1
|
Case JB, Jain S, Suthar MS, Diamond MS. SARS-CoV-2: The Interplay Between Evolution and Host Immunity. Annu Rev Immunol 2025; 43:29-55. [PMID: 39705164 DOI: 10.1146/annurev-immunol-083122-043054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
Collapse
Affiliation(s)
- James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Shilpi Jain
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael S Diamond
- Department of Pathology & Immunology; Department of Molecular Microbiology; and Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| |
Collapse
|
2
|
Yuan L, Stoddard M, Sarkar S, van Egeren D, Mangalaganesh S, Nolan RP, Rogers MS, Hather G, White LF, Chakravarty A. The Impact of Vaccination Frequency on COVID-19 Public Health Outcomes: A Model-Based Analysis. Vaccines (Basel) 2025; 13:368. [PMID: 40333247 PMCID: PMC12031506 DOI: 10.3390/vaccines13040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Background: While the rapid deployment of SARS-CoV-2 vaccines had a significant impact on the ongoing COVID-19 pandemic, rapid viral immune evasion and waning neutralizing antibody titers have degraded vaccine efficacy. Nevertheless, vaccine manufacturers and public health authorities have a number of options at their disposal to maximize the benefits of vaccination. In particular, the effect of booster schedules on vaccine performance bears further study. Methods: To better understand the effect of booster schedules on vaccine performance, we used an agent-based modeling framework and a population pharmacokinetic model to simulate the impact of boosting frequency on the durability of vaccine protection against infection and severe acute disease. Results: Our work suggests that repeated dosing at frequent intervals (three or more times a year) may offset the degradation of vaccine efficacy, preserving the utility of vaccines in managing the ongoing pandemic. Conclusions: Given the practical significance of potential improvements in vaccine utility, clinical research to better understand the effects of repeated vaccination would be highly impactful. These findings are particularly relevant as public health authorities worldwide have reduced the frequency of boosters to once a year or less.
Collapse
Affiliation(s)
- Lin Yuan
- Fractal Therapeutics, Lexington, MA 02420, USA; (L.Y.); (M.S.)
| | | | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA;
| | - Debra van Egeren
- Department of Oncology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Shruthi Mangalaganesh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia;
| | | | - Michael S. Rogers
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA;
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Greg Hather
- Sage Therapeutics, Cambridge, MA 02142, USA;
| | - Laura F. White
- School of Public Health, Boston University, Boston, MA 02118, USA;
| | | |
Collapse
|
3
|
Nirmalarajah K, Aftanas P, Barati S, Chien E, Crowl G, Faheem A, Farooqi L, Jamal AJ, Khan S, Kotwa JD, Li AX, Mozafarihashjin M, Nasir JA, Shigayeva A, Yim W, Yip L, Zhong XZ, Katz K, Kozak R, McArthur AG, Daneman N, Maguire F, McGeer AJ, Duvvuri VR, Mubareka S. Identification of patient demographic, clinical, and SARS-CoV-2 genomic factors associated with severe COVID-19 using supervised machine learning: a retrospective multicenter study. BMC Infect Dis 2025; 25:132. [PMID: 39875869 PMCID: PMC11773898 DOI: 10.1186/s12879-025-10450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants. Although millions of SARS-CoV-2 genomes have been publicly shared in global databases, linkages with detailed clinical data are scarce. Therefore, we aimed to establish a COVID-19 patient dataset with linked clinical and viral genomic data to then examine associations between SARS-CoV-2 genomic signatures and clinical disease phenotypes. METHODS A cohort of adult patients with laboratory confirmed SARS-CoV-2 from 11 participating healthcare institutions in the Greater Toronto Area (GTA) were recruited from March 2020 to April 2022. Supervised machine learning (ML) models were developed to predict hospitalization using SARS-CoV-2 lineage-specific genomic signatures, patient demographics, symptoms, and pre-existing comorbidities. The relative importance of these features was then evaluated. RESULTS Complete clinical data and viral whole genome level information were obtained from 617 patients, 50.4% of whom were hospitalized. Notably, inpatients were older with a mean age of 66.67 years (SD ± 17.64 years), whereas outpatients had a mean age of 44.89 years (SD ± 16.00 years). SHapley Additive exPlanations (SHAP) analyses revealed that underlying vascular disease, underlying pulmonary disease, and fever were the most significant clinical features associated with hospitalization. In models built on the amino acid sequences of functional regions including spike, nucleocapsid, ORF3a, and ORF8 proteins, variants preceding the emergence of variants of concern (VOCs) or pre-VOC variants, were associated with hospitalization. CONCLUSIONS Viral genomic features have limited utility in predicting hospitalization across SARS-CoV-2 diversity. Combining clinical and viral genomic datasets provides perspective on patient specific and virus-related factors that impact COVID-19 disease severity. Overall, clinical features had greater discriminatory power than viral genomic features in predicting hospitalization.
Collapse
Affiliation(s)
- Kuganya Nirmalarajah
- Sunnybrook Research Institute, Toronto, ON, Canada
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Emily Chien
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | | | - Saman Khan
- Sinai Health System, Toronto, ON, Canada
| | | | - Angel X Li
- Sinai Health System, Toronto, ON, Canada
| | | | - Jalees A Nasir
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Winfield Yim
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Lily Yip
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Kevin Katz
- Shared Hospital Laboratory, Toronto, ON, Canada
- North York General Hospital, Toronto, ON, Canada
| | - Robert Kozak
- Sunnybrook Research Institute, Toronto, ON, Canada
- Shared Hospital Laboratory, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Andrew G McArthur
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Nick Daneman
- Sunnybrook Research Institute, Toronto, ON, Canada
| | - Finlay Maguire
- Sunnybrook Research Institute, Toronto, ON, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
- Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Allison J McGeer
- Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Venkata R Duvvuri
- Public Health Ontario, 661 University Avenue, Toronto, ON, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
- Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada.
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Shared Hospital Laboratory, Toronto, ON, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Chentoufi AA, Ulmer JB, BenMohamed L. Antigen Delivery Platforms for Next-Generation Coronavirus Vaccines. Vaccines (Basel) 2024; 13:30. [PMID: 39852809 PMCID: PMC11769099 DOI: 10.3390/vaccines13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/15/2024] [Accepted: 12/21/2024] [Indexed: 01/26/2025] Open
Abstract
The COVID-19 pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is in its sixth year and is being maintained by the inability of current spike-alone-based COVID-19 vaccines to prevent transmission leading to the continuous emergence of variants and sub-variants of concern (VOCs). This underscores the critical need for next-generation broad-spectrum pan-Coronavirus vaccines (pan-CoV vaccine) to break this cycle and end the pandemic. The development of a pan-CoV vaccine offering protection against a wide array of VOCs requires two key elements: (1) identifying protective antigens that are highly conserved between passed, current, and future VOCs; and (2) developing a safe and efficient antigen delivery system for induction of broad-based and long-lasting B- and T-cell immunity. This review will (1) present the current state of antigen delivery platforms involving a multifaceted approach, including bioinformatics, molecular and structural biology, immunology, and advanced computational methods; (2) discuss the challenges facing the development of safe and effective antigen delivery platforms; and (3) highlight the potential of nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) as the platform that is well suited to the needs of a next-generation pan-CoV vaccine, such as the ability to induce broad-based immunity and amenable to large-scale manufacturing to safely provide durable protective immunity against current and future Coronavirus threats.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA;
- Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Krishna B, Metaxaki M, Perera M, Wills M, Sithole N. Comparison of different T cell assays for the retrospective determination of SARS-CoV-2 infection. J Gen Virol 2024; 105. [PMID: 39704047 DOI: 10.1099/jgv.0.002055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
It is important to be able to retrospectively determine severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections with high accuracy, both for post-coronavirus disease 2019 (COVID-19) epidemiological studies, and to distinguish between Long COVID and other multi-syndromic diseases that have overlapping symptoms. Although serum antibody levels can be measured to retrospectively diagnose SARS-CoV-2 infections, peptide stimulation of memory T cell responses is a more sensitive approach. This is because robust memory T cells are generated after SARS-CoV-2 infection and persist even after antibodies wane below detectability thresholds. In this study, we compare T cell responses using FluoroSpot-based methods and overnight stimulation of whole blood with SARS-CoV-2 peptides followed by an ELISA. Both approaches have comparable sensitivity and specificity but require different equipment and samples to be used. Furthermore, the elimination of peptides that cross-react with other coronaviruses increases the assay specificity but trades off some sensitivity. Finally, this approach can be used on archival, cryopreserved PBMCs. This work shows comparative advantages for several methods to measure SARS-CoV-2 T cell responses that could be utilized by any laboratory studying the effects of the coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Benjamin Krishna
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Marina Metaxaki
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Marianne Perera
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark Wills
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Nyarie Sithole
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| |
Collapse
|
6
|
Zornikova K, Dianov D, Ivanova N, Davydova V, Nenasheva T, Fefelova E, Bogolyubova A. Features of Highly Homologous T-Cell Receptor Repertoire in the Immune Response to Mutations in Immunogenic Epitopes. Int J Mol Sci 2024; 25:12591. [PMID: 39684303 DOI: 10.3390/ijms252312591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
CD8+ T-cell immunity, mediated through interactions between human leukocyte antigen (HLA) and the T-cell receptor (TCR), plays a pivotal role in conferring immune memory and protection against viral infections. The emergence of SARS-CoV-2 variants presents a significant challenge to the existing population immunity. While numerous SARS-CoV-2 mutations have been associated with immune evasion from CD8+ T cells, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored, particularly for epitope-specific repertoires characterized by common TCRs. In this study, we investigated an HLA-A*24-restricted NYN epitope (Spike448-456) that elicits broad and highly homologous CD8+ T cell responses in COVID-19 patients. Eleven naturally occurring mutations in the NYN epitope, all of which retained cell surface presentation by HLA, were tested against four transgenic Jurkat reporter cell lines. Our findings demonstrate that, with the exception of L452R and the combined mutation L452Q + Y453F, these mutations have minimal impact on the avidity of recognition by NYN peptide-specific TCRs. Additionally, we observed that a similar TCR responded differently to mutant epitopes and demonstrated cross-reactivity to the unrelated VYF epitope (ORF3a112-120). The results contradict the idea that immune responses with limited receptor diversity are insufficient to provide protection against emerging variants.
Collapse
Affiliation(s)
- Ksenia Zornikova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Dmitry Dianov
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Natalia Ivanova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Vassa Davydova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Tatiana Nenasheva
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | | | | |
Collapse
|
7
|
Sharma S, Roy D, Cherian S. In-silico evaluation of the T-cell based immune response against SARS-CoV-2 omicron variants. Sci Rep 2024; 14:25413. [PMID: 39455652 PMCID: PMC11511884 DOI: 10.1038/s41598-024-75658-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
During of COVID-19 pandemic, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has continuously evolved, resulting in the emergence of several new variants of concerns (VOCs) with numerous mutations. These VOCs dominate in various regions due to increased transmissibility and antibody evasion, potentially reducing vaccine effectiveness. Nonetheless, it remains uncertain whether the recent SARS-CoV-2 VOCs have the ability to circumvent the T cell immunity elicited by either COVID-19 vaccination or natural infection. To address this, we conducted in-silico analysis to examine the impact of VOC-specific mutations at the epitope level and T cell cross-reactivity with the ancestral SARS-CoV-2. According to the in-silico investigation, T cell responses triggered by immunization or prior infections still recognize the variants in spite of mutations. These variants are expected to either maintain their dominant epitope HLA patterns or bind with new HLAs, unlike the epitopes of the ancestral strain. Our findings indicate that a significant proportion of immuno-dominant CD8 + and CD4 + epitopes are conserved across all the variants, implying that existing vaccines might maintain efficacy against new variations. However, further in-vitro and in-vivo studies are needed to validate the in-silico results and fully elucidate immune sensitivities to VOCs.
Collapse
Affiliation(s)
- Shivangi Sharma
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Diya Roy
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India
| | - Sarah Cherian
- Bioinformatics and Data Management Group, ICMR-National Institute of Virology, Pune, Maharashtra, 411001, India.
| |
Collapse
|
8
|
Colquhoun R, O’Toole Á, Hill V, McCrone JT, Yu X, Nicholls SM, Poplawski R, Whalley T, Groves N, Ellaby N, Loman N, Connor T, Rambaut A. A phylogenetics and variant calling pipeline to support SARS-CoV-2 genomic epidemiology in the UK. Virus Evol 2024; 10:veae083. [PMID: 39493537 PMCID: PMC11529618 DOI: 10.1093/ve/veae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024] Open
Abstract
In response to the escalating SARS-CoV-2 pandemic, in March 2020 the COVID-19 Genomics UK (COG-UK) consortium was established to enable national-scale genomic surveillance in the UK. By the end of 2020, 49% of all SARS-CoV-2 genome sequences globally had been generated as part of the COG-UK programme, and to date, this system has generated >3 million SARS-CoV-2 genomes. Rapidly and reliably analysing this unprecedented number of genomes was an enormous challenge. To fulfil this need and to inform public health decision-making, we developed a centralized pipeline that performs quality control, alignment, and variant calling and provides the global phylogenetic context of sequences. We present this pipeline and describe how we tailored it as the pandemic progressed to scale with the increasing amounts of data and to provide the most relevant analyses on a daily basis.
Collapse
Affiliation(s)
- Rachel Colquhoun
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh EH9 3FL, United Kingdom
| | - Áine O’Toole
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh EH9 3FL, United Kingdom
| | - Verity Hill
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh EH9 3FL, United Kingdom
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, New Haven, CT 06510, United States
| | - J T McCrone
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh EH9 3FL, United Kingdom
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109-1024, United States
| | - Xiaoyu Yu
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh EH9 3FL, United Kingdom
| | - Samuel M Nicholls
- Institute of Microbiology and Infection, University of Birmingham, School of Biosciences, Birmingham B15 2TT, United Kingdom
| | - Radoslaw Poplawski
- Institute of Microbiology and Infection, University of Birmingham, School of Biosciences, Birmingham B15 2TT, United Kingdom
| | - Thomas Whalley
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, United Kingdom
| | - Natalie Groves
- TARZET Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, United Kingdom
| | - Nicholas Ellaby
- TARZET Division, UK Health Security Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, United Kingdom
| | - Nick Loman
- Institute of Microbiology and Infection, University of Birmingham, School of Biosciences, Birmingham B15 2TT, United Kingdom
| | - Tom Connor
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales CF10 3AX, United Kingdom
- Pathogen Genomics Unit, Public Health Wales, Number 2 Capital Quarter, Tyndall St., Cardiff CF10 4BZ, United Kingdom
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Rd, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
9
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Al Khalaf R, Bernasconi A, Pinoli P. Systematic analysis of SARS-CoV-2 Omicron subvariants' impact on B and T cell epitopes. PLoS One 2024; 19:e0307873. [PMID: 39298436 PMCID: PMC11412522 DOI: 10.1371/journal.pone.0307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/14/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Epitopes are specific structures in antigens that are recognized by the immune system. They are widely used in the context of immunology-related applications, such as vaccine development, drug design, and diagnosis / treatment / prevention of disease. The SARS-CoV-2 virus has represented the main point of interest within the viral and genomic surveillance community in the last four years. Its ability to mutate and acquire new characteristics while it reorganizes into new variants has been analyzed from many perspectives. Understanding how epitopes are impacted by mutations that accumulate on the protein level cannot be underrated. METHODS With a focus on Omicron-named SARS-CoV-2 lineages, including the last WHO-designated Variants of Interest, we propose a workflow for data retrieval, integration, and analysis pipeline for conducting a database-wide study on the impact of lineages' characterizing mutations on all T cell and B cell linear epitopes collected in the Immune Epitope Database (IEDB) for SARS-CoV-2. RESULTS Our workflow allows us to showcase novel qualitative and quantitative results on 1) coverage of viral proteins by deposited epitopes; 2) distribution of epitopes that are mutated across Omicron variants; 3) distribution of Omicron characterizing mutations across epitopes. Results are discussed based on the type of epitope, the response frequency of the assays, and the sample size. Our proposed workflow can be reproduced at any point in time, given updated variant characterizations and epitopes from IEDB, thereby guaranteeing to observe a quantitative landscape of mutations' impact on demand. CONCLUSION A big data-driven analysis such as the one provided here can inform the next genomic surveillance policies in combatting SARS-CoV-2 and future epidemic viruses.
Collapse
Affiliation(s)
- Ruba Al Khalaf
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italia
| | - Anna Bernasconi
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italia
| | - Pietro Pinoli
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italia
| |
Collapse
|
11
|
Serdyuk YV, Zornikova KV, Dianov DV, Ivanova NO, Davydova VD, Fefelova EI, Nenasheva TA, Sheetikov SA, Bogolyubova AV. T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1631-1642. [PMID: 39418521 DOI: 10.1134/s0006297924090098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.
Collapse
Affiliation(s)
- Yana V Serdyuk
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ksenia V Zornikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nataliia O Ivanova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Vassa D Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina I Fefelova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Tatiana A Nenasheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
12
|
Nguyen A, Zhao H, Myagmarsuren D, Srinivasan S, Wu D, Chen J, Piszczek G, Schuck P. Modulation of biophysical properties of nucleocapsid protein in the mutant spectrum of SARS-CoV-2. eLife 2024; 13:RP94836. [PMID: 38941236 PMCID: PMC11213569 DOI: 10.7554/elife.94836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
Genetic diversity is a hallmark of RNA viruses and the basis for their evolutionary success. Taking advantage of the uniquely large genomic database of SARS-CoV-2, we examine the impact of mutations across the spectrum of viable amino acid sequences on the biophysical phenotypes of the highly expressed and multifunctional nucleocapsid protein. We find variation in the physicochemical parameters of its extended intrinsically disordered regions (IDRs) sufficient to allow local plasticity, but also observe functional constraints that similarly occur in related coronaviruses. In biophysical experiments with several N-protein species carrying mutations associated with major variants, we find that point mutations in the IDRs can have nonlocal impact and modulate thermodynamic stability, secondary structure, protein oligomeric state, particle formation, and liquid-liquid phase separation. In the Omicron variant, distant mutations in different IDRs have compensatory effects in shifting a delicate balance of interactions controlling protein assembly properties, and include the creation of a new protein-protein interaction interface in the N-terminal IDR through the defining P13L mutation. A picture emerges where genetic diversity is accompanied by significant variation in biophysical characteristics of functional N-protein species, in particular in the IDRs.
Collapse
Affiliation(s)
- Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Dulguun Myagmarsuren
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Sanjana Srinivasan
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| |
Collapse
|
13
|
Pavia G, Quirino A, Marascio N, Veneziano C, Longhini F, Bruni A, Garofalo E, Pantanella M, Manno M, Gigliotti S, Giancotti A, Barreca GS, Branda F, Torti C, Rotundo S, Lionello R, La Gamba V, Berardelli L, Gullì SP, Trecarichi EM, Russo A, Palmieri C, De Marco C, Viglietto G, Casu M, Sanna D, Ciccozzi M, Scarpa F, Matera G. Persistence of SARS-CoV-2 infection and viral intra- and inter-host evolution in COVID-19 hospitalized patients. J Med Virol 2024; 96:e29708. [PMID: 38804179 DOI: 10.1002/jmv.29708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.
Collapse
Affiliation(s)
- Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Federico Longhini
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Andrea Bruni
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Eugenio Garofalo
- Unit of Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Marta Pantanella
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Michele Manno
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Simona Gigliotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Aida Giancotti
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Giorgio Settimo Barreca
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Torti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Rotundo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Rosaria Lionello
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Valentina La Gamba
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Lavinia Berardelli
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Sara Palma Gullì
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Alessandro Russo
- Unit of Infectious and Tropical Disease, Department of Medical and Surgical Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, "Magna Græcia" University Hospital, Catanzaro, Italy
| |
Collapse
|
14
|
Martín-Galiano AJ, López D. Conservation of HLA Spike Protein Epitopes Supports T Cell Cross-Protection in SARS-CoV-2 Vaccinated Individuals against the Potentially Zoonotic Coronavirus Khosta-2. Int J Mol Sci 2024; 25:6087. [PMID: 38892276 PMCID: PMC11172828 DOI: 10.3390/ijms25116087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Heterologous vaccines, which induce immunity against several related pathogens, can be a very useful and rapid way to deal with new pandemics. In this study, the potential impact of licensed COVID-19 vaccines on cytotoxic and helper cell immune responses against Khosta-2, a novel sarbecovirus that productively infects human cells, was analyzed for the 567 and 41 most common HLA class I and II alleles, respectively. Computational predictions indicated that most of these 608 alleles, covering more than 90% of the human population, contain sufficient fully conserved T-cell epitopes between the Khosta-2 and SARS-CoV-2 spike-in proteins. Ninety percent of these fully conserved peptides for class I and 93% for class II HLA molecules were verified as epitopes recognized by CD8+ or CD4+ T lymphocytes, respectively. These results show a very high correlation between bioinformatic prediction and experimental assays, which strongly validates this study. This immunoinformatics analysis allowed a broader assessment of the alleles that recognize these peptides, a global approach at the population level that is not possible with experimental assays. In summary, these findings suggest that both cytotoxic and helper cell immune protection elicited by currently licensed COVID-19 vaccines should be effective against Khosta-2 virus infection. Finally, by being rapidly adaptable to future coronavirus pandemics, this study has potential public health implications.
Collapse
Affiliation(s)
- Antonio J. Martín-Galiano
- Core Scientific and Technical Units, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Daniel López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
15
|
Nhu LNT, Chambers M, Chantratita N, Cheah PY, Day NP, Dejnirattisai W, Dunachie SJ, Grifoni A, Hamers RL, Hill J, Jones EY, Klenerman P, Mongkolsapaya J, Screaton G, Sette A, Stuart DI, Tan CW, Thwaites G, Thanh VD, Wang LF, Tan LV, SEACOVARIANTS Consortium. Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium. Wellcome Open Res 2024; 9:181. [PMID: 39022321 PMCID: PMC11252647 DOI: 10.12688/wellcomeopenres.20742.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 07/20/2024] Open
Abstract
A strong and effective COVID-19 and future pandemic responses rely on global efforts to carry out surveillance of infections and emerging SARS-CoV-2 variants and to act accordingly in real time. Many countries in Southeast Asia lack capacity to determine the potential threat of new variants, or other emerging infections. Funded by Wellcome, the Southeast Asia initiative to combat SARS-CoV-2 variants (SEACOVARIANTS) consortium aims to develop and apply a multidisciplinary research platform in Southeast Asia (SEA) for rapid assessment of the biological significance of SARS-CoV-2 variants, thereby informing coordinated local, regional and global responses to the COVID-19 pandemic. Our proposal is delivered by the Vietnam and Thailand Wellcome Africa Asia Programmes, bringing together a multidisciplinary team in Indonesia, Thailand and Vietnam with partners in Singapore, the UK and the USA. Herein we outline five work packages to deliver strengthened regional scientific capacity that can be rapidly deployed for future outbreak responses.
Collapse
Affiliation(s)
| | - Mary Chambers
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phaik Yeong Cheah
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P.J. Day
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Alba Grifoni
- La Jolla Institute for Immunology, San Diego, California, USA
| | - Raph L. Hamers
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Jennifer Hill
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - E. Yvonne Jones
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Paul Klenerman
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Juthathip Mongkolsapaya
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Gavin Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | | | - David I. Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Guy Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| | - Vu Duy Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
| | - SEACOVARIANTS Consortium
- Oxford University Clinical Research Unit, Ho Chi Minh city, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- La Jolla Institute for Immunology, San Diego, California, USA
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, England, UK
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
16
|
Álvarez-Herrera M, Sevilla J, Ruiz-Rodriguez P, Vergara A, Vila J, Cano-Jiménez P, González-Candelas F, Comas I, Coscollá M. VIPERA: Viral Intra-Patient Evolution Reporting and Analysis. Virus Evol 2024; 10:veae018. [PMID: 38510921 PMCID: PMC10953798 DOI: 10.1093/ve/veae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.
Collapse
Affiliation(s)
- Miguel Álvarez-Herrera
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Jordi Sevilla
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Paula Ruiz-Rodriguez
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| | - Andrea Vergara
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Jordi Vila
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona; University of Barcelona; ISGlobal, C. de Villarroel, 170, Barcelona 08007, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Pablo Cano-Jiménez
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), C/ Jaime Roig, 11, Valencia 46010, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Mireia Coscollá
- Institute for Integrative Systems Biology (I2SysBio, University of Valencia—CSIC), FISABIO Joint Research Unit ‘Infection and Public Health’, C/Agustín Escardino, 9, Paterna 46980, Spain
| |
Collapse
|
17
|
Cankat S, Demael MU, Swadling L. In search of a pan-coronavirus vaccine: next-generation vaccine design and immune mechanisms. Cell Mol Immunol 2024; 21:103-118. [PMID: 38148330 PMCID: PMC10805787 DOI: 10.1038/s41423-023-01116-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/28/2023] Open
Abstract
Members of the coronaviridae family are endemic to human populations and have caused several epidemics and pandemics in recent history. In this review, we will discuss the feasibility of and progress toward the ultimate goal of creating a pan-coronavirus vaccine that can protect against infection and disease by all members of the coronavirus family. We will detail the unmet clinical need associated with the continued transmission of SARS-CoV-2, MERS-CoV and the four seasonal coronaviruses (HCoV-OC43, NL63, HKU1 and 229E) in humans and the potential for future zoonotic coronaviruses. We will highlight how first-generation SARS-CoV-2 vaccines and natural history studies have greatly increased our understanding of effective antiviral immunity to coronaviruses and have informed next-generation vaccine design. We will then consider the ideal properties of a pan-coronavirus vaccine and propose a blueprint for the type of immunity that may offer cross-protection. Finally, we will describe a subset of the diverse technologies and novel approaches being pursued with the goal of developing broadly or universally protective vaccines for coronaviruses.
Collapse
Affiliation(s)
- S Cankat
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - M U Demael
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK
| | - L Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London, NW3 2PP, UK.
| |
Collapse
|
18
|
Harari S, Miller D, Fleishon S, Burstein D, Stern A. Using big sequencing data to identify chronic SARS-Coronavirus-2 infections. Nat Commun 2024; 15:648. [PMID: 38245511 PMCID: PMC10799923 DOI: 10.1038/s41467-024-44803-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The evolution of SARS-Coronavirus-2 (SARS-CoV-2) has been characterized by the periodic emergence of highly divergent variants. One leading hypothesis suggests these variants may have emerged during chronic infections of immunocompromised individuals, but limited data from these cases hinders comprehensive analyses. Here, we harnessed millions of SARS-CoV-2 genomes to identify potential chronic infections and used language models (LM) to infer chronic-associated mutations. First, we mined the SARS-CoV-2 phylogeny and identified chronic-like clades with identical metadata (location, age, and sex) spanning over 21 days, suggesting a prolonged infection. We inferred 271 chronic-like clades, which exhibited characteristics similar to confirmed chronic infections. Chronic-associated mutations were often high-fitness immune-evasive mutations located in the spike receptor-binding domain (RBD), yet a minority were unique to chronic infections and absent in global settings. The probability of observing high-fitness RBD mutations was 10-20 times higher in chronic infections than in global transmission chains. The majority of RBD mutations in BA.1/BA.2 chronic-like clades bore predictive value, i.e., went on to display global success. Finally, we used our LM to infer hundreds of additional chronic-like clades in the absence of metadata. Our approach allows mining extensive sequencing data and providing insights into future evolutionary patterns of SARS-CoV-2.
Collapse
Affiliation(s)
- Sheri Harari
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Danielle Miller
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Shay Fleishon
- Israeli Health Intelligence Agency, Public Health Division, Ministry of Health, Jerusalem, Israel
| | - David Burstein
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel.
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
20
|
Gomez-Romero N, Basurto-Alcantara FJ, Velazquez-Salinas L. Assessing the Potential Role of Cats ( Felis catus) as Generators of Relevant SARS-CoV-2 Lineages during the Pandemic. Pathogens 2023; 12:1361. [PMID: 38003825 PMCID: PMC10675002 DOI: 10.3390/pathogens12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Several questions regarding the evolution of SARS-CoV-2 remain poorly elucidated. One of these questions is the possible evolutionary impact of SARS-CoV-2 after the infection in domestic animals. In this study, we aimed to evaluate the potential role of cats as generators of relevant SARS-CoV-2 lineages during the pandemic. A total of 105 full-length genome viral sequences obtained from naturally infected cats during the pandemic were evaluated by distinct evolutionary algorithms. Analyses were enhanced, including a set of highly related SARS-CoV-2 sequences recovered from human populations. Our results showed the apparent high susceptibility of cats to the infection SARS-CoV-2 compared with other animal species. Evolutionary analyses indicated that the phylogenomic characteristics displayed by cat populations were influenced by the dominance of specific SARS-CoV-2 genetic groups affecting human populations. However, disparate dN/dS rates at some genes between populations recovered from cats and humans suggested that infection in these two species may suggest a different evolutionary constraint for SARS-CoV-2. Interestingly, the branch selection analysis showed evidence of the potential role of natural selection in the emergence of five distinct cat lineages during the pandemic. Although these lineages were apparently irrelevant to public health during the pandemic, our results suggested that additional studies are needed to understand the role of other animal species in the evolution of SARS-CoV-2 during the pandemic.
Collapse
Affiliation(s)
- Ninnet Gomez-Romero
- Comisión México-Estados Unidos para la Prevención de Fiebre Aftosa y Otras Enfermedades Exóticas de los Animales, Carretera Mexico-Toluca Km 15.5 Piso 4 Col. Palo Alto, Cuajimalpa de Morelos, Mexico City 05110, Mexico;
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Francisco Javier Basurto-Alcantara
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
21
|
Mwanga MJ, Lambisia AW, Morobe JM, Murunga N, Moraa E, Ndwiga L, Cheruiyot R, Musyoki J, Mutunga M, Guzman-Rincon LM, Sande C, Mwangangi J, Bejon P, Ochola-Oyier LI, Nokes DJ, Agoti CN, Nyiro J, Githinji G. New SARS-CoV-2 Omicron Variant with Spike Protein Mutation Y451H, Kilifi, Kenya, March-May 2023. Emerg Infect Dis 2023; 29:2376-2379. [PMID: 37708843 PMCID: PMC10617346 DOI: 10.3201/eid2911.230894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
We report a newly emerged SARS-CoV-2 Omicron subvariant FY.4 that has mutations Y451H in spike and P42L in open reading frame 3a proteins. FY.4 emergence coincided with increased SARS-CoV-2 cases in coastal Kenya during April-May 2023. Continued SARS-CoV-2 genomic surveillance is needed to identify new lineages to inform COVID-19 outbreak prevention.
Collapse
|
22
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
23
|
Khadri L, Ziraksaz MH, Barekzai AB, Ghauri B. T cell responses to SARS-CoV-2. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 202:183-217. [PMID: 38237986 DOI: 10.1016/bs.pmbts.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
This chapter provides a comprehensive analysis of T cell responses in COVID-19, focusing on T cell differentiation, specificity, and functional characteristics during SARS-CoV-2 infection. The differentiation of T cells in COVID-19 is explored, highlighting the key factors that influence T cell fate and effector functions. The immunology of the spike protein, a critical component of SARS-CoV-2, is discussed in detail, emphasizing its role in driving T-cell responses. The cellular immune responses against SARS-CoV-2 during acute infection are examined, including the specificity, phenotype, and functional attributes of SARS-CoV-2-specific T-cell responses. Furthermore, the chapter explores T-cell cross-recognition against other human coronaviruses (HCoVs) and the mechanisms of immune regulation mediated by spike proteins. This includes the induction of regulation through the innate immune system, the activation of self-spike protein-cross-reactive regulatory T cells, and the impact of self-tolerance on the regulation of spike proteins. The chapter investigates T cell responses to self-spike proteins and their implications in disease. The role of spike proteins as immunological targets in the context of COVID-19 is examined, shedding light on potential therapeutic interventions and clinical trials in autoimmune diseases. In conclusion, this chapter provides a comprehensive understanding of T cell responses in COVID-19, highlighting their differentiation, immune regulation, and clinical implications. This knowledge contributes to the development of targeted immunotherapies, vaccine strategies, and diagnostic approaches for COVID-19 and other related diseases.
Collapse
Affiliation(s)
- Laiqha Khadri
- Department of Biotechnology, Immune Inspired, Bangalore.
| | | | | | - Baber Ghauri
- Department of Biotechnology, Immune Inspired, Bangalore
| |
Collapse
|
24
|
Wellington D, Yin Z, Yu Z, Heilig R, Davis S, Fischer R, Felce SL, Antoun E, Hublitz P, Beveridge R, Dong D, Liu G, Yao X, Peng Y, Kessler BM, Dong T. SARS-CoV-2 mutations affect antigen processing by the proteasome to alter CD8 + T cell responses. Heliyon 2023; 9:e20076. [PMID: 37842619 PMCID: PMC10570596 DOI: 10.1016/j.heliyon.2023.e20076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Mutations within viral epitopes can result in escape from T cells, but the contribution of mutations in flanking regions of epitopes in SARS-CoV-2 has not been investigated. Focusing on two SARS-CoV-2 nucleoprotein CD8+ epitopes, we investigated the contribution of these flanking mutations to proteasomal processing and T cell activation. We found decreased NP9-17-B*27:05 CD8+ T cell responses to the NP-Q7K mutation, likely due to a lack of efficient epitope production by the proteasome, suggesting immune escape caused by this mutation. In contrast, NP-P6L and NP-D103 N/Y mutations flanking the NP9-17-B*27:05 and NP105-113-B*07:02 epitopes, respectively, increased CD8+ T cell responses associated with enhanced epitope production by the proteasome. Our results provide evidence that SARS-CoV-2 mutations outside the epitope could have a significant impact on proteasomal processing, either contributing to T cell escape or enhancement that may be exploited for future vaccine design.
Collapse
Affiliation(s)
- Dannielle Wellington
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Zixi Yin
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Zhanru Yu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Raphael Heilig
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Simon Davis
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Roman Fischer
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Elie Antoun
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Ryan Beveridge
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Danning Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Guihai Liu
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| | - Benedikt M. Kessler
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, Nuffield Department of Medicine, Oxford University, Oxford, OX3 7FZ, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, Oxford University, Oxford, OX3 9DS, UK
| |
Collapse
|
25
|
Rao V, Banerjee U, Sambaturu N, Chunchanur S, Ambica R, Chandra N. Pressured cytotoxic T cell epitope strength among SARS-CoV-2 variants correlates with COVID-19 severity. HLA 2023; 102:464-476. [PMID: 37134008 DOI: 10.1111/tan.15071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Heterogeneity in susceptibility among individuals to COVID-19 has been evident through the pandemic worldwide. Cytotoxic T lymphocyte (CTL) responses generated against pathogens in certain individuals are known to impose selection pressure on the pathogen, thus driving emergence of new variants. In this study, we probe the role played by host genetic heterogeneity in terms of HLA-genotypes in determining differential COVID-19 severity in patients. We use bioinformatic tools for CTL epitope prediction to identify epitopes under immune pressure. Using HLA-genotype data of COVID-19 patients from a local cohort, we observe that the recognition of pressured epitopes from the parent strain Wuhan-Hu-1 correlates with COVID-19 severity. We also identify and rank list HLA-alleles and epitopes that offer protectivity against severe disease in infected individuals. Finally, we shortlist a set of 6 pressured and protective epitopes that represent regions in the viral proteome that are under high immune pressure across SARS-CoV-2 variants. Identification of such epitopes, defined by the distribution of HLA-genotypes among members of a population, could potentially aid in prediction of indigenous variants of SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Vishal Rao
- Department of Biochemistry, Indian Institute of Science (IISc), Bangalore, India
| | - Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science (IISc), Bangalore, India
| | - Narmada Sambaturu
- Department of Biochemistry, Indian Institute of Science (IISc), Bangalore, India
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Sneha Chunchanur
- Department of Microbiology, Bangalore Medical College and Research Institute (BMCRI), Bangalore, India
| | - R Ambica
- Department of Microbiology, Bangalore Medical College and Research Institute (BMCRI), Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science (IISc), Bangalore, India
- Center for BioSystems Science and Engineering (BSSE), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
26
|
Maldonado-Cabrera A, Colin-Vilchis JA, Haque U, Velazquez C, Alvarez Villaseñor AS, Magdaleno-Márquez LE, Calleros-Muñoz CI, Figueroa-Enríquez KF, Angulo-Molina A, Gallego-Hernández AL. SARS-CoV-2 Variants of Concern and Clinical Severity in the Mexican Pediatric Population. Infect Dis Rep 2023; 15:535-548. [PMID: 37737000 PMCID: PMC10514801 DOI: 10.3390/idr15050053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) presents global heterogeneity, and their relative effect on pediatric severity is still limited. In this study, we associate VOCs with pediatric clinical severity outcomes in Mexico. Bioinformatics methods were used to characterize VOCs and single amino acid (aa) mutations in 75,348 SARS-CoV-2 genetic sequences from February 2020 to October 2022. High-predominance VOCs groups were calculated and subsequently associated with 372,989 COVID-19 clinical pediatric outcomes. We identified 21 high-frequency mutations related to Omicron lineages with an increased prevalence in pediatric sequences compared to adults. Alpha and the other lineages had a significant increase in case fatality rate (CFR), intensive critical unit (ICU) admission, and automated mechanical ventilation (AMV). Furthermore, a logistic model with age-adjusted variables estimated an increased risk of hospitalization, ICU/AMV, and death in Gamma and Alpha, in contrast to the other lineages. We found that, regardless of the VOCs lineage, infant patients presented the worst severity prognoses. Our findings improve the understanding of the impact of VOCs on pediatric patients across time, regions, and clinical outcomes. Enhanced understanding of the pediatric severity for VOCs would enable the development and improvement of public health strategies worldwide.
Collapse
Affiliation(s)
- Anahí Maldonado-Cabrera
- Department of Chemical Biological Sciences, University of Sonora, Hermosillo 83000, Mexico; (A.M.-C.); (C.V.)
- Department of Epidemiology, Family Medicine Unit No. 37, Mexican Social Security Institute (IMSS), Hermosillo 83260, Mexico
| | | | - Ubydul Haque
- Rutgers Global Health Institute, New Brunswick, NJ 08901, USA;
- Department of Biostatistics and Epidemiology, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Velazquez
- Department of Chemical Biological Sciences, University of Sonora, Hermosillo 83000, Mexico; (A.M.-C.); (C.V.)
| | | | | | | | | | - Aracely Angulo-Molina
- Department of Chemical Biological Sciences, University of Sonora, Hermosillo 83000, Mexico; (A.M.-C.); (C.V.)
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Ana Lucía Gallego-Hernández
- Department of Chemical Biological Sciences, University of Sonora, Hermosillo 83000, Mexico; (A.M.-C.); (C.V.)
| |
Collapse
|
27
|
Tiezzi C, Vecchi A, Rossi M, Cavazzini D, Bolchi A, Laccabue D, Doselli S, Penna A, Sacchelli L, Brillo F, Meschi T, Ticinesi A, Nouvenne A, Donofrio G, Zanelli P, Benecchi M, Giuliodori S, Fisicaro P, Montali I, Ceccatelli Berti C, Reverberi V, Montali A, Urbani S, Pedrazzi G, Missale G, Telenti A, Corti D, Ottonello S, Ferrari C, Boni C. Natural heteroclitic-like peptides are generated by SARS-CoV-2 mutations. iScience 2023; 26:106940. [PMID: 37275517 PMCID: PMC10200277 DOI: 10.1016/j.isci.2023.106940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Humoral immunity is sensitive to evasion by SARS-CoV-2 mutants, but CD8 T cells seem to be more resistant to mutational inactivation. By a systematic analysis of 30 spike variant peptides containing the most relevant VOC and VOI mutations that have accumulated overtime, we show that in vaccinated and convalescent subjects, mutated epitopes can have not only a neutral or inhibitory effect on CD8 T cell recognition but can also enhance or generate de novo CD8 T cell responses. The emergence of these mutated T cell function enhancing epitopes likely reflects an epiphenomenon of SARS-CoV-2 evolution driven by antibody evasion and increased virus transmissibility. In a subset of individuals with weak and narrowly focused CD8 T cell responses selection of these heteroclitic-like epitopes may bear clinical relevance by improving antiviral protection. The functional enhancing effect of these peptides is also worth of consideration for the future development of new generation, more potent COVID-19 vaccines.
Collapse
Affiliation(s)
- Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Davide Cavazzini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Angelo Bolchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sara Doselli
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Luca Sacchelli
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Federica Brillo
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Antonio Nouvenne
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Paola Zanelli
- Unità di Immunogenetica dei Trapianti, Azienda Ospedaliero Universitaria di Parma, Parma, Italy
| | - Magda Benecchi
- Unità di Immunogenetica dei Trapianti, Azienda Ospedaliero Universitaria di Parma, Parma, Italy
| | - Silvia Giuliodori
- Unità di Immunogenetica dei Trapianti, Azienda Ospedaliero Universitaria di Parma, Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Valentina Reverberi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Urbani
- UO Immunoematologia e Medicina Trasfusionale, Dipartimento Diagnostico, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Simone Ottonello
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Interdepartmental Center Biopharmanet-Tec, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
28
|
Duette G, Lee E, Martins Costa Gomes G, Tungatt K, Doyle C, Stylianou VV, Lee A, Maddocks S, Taylor J, Khanna R, Bull RA, Martinello M, Sandgren KJ, Cunningham AL, Palmer S. Highly Networked SARS-CoV-2 Peptides Elicit T Cell Responses with Enhanced Specificity. Immunohorizons 2023; 7:508-527. [PMID: 37358499 PMCID: PMC10580120 DOI: 10.4049/immunohorizons.2300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Identifying SARS-CoV-2-specific T cell epitope-derived peptides is critical for the development of effective vaccines and measuring the duration of specific SARS-CoV-2 cellular immunity. In this regard, we previously identified T cell epitope-derived peptides within topologically and structurally essential regions of SARS-CoV-2 spike and nucleocapsid proteins by applying an immunoinformatics pipeline. In this study, we selected 30 spike- and nucleocapsid-derived peptides and assessed whether these peptides induce T cell responses and avoid major mutations found in SARS-CoV-2 variants of concern. Our peptide pool was highly specific, with only a single peptide driving cross-reactivity in people unexposed to SARS-COV-2, and immunogenic, inducing a polyfunctional response in CD4+ and CD8+ T cells from COVID-19 recovered individuals. All peptides were immunogenic and individuals recognized broad and diverse peptide repertoires. Moreover, our peptides avoided most mutations/deletions associated with all four SARS-CoV-2 variants of concern while retaining their physicochemical properties even when genetic changes are introduced. This study contributes to an evolving definition of individual CD4+ and CD8+ T cell epitopes that can be used for specific diagnostic tools for SARS-CoV-2 T cell responses and is relevant to the development of variant-resistant and durable T cell-stimulating vaccines.
Collapse
Affiliation(s)
- Gabriel Duette
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Eunok Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Katie Tungatt
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Chloe Doyle
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Vicki V. Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashley Lee
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Janette Taylor
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Rajiv Khanna
- QIMR Berghofer Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
- Blacktown & Mount Druitt Hospital, Blacktown, New South Wales, Australia
| | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Yin Z, Chen JL, Lu Y, Wang B, Godfrey L, Mentzer AJ, Yao X, Liu G, Wellington D, Zhao Y, Wing PAC, Dejnirattisa W, Supasa P, Liu C, Hublitz P, Beveridge R, Waugh C, Clark SA, Clark K, Sopp P, Rostron T, Mongkolsapaya J, Screaton GR, Ogg G, Ewer K, Pollard AJ, Gilbert S, Knight JC, Lambe T, Smith GL, Dong T, Peng Y. Evaluation of T cell responses to naturally processed variant SARS-CoV-2 spike antigens in individuals following infection or vaccination. Cell Rep 2023; 42:112470. [PMID: 37141092 PMCID: PMC10121105 DOI: 10.1016/j.celrep.2023.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Most existing studies characterizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses are peptide based. This does not allow evaluation of whether tested peptides are processed and presented canonically. In this study, we use recombinant vaccinia virus (rVACV)-mediated expression of SARS-CoV-2 spike protein and SARS-CoV-2 infection of angiotensin-converting enzyme (ACE)-2-transduced B cell lines to evaluate overall T cell responses in a small cohort of recovered COVID-19 patients and uninfected donors vaccinated with ChAdOx1 nCoV-19. We show that rVACV expression of SARS-CoV-2 antigen can be used as an alternative to SARS-CoV-2 infection to evaluate T cell responses to naturally processed spike antigens. In addition, the rVACV system can be used to evaluate the cross-reactivity of memory T cells to variants of concern (VOCs) and to identify epitope escape mutants. Finally, our data show that both natural infection and vaccination could induce multi-functional T cell responses with overall T cell responses remaining despite the identification of escape mutations.
Collapse
Affiliation(s)
- Zixi Yin
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ji-Li Chen
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Beibei Wang
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Dannielle Wellington
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Yiqi Zhao
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Peter A C Wing
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Wanwisa Dejnirattisa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ryan Beveridge
- Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Timothy Rostron
- Sequencing Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Graham Ogg
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Katie Ewer
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK; National Institute for Health Research Oxford Biomedical Research Center, Oxford, UK
| | - Sarah Gilbert
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Lambe
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Tao Dong
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Yanchun Peng
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
30
|
Alsuwairi FA, Alsaleh AN, Alsanea MS, Al-Qahtani AA, Obeid D, Almaghrabi RS, Alahideb BM, AlAbdulkareem MA, Mutabagani MS, Althawadi SI, Altamimi SA, Alshukairi AN, Alhamlan FS. Association of SARS-CoV-2 Nucleocapsid Protein Mutations with Patient Demographic and Clinical Characteristics during the Delta and Omicron Waves. Microorganisms 2023; 11:1288. [PMID: 37317262 PMCID: PMC10224071 DOI: 10.3390/microorganisms11051288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 06/16/2023] Open
Abstract
SARS-CoV-2 genomic mutations outside the spike protein that may increase transmissibility and disease severity have not been well characterized. This study identified mutations in the nucleocapsid protein and their possible association with patient characteristics. We analyzed 695 samples from patients with confirmed COVID-19 in Saudi Arabia between 1 April 2021, and 30 April 2022. Nucleocapsid protein mutations were identified through whole genome sequencing. 𝜒2 tests and t tests assessed associations between mutations and patient characteristics. Logistic regression estimated the risk of intensive care unit (ICU) admission or death. Of the 60 mutations identified, R203K was the most common, followed by G204R, P13L, E31del, R32del, and S33del. These mutations were associated with reduced risk of ICU admission. P13L, E31del, R32del, and S33del were also associated with reduced risk of death. By contrast, D63G, R203M, and D377Y were associated with increased risk of ICU admission. Most mutations were detected in the SR-rich region, which was associated with low risk of death. The C-tail and central linker regions were associated with increased risk of ICU admission, whereas the N-arm region was associated with reduced ICU admission risk. Consequently, mutations in the N protein must be observed, as they may exacerbate viral infection and disease severity. Additional research is needed to validate the mutations' associations with clinical outcomes.
Collapse
Affiliation(s)
- Feda A. Alsuwairi
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma N. Alsaleh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Madain S. Alsanea
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Ahmed A. Al-Qahtani
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Dalia Obeid
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Public Health Laboratories, Public Health Authority, Riyadh 13351, Saudi Arabia
| | - Reem S. Almaghrabi
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Basma M. Alahideb
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maha A. AlAbdulkareem
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Maysoon S. Mutabagani
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sahar I. Althawadi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Sara A. Altamimi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abeer N. Alshukairi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Fatimah S. Alhamlan
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
31
|
Wu D, Efimov GA, Bogolyubova AV, Pierce BG, Mariuzza RA. Structural insights into protection against a SARS-CoV-2 spike variant by T cell receptor diversity. J Biol Chem 2023; 299:103035. [PMID: 36806685 PMCID: PMC9934920 DOI: 10.1016/j.jbc.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.
Collapse
Affiliation(s)
- Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | | | | | - Brian G Pierce
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Roy A Mariuzza
- W.M. Keck Laboratory for Structural Biology, University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, Maryland, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
32
|
Carter B, Huang P, Liu G, Liang Y, Lin PJC, Peng BH, McKay LGA, Dimitrakakis A, Hsu J, Tat V, Saenkham-Huntsinger P, Chen J, Kaseke C, Gaiha GD, Xu Q, Griffiths A, Tam YK, Tseng CTK, Gifford DK. A pan-variant mRNA-LNP T cell vaccine protects HLA transgenic mice from mortality after infection with SARS-CoV-2 Beta. Front Immunol 2023; 14:1135815. [PMID: 36969239 PMCID: PMC10033589 DOI: 10.3389/fimmu.2023.1135815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Licensed COVID-19 vaccines ameliorate viral infection by inducing production of neutralizing antibodies that bind the SARS-CoV-2 Spike protein and inhibit viral cellular entry. However, the clinical effectiveness of these vaccines is transitory as viral variants escape antibody neutralization. Effective vaccines that solely rely upon a T cell response to combat SARS-CoV-2 infection could be transformational because they can utilize highly conserved short pan-variant peptide epitopes, but a mRNA-LNP T cell vaccine has not been shown to provide effective anti-SARS-CoV-2 prophylaxis. Here we show a mRNA-LNP vaccine (MIT-T-COVID) based on highly conserved short peptide epitopes activates CD8+ and CD4+ T cell responses that attenuate morbidity and prevent mortality in HLA-A*02:01 transgenic mice infected with SARS-CoV-2 Beta (B.1.351). We found CD8+ T cells in mice immunized with MIT-T-COVID vaccine significantly increased from 1.1% to 24.0% of total pulmonary nucleated cells prior to and at 7 days post infection (dpi), respectively, indicating dynamic recruitment of circulating specific T cells into the infected lungs. Mice immunized with MIT-T-COVID had 2.8 (2 dpi) and 3.3 (7 dpi) times more lung infiltrating CD8+ T cells than unimmunized mice. Mice immunized with MIT-T-COVID had 17.4 times more lung infiltrating CD4+ T cells than unimmunized mice (7 dpi). The undetectable specific antibody response in MIT-T-COVID-immunized mice demonstrates specific T cell responses alone can effectively attenuate the pathogenesis of SARS-CoV-2 infection. Our results suggest further study is merited for pan-variant T cell vaccines, including for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.
Collapse
Affiliation(s)
- Brandon Carter
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Pinghan Huang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Ge Liu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yuejin Liang
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | | | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Lindsay G. A. McKay
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Alexander Dimitrakakis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason Hsu
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Vivian Tat
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Panatda Saenkham-Huntsinger
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
| | - Jinjin Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
| | - Gaurav D. Gaiha
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, United States
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Anthony Griffiths
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | | | - Chien-Te K. Tseng
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, United States
- *Correspondence: Chien-Te K. Tseng, ; David K. Gifford,
| | - David K. Gifford
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- *Correspondence: Chien-Te K. Tseng, ; David K. Gifford,
| |
Collapse
|
33
|
Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, Robertson DL. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol 2023; 21:162-177. [PMID: 36653446 PMCID: PMC9847462 DOI: 10.1038/s41579-022-00841-7] [Citation(s) in RCA: 410] [Impact Index Per Article: 205.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/19/2023]
Abstract
In late 2020, after circulating for almost a year in the human population, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibited a major step change in its adaptation to humans. These highly mutated forms of SARS-CoV-2 had enhanced rates of transmission relative to previous variants and were termed 'variants of concern' (VOCs). Designated Alpha, Beta, Gamma, Delta and Omicron, the VOCs emerged independently from one another, and in turn each rapidly became dominant, regionally or globally, outcompeting previous variants. The success of each VOC relative to the previously dominant variant was enabled by altered intrinsic functional properties of the virus and, to various degrees, changes to virus antigenicity conferring the ability to evade a primed immune response. The increased virus fitness associated with VOCs is the result of a complex interplay of virus biology in the context of changing human immunity due to both vaccination and prior infection. In this Review, we summarize the literature on the relative transmissibility and antigenicity of SARS-CoV-2 variants, the role of mutations at the furin spike cleavage site and of non-spike proteins, the potential importance of recombination to virus success, and SARS-CoV-2 evolution in the context of T cells, innate immunity and population immunity. SARS-CoV-2 shows a complicated relationship among virus antigenicity, transmission and virulence, which has unpredictable implications for the future trajectory and disease burden of COVID-19.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - William T Harvey
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Sharon J Peacock
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, UK
| | - Wendy S Barclay
- Department of Infectious Disease, St Mary's Medical School, Imperial College London, London, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - David L Robertson
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK.
| |
Collapse
|
34
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
35
|
SARS-CoV-2 Genome Variations in Viral Shedding of an Immunocompromised Patient with Non-Hodgkin's Lymphoma. Viruses 2023; 15:v15020377. [PMID: 36851588 PMCID: PMC9962578 DOI: 10.3390/v15020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) is the most transmissible ß-coronavirus in history, affecting all population groups. Immunocompromised patients, particularly cancer patients, have been highlighted as a reservoir to promote accumulation of viral mutations throughout persistent infection. CASE PRESENTATION We aimed to describe the clinical course and SARS-CoV-2 mutation profile for 102 days in an immunocompromised patient with non-Hodgkin's lymphoma and COVID-19. We used RT-qPCR to quantify SARS-CoV-2 viral load over time and whole-virus genome sequencing to identify viral lineage and mutation profile. The patient presented with a persistent infection through 102 days while being treated with cytotoxic chemotherapy for non-Hodgkin's lymphoma and received targeted therapy for COVID-19 with remdesivir and hyperimmune plasma. All sequenced samples belonged to the BA.1.1 lineage. We detected nine amino acid substitutions in five viral genes (Nucleocapsid, ORF1a, ORF1b, ORF13a, and ORF9b), grouped in two clusters: the first cluster with amino acid substitutions only detected on days 39 and 87 of sample collection, and the second cluster with amino acid substitutions only detected on day 95 of sample collection. The Spike gene remained unchanged in all samples. Viral load was dynamic but consistent with the disease flares. CONCLUSIONS This report shows that the multiple mutations that occur in an immunocompromised patient with persistent COVID-19 could provide information regarding viral evolution and emergence of new SARS-CoV-2 variants.
Collapse
|
36
|
Kumar A, Asghar A, Singh HN, Faiq MA, Kumar S, Narayan RK, Kumar G, Dwivedi P, Sahni C, Jha RK, Kulandhasamy M, Prasoon P, Sesham K, Kant K, Pandey SN. SARS-CoV-2 Omicron Variant Genomic Sequences and Their Epidemiological Correlates Regarding the End of the Pandemic: In Silico Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e42700. [PMID: 36688013 PMCID: PMC9843602 DOI: 10.2196/42700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. OBJECTIVE The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. METHODS We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. RESULTS Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). CONCLUSIONS In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Adil Asghar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Systems Biology Columbia University Irving Medical Center New York, NY United States
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network New Delhi India
- New York University Langone Health Center Robert I Grossman School of Medicine New York University New York, NY United States
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network New Delhi India
- Center for Proteomics and Drug Discovery Amity Institute of Biotechnology Amity University, Maharashtra Mumbai India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network New Delhi India
- Dr BC Roy Multi-speciality Medical Research Centre Indian Institute of Technology Kharagpur India
| | - Gopichand Kumar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Prakhar Dwivedi
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Chetan Sahni
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Anatomy Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Rakesh K Jha
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Biochemistry Maulana Azad Medical College New Delhi India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network New Delhi India
- School of Medicine University of Pittsburgh Pittsburgh, PA United States
| | - Kishore Sesham
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Anatomy All India Institute of Medical Sciences-Mangalagiri Mangalagiri India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Microbiology All India Institute of Medical Sciences-Bathinda Bathinda India
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Zoology Banaras Hindu University Varanasi India
| |
Collapse
|
37
|
Keeton R, Tincho MB, Suzuki A, Benede N, Ngomti A, Baguma R, Chauke MV, Mennen M, Skelem S, Adriaanse M, Grifoni A, Weiskopf D, Sette A, Bekker LG, Gray G, Ntusi NA, Burgers WA, Riou C. Impact of SARS-CoV-2 exposure history on the T cell and IgG response. Cell Rep Med 2022; 4:100898. [PMID: 36584684 PMCID: PMC9771741 DOI: 10.1016/j.xcrm.2022.100898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposures, from infection or vaccination, can potently boost spike antibody responses. Less is known about the impact of repeated exposures on T cell responses. Here, we compare the prevalence and frequency of peripheral SARS-CoV-2-specific T cell and immunoglobulin G (IgG) responses in 190 individuals with complex SARS-CoV-2 exposure histories. As expected, an increasing number of SARS-CoV-2 spike exposures significantly enhances the magnitude of IgG responses, while repeated exposures improve the number of T cell responders but have less impact on SARS-CoV-2 spike-specific T cell frequencies in the circulation. Moreover, we find that the number and nature of exposures (rather than the order of infection and vaccination) shape the spike immune response, with spike-specific CD4 T cells displaying a greater polyfunctional potential following hybrid immunity compared with vaccination only. Characterizing adaptive immunity from an evolving viral and immunological landscape may inform vaccine strategies to elicit optimal immunity as the pandemic progress.
Collapse
Affiliation(s)
- Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Akiko Suzuki
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Masego V. Chauke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA,Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Desmond Tutu HIV Centre, University of Cape Town, Cape Town, South Africa
| | - Glenda Gray
- South African Medical Research Council, Cape Town, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa,Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa,South African Medical Research Council Extramural Unit on Intersection of Non-communicable Diseases and Infectious Diseases, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa,Corresponding author
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
38
|
Tye EXC, Jinks E, Haigh TA, Kaul B, Patel P, Parry HM, Newby ML, Crispin M, Kaur N, Moss P, Drennan SJ, Taylor GS, Long HM. Mutations in SARS-CoV-2 spike protein impair epitope-specific CD4 + T cell recognition. Nat Immunol 2022; 23:1726-1734. [PMID: 36456735 DOI: 10.1038/s41590-022-01351-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
Abstract
CD4+ T cells are essential for protection against viruses, including SARS-CoV-2. The sensitivity of CD4+ T cells to mutations in SARS-CoV-2 variants of concern (VOCs) is poorly understood. Here, we isolated 159 SARS-CoV-2-specific CD4+ T cell clones from healthcare workers previously infected with wild-type SARS-CoV-2 (D614G) and defined 21 epitopes in spike, membrane and nucleoprotein. Lack of CD4+ T cell cross-reactivity between SARS-CoV-2 and endemic beta-coronaviruses suggested these responses arose from naïve rather than pre-existing cross-reactive coronavirus-specific T cells. Of the 17 epitopes located in the spike protein, 10 were mutated in VOCs and CD4+ T cell clone recognition of 7 of them was impaired, including 3 of the 4 epitopes mutated in omicron. Our results indicated that broad targeting of epitopes by CD4+ T cells likely limits evasion by current VOCs. However, continued genomic surveillance is vital to identify new mutations able to evade CD4+ T cell immunity.
Collapse
Affiliation(s)
- Emily X C Tye
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Elizabeth Jinks
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Tracey A Haigh
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Baksho Kaul
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Prashant Patel
- Institute of Cancer and Genomics, University of Birmingham, Birmingham, UK
| | - Helen M Parry
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Maddy L Newby
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Nayandeep Kaur
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Samantha J Drennan
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Graham S Taylor
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Heather M Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
39
|
Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. Int J Mol Sci 2022; 23:ijms232315122. [PMID: 36499448 PMCID: PMC9737069 DOI: 10.3390/ijms232315122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
COVID-19, a significant global health threat, appears to be an immune-related disease. Failure of effective immune responses in initial stages of infection may contribute to development of cytokine storm and systemic inflammation with organ damage, leading to poor clinical outcomes. Disease severity and the emergence of new SARS-CoV-2 variants highlight the need for new preventative and therapeutic strategies to protect the immunocompromised population. Available data indicate that these people may benefit from adoptive transfer of allogeneic SARS-CoV-2-specific T cells isolated from convalescent individuals. This review first provides an insight into the mechanism of cytokine storm development, as it is directly related to the exhaustion of T cell population, essential for viral clearance and long-term antiviral immunity. Next, we describe virus-specific T lymphocytes as a promising and efficient approach for the treatment and prevention of severe COVID-19. Furthermore, other potential cell-based therapies, including natural killer cells, regulatory T cells and mesenchymal stem cells are mentioned. Additionally, we discuss fast and effective ways of producing clinical-grade antigen-specific T cells which can be cryopreserved and serve as an effective "off-the-shelf" approach for rapid treatment of SARS-CoV-2 infection in case of sudden patient deterioration.
Collapse
|
40
|
Fujii SI, Yamasaki S, Iyoda T, Shimizu K. Association of cellular immunity with severity of COVID-19 from the perspective of antigen-specific memory T cell responses and cross-reactivity. Inflamm Regen 2022; 42:50. [PMCID: PMC9706959 DOI: 10.1186/s41232-022-00239-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/10/2022] [Indexed: 11/30/2022] Open
Abstract
AbstractCoronaviruses regularly cause outbreaks of zoonotic diseases characterized by severe pneumonia. The new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused the global pandemic disease COVID-19 that began at the end of 2019 and spread rapidly owing to its infectious nature and rapidly progressing pneumonia. Although the infectivity of SARS-CoV-2 is high, indicated by the worldwide spread of the disease in a very short period, many individuals displayed only subclinical infection, and some of them transmitted the disease to individuals who then developed a severe symptomatic infection. Furthermore, there are differences in the severity of infection across countries, which can be attributed to factors such as the emergence of viral mutations in a short period of time as well as to the immune responses to viral factors. Anti-viral immunity generally consists of neutralizing antibodies that block viral infection and cytotoxic CD8+ T cells that eliminate the virus-infected cells. There is compelling evidence for the role of neutralizing antibodies in protective immunity in SARS-CoV-2 infection. However, the role of CD4+ and CD8+ T cells after the viral entry is complex and warrants a comprehensive discussion. Here, we discuss the protection afforded by cellular immunity against initial infection and development of severe disease. The initial failure of cellular immunity to control the infection worsens the clinical outcomes and functional profiles that inflict tissue damage without effectively eliminating viral reservoirs, while robust T cell responses are associated with mild outcomes. We also discuss persistent long-lasting memory T cell-mediated protection after infection or vaccination, which is rather complicated as it may involve SARS-CoV-2-specific cytotoxic T lymphocytes or cross-reactivity with previously infected seasonal coronaviruses, which are largely related to HLA genotypes. In addition, cross-reactivity with mutant strains is also discussed. Lastly, we discuss appropriate measures to be taken against the disease for immunocompromised patients. In conclusion, we provide evidence and discuss the causal relationship between natural infection- or vaccine-mediated memory T cell immunity and severity of COVID-19. This review is expected to provide a basis to develop strategies for the next generation of T cell-focused vaccines and aid in ending the current pandemic.
Collapse
|
41
|
Shafqat A, Omer MH, Ahmad O, Niaz M, Abdulkader HS, Shafqat S, Mushtaq AH, Shaik A, Elshaer AN, Kashir J, Alkattan K, Yaqinuddin A. SARS-CoV-2 epitopes inform future vaccination strategies. Front Immunol 2022; 13:1041185. [PMID: 36505475 PMCID: PMC9732895 DOI: 10.3389/fimmu.2022.1041185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
All currently approved COVID-19 vaccines utilize the spike protein as their immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the spike protein, enabling them to escape infection- and vaccination-induced immune responses to cause reinfection. New vaccines are hence being researched intensively. Studying SARS-CoV-2 epitopes is essential for vaccine design, as identifying targets of broadly neutralizing antibody responses and immunodominant T-cell epitopes reveal candidates for inclusion in next-generation COVID-19 vaccines. We summarize the major studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus far. These results suggest that a future of pan-coronavirus vaccines, which not only protect against SARS-CoV-2 but numerous other coronaviruses, may be possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than neutralizing antibody epitopes but may provide new strategies to control SARS-CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike, recognizing numerous epitopes within these antigens, thereby limiting the chance of immune escape by VOCs that mainly possess spike protein mutations. Therefore, augmenting vaccination-induced T-cell responses against SARS-CoV-2 may provide adequate protection despite broad antibody escape by VOCs.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,*Correspondence: Areez Shafqat,
| | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Omar Ahmad
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | | | | | - Abdullah Shaik
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Comparative Medicine, King Faisal Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
42
|
Paniskaki K, Konik MJ, Anft M, Meister TL, Marheinecke C, Pfaender S, Jäger J, Krawczyk A, Zettler M, Dolff S, Westhoff TH, Rohn H, Stervbo U, Witzke O, Babel N. Superior humoral immunity in vaccinated SARS-CoV-2 convalescence as compared to SARS-COV-2 infection or vaccination. Front Immunol 2022; 13:1031254. [PMID: 36389833 PMCID: PMC9659602 DOI: 10.3389/fimmu.2022.1031254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 11/24/2023] Open
Abstract
Emerging variants of concern (VOC) raise obstacles in shaping vaccination strategies and ending the pandemic. Vaccinated SARS-CoV-2 convalescence shapes the current immune dynamics. We analyzed the SARS-CoV-2 VOC-specific cellular and humoral response of 57 adults: 42 convalescent mRNA vaccinated patients (C+V+), 8 uninfected mRNA vaccinated (C-V+) and 7 unvaccinated convalescent individuals (C+V-). While C+V+ demonstrated a superior humoral SARS-CoV-2 response against all analyzed VOC (alpha, delta, omicron) compared to C-V+ and C+V-, SARS-CoV-2 reactive CD4+ and CD8+ T cells, which can cross-recognize the alpha, delta and omicron VOC after infection and/or vaccination were observed in all there groups without significant differences between the groups. We observed a preserved cross-reactive C+V+ and C-V+ T cell memory. An inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C+V+ was observed, as well as an inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C-V+. Adaptive immunity generated after SARS-CoV-2 infection and vaccination leads to superior humoral immune response against VOC compared to isolated infection or vaccination. Despite the apparent loss of neutralization potential caused by viral evolution, a preserved SARS-CoV-2 reactive T cell response with a robust potential for cross-recognition of the alpha, delta and omicron VOC was detected in all studied cohorts. Our results may have implications on current vaccination strategies.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Margarethe J. Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Toni L. Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Corinna Marheinecke
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Jasmin Jäger
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Zettler
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Timm H. Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
- Berlin Institute of Health at Charité – University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT) Berlin, Berlin, Germany
| |
Collapse
|
43
|
Sedegah M, Porter C, Goguet E, Ganeshan H, Belmonte M, Huang J, Belmonte A, Inoue S, Acheampong N, Malloy AMW, Hollis-Perry M, Jackson-Thompson B, Ramsey KF, Alcorta Y, Maiolatesi SE, Wang G, Reyes AE, Illinik L, Sanchez-Edwards M, Burgess TH, Broder CC, Laing ED, Pollett SD, Villasante E, Mitre E, Hollingdale MR. Cellular interferon-gamma and interleukin-2 responses to SARS-CoV-2 structural proteins are broader and higher in those vaccinated after SARS-CoV-2 infection compared to vaccinees without prior SARS-CoV-2 infection. PLoS One 2022; 17:e0276241. [PMID: 36251675 PMCID: PMC9576055 DOI: 10.1371/journal.pone.0276241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/29/2022] Open
Abstract
Class I- and Class II-restricted epitopes have been identified across the SARS-CoV-2 structural proteome. Vaccine-induced and post-infection SARS-CoV-2 T-cell responses are associated with COVID-19 recovery and protection, but the precise role of T-cell responses remains unclear, and how post-infection vaccination ('hybrid immunity') further augments this immunity To accomplish these goals, we studied healthy adult healthcare workers who were (a) uninfected and unvaccinated (n = 12), (b) uninfected and vaccinated with Pfizer-BioNTech BNT162b2 vaccine (2 doses n = 177, one dose n = 1) or Moderna mRNA-1273 vaccine (one dose, n = 1), and (c) previously infected with SARS-CoV-2 and vaccinated (BNT162b2, two doses, n = 6, one dose n = 1; mRNA-1273 two doses, n = 1). Infection status was determined by repeated PCR testing of participants. We used FluoroSpot Interferon-gamma (IFN-γ) and Interleukin-2 (IL-2) assays, using subpools of 15-mer peptides covering the S (10 subpools), N (4 subpools) and M (2 subpools) proteins. Responses were expressed as frequencies (percent positive responders) and magnitudes (spot forming cells/106 cytokine-producing peripheral blood mononuclear cells [PBMCs]). Almost all vaccinated participants with no prior infection exhibited IFN-γ, IL-2 and IFN-γ+IL2 responses to S glycoprotein subpools (89%, 93% and 27%, respectively) mainly directed to the S2 subunit and were more robust than responses to the N or M subpools. However, in previously infected and vaccinated participants IFN-γ, IL-2 and IFN-γ+IL2 responses to S subpools (100%, 100%, 88%) were substantially higher than vaccinated participants with no prior infection and were broader and directed against nine of the 10 S glycoprotein subpools spanning the S1 and S2 subunits, and all the N and M subpools. 50% of uninfected and unvaccinated individuals had IFN-γ but not IL2 or IFN-γ+IL2 responses against one S and one M subpools that were not increased after vaccination of uninfected or SARS-CoV-2-infected participants. Summed IFN-γ, IL-2, and IFN-γ+IL2 responses to S correlated with IgG responses to the S glycoprotein. These studies demonstrated that vaccinations with BNT162b2 or mRNA-1273 results in T cell-specific responses primarily against epitopes in the S2 subunit of the S glycoprotein, and that individuals that are vaccinated after SARS-CoV-2 infection develop broader and greater T cell responses to S1 and S2 subunits as well as the N and M proteins.
Collapse
Affiliation(s)
- Martha Sedegah
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Chad Porter
- Translational Clinical Research Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Harini Ganeshan
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Maria Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Jun Huang
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Arnel Belmonte
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Sandra Inoue
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Neda Acheampong
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- General Dynamics Information Technology, Falls Church, VA, United States of America
| | - Allison M. W. Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Monique Hollis-Perry
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Belinda Jackson-Thompson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
| | - Kathy F. Ramsey
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Yolanda Alcorta
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Santina E. Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Gregory Wang
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Anatolio E. Reyes
- General Dynamics Information Technology, Falls Church, VA, United States of America
- Clinical Trials Center, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Luca Illinik
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Margaret Sanchez-Edwards
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Timothy H. Burgess
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eric D. Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Eileen Villasante
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Michael R. Hollingdale
- Agile Vaccines and Therapeutics, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States of America
- * E-mail: ,
| |
Collapse
|
44
|
van den Dijssel J, Hagen RR, de Jongh R, Steenhuis M, Rispens T, Geerdes DM, Mok JY, Kragten AHM, Duurland MC, Verstegen NJM, van Ham SM, van Esch WJE, van Gisbergen KPJM, Hombrink P, ten Brinke A, van de Sandt CE. Parallel detection of SARS-CoV-2 epitopes reveals dynamic immunodominance profiles of CD8 + T memory cells in convalescent COVID-19 donors. Clin Transl Immunology 2022; 11:e1423. [PMID: 36254196 PMCID: PMC9568370 DOI: 10.1002/cti2.1423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 09/23/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives High-magnitude CD8+ T cell responses are associated with mild COVID-19 disease; however, the underlying characteristics that define CD8+ T cell-mediated protection are not well understood. The antigenic breadth and the immunodominance hierarchies of epitope-specific CD8+ T cells remain largely unexplored and are essential for the development of next-generation broad-protective vaccines. This study identified a broad spectrum of conserved SARS-CoV-2 CD8+ T cell epitopes and defined their respective immunodominance and phenotypic profiles following SARS-CoV-2 infection. Methods CD8+ T cells from 51 convalescent COVID-19 donors were analysed for their ability to recognise 133 predicted and previously described SARS-CoV-2-derived peptides restricted by 11 common HLA class I allotypes using heterotetramer combinatorial coding, which combined with phenotypic markers allowed in-depth ex vivo profiling of CD8+ T cell responses at quantitative and phenotypic levels. Results A comprehensive panel of 49 mostly conserved SARS-CoV-2-specific CD8+ T cell epitopes, including five newly identified low-magnitude epitopes, was established. We confirmed the immunodominance of HLA-A*01:01/ORF1ab1637-1646 and B*07:02/N105-113 and identified B*35:01/N325-333 as a third epitope with immunodominant features. The magnitude of subdominant epitope responses, including A*03:01/N361-369 and A*02:01/S269-277, depended on the donors' HLA-I context. All epitopes expressed prevalent memory phenotypes, with the highest memory frequencies in severe COVID-19 donors. Conclusion SARS-CoV-2 infection induces a predominant CD8+ T memory response directed against a broad spectrum of conserved SARS-CoV-2 epitopes, which likely contributes to long-term protection against severe disease. The observed immunodominance hierarchy emphasises the importance of T cell epitopes derived from nonspike proteins to the overall protective and cross-reactive immune response, which could aid future vaccine strategies.
Collapse
Affiliation(s)
- Jet van den Dijssel
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Ruth R Hagen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
| | - Rivka de Jongh
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Maurice Steenhuis
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Theo Rispens
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | | | - Juk Yee Mok
- Sanquin Reagents B.V.AmsterdamThe Netherlands
| | | | - Mariël C Duurland
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Niels JM Verstegen
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - S Marieke van Ham
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands,Swammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Klaas PJM van Gisbergen
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Pleun Hombrink
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands
| | - Anja ten Brinke
- Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of ImmunopathologySanquin ResearchAmsterdamThe Netherlands
| | - Carolien E van de Sandt
- Department of HematopoiesisSanquin ResearchAmsterdamThe Netherlands,Landsteiner LaboratoryAmsterdam UMC location University of AmsterdamAmsterdamThe Netherlands,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
45
|
Bertoletti A, Le Bert N, Tan AT. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022; 55:1764-1778. [PMID: 36049482 PMCID: PMC9385766 DOI: 10.1016/j.immuni.2022.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
46
|
Young A. T cells in SARS-CoV-2 infection and vaccination. Ther Adv Vaccines Immunother 2022; 10:25151355221115011. [PMID: 36051003 PMCID: PMC9425900 DOI: 10.1177/25151355221115011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
While antibodies garner the lion’s share of attention in SARS-CoV-2 immunity, cellular immunity (T cells) may be equally, if not more important, in controlling infection. Both CD8+ and CD4+ T cells are elicited earlier and are associated with milder disease, than antibodies, and T-cell activation appears to be necessary for control of infection. Variants of concern (VOCs) such as Omicron have escaped the neutralizing antibody responses after two mRNA vaccine doses, but T-cell immunity is largely intact. The breadth and patient-specific nature of the latter offers a formidable line of defense that can limit the severity of illness, and are likely to be responsible for most of the protection from natural infection or vaccination against VOCs which have evaded the antibody response. Comprehensive searches for T-cell epitopes, T-cell activation from infection and vaccination of specific patient groups, and elicitation of cellular immunity by various alternative vaccine modalities are here reviewed. Development of vaccines that specifically target T cells is called for, to meet the needs of patient groups for whom cellular immunity is weaker, such as the elderly and the immunosuppressed. While VOCs have not yet fully escaped T-cell immunity elicited by natural infection and vaccines, some early reports of partial escape suggest that future VOCs may achieve the dreaded result, dislodging a substantial proportion of cellular immunity, enough to cause a grave public health burden. A proactive, rather than reactive, solution which identifies and targets immutable sequences in SARS-CoV-2, not just those which are conserved, may be the only recourse humankind has to disarm these future VOCs before they disarm us.
Collapse
Affiliation(s)
- Arthur Young
- InvVax, 2265 E. Foohill Blvd., Pasadena, CA 91107, USA
| |
Collapse
|
47
|
Sankaranarayanan S, Mohkhedkar M, Janakiraman V. Mutations in spike protein T cell epitopes of SARS-COV-2 variants: Plausible influence on vaccine efficacy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166432. [PMID: 35568352 PMCID: PMC9109158 DOI: 10.1016/j.bbadis.2022.166432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 01/25/2023]
Abstract
With emerging SARS-CoV-2 variants, vaccines approved so far are under scrutiny for long term effectiveness against the circulating strains. There is a prevalent obsession with humoral immunity as in vitro studies have indicated diminished effects of vaccine-induced neutralizing antibodies. However, this need not clinically translate to vaccine resistance as immune response against all forms of present vaccine preparations is T dependent unlike that against native viral particles which can induce T independent immune responses. Thus, we focused on this major correlate of protection against infections, T cell response. Using bioinformatics tools, we analyzed SARS-CoV-2 Spike protein T cell epitopes and their diversity across Delta plus/B.1.617.2.1, Gamma/P.1 (variant of concern), B.1.1.429, Zeta/P.2 and Mink cluster 5/B.1.1.298 variants as well as Omicron/B.1.1.529 (variant of concern). We also compared HLA restriction profiles of the mutant epitopes with that of the native epitopes (from Wuhan_hu_1 strain, used in vaccine formulations). Our observations show ~90% conservation of CD4+ and CD8+ epitopes across Delta plus/B.1.617.2.1, Gamma/P.1 (variant of concern), B.1.1.429, Zeta/P.2 and Mink cluster 5/B.1.1.298. For the Omicron/B.1.1.529 variant, ~75% of CD4+ and ~ 87% CD8+ epitopes were conserved. Majority of the mutated CD4+ and CD8+ epitopes of this variant were predicted to retain the HLA restriction pattern as their native epitopes. The results of our bioinformatics analysis suggest largely conserved T cell responses across the studied variants, ability of T cells to tackle new SARS-CoV-2 variants and aid in protection from COVID-19 post vaccination. In conclusion, the results suggest that current vaccines may not be rendered completely ineffective against new variants.
Collapse
Affiliation(s)
| | | | - Vani Janakiraman
- Corresponding author at: Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
48
|
Singh AK, Laskar R, Banerjee A, Mondal RK, Gupta B, Deb S, Dutta S, Patra S, Ghosh T, Sarkar S, Ghosh S, Bhattacharya S, Roy D, Chakraborty A, Chowdhury M, Mahaptra S, Paul A, Mazumder A, Chowdhury A, Chatterjee SS, Sarkar A, Ray R, Pal K, Jana A, Barik G, Ganguly S, Chatterjee M, Majhi D, Bandopadhyay B, Das S, Maitra A, Biswas NK. Contrasting Distribution of SARS-CoV-2 Lineages across Multiple Rounds of Pandemic Waves in West Bengal, the Gateway of East and North-East States of India. Microbiol Spectr 2022; 10:e0091422. [PMID: 35852336 PMCID: PMC9430150 DOI: 10.1128/spectrum.00914-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The evolution of viral variants and their impact on viral transmission have been an area of considerable importance in this pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed the viral variants in different phases of the pandemic in West Bengal, a state in India that is important geographically, and compared the variants with other states like Delhi, Maharashtra, and Karnataka, located in other regions of the country. We have identified 57 pango-lineages in 3,198 SARS-CoV-2 genomes, alteration in their distribution, as well as contrasting profiles of amino acid mutational dynamics across different waves in different states. The evolving characteristics of Delta (B.1.617.2) sublineages and alterations in hydrophobicity profiles of the viral proteins caused by these mutations were also studied. Additionally, implications of predictive host miRNA binding/unbinding to emerging spike or nucleocapsid mutations were highlighted. Our results throw considerable light on interesting aspects of the viral genomic variation and provide valuable information for improved understanding of wave-defining mutations in unfolding the pandemic. IMPORTANCE Multiple waves of infection were observed in many states in India during the coronavirus disease 2019 (COVID19) pandemic. Fine-scale evolution of major SARS-CoV-2 lineages and sublineages during four wave-window categories: Pre-Wave 1, Wave 1, Pre-Wave 2, and Wave 2 in four major states of India: Delhi (North), Maharashtra (West), Karnataka (South), and West Bengal (East) was studied using large-scale virus genome sequencing data. Our comprehensive analysis reveals contrasting molecular profiles of the wave-defining mutations and their implications in host miRNA binding/unbinding of the lineages in the major states of India.
Collapse
Affiliation(s)
- Animesh K. Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Anindita Banerjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Bishal Gupta
- School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sonia Deb
- School of Tropical Medicine, Kolkata, West Bengal, India
| | - Shreelekha Dutta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Subrata Patra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Trinath Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sumanta Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shekhar Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debojyoti Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Meghna Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Surajit Mahaptra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Antara Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Anup Mazumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | | | | | - Raja Ray
- Institute of Post-Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Kuhu Pal
- College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Angshuman Jana
- Bankura Sammilani Medical College, Bankura, West Bengal, India
| | - Goutam Barik
- Medical College and Hospital, Kolkata, West Bengal, India
| | - Swagata Ganguly
- Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | | | - Dipankar Majhi
- Department of Health and Family Welfare, Government of West Bengal, Kolkata, West Bengal, India
| | | | - Saumitra Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
49
|
Karsten H, Cords L, Westphal T, Knapp M, Brehm TT, Hermanussen L, Omansen TF, Schmiedel S, Woost R, Ditt V, Peine S, Lütgehetmann M, Huber S, Ackermann C, Wittner M, Addo MM, Sette A, Sidney J, Schulze zur Wiesch J. High-resolution analysis of individual spike peptide-specific CD4 + T-cell responses in vaccine recipients and COVID-19 patients. Clin Transl Immunology 2022; 11:e1410. [PMID: 35957961 PMCID: PMC9363231 DOI: 10.1002/cti2.1410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives Potential differences in the breadth, distribution and magnitude of CD4+ T-cell responses directed against the SARS-CoV-2 spike glycoprotein between vaccinees, COVID-19 patients and subjects who experienced both ways of immunisation have not been comprehensively compared on a peptide level. Methods Following virus-specific in vitro cultivation, we determined the T-cell responses directed against 253 individual overlapping 15-mer peptides covering the entire SARS-CoV-2 spike glycoprotein using IFN-γ ELISpot and intracellular cytokine staining. In vitro HLA binding was determined for selected peptides. Results We mapped 955 single peptide-specific CD4+ T-cell responses in a cohort of COVID-19 patients (n = 8), uninfected vaccinees (n = 16) and individuals who experienced both infection and vaccination (n = 11). Patients and vaccinees (two-time and three-time vaccinees alike) had a comparable number of CD4+ T-cell responses (median 26 vs. 29, P = 0.7289). Most of these specificities were conserved in B.1.1.529 and the BA.4 and BA.5 sublineages. The highest magnitude of these in vitro IFN-γ CD4+ T-cell responses was observed in COVID-19 patients (median 0.35%), and three-time vaccinees showed a higher magnitude than two-time vaccinees (median 0.091% vs. 0.175%, P < 0.0001). Twelve peptide specificities were each detected in at least 40% of subjects. In vitro HLA binding showed promiscuous presentation by DRB1 molecules for several peptides. Conclusion Both SARS-CoV-2 infection and vaccination prime broadly directed T-cell responses directed against the SARS-CoV-2 spike glycoprotein. This comprehensive high-resolution analysis of spike peptide specificities will be a useful resource for further investigation of spike-specific T-cell responses.
Collapse
Affiliation(s)
- Hendrik Karsten
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Leon Cords
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Tim Westphal
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Maximilian Knapp
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Thomas Theo Brehm
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Lennart Hermanussen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Till Frederik Omansen
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Stefan Schmiedel
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robin Woost
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Vanessa Ditt
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sven Peine
- Institute of Transfusion MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Samuel Huber
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Christin Ackermann
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Melanie Wittner
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| | - Marylyn Martina Addo
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
- Department of Tropical MedicineBernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - John Sidney
- Center for Infectious Disease and Vaccine ResearchLa Jolla Institute for Immunology (LJI)La JollaCAUSA
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, 1. Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- German Center for Infection Research (DZIF)Partner Site Hamburg‐Lübeck‐Borstel‐RiemsHamburgGermany
| |
Collapse
|
50
|
Dolton G, Rius C, Hasan MS, Wall A, Szomolay B, Behiry E, Whalley T, Southgate J, Fuller A, Morin T, Topley K, Tan LR, Goulder PJR, Spiller OB, Rizkallah PJ, Jones LC, Connor TR, Sewell AK. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell 2022; 185:2936-2951.e19. [PMID: 35931021 PMCID: PMC9279490 DOI: 10.1016/j.cell.2022.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 05/08/2022] [Accepted: 07/07/2022] [Indexed: 01/06/2023]
Abstract
We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Garry Dolton
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Cristina Rius
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Md Samiul Hasan
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Aaron Wall
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Barbara Szomolay
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK; Systems Immunology Research Institute, Cardiff University, CF14 4XN Cardiff, Wales, UK
| | - Enas Behiry
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Thomas Whalley
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, Wales, UK
| | - Joel Southgate
- School of Biosciences, Cardiff University, CF10 3AX Cardiff, Wales, UK
| | - Anna Fuller
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Théo Morin
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Katie Topley
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Li Rong Tan
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, OX3 9DU Oxford, England, UK
| | - Owen B Spiller
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Pierre J Rizkallah
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK
| | - Lucy C Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK; Centre for Clinical Research, Royal Glamorgan Hospital, Ynysmaerdy CF72 8XR, UK
| | - Thomas R Connor
- Systems Immunology Research Institute, Cardiff University, CF14 4XN Cardiff, Wales, UK; School of Biosciences, Cardiff University, CF10 3AX Cardiff, Wales, UK; Pathogen genomics Unit, Public Health Wales NHS Trust, CF14 4XW Cardiff, Wales, UK.
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, CF14 4XN Cardiff, Wales, UK; Systems Immunology Research Institute, Cardiff University, CF14 4XN Cardiff, Wales, UK.
| |
Collapse
|