1
|
Wijerathna-Yapa A, Isaac KS, Combe M, Hume S, Sokolenko S. Re-imagining human cell culture media: Challenges, innovations, and future directions. Biotechnol Adv 2025; 81:108564. [PMID: 40101881 DOI: 10.1016/j.biotechadv.2025.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/19/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
The development of optimized culture media is pivotal to advancements in human cell culture, underpinning progress in regenerative medicine, cell therapies, and personalized medicine. While foundational formulations like Eagle's Minimum Essential Medium (MEM) and Dulbecco's Modified Eagle Medium (DMEM) have historically enabled significant biological research, these media were primarily designed for non-human cells and do not adequately address the unique metabolic and functional requirements of human cells. This review examines the evolution of cell culture media, identifying persistent challenges in reproducibility, scalability, and ethical concerns, particularly regarding the reliance on animal-derived components such as fetal bovine serum (FBS). We highlight innovations in serum-free and chemically defined media that offer promising alternatives by enhancing consistency, aligning with Good Manufacturing Practices, and addressing ethical concerns. Emerging approaches, including omics-based profiling, high-throughput screening, and artificial intelligence (AI)-driven media design, are reshaping media optimization by enabling precise tailoring to the needs of specific human cell types and patient-derived cells. Furthermore, we discuss economic and regulatory challenges, emphasizing the need for cost-effective and scalable solutions to facilitate clinical translation. Looking forward, integrating advanced biotechnological tools such as 3D bioprinting, organ-on-a-chip systems, and personalized media formulations presents a transformative opportunity for human cell culture. These innovations, aligned with ethical and clinical standards, can drive the development of human-specific media systems that ensure reproducibility, scalability, and enhanced therapeutic potential, thereby advancing both research and clinical applications.
Collapse
Affiliation(s)
- Akila Wijerathna-Yapa
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kathy Sharon Isaac
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michelle Combe
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada
| | - Samuel Hume
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Stanislav Sokolenko
- Department of Process Engineering and Applied Science, Faculty of Engineering, Dalhousie University, PO Box 15000, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
2
|
Sundaram TS, Giromini C, Rebucci R, Lanzoni D, Petrosillo E, Baldi A, Cheli F. Milk whey as a sustainable alternative growth supplement to fetal bovine serum in muscle cell culture. J Dairy Sci 2025; 108:4749-4760. [PMID: 39986454 DOI: 10.3168/jds.2024-25449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/17/2025] [Indexed: 02/24/2025]
Abstract
In vitro meat cultivation, a cutting-edge innovation in food science, may represent a more sustainable and ethical source of animal proteins compared with conventionally grown meat. An important challenge for meat cultivation lies in eliminating the use of fetal bovine serum (FBS) in cell culture media due to ethical concerns. Milk whey is a nutrient-rich liquid portion of the milk, derived as a byproduct of dairy industry. Similar to FBS, whey contains proteins that are crucial for nutrition, cell adhesion, and biomolecular transport. In this study, we investigated whether whey proteins (WP) can replace FBS in supporting muscle cell cultivation, using the C2C12 myoblast model. Accordingly, under serum-free conditions, cells were treated with 2 WP mixtures, grouping high (β-LG 1.25%, α-LA 1.25%, BSA 1.25%) and low (β-LG 0.07%, α-LA 0.15%, BSA 0.15%) selected concentrations of individual proteins that positively affected cell growth in a preceding dose-response study. Cells cultured in only basal Dulbecco's Modified Eagle Medium were included as a negative control, and cells cultured in 10% FBS as a positive control. Cells were maintained in the treatment media for 48 h (d 1 and 2) to support myoblast proliferation. Subsequently, all the treatments were replaced with a standard low mitogenic 2% horse serum (HS) medium until full differentiation (d 6). The treatment effects on morphology, viability, and lactate dehydrogenase release were assessed after d 1, 2, and 6, respectively. The results showed that WP stimulated cell proliferation under serum-free culture conditions, similar to the FBS control, and subsequently facilitated myotube formation when the WP or FBS treatments were switched to HS medium. After differentiation, these cells also exhibited increased expression of cell differentiation markers such as creatine kinase and citrate synthase and underwent morphological changes from spindle-shaped cells to fused elongated myotubes, in contrast to the negative control. This study demonstrates that WP are a promising and sustainable alternative for considerably replacing FBS-based growth supplements for use in cultivated animal products.
Collapse
Affiliation(s)
- T S Sundaram
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy.
| | - C Giromini
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; Institute for Food, Nutrition and Health, University of Reading, Reading RG6 5EU, United Kingdom; Innovation for Well-Being and Environment (CRC I-WE), University of Milan, 20122 Milan, Italy
| | - R Rebucci
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy
| | - D Lanzoni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy
| | - E Petrosillo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy
| | - A Baldi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy
| | - F Cheli
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; Innovation for Well-Being and Environment (CRC I-WE), University of Milan, 20122 Milan, Italy
| |
Collapse
|
3
|
Mainali P, Chua MSW, Tan DJ, Loo BLW, Ow DSW. Enhancing recombinant growth factor and serum protein production for cultivated meat manufacturing. Microb Cell Fact 2025; 24:41. [PMID: 39956904 PMCID: PMC11831813 DOI: 10.1186/s12934-025-02670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The commercial growth factors (GFs) and serum proteins (SPs) contribute to the high cost associated with the serum-free media for cultivated meat production. Producing recombinant GFs and SPs in scale from microbial cell factories can reduce the cost of culture media. Escherichia coli is a frequently employed host in the expression recombinant GFs and SPs. This review explores critical strategies for cost reduction in GFs and SPs production, focusing on yield enhancement, product improvement, purification innovation, and process innovation. Firstly, the review discusses the use of fusion tags to increase the solubility and yield of GFs & SPs, highlighting various studies that have successfully employed these tags for yield enhancement. We then explore how tagging strategies can streamline and economize the purification process, further reducing production costs. Additionally, we address the challenge of low half-life in GFs and SPs and propose potential strategies that can enhance their stability. Furthermore, improvements in the E. coli chassis and cell engineering strategies are also described, with an emphasis on the key areas that can improve yield and identify areas for cost minimization. Finally, we discuss key bioprocessing areas which can facilitate easier scale-up, enhance yield, titer, and productivity, and ultimately lower long-term production costs. It is crucial to recognize that not all suggested approaches can be applied simultaneously, as their relevance varies with different GFs and SPs. However, integrating of multiple strategies is anticipated to yield a cumulative effect, significantly reducing production costs. This collective effort is expected to substantially decrease the price of cultivated meat, contributing to the broader goal of developing sustainable and affordable meat.
Collapse
Affiliation(s)
- Prashant Mainali
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Melvin Shen-Wei Chua
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Ding-Jie Tan
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Bernard Liat-Wen Loo
- Food, Chemical and Biotechnology, Singapore Institute of Technology, 10 Dover Dr, Singapore, 138683, Republic of Singapore
| | - Dave Siak-Wei Ow
- Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
4
|
Dolgin J, Chakravarty D, Sullivan SF, Cai Y, Lim T, Yamaguchi P, Balkan JE, Xu L, Olawoyin AD, Lee K, Kaplan DL, Nair NU. Microbial lysates as low-cost serum replacements in cellular agriculture media formulation. Food Res Int 2025; 201:115633. [PMID: 39849780 DOI: 10.1016/j.foodres.2024.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Cultivated meat, the process of generating meat in vitro without sacrificing animals, is a promising alternative to the traditional practice of livestock agriculture. However, the success of this field depends on finding sustainable and economical replacements for animal-derived and expensive fetal bovine serum (FBS) that is typically used in cell culture processes. Here, we outline an effective screening process to vet the suitability of microbial lysates to support the growth of immortalized bovine satellite cells (iBSCs) and mackerel (Mack1) cells. We show that easily producible, low-cost whole-cell lysates from Vibrio natriegens can be used to create serum-free media for the long-term growth of iBSCs. The optimized medium, named "VN40" (basal B8 media containing Vibrio natriegens lysate proteins at 40 µg/mL), outperforms previously established serum-free media while maintaining cell phenotype and myogenicity. Overall, this study shows a novel approach to producing serum-free media for cultivated meat production using microbially-derived lysates.
Collapse
Affiliation(s)
- James Dolgin
- Department of Biomedical Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Damayanti Chakravarty
- Department of Chemical & Biological Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Sean F Sullivan
- Department of Chemical & Biological Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Yiming Cai
- Department of Biology, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Taehwan Lim
- Department of Biomedical Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Pomaikaimaikalani Yamaguchi
- Department of Chemical & Biological Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Joseph E Balkan
- Department of Chemical & Biological Engineering, Tufts University Medford MA USA
| | - Licheng Xu
- Department of Biomedical Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Aaron D Olawoyin
- Department of Biomedical Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Kyongbum Lee
- Department of Chemical & Biological Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University Medford MA USA; Tufts University Center for Cellular Agriculture (TUCCA), Tufts University Medford MA USA.
| |
Collapse
|
5
|
Liu Q, Xie L, Chen W. Recombinant Porcine FGF1 Promotes Muscle Stem Cell Proliferation and Mitochondrial Function for Cultured Meat Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2008-2018. [PMID: 39772551 DOI: 10.1021/acs.jafc.4c09215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Cultured meat is an emerging technology with the potential to meet future protein demands while addressing the challenges associated with traditional livestock farming. The production of cultured meat requires efficient, animal component-free in vitro systems for muscle stem cell (MuSC) expansion. Fibroblast growth factor 1 (FGF1) is a critical growth factor that regulates the MuSC function. In this study, we established an efficient method for the soluble expression and purification of recombinant porcine FGF1 (rpFGF1) in Escherichia coli, achieving a yield of 48 mg of purified protein per liter of culture. Treatment with rpFGF1 significantly enhanced the proliferation of porcine MuSC under serum-free conditions. Furthermore, rpFGF1 induced mitochondrial fission and mitophagy by activating the ERK-dependent phosphorylation of DRP1 at Ser616, resulting in improved mitochondrial function and proliferation capacity in porcine MuSC. These findings highlight the potential of rpFGF1 in the development of serum-free media for scalable and sustainable cultured meat production.
Collapse
Affiliation(s)
- Qingying Liu
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Oh YN, Kim HY. Exploring Sustainable Future Protein Sources. Food Sci Anim Resour 2025; 45:81-108. [PMID: 39840240 PMCID: PMC11743843 DOI: 10.5851/kosfa.2024.e111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 01/23/2025] Open
Abstract
With the exponential growth of the world population and the decline in agricultural production due to global warming, it is predicted that there will be an inevitable shortage of food and meat resources in the future. The global meat consumption, which reached 328 million tons in 2021, is expected to increase by about 70% by 2050, and the existing livestock industry, which utilizes limited resources, is having difficulty meeting the demand. Accordingly, cultured meat produced by culturing cells in the laboratory, edible insects consumed after cooking or processing, and plant-based meat processed by extracting proteins from plants have been proposed as sustainable food alternatives. These future protein sources are gaining popularity among consumers who prefer a healthy diet due to their nutritional benefits, and they are receiving attention for their potential to reduce environmental impact. This review describes the types and characteristics of protein sources such as cultured meat, antiserum media, edible insects, soy protein, wheat protein, and other mushroom mycelia, processing processes and technologies, market status, institutional challenges and prospects, and mushroom cultured meat.
Collapse
Affiliation(s)
- Yu-Na Oh
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resources Science Research Institute, Yesan 32439, Korea
| |
Collapse
|
7
|
Dutta D, Nuntapramote T, Rehders M, Brix K, Brüggemann D. Topography-Mediated Induction of Epithelial Mesenchymal Transition via Alumina Textiles for Potential Wound Healing Applications. J Biomed Mater Res A 2025; 113:e37826. [PMID: 39529481 DOI: 10.1002/jbm.a.37826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Substrate topography is vital in determining cell growth and fate of cellular behavior. Although current in vitro studies of the underlying cellular signaling pathways mostly rely on their induction by specific growth factors or chemicals, the influence of substrate topography on specific changes in cells has been explored less often. This study explores the impact of substrate topography, specifically the tricot knit microfibrous structure of alumina textiles, on cell behavior, focusing on fibroblasts and keratinocytes for potential wound healing applications. The textiles, studied for the first time as in vitro substrates, demonstrated support for keratinocyte adhesion, leading to alterations in cell morphology and the expression of E-cadherin and fibronectin. These topography-induced changes resembled the epithelial-to-mesenchymal transition (EMT), crucial for wound healing, and were specific to keratinocytes and absent in identically treated fibroblasts. Biochemically induced EMT in keratinocytes cultured on flat alumina substrates mirrored the changes seen with alumina textiles alone, suggesting the tricot knit microfibrous topography could serve as an in vitro model system to induce EMT-like mechanisms. These results enhance our understanding of how substrate topography influences EMT-related processes in wound healing, paving the way for further evaluation of microfibrous alumina textiles as innovative wound dressings.
Collapse
Affiliation(s)
| | | | - Maren Rehders
- School of Science, Constructor University, Bremen, Germany
| | - Klaudia Brix
- School of Science, Constructor University, Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Bremen, Germany
- Biophysics and Applied Biomaterials, University of Applied Sciences, Hochschule Bremen, Germany
| |
Collapse
|
8
|
Quek JP, Gaffoor AA, Tan YX, Tan TRM, Chua YF, Leong DSZ, Ali AS, Ng SK. Exploring cost reduction strategies for serum free media development. NPJ Sci Food 2024; 8:107. [PMID: 39709448 DOI: 10.1038/s41538-024-00352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
Cultivated meat production offers solutions in addressing global food security and sustainability challenges. However, serum-free media (SFM) used in cultivating the cells are expensive, contributing to at least 50% of variable operating costs. This review explores technologies for cost-effective SFM, focusing on reducing cost from using growth factors and recombinant proteins, using affordable raw materials for basal media, and implementing cost-saving measures like media recycling and reducing waste build-up.
Collapse
Grants
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- W22W3D0004 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
- H20H8a0003 National Research Foundation (NRF), Agency for Science, Technology and Research (A*STAR) and Singapore Food Agency Singapore Food Agency (SFA)
Collapse
Affiliation(s)
- Jun Ping Quek
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Azra Anwar Gaffoor
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Yu Xuan Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Tessa Rui Min Tan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Yu Feng Chua
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Dawn Sow Zong Leong
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Alif Sufiyan Ali
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Republic of Singapore.
| |
Collapse
|
9
|
Goodwin CM, Aimutis WR, Shirwaiker RA. A scoping review of cultivated meat techno-economic analyses to inform future research directions for scaled-up manufacturing. NATURE FOOD 2024; 5:901-910. [PMID: 39424999 DOI: 10.1038/s43016-024-01061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
Techno-economic analyses offer insights into how industrial cultivated meat (CM) production could achieve price parity with conventional meat. These analyses use scaling practices, data and facility designs for related bioprocessing fields, including large (≥20,000 l) stirred tank bioreactors and suspension-tolerant, continuously available cell lines. This approach is inconsistent with most primary CM literature, which parallels bench-scale tissue engineering. TEAs published to date demonstrate that, under the current technological paradigm, CM is unlikely to be competitive with conventional meat. Scale-up feasibility may hinge on cost-saving areas such as use of plant-based media components, food-grade aseptic conditions and extensive scaling of related supply chains. Research must address knowledge gaps including serum-free differentiation, new bioreactor designs and facility design before CM can become a viable alternative to animal-based meat production.
Collapse
Affiliation(s)
- Corbin M Goodwin
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA
| | - William R Aimutis
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA
- North Carolina Food Innovation Lab, North Carolina State University, Kannapolis, NC, USA
| | - Rohan A Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA.
- Bezos Center for Sustainable Protein, North Carolina State University, Raleigh, NC, USA.
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Todhunter ME, Jubair S, Verma R, Saqe R, Shen K, Duffy B. Artificial intelligence and machine learning applications for cultured meat. Front Artif Intell 2024; 7:1424012. [PMID: 39381621 PMCID: PMC11460582 DOI: 10.3389/frai.2024.1424012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time-and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. In addition, we have included a survey of datasets relevant to CM research. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
Collapse
Affiliation(s)
| | - Sheikh Jubair
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Rikard Saqe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Kevin Shen
- Department of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
11
|
Kumar R, Guleria A, Padwad YS, Srivatsan V, Yadav SK. Smart proteins as a new paradigm for meeting dietary protein sufficiency of India: a critical review on the safety and sustainability of different protein sources. Crit Rev Food Sci Nutr 2024:1-50. [PMID: 39011754 DOI: 10.1080/10408398.2024.2367564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
India, a global leader in agriculture, faces sustainability challenges in feeding its population. Although primarily a vegetarian population, the consumption of animal derived proteins has tremendously increased in recent years. Excessive dependency on animal proteins is not environmentally sustainable, necessitating the identification of alternative smart proteins. Smart proteins are environmentally benign and mimic the properties of animal proteins (dairy, egg and meat) and are derived from plant proteins, microbial fermentation, insects and cell culture meat (CCM) processes. This review critically evaluates the technological, safety, and sustainability challenges involved in production of smart proteins and their consumer acceptance from Indian context. Under current circumstances, plant-based proteins are most favorable; however, limited land availability and impending climate change makes them unsustainable in the long run. CCM is unaffordable with high input costs limiting its commercialization in near future. Microbial-derived proteins could be the most sustainable option for future owing to higher productivity and ability to grow on low-cost substrates. A circular economy approach integrating agri-horti waste valorization and C1 substrate synthesis with microbial biomass production offer economic viability. Considering the use of novel additives and processing techniques, evaluation of safety, allergenicity, and bioavailability of smart protein products is necessary before large-scale adoption.
Collapse
Affiliation(s)
- Raman Kumar
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Aditi Guleria
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Yogendra S Padwad
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- Protein Processing Centre, Dietetics, and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vidyashankar Srivatsan
- Applied Phycology and Food Technology Laboratory, Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
| | - Sudesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, Uttar Pradesh, India
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| |
Collapse
|
12
|
Müller C, Budnik N, Mirkin FG, Vater CF, Bravo-Almonacid FF, Perez-Castro C, Wirth SA, Segretin ME. Production of biologically active human basic fibroblast growth factor (hFGFb) using Nicotiana tabacum transplastomic plants. PLANTA 2024; 260:28. [PMID: 38878167 DOI: 10.1007/s00425-024-04456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/02/2024] [Indexed: 06/29/2024]
Abstract
MAIN CONCLUSION We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.
Collapse
Affiliation(s)
- Carolina Müller
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
| | - Nicolás Budnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET)- Partner Institute of the Max Planck Society, Godoy Cruz 2390, Ciudad Autónoma Buenos Aires, C1425FQ, Argentina
| | - Federico Gabriel Mirkin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
| | - Catalina Francisca Vater
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
| | - Fernando Félix Bravo-Almonacid
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, B1876BXD, Argentina
| | - Carolina Perez-Castro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET)- Partner Institute of the Max Planck Society, Godoy Cruz 2390, Ciudad Autónoma Buenos Aires, C1425FQ, Argentina
| | - Sonia Alejandra Wirth
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET-UBA), Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina
| | - María Eugenia Segretin
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, Ciudad Autónoma Buenos Aires, C1428ADN, Argentina.
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
13
|
Nielsen SDH, Sahebekhtiari N, Huang Z, Young JF, Rasmussen MK. Comparison of secreted miRNAs and proteins during proliferation and differentiation of bovine satellite cells in culture implies potential roles in regulating myogenesis. Gene 2024; 894:147979. [PMID: 37952749 DOI: 10.1016/j.gene.2023.147979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Cultivated meat is an emerging new technology to produce sustainable meat for the future. The common approach for cultivated meat, is the isolation of satellite cells from donor animals, followed by in vitro proliferation and differentiation into primitive muscle fibers. The transformation of satellite cells into myofibers is tightly orchestrated by intra-cellular signaling, while the inter-cellular signaling is less well understood. Thus, the current study was conducted to map the secretion of potential signaling molecules (MicroRNAs and proteins) during proliferation and differentiation. Primary cultures of satellite cells were grown to 50% and 80% confluence, representing the proliferative phase or serum-starved for 1 and 3 days to induce differentiation. Post incubation in FBS-free media, the media were collected and analyzed for miRNA and protein content using gene-arrays and LC-MS/MS, respectively. When comparing the miRNA secretome at 50% and 80% confluence, we observed four differentially expressed miRNA, while only five were differentially expressed when comparing Day 1 to Day 3. A subsequent in silico analysis suggested that pathways of importance for myogenesis, e.g., MAPK and AMPK signaling, could be regulated by the secreted miRNAs. In addition, >300 proteins were secreted, including insulin-like growth factor 1 binding proteins 2, 3, 4, 5 and 6. In conclusion, this study demonstrated differential secretion of several miRNAs and proteins during both proliferation and differentiation of bovine satellite cells in vitro.
Collapse
Affiliation(s)
| | - Navid Sahebekhtiari
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Ziyu Huang
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Jette Feveile Young
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | | |
Collapse
|
14
|
Dai W, Chen Y, Xiong W, Li S, Tan WS, Zhou Y. Development of a serum-free medium for myoblasts long-term expansion and 3D culture for cell-based meat. J Food Sci 2024; 89:851-865. [PMID: 38174744 DOI: 10.1111/1750-3841.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Cell-based meat technology provides an effective method to meet the demand for meat, while also posing a huge challenge to the expansion of myoblasts. It is difficult to develop serum-free medium suitable for long-term culture and large-scale expansion of myoblasts, which causes limited understanding of myoblasts expansion. Therefore, this study used C2C12 myoblasts as model cells and developed a serum-free medium for large-scale expansion of myoblasts in vitro using the Plackett-Burman design. The serum-free medium can support short-term proliferation and long-term passage of C2C12 myoblasts, while maintaining myogenic differentiation potential well, which is comparable to those of growth medium containing 10% fetal bovine serum. Based on the C2C12 myoblasts microcarriers serum-free culture system established in this study, the actual expansion folds of myoblasts can reach 43.55 folds after 7 days. Moreover, cell-based meat chunks were preliminarily prepared using glutamine transaminase and edible pigments. The research results provide reference for serum-free culture and large-scale expansion of myoblasts in vitro, laying the foundation for cell-based meat production. PRACTICAL APPLICATION: This study developed a serum-free medium suitable for long-term passage of myoblasts and established a microcarrier serum-free culture system for myoblasts, which is expected to solve the problem of serum-free culture and large-scale expansion of myoblasts in cell culture meat production.
Collapse
Affiliation(s)
- Wenjing Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yawen Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wanli Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Shihao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
15
|
Skrivergaard S, Krøyer Rasmussen M, Sahebekhtiari N, Feveile Young J, Therkildsen M. Satellite cells sourced from bull calves and dairy cows differs in proliferative and myogenic capacity - Implications for cultivated meat. Food Res Int 2023; 173:113217. [PMID: 37803537 DOI: 10.1016/j.foodres.2023.113217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 10/08/2023]
Abstract
Cultivated meat produced with primary muscle satellite cells (SCs) will need a continuous supply of isolated cell material from relevant animal donors. Factors such as age, sex, and breed, along with the sustainability and availability of donor animals, could determine the most appropriate donor type for an efficient production. In this study, we focus on the proliferation and differentiation of bovine SCs isolated from bull calf and dairy cow muscle samples. The proliferative performance of bull calf SCs was significantly better than SCs from dairy cows, however a dynamic differentiation assay revealed that the degree of fusion and formation of myotubes were similar between donor types. Furthermore, the proliferation of SCs from both donor types was enhanced using an in-house developed serum-free media compared to 10% FBS, which also delayed myogenic differentiation and increased final cell population density. Using gene chip transcriptomics, we identified several differentially expressed genes between the two donor types, which could help explain the observed cellular differences. This data also revealed a high biological variance between the three replicate animals within donor type, which seemed to be decreased when using our in-house serum-free media. With the use of the powerful imaging modalities of Cytation 5, we developed a novel high contrast brightfield-enabled label-free myotube quantification method along with a more efficient end-point fusion analysis using Phalloidin-staining. The results give new insights into the bovine SC biology and potential use of bull calves and dairy cows as relevant donor animals for cultivated beef cell sourcing. The newly developed differentiation assays will further enhance future research within the field of cultivated meat and SC biology.
Collapse
|
16
|
Skrivergaard S, Young JF, Sahebekhtiari N, Semper C, Venkatesan M, Savchenko A, Stogios PJ, Therkildsen M, Rasmussen MK. A simple and robust serum-free media for the proliferation of muscle cells. Food Res Int 2023; 172:113194. [PMID: 37689947 DOI: 10.1016/j.foodres.2023.113194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Cultivated meat production requires an efficient, robust and highly optimized serum-free cell culture media for the needed upscaling of muscle cell expansion. Existing formulations of serum-free media are complex, expensive and have not been optimized for muscle cells. Thus, we undertook this work to develop a simple and robust serum-free media for the proliferation of bovine satellite cells (SCs) through Design of Experiment (DOE) and Response Surface Methodology (RSM) using precise and high-throughput image-based cytometry. Proliferative attributes were investigated with transcriptomics and long-term performance was validated using multiple live assays. Here we formulated a media based on three highly optimized components; FGF2 (2 ng/mL), fetuin (600 µg/mL) and BSA (75 µg/mL) which together with an insulin-transferrin-selenium (1x) supplement, sustained the proliferation of bovine SCs, porcine SCs and murine C2C12 muscle cells. Remarkably, cells cultured in our media named Tri-basal 2.0+ performed better than cell cultured in 10% FBS, with respect to proliferation. Hence, the optimized Tri-basal 2.0+ enhanced serum-free cell attachment and long-term proliferation, providing an alternative solution to the use of FBS in the production of cultivated meat.
Collapse
Affiliation(s)
| | | | | | - Cameron Semper
- Department of Microbiology, Immunology, and Infectious Disease. University of Calgary, Calgary, Canada
| | - Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology, and Infectious Disease. University of Calgary, Calgary, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | | | |
Collapse
|
17
|
Semper C, Savchenko A. Protein expression and purification of bioactive growth factors for use in cell culture and cellular agriculture. STAR Protoc 2023; 4:102351. [PMID: 37314918 PMCID: PMC10277608 DOI: 10.1016/j.xpro.2023.102351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023] Open
Abstract
Mitogenic growth factors are major cost drivers in serum-free media, contributing up to 95% of the total cost. Here, we present a streamlined workflow detailing cloning, expression testing, protein purification, and bioactivity screening that allows for low-cost production of bioactive growth factors including basic fibroblast growth factor and transforming growth factor β1. This generalized procedure can be used for multiple families of growth factors with minor modification, and the outputs are bioactive and suitable for cell culture applications. For complete details on the use and execution of this protocol, please refer to Venkatesan, et al.1.
Collapse
Affiliation(s)
- Cameron Semper
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Disease, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada.
| |
Collapse
|
18
|
Hashizume T, Ozawa Y, Ying BW. Employing active learning in the optimization of culture medium for mammalian cells. NPJ Syst Biol Appl 2023; 9:20. [PMID: 37253825 DOI: 10.1038/s41540-023-00284-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Medium optimization is a crucial step during cell culture for biopharmaceutics and regenerative medicine; however, this step remains challenging, as both media and cells are highly complex systems. Here, we addressed this issue by employing active learning. Specifically, we introduced machine learning to cell culture experiments to optimize culture medium. The cell line HeLa-S3 and the gradient-boosting decision tree algorithm were used to find optimized media as pilot studies. To acquire the training data, cell culture was performed in a large variety of medium combinations. The cellular NAD(P)H abundance, represented as A450, was used to indicate the goodness of culture media. In active learning, regular and time-saving modes were developed using culture data at 168 h and 96 h, respectively. Both modes successfully fine-tuned 29 components to generate a medium for improved cell culture. Intriguingly, the two modes provided different predictions for the concentrations of vitamins and amino acids, and a significant decrease was commonly predicted for fetal bovine serum (FBS) compared to the commercial medium. In addition, active learning-assisted medium optimization significantly increased the cellular concentration of NAD(P)H, an active chemical with a constant abundance in living cells. Our study demonstrated the efficiency and practicality of active learning for medium optimization and provided valuable information for employing machine learning technology in cell biology experiments.
Collapse
Affiliation(s)
- Takamasa Hashizume
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Yuki Ozawa
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Ibaraki, Japan.
| |
Collapse
|
19
|
Stout AJ, Rittenberg ML, Shub M, Saad MK, Mirliani AB, Dolgin J, Kaplan DL. A Beefy-R culture medium: Replacing albumin with rapeseed protein isolates. Biomaterials 2023; 296:122092. [PMID: 36965281 PMCID: PMC10111969 DOI: 10.1016/j.biomaterials.2023.122092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The development of cost-effective serum-free media is essential for the economic viability of cultured meat. A key challenge facing this goal is the high-cost of recombinant albumin which is necessary in many serum-free media formulations, including a recently developed serum-free medium for bovine satellite cell (BSC) culture termed Beefy-9. Here we alter Beefy-9 by replacing recombinant albumin with rapeseed protein isolate (RPI), a bulk-protein solution obtained from agricultural waste through alkali extraction (pH 12.5), isoelectric protein precipitation (pH 4.5), dissolution of physiologically soluble proteins (pH 7.2), and concentration of proteins through 3 kDa ultrafiltration. This new medium, termed Beefy-R, was then used to culture BSCs over four passages, during which cells grew with an average doubling time of 26.6 h, showing improved growth compared with Beefy-9. In Beefy-R, BSCs maintained cell phenotype and myogenicity. Together, these results offer an effective, low-cost, and sustainable alternative to albumin for serum-free culture of muscle stem cells, thereby addressing a key hurdle facing cultured meat production.
Collapse
Affiliation(s)
- Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Miriam L Rittenberg
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA; Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle Shub
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Addison B Mirliani
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - James Dolgin
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA.
| |
Collapse
|
20
|
Shen SC, Khare E, Lee NA, Saad MK, Kaplan DL, Buehler MJ. Computational Design and Manufacturing of Sustainable Materials through First-Principles and Materiomics. Chem Rev 2023; 123:2242-2275. [PMID: 36603542 DOI: 10.1021/acs.chemrev.2c00479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineered materials are ubiquitous throughout society and are critical to the development of modern technology, yet many current material systems are inexorably tied to widespread deterioration of ecological processes. Next-generation material systems can address goals of environmental sustainability by providing alternatives to fossil fuel-based materials and by reducing destructive extraction processes, energy costs, and accumulation of solid waste. However, development of sustainable materials faces several key challenges including investigation, processing, and architecting of new feedstocks that are often relatively mechanically weak, complex, and difficult to characterize or standardize. In this review paper, we outline a framework for examining sustainability in material systems and discuss how recent developments in modeling, machine learning, and other computational tools can aid the discovery of novel sustainable materials. We consider these through the lens of materiomics, an approach that considers material systems holistically by incorporating perspectives of all relevant scales, beginning with first-principles approaches and extending through the macroscale to consider sustainable material design from the bottom-up. We follow with an examination of how computational methods are currently applied to select examples of sustainable material development, with particular emphasis on bioinspired and biobased materials, and conclude with perspectives on opportunities and open challenges.
Collapse
Affiliation(s)
- Sabrina C Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicolas A Lee
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, Massachusetts 02139, United States
| | - Michael K Saad
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,Center for Computational Science and Engineering, Schwarzman College of Computing, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
22
|
Ahmad SS, Chun HJ, Ahmad K, Shaikh S, Lim JH, Ali S, Han SS, Hur SJ, Sohn JH, Lee EJ, Choi I. The roles of growth factors and hormones in the regulation of muscle satellite cells for cultured meat production. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:16-31. [PMID: 37093925 PMCID: PMC10119461 DOI: 10.5187/jast.2022.e114] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022]
Abstract
Cultured meat is a potential sustainable food generated by the in vitro myogenesis of muscle satellite (stem) cells (MSCs). The self-renewal and differentiation properties of MSCs are of primary interest for cultured meat production. MSC proliferation and differentiation are influenced by a variety of growth factors such as insulin-like growth factors (IGF-1 and IGF-2), transforming growth factor beta (TGF-β), fibroblast growth factors (FGF-2 and FGF-21), platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF) and by hormones like insulin, testosterone, glucocorticoids, and thyroid hormones. In this review, we investigated the roles of growth factors and hormones during cultured meat production because these factors provide signals for MSC growth and structural stability. The aim of this article is to provide the important idea about different growth factors such as FGF (enhance the cell proliferation and differentiation), IGF-1 (increase the number of myoblasts), PDGF (myoblast proliferation), TGF-β1 (muscle repair) and hormones such as insulin (cell survival and growth), testosterone (muscle fiber size), dexamethasone (myoblast proliferation and differentiation), and thyroid hormones (amount and diameter of muscle fibers and determine the usual pattern of fiber distributions) as media components during myogenesis for cultured meat production.
Collapse
Affiliation(s)
- Syed Sayeed Ahmad
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Hee Jin Chun
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
| | - Khurshid Ahmad
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sibhghatulla Shaikh
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Jeong Ho Lim
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Shahid Ali
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Sung Soo Han
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
- School of Chemical Engineering, Yeungnam
University, Gyeongsan 38541, Korea
| | - Sun Jin Hur
- Department of Animal Science and
Technology, Chung-Ang University, Anseong 17546, Korea
| | - Jung Hoon Sohn
- Synthetic Biology and Bioengineering
Research Center, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Korea
| | - Eun Ju Lee
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| | - Inho Choi
- Department of Medical Biotechnology,
Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture,
Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
23
|
Hu Y, Buehler MJ. End-to-End Protein Normal Mode Frequency Predictions Using Language and Graph Models and Application to Sonification. ACS NANO 2022; 16:20656-20670. [PMID: 36416536 DOI: 10.1021/acsnano.2c07681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The prediction of mechanical and dynamical properties of proteins is an important frontier, especially given the greater availability of proteins structures. Here we report a series of models that provide end-to-end predictions of nanodynamical properties of proteins, focused on high-throughput normal mode predictions directly from the amino acid sequence. Using neural network models within the family of Natural Language Processing and graph-based methods, we offer atomistically based mechanistic predictions of key protein mechanical features. The models include an end-to-end long short-term memory (LSTM) model, an end-to-end transformer model, a graph-based transformer model, and an equivariant graph neural network. All four models show exceptional performance, with the graph-based transformer architecture offering the best results but at the cost of requiring a graph structure as input. Conversely, the LSTM and transformer models offer end-to-end sequence-to-property prediction capabilities, providing efficient avenues for protein engineering, analysis, and design. We compare our results against published data based on a Principal Neighborhood Aggregation graph neural network, revealing that the transformer model offers better performance while also being able to predict a large set of the first 64 normal mode frequencies, simultaneously. The use of the end-to-end transformer model may facilitate other downstream applications through the use of transfer learning, and it offers a comprehensive prediction of dynamical properties without any structural knowledge, directly from the amino acid sequence. We demonstrate a potential application in scientific sonification, where the normal mode frequencies are transposed to generate audible signals for a detailed analysis of subtle changes of protein sequences.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|