activation of the unfolded protein response. Front Oncol 2023; 13:1125855. [PMID: 37260977 PMCID: PMC10227458 DOI: 10.3389/fonc.2023.1125855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a poor patient prognosis. Remarkably, PDAC is one of the most aggressive and deadly tumor types and is notorious for its resistance to all types of treatment. PDAC resistance is frequently associated with a wide metabolic rewiring and in particular of the glycolytic branch named Hexosamine Biosynthetic Pathway (HBP). Methods Transcriptional and bioinformatics analysis were performed to obtain information about the effect of the HBP inhibition in two cell models of PDAC. Cell count, western blot, HPLC and metabolomics analyses were used to determine the impact of the combined treatment between an HBP's Phosphoglucomutase 3 (PGM3) enzyme inhibitor, named FR054, and erastin (ERA), a recognized ferroptosis inducer, on PDAC cell growth and survival. Results Here we show that the combined treatment applied to different PDAC cell lines induces a significant decrease in cell proliferation and a concurrent enhancement of cell death. Furthermore, we show that this combined treatment induces Unfolded Protein Response (UPR), NFE2 Like BZIP Transcription Factor 2 (NRF2) activation, a change in cellular redox state, a greater sensitivity to oxidative stress, a major dependence on glutamine metabolism, and finally ferroptosis cell death. Conclusion Our study discloses that HBP inhibition enhances, via UPR activation, the ERA effect and therefore might be a novel anticancer mechanism to be exploited as PDAC therapy.
Collapse
Affiliation(s)
- Barbara Zerbato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Maximilian Gobbi
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Tobias Ludwig
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Virginia Brancato
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan, Italy
| | - Alex Pessina
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Luca Brambilla
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Andre Wegner
- Pathometabolism, Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Ferdinando Chiaradonna
- Tumor Biochemistry, Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
30
|
Aouad H, Faucher Q, Sauvage FL, Pinault E, Barrot CC, Arnion H, Essig M, Marquet P. A multi-omics investigation of tacrolimus off-target effects on a proximal tubule cell-line. Pharmacol Res 2023; 192:106794. [PMID: 37187266 DOI: 10.1016/j.phrs.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
INTRODUCTION Tacrolimus, an immunosuppressive drug prescribed to a majority of organ transplant recipients is nephrotoxic, through still unclear mechanisms. This study on a lineage of proximal tubular cells using a multi-omics approach aims to detect off-target pathways modulated by tacrolimus that can explain its nephrotoxicity. METHODS LLC-PK1 cells were exposed to 5µM of tacrolimus for 24h in order to saturate its therapeutic target FKBP12 and other high-affine FKBPs and favour its binding to less affine targets. Intracellular proteins and metabolites, and extracellular metabolites were extracted and analysed by LC-MS/MS. The transcriptional expression of the dysregulated proteins PCK-1, as well as of the other gluconeogenesis-limiting enzymes FBP1 and FBP2, was measured using RT-qPCR. Cell viability with this concentration of tacrolimus was further checked until 72h. RESULTS In our cell model of acute exposure to a high concentration of tacrolimus, different metabolic pathways were impacted including those of arginine (e.g., citrulline, ornithine) (p<0.0001), amino acids (e.g., valine, isoleucine, aspartic acid) (p<0.0001) and pyrimidine (p<0.01). In addition, it induced oxidative stress (p<0.01) as shown by a decrease in total cell glutathione quantity. It impacted cell energy through an increase in Krebs cycle intermediates (e.g., citrate, aconitate, fumarate) (p<0.01) and down-regulation of PCK-1 (p<0.05) and FPB1 (p<0.01), which are key enzymes in gluconeogenesis and acid-base balance control. DISCUSSION The variations found using a multi-omics pharmacological approach clearly point towards a dysregulation of energy production and decreased gluconeogenesis, a hallmark of chronic kidney disease which may also be an important toxicity pathways of tacrolimus.
Collapse
Affiliation(s)
- Hassan Aouad
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France
| | - Quentin Faucher
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France
| | | | - Emilie Pinault
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France
| | - Claire-Cécile Barrot
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France
| | - Hélène Arnion
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France
| | - Marie Essig
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France; Department of Nephrology, CHU Limoges, Limoges, France
| | - Pierre Marquet
- Pharmacology & Transplantation, Université de Limoges, INSERM U1248, Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France.
| |
Collapse
|
31
|
Sun 孙意冉 Y, Yan C, He L, Xiang S, Wang P, Li Z, Chen Y, Zhao J, Yuan Y, Wang W, Zhang X, Su P, Su Y, Ma J, Xu J, Peng Q, Ma H, Xie Z, Zhang Z. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: An emerging therapeutic target for Alzheimer's disease. Ageing Res Rev 2023; 87:101899. [PMID: 36871781 DOI: 10.1016/j.arr.2023.101899] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, generates a serious threat to the health of the elderly. The AD brain is microscopically characterized by amyloid plaques and neurofibrillary tangles. There are still no effective therapeutic drugs to restrain the progression of AD though much attention has been paid to exploit AD treatments. Ferroptosis, a type of programmed cell death, has been reported to promote the pathological occurrence and development of AD, and inhibition of neuronal ferroptosis can effectively improve the cognitive impairment of AD. Studies have shown that calcium (Ca2+) dyshomeostasis is closely related to the pathology of AD, and can drive the occurrence of ferroptosis through several pathways, such as interacting with iron, and regulating the crosstalk between endoplasmic reticulum (ER) and mitochondria. This paper mainly reviews the roles of ferroptosis and Ca2+ in the pathology of AD, and highlights that restraining ferroptosis through maintaining the homeostasis of Ca2+ may be an innovative target for the treatment of AD.
Collapse
Affiliation(s)
- Yiran Sun 孙意冉
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Chenchen Yan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Libo He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shixie Xiang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Wang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhonghua Li
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yuanzhao Chen
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jie Zhao
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Ye Yuan
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wang Wang
- School of basic medicine, Nanchang Medical College, Nanchang 330052, Jiangxi, China
| | - Xiaowei Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Pan Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunfang Su
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jinlian Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Quekun Peng
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China.
| | - Huifen Ma
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhishen Xie
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Zhenqiang Zhang
- Henan Engineering Research Center for Prevention and Treatment of Major Chronic Diseases with Chinese Medicine, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| |
Collapse
|
32
|
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, Lin W, Goel R, Luptak I, Perissi V, Seidman CE, Seidman J, Chin MT, Chen C, Emili A. Multi-Omics Profiling of Hypertrophic Cardiomyopathy Reveals Altered Mechanisms in Mitochondrial Dynamics and Excitation-Contraction Coupling. Int J Mol Sci 2023; 24:4724. [PMID: 36902152 PMCID: PMC10002553 DOI: 10.3390/ijms24054724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
| | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Matthew Lawton
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raghuveera Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Valentina Perissi
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02145, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
33
|
Shah A, Huck I, Duncan K, Gansemer ER, Apte U, Stamnes MA, Rutkowski DT. Interference with the HNF4-dependent gene regulatory network diminishes ER stress in hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527889. [PMID: 36798396 PMCID: PMC9934629 DOI: 10.1101/2023.02.09.527889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In all eukaryotic cell types, the unfolded protein response (UPR) upregulates factors that promote protein folding and misfolded protein clearance to help alleviate endoplasmic reticulum (ER) stress. Yet ER stress in the liver is uniquely accompanied by the suppression of metabolic genes, the coordination and purpose of which is largely unknown. Here, we used unsupervised machine learning to identify a cluster of correlated genes that were profoundly suppressed by persistent ER stress in the liver. These genes, which encode diverse functions including metabolism, coagulation, drug detoxification, and bile synthesis, are likely targets of the master regulator of hepatocyte differentiation HNF4α. The response of these genes to ER stress was phenocopied by liver-specific deletion of HNF4 α. Strikingly, while deletion of HNF4α exacerbated liver injury in response to an ER stress challenge, it also diminished UPR activation and partially preserved ER ultrastructure, suggesting attenuated ER stress. Conversely, pharmacological maintenance of hepatocyte identity in vitro enhanced sensitivity to stress. Several pathways potentially link HNF4α to ER stress sensitivity, including control of expression of the tunicamycin transporter MFSD2A; modulation of IRE1/XBP1 signaling; and regulation of Pyruvate Dehydrogenase. Together, these findings suggest that HNF4α activity is linked to hepatic ER homeostasis through multiple mechanisms.
Collapse
Affiliation(s)
- Anit Shah
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Ian Huck
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Kaylia Duncan
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Erica R. Gansemer
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, Kansas University Medical Center, Kansas City, KS
| | - Mark A. Stamnes
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
34
|
McCommis KS, Finck BN. The Hepatic Mitochondrial Pyruvate Carrier as a Regulator of Systemic Metabolism and a Therapeutic Target for Treating Metabolic Disease. Biomolecules 2023; 13:261. [PMID: 36830630 PMCID: PMC9953669 DOI: 10.3390/biom13020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
Pyruvate sits at an important metabolic crossroads of intermediary metabolism. As a product of glycolysis in the cytosol, it must be transported into the mitochondrial matrix for the energy stored in this nutrient to be fully harnessed to generate ATP or to become the building block of new biomolecules. Given the requirement for mitochondrial import, it is not surprising that the mitochondrial pyruvate carrier (MPC) has emerged as a target for therapeutic intervention in a variety of diseases characterized by altered mitochondrial and intermediary metabolism. In this review, we focus on the role of the MPC and related metabolic pathways in the liver in regulating hepatic and systemic energy metabolism and summarize the current state of targeting this pathway to treat diseases of the liver. Available evidence suggests that inhibiting the MPC in hepatocytes and other cells of the liver produces a variety of beneficial effects for treating type 2 diabetes and nonalcoholic steatohepatitis. We also highlight areas where our understanding is incomplete regarding the pleiotropic effects of MPC inhibition.
Collapse
Affiliation(s)
- Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Brian N. Finck
- Center for Human Nutrition, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
35
|
Sun X, Liang Y, Wang Y, Zhang H, Zhao T, Yao B, Luo H, Huang H, Su X. Simultaneous manipulation of multiple genes within a same regulatory stage for iterative evolution of Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:26. [PMID: 35248141 PMCID: PMC8898424 DOI: 10.1186/s13068-022-02122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/19/2022] [Indexed: 11/12/2022]
Abstract
Background While there is growing interest in developing non-canonical filamentous fungi as hosts for producing secretory proteins, genetic engineering of filamentous fungi for improved expression often relies heavily on the understanding of regulatory mechanisms. Results In this study, using the cellulase-producing filamentous fungus Trichoderma reesei as a model system, we designed a semi-rational strategy by arbitrarily dividing the regulation of cellulase production into three main stages-transcription, secretion, and cell metabolism. Selected regulatory or functional genes that had been experimentally verified or predicted to enhance cellulase production were overexpressed using strong inducible or constitutive promoters, while those that would inhibit cellulase production were repressed via RNAi-mediated gene silencing. A T. reesei strain expressing the surface-displayed DsRed fluorescent protein was used as the recipient strain. After three consecutive rounds of engineering, the cellulase activity increased to up to 4.35-fold and the protein concentration increased to up to 2.97-fold in the genetically modified strain. Conclusions We demonstrated that, as a proof-of-concept, selected regulatory or functional genes within an arbitrarily defined stage could be pooled to stimulate secretory cellulase production, and moreover, this method could be iteratively used for further improvement. This method is semi-rational and can essentially be used in filamentous fungi with little regulatory information. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02122-0.
Collapse
|
36
|
Lee BR, La VH, Park SH, Mamun MA, Bae DW, Kim TH. Dimethylthiourea Alleviates Drought Stress by Suppressing Hydrogen Peroxide-Dependent Abscisic Acid-Mediated Oxidative Responses in an Antagonistic Interaction with Salicylic Acid in Brassica napus Leaves. Antioxidants (Basel) 2022; 11:2283. [PMID: 36421468 PMCID: PMC9687642 DOI: 10.3390/antiox11112283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 08/01/2023] Open
Abstract
In plants, prolonged drought induces oxidative stress, leading to a loss of reducing potential in redox components. Abscisic acid (ABA) is a representative hormonal signal regulating stress responses. This study aimed to investigate the physiological significance of dimethylthiourea (DMTU, an H2O2 scavenger) in the hormonal regulation of the antioxidant system and redox control in rapeseed (Brassica napus L.) leaves under drought stress. Drought treatment for 10 days provoked oxidative stress, as evidenced by the increase in O2•- and H2O2 concentrations, and lipid peroxidation levels, and a decrease in leaf water potential. Drought-induced oxidative responses were significantly alleviated by DMTU treatment. The accumulation of O2•- and H2O2 in drought-treated plants coincided with the enhanced expression of the NADPH oxidase and Cu/Zn-SOD genes, leading to an up-regulation in oxidative signal-inducible 1 (OXI1) and mitogen-activated protein kinase 6 (MAPK6), with a concomitant increase in ABA levels and the up-regulation of ABA-related genes. DMTU treatment under drought largely suppressed the drought-responsive up-regulation of these genes by depressing ABA responses through an antagonistic interaction with salicylic acid (SA). DMTU treatment also alleviated the drought-induced loss of reducing potential in GSH- and NADPH-based redox by the enhanced expression of glutathione reductase 1 (GR1) and up-regulation of oxidoreductase genes (TRXh5 and GRXC9). These results indicate that DMTU effectively alleviates drought-induced oxidative responses by suppressing ABA-mediated oxidative burst signaling in an antagonistic regulation of SA.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Environmentally-Friendly Agriculture (IEFA), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Van Hien La
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
- Center of Crop Research for Adaption to Climate Change (CRCC), Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Sang-Hyun Park
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Md Al Mamun
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae-Hwan Kim
- Grassland Science Laboratory, Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture & Life Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
37
|
Rohli KE, Boyer CK, Bearrows SC, Moyer MR, Elison WS, Bauchle CJ, Blom SE, Zhang J, Wang Y, Stephens SB. ER Redox Homeostasis Regulates Proinsulin Trafficking and Insulin Granule Formation in the Pancreatic Islet β-Cell. FUNCTION 2022; 3:zqac051. [PMID: 36325514 PMCID: PMC9614934 DOI: 10.1093/function/zqac051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 01/07/2023] Open
Abstract
Defects in the pancreatic β-cell's secretion system are well-described in type 2 diabetes (T2D) and include impaired proinsulin processing and a deficit in mature insulin-containing secretory granules; however, the cellular mechanisms underlying these defects remain poorly understood. To address this, we used an in situ fluorescent pulse-chase strategy to study proinsulin trafficking. We show that insulin granule formation and the appearance of nascent granules at the plasma membrane are decreased in rodent and cell culture models of prediabetes and hyperglycemia. Moreover, we link the defect in insulin granule formation to an early trafficking delay in endoplasmic reticulum (ER) export of proinsulin, which is independent of overt ER stress. Using a ratiometric redox sensor, we show that the ER becomes hyperoxidized in β-cells from a dietary model of rodent prediabetes and that addition of reducing equivalents restores ER export of proinsulin and insulin granule formation and partially restores β-cell function. Together, these data identify a critical role for the regulation of ER redox homeostasis in proinsulin trafficking and suggest that alterations in ER redox poise directly contribute to the decline in insulin granule production in T2D. This model highlights a critical link between alterations in ER redox and ER function with defects in proinsulin trafficking in T2D. Hyperoxidation of the ER lumen, shown as hydrogen peroxide, impairs proinsulin folding and disulfide bond formation that prevents efficient exit of proinsulin from the ER to the Golgi. This trafficking defect limits available proinsulin for the formation of insulin secretory granules during the development of T2D.
Collapse
Affiliation(s)
- Kristen E Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Shelby C Bearrows
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Marshall R Moyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Weston S Elison
- Department of Nutrition, Dietetics, and Food Science, Brigham Young University, Provo, UT 84602, USA
| | - Casey J Bauchle
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48103, USA
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, MI 48103, USA
| | - Samuel B Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
38
|
Liu J, Guo C, Wang Y, Su M, Huang W, Lai KP. Preclinical insights into fucoidan as a nutraceutical compound against perfluorooctanoic acid-associated obesity via targeting endoplasmic reticulum stress. Front Nutr 2022; 9:950130. [PMID: 36034923 PMCID: PMC9413161 DOI: 10.3389/fnut.2022.950130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is a growing global health problem; it has been forecasted that over half of the global population will be obese by 2030. Obesity is complicated with many diseases, such as diabetes and cardiovascular diseases, leading to an economic impact on society. Other than diet, exposure to environmental pollutants is considered a risk factor for obesity. Exposure to perfluorooctanoic acid (PFOA) was found to impair hepatic lipid metabolism, resulting in obesity. In this study, we applied network pharmacology and systematic bioinformatics analysis, such as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, together with molecular docking, to investigate the targets of fucoidan for treating PFOA-associated obesity through the regulation of endoplasmic reticulum stress (ERS). Our results identified ten targets of fucoidan, such as glucosylceramidase beta (GBA), glutathione-disulfide reductase (GSR), melanocortin 4 receptor (MC4R), matrix metallopeptidase (MMP)2, MMP9, nuclear factor kappa B subunit 1 (NFKB1), RELA Proto-Oncogene, NF-KB Subunit (RELA), nuclear receptor subfamily 1 group I member 2 (NR1I2), proliferation-activated receptor delta (PPARD), and cellular retinoic acid binding protein 2 (CRABP2). GO and KEGG enrichment analyses highlighted their involvement in the pathogenesis of obesity, such as lipid and fat metabolisms. More importantly, the gene cluster is responsible for obesity-associated diseases and disorders, such as insulin resistance (IR), non-alcoholic fatty liver disease, and diabetic cardiomyopathy, via the control of signaling pathways. The findings of this report provide evidence that fucoidan is a potential nutraceutical product against PFOA-associated obesity through the regulation of ERS.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chao Guo
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Min Su
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
39
|
Metabolomics Analysis Coupled with Weighted Gene Co-Expression Network Analysis Unravels the Associations of Tricarboxylic Acid Cycle-Intermediates with Edible Pigments Produced by Monascus purpureus (Hong Qu). Foods 2022; 11:foods11142168. [PMID: 35885410 PMCID: PMC9320606 DOI: 10.3390/foods11142168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Monascus azaphilones pigments (MonAzPs) produced by microbial fermentation are widely used as food chemicals for coloring and supplying beneficial biological attributes. In this study, a fermentation perturbation strategy was implemented by separately adding different amino acids, and detecting the intracellular metabolome via UHPLC-Q-Orbitrap HRMS. With the aid of weighted gene co-expression network analysis, two metabolic intermediates, fumarate and malate, involved in the tricarboxylic acid cycle, were identified as the hub metabolites. Moreover, exogenous addition of fumarate or malate significantly promoted red pigment production, and reduced orange/yellow pigment production. The importance of the tricarboxylic acid cycle was further emphasized by detecting intracellular levels of ATP, NAD(P)H, and expression of oxidoreductase-coding genes located in the MonAzPs synthetic gene cluster, suggesting a considerable effect of the energy supply on MonAzPs synthesis. Collectively, metabolomics is a powerful approach to position the crucial metabolic regulatory factors, and facilitate the development of engineering strategies for targeted regulation, lower trial-and-error cost, and advance safe and controllable processes for fermented food chemistry industries.
Collapse
|
40
|
Basseville A, Violet PC, Safari M, Sourbier C, Linehan WM, Robey RW, Levine M, Sackett DL, Bates SE. A Histone Deacetylase Inhibitor Induces Acetyl-CoA Depletion Leading to Lethal Metabolic Stress in RAS-Pathway Activated Cells. Cancers (Basel) 2022; 14:2643. [PMID: 35681624 PMCID: PMC9179484 DOI: 10.3390/cancers14112643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The mechanism of action of romidepsin and other histone deacetylase inhibitors is still not fully explained. Our goal was to gain a mechanistic understanding of the RAS-linked phenotype associated with romidepsin sensitivity. METHODS The NCI60 dataset was screened for molecular clues to romidepsin sensitivity. Histone acetylation, DNA damage, ROS production, metabolic state (real-time measurement and metabolomics), and gene expression alterations (transcriptomics) were determined in KRAS-WT versus KRAS-mutant cell groups. The search for biomarkers in response to HDACi was implemented by supervised machine learning analysis on a 608-cell transcriptomic dataset and validated in a clinical dataset. RESULTS Romidepsin treatment induced depletion in acetyl-CoA in all tested cell lines, which led to oxidative stress, metabolic stress, and increased death-particularly in KRAS-mutant cell lines. Romidepsin-induced stresses and death were rescued by acetyl-CoA replenishment. Two acetyl-CoA gene expression signatures associated with HDACi sensitivity were derived from machine learning analysis in the CCLE (Cancer Cell Line Encyclopedia) cell panel. Signatures were then validated in the training cohort for seven HDACi, and in an independent 13-patient cohort treated with belinostat. CONCLUSIONS Our study reveals the importance of acetyl-CoA metabolism in HDAC sensitivity, and it highlights acetyl-CoA generation pathways as potential targets to combine with HDACi.
Collapse
Affiliation(s)
- Agnes Basseville
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Omics Data Science Unit, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.-C.V.); (M.L.)
| | - Maryam Safari
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Carole Sourbier
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.S.); (W.M.L.)
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - W. Marston Linehan
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (C.S.); (W.M.L.)
| | - Robert W. Robey
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (P.-C.V.); (M.L.)
| | - Dan L. Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Susan E. Bates
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
- Hematology/Oncology Research Department, James J. Peters Department of Veterans Affairs Medical Center, New York, NY 10468, USA
| |
Collapse
|
41
|
Gansemer ER, Rutkowski DT. Pathways Linking Nicotinamide Adenine Dinucleotide Phosphate Production to Endoplasmic Reticulum Protein Oxidation and Stress. Front Mol Biosci 2022; 9:858142. [PMID: 35601828 PMCID: PMC9114485 DOI: 10.3389/fmolb.2022.858142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) lumen is highly oxidizing compared to other subcellular compartments, and maintaining the appropriate levels of oxidizing and reducing equivalents is essential to ER function. Both protein oxidation itself and other essential ER processes, such as the degradation of misfolded proteins and the sequestration of cellular calcium, are tuned to the ER redox state. Simultaneously, nutrients are oxidized in the cytosol and mitochondria to power ATP generation, reductive biosynthesis, and defense against reactive oxygen species. These parallel needs for protein oxidation in the ER and nutrient oxidation in the cytosol and mitochondria raise the possibility that the two processes compete for electron acceptors, even though they occur in separate cellular compartments. A key molecule central to both processes is NADPH, which is produced by reduction of NADP+ during nutrient catabolism and which in turn drives the reduction of components such as glutathione and thioredoxin that influence the redox potential in the ER lumen. For this reason, NADPH might serve as a mediator linking metabolic activity to ER homeostasis and stress, and represent a novel form of mitochondria-to-ER communication. In this review, we discuss oxidative protein folding in the ER, NADPH generation by the major pathways that mediate it, and ER-localized systems that can link the two processes to connect ER function to metabolic activity.
Collapse
Affiliation(s)
- Erica R. Gansemer
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - D. Thomas Rutkowski
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
42
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
43
|
Tang R, Acharya N, Subramanian A, Purohit V, Tabaka M, Hou Y, He D, Dixon KO, Lambden C, Xia J, Rozenblatt-Rosen O, Sobel RA, Wang C, Regev A, Anderson AC, Kuchroo VK. Tim-3 adapter protein Bat3 acts as an endogenous regulator of tolerogenic dendritic cell function. Sci Immunol 2022; 7:eabm0631. [PMID: 35275752 PMCID: PMC9273260 DOI: 10.1126/sciimmunol.abm0631] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dendritic cells (DCs) sense environmental cues and adopt either an immune-stimulatory or regulatory phenotype, thereby fine-tuning immune responses. Identifying endogenous regulators that determine DC function can thus inform the development of therapeutic strategies for modulating the immune response in different disease contexts. Tim-3 plays an important role in regulating immune responses by inhibiting the activation status and the T cell priming ability of DC in the setting of cancer. Bat3 is an adaptor protein that binds to the tail of Tim-3; therefore, we studied its role in regulating the functional status of DCs. In murine models of autoimmunity (experimental autoimmune encephalomyelitis) and cancer (MC38-OVA-implanted tumor), lack of Bat3 expression in DCs alters the T cell compartment-it decreases TH1, TH17 and cytotoxic effector cells, increases regulatory T cells, and exhausted CD8+ tumor-infiltrating lymphocytes, resulting in the attenuation of autoimmunity and acceleration of tumor growth. We found that Bat3 expression levels were differentially regulated by activating versus inhibitory stimuli in DCs, indicating a role for Bat3 in the functional calibration of DC phenotypes. Mechanistically, loss of Bat3 in DCs led to hyperactive unfolded protein response and redirected acetyl-coenzyme A to increase cell intrinsic steroidogenesis. The enhanced steroidogenesis in Bat3-deficient DC suppressed T cell response in a paracrine manner. Our findings identified Bat3 as an endogenous regulator of DC function, which has implications for DC-based immunotherapies.
Collapse
Affiliation(s)
- Ruihan Tang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nandini Acharya
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayshwarya Subramanian
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vinee Purohit
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Danyang He
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen O. Dixon
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Connor Lambden
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Junrong Xia
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
44
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
45
|
What Role do Mitochondria have in Diastolic Dysfunction? Implications for Diabetic Cardiomyopathy and Heart Failure with Preserved Ejection Function (HFpEF). J Cardiovasc Pharmacol 2022; 79:399-406. [DOI: 10.1097/fjc.0000000000001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
|
46
|
Engevik MA, Herrmann B, Ruan W, Engevik AC, Engevik KA, Ihekweazu F, Shi Z, Luck B, Chang-Graham AL, Esparza M, Venable S, Horvath TD, Haidacher SJ, Hoch KM, Haag AM, Schady DA, Hyser JM, Spinler JK, Versalovic J. Bifidobacterium dentium-derived y-glutamylcysteine suppresses ER-mediated goblet cell stress and reduces TNBS-driven colonic inflammation. Gut Microbes 2021; 13:1-21. [PMID: 33985416 PMCID: PMC8128206 DOI: 10.1080/19490976.2021.1902717] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress compromises the secretion of MUC2 from goblet cells and has been linked with inflammatory bowel disease (IBD). Although Bifidobacterium can beneficially modulate mucin production, little work has been done investigating the effects of Bifidobacterium on goblet cell ER stress. We hypothesized that secreted factors from Bifidobacterium dentium downregulate ER stress genes and modulates the unfolded protein response (UPR) to promote MUC2 secretion. We identified by mass spectrometry that B. dentium secretes the antioxidant γ-glutamylcysteine, which we speculate dampens ER stress-mediated ROS and minimizes ER stress phenotypes. B. dentium cell-free supernatant and γ-glutamylcysteine were taken up by human colonic T84 cells, increased glutathione levels, and reduced ROS generated by the ER-stressors thapsigargin and tunicamycin. Moreover, B. dentium supernatant and γ-glutamylcysteine were able to suppress NF-kB activation and IL-8 secretion. We found that B. dentium supernatant, γ-glutamylcysteine, and the positive control IL-10 attenuated the induction of UPR genes GRP78, CHOP, and sXBP1. To examine ER stress in vivo, we first examined mono-association of B. dentium in germ-free mice which increased MUC2 and IL-10 levels compared to germ-free controls. However, no changes were observed in ER stress-related genes, indicating that B. dentium can promote mucus secretion without inducing ER stress. In a TNBS-mediated ER stress model, we observed increased levels of UPR genes and pro-inflammatory cytokines in TNBS treated mice, which were reduced with addition of live B. dentium or γ-glutamylcysteine. We also observed increased colonic and serum levels of IL-10 in B. dentium- and γ-glutamylcysteine-treated mice compared to vehicle control. Immunostaining revealed retention of goblet cells and mucus secretion in both B. dentium- and γ-glutamylcysteine-treated animals. Collectively, these data demonstrate positive modulation of the UPR and MUC2 production by B. dentium-secreted compounds.
Collapse
Affiliation(s)
- Melinda A. Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA,CONTACT Melinda A. Engevik Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Amy C. Engevik
- Department of Surgery, Vanderbilt University Medical Center, NashvilleTN, USA
| | - Kristen A. Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Faith Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| | - Berkley Luck
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | | | - Magdalena Esparza
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Susan Venable
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Thomas D. Horvath
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Sigmund J. Haidacher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Kathleen M. Hoch
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Anthony M. Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Deborah A. Schady
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - Joseph M. Hyser
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA,Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K. Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA,Department of Pathology, Texas Children’s Hospital, Houston, Texas, USA
| | - James Versalovic
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
47
|
van Lith M, Pringle MA, Fleming B, Gaeta G, Im J, Gilmore R, Bulleid NJ. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. J Cell Sci 2021; 134:273533. [PMID: 34734627 PMCID: PMC8645230 DOI: 10.1242/jcs.259340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
N-linked glycosylation of proteins entering the secretory pathway is an essential modification required for protein stability and function. Previously, it has been shown that there is a temporal relationship between protein folding and glycosylation, which influences the occupancy of specific glycosylation sites. Here, we used an in vitro translation system that reproduces the initial stages of secretory protein translocation, folding and glycosylation under defined redox conditions. We found that the efficiency of glycosylation of hemopexin was dependent upon a robust NADPH-dependent cytosolic reductive pathway, which could be mimicked by the addition of a membrane-impermeable reducing agent. We identified a hypoglycosylated acceptor site that is adjacent to a cysteine involved in a short-range disulfide. We show that efficient glycosylation at this site is influenced by the cytosolic reductive pathway acting on both STT3A- and STT3B-dependent glycosylation. Our results provide further insight into the important role of the endoplasmic reticulum redox conditions in glycosylation site occupancy and demonstrate a link between redox conditions in the cytosol and glycosylation efficiency.
Collapse
Affiliation(s)
- Marcel van Lith
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marie Anne Pringle
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Bethany Fleming
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Giorgia Gaeta
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Headington, Oxford OX3 7LD, UK
| | - Jisu Im
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK.,Cellular Protein Chemistry, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Neil J Bulleid
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
48
|
Barros MPD, Bachi ALL, Santos JDMBD, Lambertucci RH, Ishihara R, Polotow TG, Caldo-Silva A, Valente PA, Hogervorst E, Furtado GE. The poorly conducted orchestra of steroid hormones, oxidative stress and inflammation in frailty needs a maestro: Regular physical exercise. Exp Gerontol 2021; 155:111562. [PMID: 34560197 DOI: 10.1016/j.exger.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022]
Abstract
This review outlines the various factors associated with unhealthy aging which includes becoming frail and dependent. With many people not engaging in recommended exercise, facilitators and barriers to engage with exercise must be investigated to promote exercise uptake and adherence over the lifespan for different demographics, including the old, less affluent, women, and those with different cultural-ethnic backgrounds. Governmental and locally funded public health messages and environmental facilitation (gyms, parks etc.) can play an important role. Studies have shown that exercise can act as a conductor to balance oxidative stress, immune and endocrine functions together to promote healthy aging and reduce the risk for age-related morbidities, such as cardiovascular disease and atherosclerosis, and promote cognition and mood over the lifespan. Like a classic symphony orchestra, consisting of four groups of related musical instruments - the woodwinds, brass, percussion, and strings - the aging process should also perform in harmony, with compassion, avoiding the aggrandizement of any of its individual parts during the presentation. This review discusses the wide variety of molecular, cellular and endocrine mechanisms (focusing on the steroid balance) underlying this process and their interrelationships.
Collapse
Affiliation(s)
- Marcelo Paes de Barros
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil.
| | - André Luís Lacerda Bachi
- Department of Otorhinolaryngology, ENT Lab, Federal University of São Paulo (UNIFESP), São Paulo 04025-002, Brazil; Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo 04829-300, Brazil
| | | | | | - Rafael Ishihara
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Tatiana Geraldo Polotow
- Institute of Physical Activity Sciences and Sports (ICAFE), MSc/PhD Interdisciplinary Program in Health Sciences, Cruzeiro do Sul University, 01506-000 São Paulo, Brazil
| | - Adriana Caldo-Silva
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Pedro Afonso Valente
- University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal
| | - Eef Hogervorst
- Applied Cognitive Research National Centre for Sports and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Guilherme Eustáquio Furtado
- Health Sciences Research Unit: Nursing (UICISA: E), Nursing School of Coimbra (ESEnfC), Coimbra, Portugal; Institute Polytechnic of Maia, Porto, Portugal; University of Coimbra, Research Unit for Sport and Physical Activity (CIDAF, UID/PTD/04213/2019) at Faculty of Sport Science and Physical Education, (FCDEF-UC), Portugal.
| |
Collapse
|
49
|
Blum NT, Fu LH, Lin J, Huang P. When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Urbanellis P, McEvoy CM, Škrtić M, Kaths JM, Kollmann D, Linares I, Ganesh S, Oquendo F, Sharma M, Mazilescu L, Goto T, Noguchi Y, John R, Mucsi I, Ghanekar A, Bagli D, Konvalinka A, Selzner M, Robinson LA. Transcriptome Analysis of Kidney Grafts Subjected to Normothermic Ex Vivo Perfusion Demonstrates an Enrichment of Mitochondrial Metabolism Genes. Transplant Direct 2021; 7:e719. [PMID: 34258386 PMCID: PMC8270593 DOI: 10.1097/txd.0000000000001157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022] Open
Abstract
Normothermic ex vivo kidney perfusion (NEVKP) has demonstrated superior outcomes for donation-after-cardiovascular death grafts compared with static cold storage (SCS). To determine the mechanisms responsible for this, we performed an unbiased genome-wide microarray analysis. METHODS Kidneys from 30-kg Yorkshire pigs were subjected to 30 min of warm ischemia followed by 8 h of NEVKP or SCS, or no storage, before autotransplantation. mRNA expression was analyzed on renal biopsies on postoperative day 3. Gene set enrichment analysis was performed using hallmark gene sets, Gene Ontology, and pathway analysis. RESULTS The gene expression profile of NEVKP-stored grafts closely resembled no storage kidneys. Gene set enrichment analysis demonstrated enrichment of fatty acid metabolism and oxidative phosphorylation following NEVKP, whereas SCS-enriched gene sets were related to mitosis, cell cycle checkpoint, and reactive oxygen species (q < 0.05). Pathway analysis demonstrated enrichment of lipid oxidation/metabolism, the Krebs cycle, and pyruvate metabolism in NEVKP compared with SCS (q < 0.05). Comparison of our findings with external data sets of renal ischemia-reperfusion injury revealed that SCS-stored grafts demonstrated similar gene expression profiles to ischemia-reperfusion injury, whereas the profile of NEVKP-stored grafts resembled recovered kidneys. CONCLUSIONS Increased transcripts of key mitochondrial metabolic pathways following NEVKP storage may account for improved donation-after-cardiovascular death graft function, compared with SCS, which promoted expression of genes typically perturbed during IRI.
Collapse
Affiliation(s)
- Peter Urbanellis
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Caitriona M. McEvoy
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Marko Škrtić
- Division of Nephrology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - J. Moritz Kaths
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Dagmar Kollmann
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Ivan Linares
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Sujani Ganesh
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Fabiola Oquendo
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Manraj Sharma
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Laura Mazilescu
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Toru Goto
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Yuki Noguchi
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Rohan John
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Istvan Mucsi
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Anand Ghanekar
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Darius Bagli
- Departments of Surgery (Urology) and Physiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ana Konvalinka
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Markus Selzner
- Soham and Shaila Ajmera Family Transplant Centre, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Lisa A. Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|