1
|
Fan H, Zhao H, Gao L, Dong Y, Zhang P, Yu P, Ji Y, Chen ZS, Liang X, Chen Y. CCN1 Enhances Tumor Immunosuppression through Collagen-Mediated Chemokine Secretion in Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500589. [PMID: 40287974 DOI: 10.1002/advs.202500589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense, immunosuppressive tumor microenvironment (TME) that limits therapeutic efficacy. This study investigates the role of cellular communication network factor 1 (CCN1, also known as Cyr61), an extracellular matrix-associated protein, in modulating the TME of PDAC. It is demonstrated that Ccn1 promotes PDAC progression by upregulating collagen and chemokine expression, thereby facilitating immune cell exclusion and enhancing tumor growth. Using a Ccn1-deficient PDAC model, decreased collagen and chemokine levels are observed, resulting in increased infiltration of cytotoxic immune cells and reduced myeloid-derived suppressor cells (MDSCs). Furthermore, Ccn1-deficient tumors exhibit heightened sensitivity to gemcitabine and show enhanced responsiveness to anti-programmed cell death 1 (anti-PD1) therapy. Mechanistically, Ccn1 regulates chemokine production through collagen expression, with chemokine levels remaining suppressed even upon interferon-gamma treatment in collagen-deficient cells. These findings highlight Ccn1 as a potential therapeutic target that reprograms the TME to enhance the efficacy of both chemotherapy and immunotherapy in PDAC, providing a novel approach for overcoming immune resistance in PDAC.
Collapse
Affiliation(s)
- Hongjie Fan
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Huzi Zhao
- Department of Pathology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, China
| | - Lili Gao
- Department of Pathology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong University, Shanghai, 200082, China
| | - Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, China
| | - Pei Zhang
- Department of Mathematics, University of Maryland, College Park, Maryland, MD 20742, USA
| | - Pengfei Yu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yunfei Ji
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Yang Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| |
Collapse
|
2
|
Liu H, Chen M, Hong B, Xiao Y, Chen Q, Qian Y. Single-nucleus RNA sequencing and spatial transcriptomics reveal an immunosuppressive tumor microenvironment related to metastatic dissemination during pancreatic cancer liver metastasis. Theranostics 2025; 15:5337-5357. [PMID: 40303346 PMCID: PMC12036881 DOI: 10.7150/thno.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by early liver metastasis and high mortality. The tumor microenvironment plays a pivotal role in tumor progression; however, the immune microenvironment's involvement in PDAC liver metastasis remains poorly understood. Methods: This study investigates cellular heterogeneity in primary tumor (PT) and liver metastasis (LM) tissues of PDAC using single-nucleus RNA sequencing and spatial transcriptomics. Intra-tumor heterogeneity and cell interactions were elucidated through deconvolution, intercellular signalling, pseudotime analysis, and immune infiltration profiling. The spatial distribution of immune cells was assessed by multiplexed immunofluorescence staining, and prognostic models were developed and validated through immunohistochemistry (IHC). Analyzing the regulatory role of CITED4 in the invasion and metastasis of pancreatic cancer cells through transwell assay and scratch wound healing assay. Results: A total of 62,326 cells were sequenced, with metastatic dissemination cells showing significant upregulation of epithelial-mesenchymal transition (EMT)-related genes during liver metastasis. Spatial transcriptomics revealed the enrichment of metastatic dissemination cells and FOXP3-related Treg cells at the tumor front in PT tissues. In comparison to LM tissues, the tumor front in PT tissues fosters an immunosuppressive microenvironment through the accumulation of Treg cells. Interaction analysis identified the SPP1 pathway as a key promoter of this immunosuppressive environment. Furthermore, prognostic models highlighted CITED4 as critical biomarkers in PDAC. Elevated CITED4 expression is correlated with liver metastasis and poor prognosis in patients with PDAC. siRNA-mediated knockdown of CITED4 suppresses the invasion and metastasis of pancreatic cancer cells. Conclusions: In summary, this study revealed that Treg cell alterations, mediated by metastatic dissemination cells within the immune microenvironment, significantly contribute to PDAC liver metastasis, and that CITED4 enhances the metastatic potential of metastatic dissemination cells.
Collapse
Affiliation(s)
- Hongsen Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mengting Chen
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yufei Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
3
|
Volat F, Medhi R, Maggs LZ, Deken MA, Price A, Andrews L, Clark J, Taylor D, Carruthers A, Taylor-Smith E, Pacheco N, Rudge SA, Fraser A, Lopez-Clavijo AF, Sousa BC, Johnson Z, Di Conza G, van der Veen L, Shah P, Sandig H, Sharpe HJ, Farrow S. Pancreatic CAF-Derived Autotaxin Drives Autocrine CTGF Expression to Modulate Protumorigenic Signaling. Mol Cancer Ther 2025; 24:230-241. [PMID: 39570650 DOI: 10.1158/1535-7163.mct-23-0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 07/26/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the protumorigenic action of the ATX/LPA axis in PDAC remains unclear. In this study, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression and highlight a key role for cancer-associated fibroblast (CAF)-derived ATX in autocrine and paracrine protumorigenic signaling. Using the clinical-stage ATX inhibitor, IOA-289, we identified connective tissue growth factor (CTGF), also known as CCN2, as a downstream mediator of ATX signaling in the PDAC CAF-derived cell line, 0082T. Genetic ablation or pharmacologic inhibition of ATX in 0082T CAFs reduced CTGF secretion via modulation of LPA/LPA receptor signaling. Despite the loss of ATX function, extracellular levels of LPA were paradoxically increased, indicating a role for ATX beyond its enzymatic activity and suggesting a role for its LPA chaperone function in the LPA/LPA receptor signaling in CAFs. As CAFs are the main source for CTGF in the PDAC TME, these findings suggest a role for ATX in promoting a protumorigenic microenvironment via modulation of CAF secretion not only via its LPA-producing activity but also via its LPA chaperone function, providing a potential mechanism for the antitumor effects of ATX inhibition.
Collapse
Affiliation(s)
- Fanny Volat
- Cancer Research Horizons, Cambridge, United Kingdom
| | - Ragini Medhi
- Cancer Research Horizons, Cambridge, United Kingdom
| | - Lauren Z Maggs
- Cancer Research Horizons, Cambridge, United Kingdom
- University of Cambridge, Cambridge, United Kingdom
- The Babraham Institute, Cambridge, United Kingdom
| | | | - Alice Price
- Cancer Research Horizons, Cambridge, United Kingdom
| | | | | | - Diane Taylor
- The Babraham Institute, Cambridge, United Kingdom
| | | | | | | | | | - Amy Fraser
- Cancer Research Horizons, Cambridge, United Kingdom
| | | | | | | | | | | | - Pritom Shah
- Cancer Research Horizons, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
4
|
Perez-Penco M, Byrdal M, Lara de la Torre L, Ballester M, Khan S, Siersbæk M, Lecoq I, Madsen CO, Kjeldsen JW, Svane IM, Hansen M, Donia M, Johansen JS, Olsen LR, Grøntved L, Chen IM, Arnes L, Holmström MO, Andersen MH. The antitumor activity of TGFβ-specific T cells is dependent on IL-6 signaling. Cell Mol Immunol 2025; 22:111-126. [PMID: 39653766 PMCID: PMC11685413 DOI: 10.1038/s41423-024-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/10/2024] [Indexed: 01/01/2025] Open
Abstract
Although interleukin (IL)-6 is considered immunosuppressive and tumor-promoting, emerging evidence suggests that it may support antitumor immunity. While combining immune checkpoint inhibitors (ICIs) and radiotherapy in patients with pancreatic cancer (PC) has yielded promising clinical results, the addition of an anti-IL-6 receptor (IL-6R) antibody has failed to elicit clinical benefits. Notably, a robust TGFβ-specific immune response at baseline in PC patients treated solely with ICIs and radiotherapy correlated with improved survival. Recent preclinical studies demonstrated the efficacy of a TGFβ-based immune modulatory vaccine in controlling PC tumor growth, underscoring the important role of TGFβ-specific immunity in PC. Here, we explored the importance of IL-6 for TGFβ-specific immunity in PC. In a murine model of PC, coadministration of the TGFβ-based immune modulatory vaccine with an anti-IL-6R antibody rendered the vaccine ineffective. IL-6R blockade hampered the development of vaccine-induced T-cells and tumoral T-cell infiltration. Furthermore, it impaired the myeloid population, resulting in increased tumor-associated macrophage infiltration and an enhanced immunosuppressive phenotype. In PC patients, in contrast to those receiving only ICIs and radiotherapy, robust TGFβ-specific T-cell responses at baseline did not correlate with improved survival in patients receiving ICIs, radiotherapy and IL-6R blockade. Peripheral blood immunophenotyping revealed that IL-6R blockade altered the T-cell and monocytic compartments, which was consistent with the findings in the murine model. Our data suggest that the antitumor efficacy of TGFβ-specific T cells in PC depends on the presence of IL-6 within the tumor. Consequently, caution should be exercised when employing IL-6R blockade in patients receiving cancer immunotherapy.
Collapse
Affiliation(s)
- Maria Perez-Penco
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mikkel Byrdal
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Lucia Lara de la Torre
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marta Ballester
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Majken Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Inés Lecoq
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- IO Biotech ApS, Copenhagen, Denmark
| | - Cecilie Oelvang Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Luis Arnes
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Mundry CS, Triplett AA, Shah OS, Chaitankar V, McAndrews KL, Ly QP, Cox JL, Eberle KC, Mehla K, Swanson BJ, Lazenby A, Klute KA, Grandgenett PM, Hollingsworth MA. Single-cell RNA-sequencing of human spleens reveals an IDO-1 + tolerogenic dendritic cell subset in pancreatic cancer patients that is absent in normal individuals. Cancer Lett 2024; 607:217321. [PMID: 39547331 DOI: 10.1016/j.canlet.2024.217321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Local and systemic immunosuppression are prominent features of pancreatic cancer, rendering anti-tumor effector cells inactive and immunotherapeutic approaches ineffective. The spleen, an understudied point of antigen-presentation and T cell priming in humans, holds particular importance in pancreatic cancer due to its proximity to the developing tumor. As main effectors of antigen presentation, dendritic cells display antigens to lymphocytes, thereby bridging the innate and adaptive immune response. While tumor-infiltrating anti-inflammatory dendritic cells have been described, splenic dendritic cells have historically just been considered to stimulate the anti-tumor immune response. Here, we describe, for the first time, the presence of an immunosuppressive, tolerogenic IDO1+ dendritic cell subset in the spleens of pancreatic cancer patients that likely contributes to systemic immunosuppression that is associated with pancreatic ductal adenocarcinoma. Network analysis of scRNA seq data reveals extensive communication networks between the identified tolerogenic DC cluster and numerous immune cell populations in the spleen. Interactions with innate and adaptive immune cells suggest a broad influence on leukocyte trafficking and immune regulation within the spleen microenvironment. The identification of signaling pathways involving AHR and IDO-1, CCL19, NECTIN2, CLEC2D, and others elucidates potential mechanisms underlying the immunosuppressive functions of this cell type.
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aleata A Triplett
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Osama Shiraz Shah
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vijender Chaitankar
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kyle L McAndrews
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Quan P Ly
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jesse L Cox
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kirsten C Eberle
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamiya Mehla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Benjamin J Swanson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Audrey Lazenby
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelsey A Klute
- Department of Internal Medicine, Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Maan H, Zhang L, Yu C, Geuenich MJ, Campbell KR, Wang B. Characterizing the impacts of dataset imbalance on single-cell data integration. Nat Biotechnol 2024; 42:1899-1908. [PMID: 38429430 DOI: 10.1038/s41587-023-02097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/13/2023] [Indexed: 03/03/2024]
Abstract
Computational methods for integrating single-cell transcriptomic data from multiple samples and conditions do not generally account for imbalances in the cell types measured in different datasets. In this study, we examined how differences in the cell types present, the number of cells per cell type and the cell type proportions across samples affect downstream analyses after integration. The Iniquitate pipeline assesses the robustness of integration results after perturbing the degree of imbalance between datasets. Benchmarking of five state-of-the-art single-cell RNA sequencing integration techniques in 2,600 integration experiments indicates that sample imbalance has substantial impacts on downstream analyses and the biological interpretation of integration results. Imbalance perturbation led to statistically significant variation in unsupervised clustering, cell type classification, differential expression and marker gene annotation, query-to-reference mapping and trajectory inference. We quantified the impacts of imbalance through newly introduced properties-aggregate cell type support and minimum cell type center distance. To better characterize and mitigate impacts of imbalance, we introduce balanced clustering metrics and imbalanced integration guidelines for integration method users.
Collapse
Affiliation(s)
- Hassaan Maan
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
- Vector Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Lin Zhang
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Chengxin Yu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Michael J Geuenich
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Kieran R Campbell
- Vector Institute, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada.
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Bo Wang
- Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada.
- Vector Institute, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Wang R, Liu J, Jiang B, Gao B, Luo H, Yang F, Ye Y, Chen Z, Liu H, Cui C, Xu K, Li B, Yang X. A single-cell perspective on immunotherapy for pancreatic cancer: from microenvironment analysis to therapeutic strategy innovation. Front Immunol 2024; 15:1454833. [PMID: 39539544 PMCID: PMC11557317 DOI: 10.3389/fimmu.2024.1454833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignancies, with conventional treatment options providing limited efficacy. Recent advancements in immunotherapy have offered new hope, yet the unique tumor microenvironment (TME) of pancreatic cancer poses significant challenges to its successful application. This review explores the transformative impact of single-cell technology on the understanding and treatment of pancreatic cancer. By enabling high-resolution analysis of cellular heterogeneity within the TME, single-cell approaches have elucidated the complex interplay between various immune and tumor cell populations. These insights have led to the identification of predictive biomarkers and the development of innovative, personalized immunotherapeutic strategies. The review discusses the role of single-cell technology in dissecting the intricate immune landscape of pancreatic cancer, highlighting the discovery of T cell exhaustion profiles and macrophage polarization states that influence treatment response. Moreover, it outlines the potential of single-cell data in guiding the selection of immunotherapy drugs and optimizing treatment plans. The review also addresses the challenges and prospects of translating these single-cell-based innovations into clinical practice, emphasizing the need for interdisciplinary research and the integration of artificial intelligence to overcome current limitations. Ultimately, the review underscores the promise of single-cell technology in driving therapeutic strategy innovation and improving patient outcomes in the battle against pancreatic cancer.
Collapse
Affiliation(s)
- Rui Wang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- General Surgery Day Ward, Department of General Surgery, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu, China
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bo Jiang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benjian Gao
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Fengyi Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuntao Ye
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhuo Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Cheng Cui
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Qazi S, Trieu V. TGFB2 mRNA Levels Prognostically Interact with Interferon-Alpha Receptor Activation of IRF9 and IFI27, and an Immune Checkpoint LGALS9 to Impact Overall Survival in Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2024; 25:11221. [PMID: 39457004 PMCID: PMC11508538 DOI: 10.3390/ijms252011221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The treatment of pancreatic ductal adenocarcinoma (PDAC) is an unmet challenge, with the median overall survival rate remaining less than a year, even with the use of FOLFIRINOX-based therapies. This study analyzed archived macrophage-associated mRNA expression using datasets deposited in the UCSC Xena web platform to compare normal pancreatic tissue and PDAC tumor samples. The TGFB2 gene exhibited low mRNA expression levels in normal tissue, with less than one TPM. In contrast, in tumor tissue, TGFB2 expression levels exhibited a 7.9-fold increase in mRNA expression relative to normal tissue (p < 0.0001). Additionally, components of the type-I interferon signaling pathway exhibited significant upregulation of mRNA levels in tumor tissue, including Interferon alpha/beta receptor 1 (IFNAR1; 3.4-fold increase, p < 0.0001), Interferon regulatory factor 9 (IRF9; 4.2-fold increase, p < 0.0001), Signal transducer and activator of transcription 1 (STAT1; 7.1-fold increase, p < 0.0001), and Interferon Alpha Inducible Protein 27 (IFI27; 66.3-fold increase, p < 0.0001). We also utilized TCGA datasets deposited in cBioportal and KMplotter to relate mRNA expression levels to overall survival outcomes. These increased levels of mRNA expression were found to be prognostically significant, whereby patients with high expression levels of either TGFB2, IRF9, or IFI27 showed median OS times ranging from 16 to 20 months (p < 0.01 compared to 72 months for patients with low levels of expression for both TGFB2 and either IRF9 or IFI27). Examination of the KMplotter database determined the prognostic impact of TGFB2 mRNA expression levels by comparing patients expressing high versus low levels of TGFB2 (50th percentile cut-off) in low macrophage TME. In TME with low macrophage levels, patients with high levels of TGFB2 mRNA exhibited significantly shorter OS outcomes than patients with low TGFB2 mRNA levels (Median OS of 15.3 versus 72.7 months, p < 0.0001). Furthermore, multivariate Cox regression models were applied to control for age at diagnosis. Nine genes exhibited significant increases in hazard ratios for TGFB2 mRNA expression, marker gene mRNA expression, and a significant interaction term between TGFB2 and marker gene expression (mRNA for markers: C1QA, CD74, HLA-DQB1, HLA-DRB1, HLA-F, IFI27, IRF9, LGALS9, MARCO). The results of our study suggest that a combination of pharmacological tools can be used in treating PDAC patients, targeting both TGFB2 and the components of the type-I interferon signaling pathway. The significant statistical interaction between TGFB2 and the nine marker genes suggests that TGFB2 is a negative prognostic indicator at low levels of the IFN-I activated genes and TAM marker expression, including the immune checkpoint LGALS9 (upregulated 16.5-fold in tumor tissue; p < 0.0001).
Collapse
MESH Headings
- Humans
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Female
- Male
- Gene Expression Regulation, Neoplastic
- Transforming Growth Factor beta2/genetics
- Transforming Growth Factor beta2/metabolism
- Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics
- Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism
- Middle Aged
- Aged
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Galectins
Collapse
Affiliation(s)
- Sanjive Qazi
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA;
| | | |
Collapse
|
9
|
Soll D, Chu CF, Sun S, Lutz V, Arunkumar M, Gachechiladze M, Schäuble S, Alissa-Alkhalaf M, Nguyen T, Khalil MA, Garcia-Ribelles I, Mueller M, Buder K, Michalke B, Panagiotou G, Ziegler-Martin K, Benz P, Schatzlmaier P, Hiller K, Stockinger H, Luu M, Schober K, Moosmann C, Schamel WW, Huber M, Zielinski CE. Sodium chloride in the tumor microenvironment enhances T cell metabolic fitness and cytotoxicity. Nat Immunol 2024; 25:1830-1844. [PMID: 39198632 PMCID: PMC11436365 DOI: 10.1038/s41590-024-01918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/04/2024] [Indexed: 09/01/2024]
Abstract
The efficacy of antitumor immunity is associated with the metabolic state of cytotoxic T cells, which is sensitive to the tumor microenvironment. Whether ionic signals affect adaptive antitumor immune responses is unclear. In the present study, we show that there is an enrichment of sodium in solid tumors from patients with breast cancer. Sodium chloride (NaCl) enhances the activation state and effector functions of human CD8+ T cells, which is associated with enhanced metabolic fitness. These NaCl-induced effects translate into increased tumor cell killing in vitro and in vivo. Mechanistically, NaCl-induced changes in CD8+ T cells are linked to sodium-induced upregulation of Na+/K+-ATPase activity, followed by membrane hyperpolarization, which magnifies the electromotive force for T cell receptor (TCR)-induced calcium influx and downstream TCR signaling. We therefore propose that NaCl is a positive regulator of acute antitumor immunity that might be modulated for ex vivo conditioning of therapeutic T cells, such as CAR T cells.
Collapse
Affiliation(s)
| | - Chang-Feng Chu
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Shan Sun
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Veronika Lutz
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Mahima Arunkumar
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Mariam Gachechiladze
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Maha Alissa-Alkhalaf
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Trang Nguyen
- Institute of Biology III, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle-Amirah Khalil
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Ignacio Garcia-Ribelles
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Michael Mueller
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | | | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich-German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
- Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Kai Ziegler-Martin
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Pascal Benz
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Philipp Schatzlmaier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hannes Stockinger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Vienna, Austria
| | - Maik Luu
- Chair for Cellular Immunotherapy, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kilian Schober
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- FAU Profile Center Immunomedicine, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Carolin Moosmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang W Schamel
- Institute of Biology III, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Magdalena Huber
- Institute of Systems Immunology, Philipps-University Marburg, Marburg, Germany
| | - Christina E Zielinski
- Technical University of Munich, Munich, Germany.
- Department of Infection Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
10
|
Sussman JH, Kim N, Kemp SB, Traum D, Katsuda T, Kahn BM, Xu J, Kim IK, Eskandarian C, Delman D, Beatty GL, Kaestner KH, Simpson AL, Stanger BZ. Multiplexed Imaging Mass Cytometry Analysis Characterizes the Vascular Niche in Pancreatic Cancer. Cancer Res 2024; 84:2364-2376. [PMID: 38695869 PMCID: PMC11250934 DOI: 10.1158/0008-5472.can-23-2352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Oncogenesis and progression of pancreatic ductal adenocarcinoma (PDAC) are driven by complex interactions between the neoplastic component and the tumor microenvironment, which includes immune, stromal, and parenchymal cells. In particular, most PDACs are characterized by a hypovascular and hypoxic environment that alters tumor cell behavior and limits the efficacy of chemotherapy and immunotherapy. Characterization of the spatial features of the vascular niche could advance our understanding of inter- and intratumoral heterogeneity in PDAC. In this study, we investigated the vascular microenvironment of PDAC by applying imaging mass cytometry using a 26-antibody panel on 35 regions of interest across 9 patients, capturing more than 140,000 single cells. The approach distinguished major cell types, including multiple populations of lymphoid and myeloid cells, endocrine cells, ductal cells, stromal cells, and endothelial cells. Evaluation of cellular neighborhoods identified 10 distinct spatial domains, including multiple immune and tumor-enriched environments as well as the vascular niche. Focused analysis revealed differential interactions between immune populations and the vasculature and identified distinct spatial domains wherein tumor cell proliferation occurs. Importantly, the vascular niche was closely associated with a population of CD44-expressing macrophages enriched for a proangiogenic gene signature. Taken together, this study provides insights into the spatial heterogeneity of PDAC and suggests a role for CD44-expressing macrophages in shaping the vascular niche. Significance: Imaging mass cytometry revealed that pancreatic ductal cancers are composed of 10 distinct cellular neighborhoods, including a vascular niche enriched for macrophages expressing high levels of CD44 and a proangiogenic gene signature.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nathalia Kim
- Department of Biomedical and Molecular Sciences/School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Samantha B Kemp
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Daniel Traum
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Takeshi Katsuda
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Benjamin M. Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Il-Kyu Kim
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Cody Eskandarian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Devora Delman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gregory L. Beatty
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Amber L. Simpson
- Department of Biomedical and Molecular Sciences/School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Ben Z. Stanger
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Hara T, Meng S, Sato H, Tatekawa S, Sasaki K, Takeda Y, Tsuji Y, Arao Y, Ofusa K, Kitagawa T, Yamada D, Takahashi H, Kobayashi S, Motooka D, Suzuki Y, Rennie S, Uchida S, Mori M, Ogawa K, Doki Y, Eguchi H, Ishii H. High N6-methyladenosine-activated TCEAL8 mRNA is a novel pancreatic cancer marker. Cancer Sci 2024; 115:2360-2370. [PMID: 38659235 PMCID: PMC11247549 DOI: 10.1111/cas.16152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 04/26/2024] Open
Abstract
N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.
Collapse
Affiliation(s)
- Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Shotaro Tatekawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yu Takeda
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Prophoenix DivisionFood and Life‐Science Laboratory, IDEA Consultants, Inc.OsakaOsakaJapan
| | - Toru Kitagawa
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
- Kyowa‐kai Medical CorporationKawanishiHyogoJapan
| | - Daisaku Yamada
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hidenori Takahashi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Shogo Kobayashi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial DiseasesOsaka UniversitySuitaOsakaJapan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier SciencesThe University of TokyoKashiwa‐shiChibaJapan
| | - Sarah Rennie
- Section for Computational and RNA Biology, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Shizuka Uchida
- Department of Clinical Medicine, Center for RNA MedicineAalborg UniversityCopenhagen SVDenmark
| | - Masaki Mori
- Tokai University Graduate School of MedicineIseharaKanagawaJapan
| | - Kazuhiko Ogawa
- Department of Radiation OncologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineSuitaOsakaJapan
| |
Collapse
|
12
|
Gu A, Li J, Qiu S, Hao S, Yue ZY, Zhai S, Li MY, Liu Y. Pancreatic cancer environment: from patient-derived models to single-cell omics. Mol Omics 2024; 20:220-233. [PMID: 38414408 DOI: 10.1039/d3mo00250k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant cancer characterized by poor prognosis, high heterogeneity, and intricate heterocellular systems. Selecting an appropriate experimental model for studying its progression and treatment is crucial. Patient-derived models provide a more accurate representation of tumor heterogeneity and complexity compared to cell line-derived models. This review initially presents relevant patient-derived models, including patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived explants (PDEs), which are essential for studying cell communication and pancreatic cancer progression. We have emphasized the utilization of these models in comprehending intricate intercellular communication, drug responsiveness, mechanisms underlying tumor growth, expediting drug discovery, and enabling personalized medical approaches. Additionally, we have comprehensively summarized single-cell analyses of these models to enhance comprehension of intercellular communication among tumor cells, drug response mechanisms, and individual patient sensitivities.
Collapse
Affiliation(s)
- Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shimei Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shenglin Hao
- Department of Functional Neurosurgery, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China.
| |
Collapse
|
13
|
de Souza N, Zhao S, Bodenmiller B. Multiplex protein imaging in tumour biology. Nat Rev Cancer 2024; 24:171-191. [PMID: 38316945 DOI: 10.1038/s41568-023-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 02/07/2024]
Abstract
Tissue imaging has become much more colourful in the past decade. Advances in both experimental and analytical methods now make it possible to image protein markers in tissue samples in high multiplex. The ability to routinely image 40-50 markers simultaneously, at single-cell or subcellular resolution, has opened up new vistas in the study of tumour biology. Cellular phenotypes, interaction, communication and spatial organization have become amenable to molecular-level analysis, and application to patient cohorts has identified clinically relevant cellular and tissue features in several cancer types. Here, we review the use of multiplex protein imaging methods to study tumour biology, discuss ongoing attempts to combine these approaches with other forms of spatial omics, and highlight challenges in the field.
Collapse
Affiliation(s)
- Natalie de Souza
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Systems Biology, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Shan Zhao
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland
| | - Bernd Bodenmiller
- University of Zurich, Department of Quantitative Biomedicine, Zurich, Switzerland.
- ETH Zurich, Institute of Molecular Health Sciences, Zurich, Switzerland.
| |
Collapse
|
14
|
Meng S, Hara T, Sato H, Tatekawa S, Tsuji Y, Saito Y, Hamano Y, Arao Y, Gotoh N, Ogawa K, Ishii H. Revealing neuropilin expression patterns in pancreatic cancer: From single‑cell to therapeutic opportunities (Review). Oncol Lett 2024; 27:113. [PMID: 38304169 PMCID: PMC10831399 DOI: 10.3892/ol.2024.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/13/2023] [Indexed: 02/03/2024] Open
Abstract
Pancreatic cancer, one of the most fatal types of human cancers, includes several non-epithelial and stromal components, such as activated fibroblasts, vascular cells, neural cells and immune cells, that are involved in different cancers. Vascular endothelial cell growth factor 165 receptors 1 [neuropilin-1 (NRP-1)] and 2 (NRP-2) play a role in the biological behaviors of pancreatic cancer and may appear as potential therapeutic targets. The NRP family of proteins serve as co-receptors for vascular endothelial growth factor, transforming growth factor β, hepatocyte growth factor, fibroblast growth factor, semaphorin 3, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor. Investigations of mechanisms that involve the NRP family of proteins may help develop novel approaches for overcoming therapy resistance in pancreatic cancer. The present review aimed to provide an in-depth exploration of the multifaceted roles of the NRP family of proteins in pancreatic cancer, including recent findings from single-cell analysis conducted within the context of pancreatic adenocarcinoma, which revealed the intricate involvement of NRP proteins at the cellular level. Through these efforts, the present study endeavored to further reveal their relationships with different biological processes and their potential as therapeutic targets in various treatment modalities, offering novel perspectives and directions for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shotaro Tatekawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshiko Saito
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yumiko Hamano
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Dang HX, Saha D, Jayasinghe R, Zhao S, Coonrod E, Mudd J, Goedegebuure S, Fields R, Ding L, Maher C. Single-cell transcriptomics reveals long noncoding RNAs associated with tumor biology and the microenvironment in pancreatic cancer. NAR Cancer 2023; 5:zcad055. [PMID: 38023733 PMCID: PMC10664695 DOI: 10.1093/narcan/zcad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PDAC have revealed the dysregulation of lncRNAs but lack single-cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome data from 73 multiregion samples in 21 PDAC patients to evaluate lncRNAs associated with intratumoral heterogeneity and the TME in PDAC. We found 111 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were obscured in bulk tumor analysis. Lastly, tumor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial-mesenchymal transition, metabolism and immune signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PDAC using single-cell transcriptomic data and can serve as a resource, PDACLncDB (accessible at https://www.maherlab.com/pdaclncdb-overview), to guide future functional studies.
Collapse
Affiliation(s)
- Ha X Dang
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
| | - Debanjan Saha
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- MD–PhD Program, Washington University in St Louis, St Louis, MO 63110, USA
| | - Reyka Jayasinghe
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Sidi Zhao
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Emily Coonrod
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Ryan Fields
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- Department of Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Li Ding
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - Christopher A Maher
- Department of Internal Medicine, Washington University in St Louis, St Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO 63110, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO 63108, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
16
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
17
|
Yousuf S, Qiu M, Voith von Voithenberg L, Hulkkonen J, Macinkovic I, Schulz AR, Hartmann D, Mueller F, Mijatovic M, Ibberson D, AlHalabi KT, Hetzer J, Anders S, Brüne B, Mei HE, Imbusch CD, Brors B, Heikenwälder M, Gaida MM, Büchler MW, Weigert A, Hackert T, Roth S. Spatially Resolved Multi-Omics Single-Cell Analyses Inform Mechanisms of Immune Dysfunction in Pancreatic Cancer. Gastroenterology 2023; 165:891-908.e14. [PMID: 37263303 DOI: 10.1053/j.gastro.2023.05.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.
Collapse
Affiliation(s)
- Suhail Yousuf
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mengjie Qiu
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Johannes Hulkkonen
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Igor Macinkovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Domenic Hartmann
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Mueller
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Margarete Mijatovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Karam T AlHalabi
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Simon Anders
- BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium, Partner Site Frankfurt, Germany
| | - Henrik E Mei
- German Rheumatism Research Center, Berlin, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; Joint Unit Immunopathology, Institute of Pathology, University Medical Center, Johannes Gutenberg University and Translational Oncology, University Medical Center Mainz, Mainz, Germany
| | - Markus W Büchler
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium, Partner Site Frankfurt, Germany
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Roth
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
18
|
Antal CE, Oh TG, Aigner S, Luo EC, Yee BA, Campos T, Tiriac H, Rothamel KL, Cheng Z, Jiao H, Wang A, Hah N, Lenkiewicz E, Lumibao JC, Truitt ML, Estepa G, Banayo E, Bashi S, Esparza E, Munoz RM, Diedrich JK, Sodir NM, Mueller JR, Fraser CR, Borazanci E, Propper D, Von Hoff DD, Liddle C, Yu RT, Atkins AR, Han H, Lowy AM, Barrett MT, Engle DD, Evan GI, Yeo GW, Downes M, Evans RM. A super-enhancer-regulated RNA-binding protein cascade drives pancreatic cancer. Nat Commun 2023; 14:5195. [PMID: 37673892 PMCID: PMC10482938 DOI: 10.1038/s41467-023-40798-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/10/2023] [Indexed: 09/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy in need of new therapeutic options. Using unbiased analyses of super-enhancers (SEs) as sentinels of core genes involved in cell-specific function, here we uncover a druggable SE-mediated RNA-binding protein (RBP) cascade that supports PDAC growth through enhanced mRNA translation. This cascade is driven by a SE associated with the RBP heterogeneous nuclear ribonucleoprotein F, which stabilizes protein arginine methyltransferase 1 (PRMT1) to, in turn, control the translational mediator ubiquitin-associated protein 2-like. All three of these genes and the regulatory SE are essential for PDAC growth and coordinately regulated by the Myc oncogene. In line with this, modulation of the RBP network by PRMT1 inhibition reveals a unique vulnerability in Myc-high PDAC patient organoids and markedly reduces tumor growth in male mice. Our study highlights a functional link between epigenetic regulation and mRNA translation and identifies components that comprise unexpected therapeutic targets for PDAC.
Collapse
Affiliation(s)
- Corina E Antal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tae Gyu Oh
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - En-Ching Luo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tania Campos
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhang Cheng
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Henry Jiao
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, La Jolla, CA, 92037, USA
| | - Nasun Hah
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Jan C Lumibao
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Morgan L Truitt
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gabriela Estepa
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ester Banayo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Senada Bashi
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Ruben M Munoz
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Jolene K Diedrich
- Mass Spectrometry Core for Proteomics and Metabolomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Nicole M Sodir
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Genentech, Department of Translational Oncology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cory R Fraser
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
- Scottsdale Pathology Associates, Scottsdale, AZ, 85260, USA
| | - Erkut Borazanci
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - David Propper
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, USA
| | - Daniel D Von Hoff
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
- HonorHealth Research Institute, Scottsdale, AZ, 85258, USA
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research and Sydney Medical School, University of Sydney, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Ruth T Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Annette R Atkins
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Andrew M Lowy
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Department of Surgery, Division of Surgical Oncology, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael T Barrett
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Dannielle D Engle
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gerard I Evan
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Sato H, Hara T, Meng S, Tsuji Y, Arao Y, Saito Y, Sasaki K, Kobayashi S, Doki Y, Eguchi H, Ishii H. Multifaced roles of desmoplastic reaction and fibrosis in pancreatic cancer progression: Current understanding and future directions. Cancer Sci 2023; 114:3487-3495. [PMID: 37480223 PMCID: PMC10475783 DOI: 10.1111/cas.15890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 07/23/2023] Open
Abstract
Desmoplastic reaction is a fibrosis reaction that is characterized by a large amount of dense extracellular matrix (ECM) and dense fibrous stroma. Fibrotic stroma around the tumor has several different components, including myofibroblasts, collagen, and other ECM molecules. This stromal reaction is a natural response to the tissue injury process, and fibrosis formation is a key factor in pancreatic cancer development. The fibrotic stroma of pancreatic cancer is associated with tumor progression, metastasis, and poor prognosis. Reportedly, multiple processes are involved in fibrosis, which is largely associated with the upregulation of various cytokines, chemokines, matrix metalloproteinases, and other growth factors that promote tumor growth and metastasis. Fibrosis is also associated with immunosuppressive cell recruitment, such as regulatory T cells (Tregs) with suppressing function to antitumor immunity. Further, dense fibrosis restricts the flow of nutrients and oxygen to the tumor cells, which can contribute to drug resistance. Furthermore, the dense collagen matrix can act as a physical barrier to block the entry of drugs into the tumor, thereby further contributing to drug resistance. Thus, understanding the mechanism of desmoplastic reaction and fibrosis in pancreatic cancer will open an avenue to innovative medicine and improve the prognosis of patients suffering from this disease.
Collapse
Grants
- 17cm0106414h0002 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- JP21lm0203007 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 18KK0251 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 19K2265 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 20H00541 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 21K19526 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22H03146 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 22K19559 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- 16H06279 Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology
- Mitsubishi Foundation
- Mitsubishi Foundation
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Tomoaki Hara
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Sikun Meng
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Tsuji
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yasuko Arao
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Yoshiko Saito
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| | - Kazuki Sasaki
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Shogo Kobayashi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Yuichiro Doki
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal SurgeryOsaka University Graduate School of MedicineOsakaJapan
| | - Hideshi Ishii
- Department of Medical Data ScienceCenter of Medical Innovation and Translational ResearchOsaka University Graduate School of MedicineOsakaJapan
| |
Collapse
|
20
|
Tsuji Y, Hara T, Meng S, Sato H, Arao Y, Ofusa K, Ishii H. Role of RNA methylation in the regulation of pancreatic cancer stem cells (Review). Oncol Lett 2023; 26:336. [PMID: 37427348 PMCID: PMC10326658 DOI: 10.3892/ol.2023.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 07/11/2023] Open
Abstract
Pancreatic cancer stem cells (CSCs) play a key role in the initiation and progression of pancreatic adenocarcinoma (PDAC). CSCs are responsible for resistance to chemotherapy and radiation, and for cancer metastasis. Recent studies have indicated that RNA methylation, a type of RNA modification, predominantly occurring as m6A methylation, plays an important role in controlling the stemness of cancer cells, therapeutic resistance against chemotherapy and radiation therapy, and their overall relevance to a patient's prognosis. CSCs regulate various behaviors of cancer through cell-cell communication by secreting factors, through their receptors, and through signal transduction. Recent studies have shown that RNA methylation is involved in the biology of the heterogeneity of PDAC. The present review provides an update on the current understanding of RNA modification-based therapeutic targets against deleterious PDAC. Several key pathways and agents that can specifically target CSCs have been identified, thus providing novel insights into the early diagnosis and efficient treatment of PDAC.
Collapse
Affiliation(s)
- Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Ken Ofusa
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
- Prophoenix Division, Food and Life-Science Laboratory, IDEA Consultants, Inc., Osaka, Osaka 559-8519, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Patterson MT, Burrack AL, Xu Y, Hickok GH, Schmiechen ZC, Becker S, Cruz-Hinojoza E, Schrank PR, Kennedy AE, Firulyova MM, Miller EA, Zaitsev K, Williams JW, Stromnes IM. Tumor-specific CD4 T cells instruct monocyte fate in pancreatic ductal adenocarcinoma. Cell Rep 2023; 42:112732. [PMID: 37402168 PMCID: PMC10448358 DOI: 10.1016/j.celrep.2023.112732] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/21/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) orchestrates a suppressive tumor microenvironment that fosters immunotherapy resistance. Tumor-associated macrophages (TAMs) are the principal immune cell infiltrating PDA and are heterogeneous. Here, by employing macrophage fate-mapping approaches and single-cell RNA sequencing, we show that monocytes give rise to most macrophage subsets in PDA. Tumor-specific CD4, but not CD8, T cells promote monocyte differentiation into MHCIIhi anti-tumor macrophages. By conditional major histocompatibility complex (MHC) class II deletion on monocyte-derived macrophages, we show that tumor antigen presentation is required for instructing monocyte differentiation into anti-tumor macrophages, promoting Th1 cells, abrogating Treg cells, and mitigating CD8 T cell exhaustion. Non-redundant IFNγ and CD40 promote MHCIIhi anti-tumor macrophages. Intratumoral monocytes adopt a pro-tumor fate indistinguishable from that of tissue-resident macrophages following loss of macrophage MHC class II or tumor-specific CD4 T cells. Thus, tumor antigen presentation by macrophages to CD4 T cells dictates TAM fate and is a major determinant of macrophage heterogeneity in cancer.
Collapse
Affiliation(s)
- Michael T Patterson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Adam L Burrack
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Yingzheng Xu
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Grant H Hickok
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Zoe C Schmiechen
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Samuel Becker
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Eduardo Cruz-Hinojoza
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Patricia R Schrank
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Ainsley E Kennedy
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Maria M Firulyova
- Computer Technologies Laboratory, ITMO University, Saint-Petersburg, Russia; National Medical Research Center, Saint-Petersburg, Russia
| | - Ebony A Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA
| | - Konstantin Zaitsev
- Computer Technologies Laboratory, ITMO University, Saint-Petersburg, Russia
| | - Jesse W Williams
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Ingunn M Stromnes
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Masonic Cancer Center and University of Minnesota Medical School, Minneapolis, MN 55414, USA; Center for Genome Engineering, University of Minnesota Medical School, Minneapolis, MN 55414, USA.
| |
Collapse
|
22
|
Morgan A, Griffin M, Kameni L, Wan DC, Longaker MT, Norton JA. Medical Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. BIOLOGY 2023; 12:1044. [PMID: 37626931 PMCID: PMC10451924 DOI: 10.3390/biology12081044] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a variety of surface markers and performing a wide range of tumor promoting and inhibiting functions. Single-cell transcriptomic analyses have revealed a high degree of specialization among CAFs. Some examples of CAF subpopulations include myofibrotic CAFs (myCAFs), which exhibit a matrix-producing contractile phenotype; inflammatory CAFs (iCAF) that are classified by their immunomodulating, secretory phenotype; and antigen-presenting CAFs (apCAFs), which have antigen-presenting capabilities and express Major Histocompatibility Complex II (MHC II). Over the last several years, various attempts have been undertaken to describe the mechanisms of CAF-tumor cell interaction, as well as CAF-immune cell interaction, that contribute to tumor proliferation, invasion, and metastasis. Although our understanding of CAF biology in cancer has steadily increased, the extent of CAFs heterogeneity and their role in the pathobiology of pancreatic cancer remains elusive. In this regard, it becomes increasingly evident that further research on CAFs in pancreatic cancer is necessary.
Collapse
Affiliation(s)
- Annah Morgan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Michelle Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
| | - Derrick C. Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey A. Norton
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.M.); (M.G.); (L.K.); (D.C.W.); (M.T.L.)
- Division of General Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Cephas AT, Hwang WL, Maitra A, Parnas O, DelGiorno KE. It is better to light a candle than to curse the darkness: single-cell transcriptomics sheds new light on pancreas biology and disease. Gut 2023; 72:1211-1219. [PMID: 36997301 PMCID: PMC10988578 DOI: 10.1136/gutjnl-2022-329313] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/19/2023] [Indexed: 04/01/2023]
Abstract
Recent advances in single-cell RNA sequencing and bioinformatics have drastically increased our ability to interrogate the cellular composition of traditionally difficult to study organs, such as the pancreas. With the advent of these technologies and approaches, the field has grown, in just a few years, from profiling pancreas disease states to identifying molecular mechanisms of therapy resistance in pancreatic ductal adenocarcinoma, a particularly deadly cancer. Single-cell transcriptomics and related spatial approaches have identified previously undescribed epithelial and stromal cell types and states, how these populations change with disease progression, and potential mechanisms of action which will serve as the basis for designing new therapeutic strategies. Here, we review the recent literature on how single-cell transcriptomic approaches have changed our understanding of pancreas biology and disease progression.
Collapse
Affiliation(s)
- Amelia T Cephas
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - William L Hwang
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Eli and Edythe L Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Oren Parnas
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kathleen E DelGiorno
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Digestive Disease Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Montagne JM, Jaffee EM, Fertig EJ. Multiomics Empowers Predictive Pancreatic Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:859-868. [PMID: 36947820 PMCID: PMC10236355 DOI: 10.4049/jimmunol.2200660] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 03/24/2023]
Abstract
Advances in cancer immunotherapy, particularly immune checkpoint inhibitors, have dramatically improved the prognosis for patients with metastatic melanoma and other previously incurable cancers. However, patients with pancreatic ductal adenocarcinoma (PDAC) generally do not respond to these therapies. PDAC is exceptionally difficult to treat because of its often late stage at diagnosis, modest mutation burden, and notoriously complex and immunosuppressive tumor microenvironment. Simultaneously interrogating features of cancer, immune, and other cellular components of the PDAC tumor microenvironment is therefore crucial for identifying biomarkers of immunotherapeutic resistance and response. Notably, single-cell and multiomics technologies, along with the analytical tools for interpreting corresponding data, are facilitating discoveries of the systems-level cellular and molecular interactions contributing to the overall resistance of PDAC to immunotherapy. Thus, in this review, we will explore how multiomics and single-cell analyses provide the unprecedented opportunity to identify biomarkers of resistance and response to successfully sensitize PDAC to immunotherapy.
Collapse
Affiliation(s)
- Janelle M Montagne
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
- Bloomberg Kimmel Immunology Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elana J Fertig
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Convergence Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Bärthel S, Falcomatà C, Rad R, Theis FJ, Saur D. Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. NATURE CANCER 2023; 4:454-467. [PMID: 36959420 DOI: 10.1038/s43018-023-00526-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer entity characterized by a heterogeneous genetic landscape and an immunosuppressive tumor microenvironment. Recent advances in high-resolution single-cell sequencing and spatial transcriptomics technologies have enabled an in-depth characterization of both malignant and host cell types and increased our understanding of the heterogeneity and plasticity of PDAC in the steady state and under therapeutic perturbation. In this Review we outline single-cell analyses in PDAC, discuss their implications on our understanding of the disease and present future perspectives of multimodal approaches to elucidate its biology and response to therapy at the single-cell level.
Collapse
Affiliation(s)
- Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium Partner Site Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- School of Computation, Information and Technology (CIT), Technische Universität München, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
26
|
Schneeweis C, Diersch S, Hassan Z, Krauß L, Schneider C, Lucarelli D, Falcomatà C, Steiger K, Öllinger R, Krämer OH, Arlt A, Grade M, Schmidt-Supprian M, Hessmann E, Wirth M, Rad R, Reichert M, Saur D, Schneider G. AP1/Fra1 confers resistance to MAPK cascade inhibition in pancreatic cancer. Cell Mol Life Sci 2023; 80:12. [PMID: 36534167 PMCID: PMC9763154 DOI: 10.1007/s00018-022-04638-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
Targeting KRAS downstream signaling remains an important therapeutic approach in pancreatic cancer. We used primary pancreatic ductal epithelial cells and mouse models allowing the conditional expression of oncogenic KrasG12D, to investigate KRAS signaling integrators. We observed that the AP1 family member FRA1 is tightly linked to the KRAS signal and expressed in pre-malignant lesions and the basal-like subtype of pancreatic cancer. However, genetic-loss-of-function experiments revealed that FRA1 is dispensable for KrasG12D-induced pancreatic cancer development in mice. Using FRA1 gain- and loss-of-function models in an unbiased drug screen, we observed that FRA1 is a modulator of the responsiveness of pancreatic cancer to inhibitors of the RAF-MEK-ERK cascade. Mechanistically, context-dependent FRA1-associated adaptive rewiring of oncogenic ERK signaling was observed and correlated with sensitivity to inhibitors of canonical KRAS signaling. Furthermore, pharmacological-induced degradation of FRA1 synergizes with MEK inhibitors. Our studies establish FRA1 as a part of the molecular machinery controlling sensitivity to MAPK cascade inhibition allowing the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Sandra Diersch
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Daniele Lucarelli
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institute of Pathology, School of Medicine, Technical Universität München, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, TU München, 81675 Munich, Germany
| | - Oliver H. Krämer
- Department of Toxicology, University of Mainz Medical Center, 55131 Mainz, Germany
| | - Alexander Arlt
- Department for Internal Medicine and Gastroenterology, University Hospital, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany ,CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Institute of Experimental Hematology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Elisabeth Hessmann
- CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany ,University Medical Center Göttingen Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, 37075 Göttingen, Germany ,Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Roland Rad
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, TU München, 81675 Munich, Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany ,Translational Pancreatic Research Cancer Center, Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany ,German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum Rechts Der Isar, Technical University Munich, 81675 Munich, Germany ,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675 Munich, Germany ,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany ,CCC-N (Comprehensive Cancer Center Lower Saxony), Göttingen, Germany
| |
Collapse
|
27
|
Bryce AS, Dreyer SB, Froeling FEM, Chang DK. Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2022; 14:5302. [PMID: 36358721 PMCID: PMC9659154 DOI: 10.3390/cancers14215302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by a stubbornly low 5-year survival which is essentially unchanged in the past 5 decades. Despite recent advances in chemotherapy and surgical outcomes, progress continues to lag behind that of other cancers. The PDAC microenvironment is characterised by a dense, fibrotic stroma of which cancer-associated fibroblasts (CAFs) are key players. CAFs and fibrosis were initially thought to be uniformly tumour-promoting, however this doctrine is now being challenged by a wealth of evidence demonstrating CAF phenotypic and functional heterogeneity. Recent technological advances have allowed for the molecular profiling of the PDAC tumour microenvironment at exceptional detail, and these technologies are being leveraged at pace to improve our understanding of this previously elusive cell population. In this review we discuss CAF heterogeneity and recent developments in CAF biology. We explore the complex relationship between CAFs and other cell types within the PDAC microenvironment. We discuss the potential for therapeutic targeting of CAFs, and we finally provide an overview of future directions for the field and the possibility of improving outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Adam S. Bryce
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Stephan B. Dreyer
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Fieke E. M. Froeling
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western Rd, Glasgow G12 0YN, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| |
Collapse
|
28
|
Sato H, Sasaki K, Hara T, Kobayashi S, Doki Y, Eguchi H, Satoh T, Ishii H. Targeting the regulation of aberrant protein production pathway in gastrointestinal cancer treatment. Front Oncol 2022; 12:1018333. [PMID: 36338771 PMCID: PMC9634730 DOI: 10.3389/fonc.2022.1018333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2025] Open
Affiliation(s)
- Hiromichi Sato
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Sasaki
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shogo Kobayashi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichiro Doki
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taroh Satoh
- Department of Gastrointestinal Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|