1
|
Fratta Pasini AM, Stranieri C, Di Leo EG, Bertolone L, Aparo A, Busti F, Castagna A, Vianello A, Chesini F, Friso S, Girelli D, Cominacini L. Identification of Early Biomarkers of Mortality in COVID-19 Hospitalized Patients: A LASSO-Based Cox and Logistic Approach. Viruses 2025; 17:359. [PMID: 40143288 PMCID: PMC11946718 DOI: 10.3390/v17030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to identify possible early biomarkers of mortality among clinical and biochemical parameters, iron metabolism parameters, and cytokines detected within 24 h from admission in hospitalized COVID-19 patients. We enrolled 80 hospitalized patients (40 survivors and 40 non-survivors) with COVID-19 pneumonia and acute respiratory failure. The median time from the onset of COVID-19 symptoms to hospital admission was lower in non-survivors than survivors (p < 0.05). Respiratory failure, expressed as the ratio of arterial oxygen partial pressure to the fraction of inspired oxygen (P/F), was more severe in non-survivors than survivors (p < 0.0001). Comorbidities were similar in both groups. Among biochemical parameters and cytokines, eGFR and interleukin (IL)-1β were found to be significantly lower (p < 0.05), while LDH, IL-10, and IL-8 were significantly higher in non-survivors than in survivors (p < 0.0005, p < 0.05 and p < 0.005, respectively). Among other parameters, LDH values distribution showed the most significant difference between study groups (p < 0.0001). LASSO feature selection combined with Cox proportional hazards and logistic regression models was applied to identify features distinguishing between survivors and non-survivors. Both approaches highlighted LDH as the strongest predictor, with IL-22 and creatinine emerging in the Cox model, while IL-10, eGFR, and creatinine were influential in the logistic model (AUC = 0.744 for Cox, 0.723 for logistic regression). In a similar manner, we applied linear regression for predicting LDH levels, identifying the P/F ratio as the top predictor, followed by IL-10 and eGFR (NRMSE = 0.128). Collectively, these findings underscore LDH's critical role in mortality prediction, with P/F and IL-10 as key determinants of LDH increases in this Italian COVID-19 cohort.
Collapse
Affiliation(s)
- Anna Maria Fratta Pasini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Chiara Stranieri
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Edoardo Giuseppe Di Leo
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Lorenzo Bertolone
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Antonino Aparo
- Interdepartmental Laboratory of Medical Research, Research Center LURM, University of Verona, 37134 Verona, Italy;
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Annalisa Castagna
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Alice Vianello
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Fabio Chesini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Simonetta Friso
- Department of Medicine, Section of Internal Medicine B, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy (S.F.)
| | - Domenico Girelli
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| | - Luciano Cominacini
- Department of Medicine, Section of Internal Medicine D, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (E.G.D.L.); (L.B.); (F.B.); (A.V.); (F.C.); (D.G.); (L.C.)
| |
Collapse
|
2
|
Jin Z, Yamaguchi A, Takai H, Nakayama Y, Ogata Y. Interleukin-6 regulates human ODAM gene expression in gingival epithelial cells. J Periodontal Implant Sci 2025; 55:55.e12. [PMID: 40350767 DOI: 10.5051/jpis.2402980149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/08/2024] [Accepted: 12/30/2024] [Indexed: 05/14/2025] Open
Abstract
PURPOSE Odontogenic ameloblast-associated protein (ODAM) is a small secretory protein produced by the junctional epithelium (JE) and mature ameloblasts. It plays a role in odontogenesis and mediates the adhesion of JE to enamel. We used human gingival epithelial cells to evaluate the mechanism of ODAM gene expression regulation in the JE by interleukin (IL)-6. METHODS Ca9-22, Sa3, and HSY cells were stimulated with IL-6 (10 ng/mL), after which total RNA and proteins were extracted. Real-time polymerase chain reaction and Western blot analyses were performed to assess the expression levels of ODAM mRNA and protein. Luciferase (LUC) assays were employed using LUC constructs with varying lengths of the ODAM gene promoter sequence. Gel mobility shift and chromatin immunoprecipitation (ChIP) analyses were conducted to investigate the binding of transcription factors to response elements within the gene promoter. RESULTS Treatment with IL-6 increased the expressions of ODAM mRNA and protein. Additionally, it induced promoter activity of the ODAM gene, while LUC activity was suppressed by inhibitors of protein kinase A, tyrosine kinase, MEK1/2, phosphatidylinositol 3-kinase, nuclear factor-κB, signal transducer and activator of transcription (STAT) 3, and glycoprotein 130. Gel mobility shift and ChIP analyses revealed that IL-6 induced the binding of yin yang 1 (YY1), CCAAT/enhancer-binding protein (C/EBP) β, GATA binding protein (GATA), and phospho-STAT3 to the YY1, C/EBP, GATA, and interferon-γ activated transcriptional element (GATE) 1-3 elements. CONCLUSIONS These findings indicate that IL-6 upregulates ODAM gene expression by targeting the YY1, C/EBP, GATA, and GATE1-3 elements in the promoter region of the human ODAM gene.
Collapse
Affiliation(s)
- Zhenyu Jin
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Arisa Yamaguchi
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Hideki Takai
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yohei Nakayama
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yorimasa Ogata
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Japan.
| |
Collapse
|
3
|
Zhou K, Qin Q, Lu J. Pathophysiological mechanisms of ARDS: a narrative review from molecular to organ-level perspectives. Respir Res 2025; 26:54. [PMID: 39948645 PMCID: PMC11827456 DOI: 10.1186/s12931-025-03137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) remains a life-threatening pulmonary condition with persistently high mortality rates despite significant advancements in supportive care. Its complex pathophysiology involves an intricate interplay of molecular and cellular processes, including cytokine storms, oxidative stress, programmed cell death, and disruption of the alveolar-capillary barrier. These mechanisms drive localized lung injury and contribute to systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Unlike prior reviews that primarily focus on isolated mechanisms, this narrative review synthesizes the key pathophysiological processes of ARDS across molecular, cellular, tissue, and organ levels. MAIN BODY By integrating classical theories with recent research advancements, we provide a comprehensive analysis of how inflammatory mediators, metabolic reprogramming, oxidative stress, and immune dysregulation synergistically drive ARDS onset and progression. Furthermore, we critically evaluate current evidence-based therapeutic strategies, such as lung-protective ventilation and prone positioning, while exploring innovative therapies, including stem cell therapy, gene therapy, and immunotherapy. We emphasize the significance of ARDS subtypes and their inherent heterogeneity in guiding the development of personalized treatment strategies. CONCLUSIONS This narrative review provides fresh perspectives for future research, ultimately enhancing patient outcomes and optimizing management approaches in ARDS.
Collapse
Affiliation(s)
- Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
| |
Collapse
|
4
|
Komiya Y, Kamiya M, Oba S, Kawata D, Iwai H, Shintaku H, Suzuki Y, Miyamoto S, Tobiume M, Kanno T, Ainai A, Suzuki T, Hasegawa H, Hosoya T, Yasuda S. Necroptosis in alveolar epithelial cells drives lung inflammation and injury caused by SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167472. [PMID: 39154794 DOI: 10.1016/j.bbadis.2024.167472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
COVID-19, caused by SARS-CoV-2 infection, results in irreversible or fatal lung injury. We assumed that necroptosis of virus-infected alveolar epithelial cells (AEC) could promote local inflammation and further lung injury in COVID-19. Since CD8+ lymphocytes induced AEC cell death via cytotoxic molecules such as FAS ligands, we examined the involvement of FAS-mediated cell death in COVID-19 patients and murine COVID-19 model. We identified the occurrence of necroptosis and subsequent release of HMGB1 in the admitted patients with COVID-19. In the mouse model of COVID-19, lung inflammation and injury were attenuated in Fas-deficient mice compared to Fas-intact mice. The infection enhanced Type I interferon-inducible genes in both groups, while inflammasome-associated genes were specifically upregulated in Fas-intact mice. The treatment with necroptosis inhibitor, Nec1s, improved survival rate, lung injury, and systemic inflammation. SARS-CoV-2 induced necroptosis causes cytokine induction and lung damage, and its inhibition could be a novel therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Yoji Komiya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Mari Kamiya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Seiya Oba
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Daisuke Kawata
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hideyuki Iwai
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hiroshi Shintaku
- Division of Pathology, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Yoshio Suzuki
- Department of Clinical Pathology, Asahi General Hospital, I-1326, Asahi, Chiba 289-2511, Japan
| | - Sho Miyamoto
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Minoru Tobiume
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Takayuki Kanno
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Hideki Hasegawa
- WHO Collaborating Centre for Reference and Research on Influenza, Tokyo, Japan; Research Center for Influenza and Respiratory Virus, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Pathology, National Institute of Infectious Diseases, Tokyo 208-0011, Japan.
| | - Shinsuke Yasuda
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
5
|
Chung KP, Cheng CN, Chen YJ, Hsu CL, Huang YL, Hsieh MS, Kuo HC, Lin YT, Juan YH, Nakahira K, Chen YF, Liu WL, Ruan SY, Chien JY, Plataki M, Cloonan SM, Carmeliet P, Choi AMK, Kuo CH, Yu CJ. Alveolar epithelial cells mitigate neutrophilic inflammation in lung injury through regulating mitochondrial fatty acid oxidation. Nat Commun 2024; 15:7241. [PMID: 39174557 PMCID: PMC11341863 DOI: 10.1038/s41467-024-51683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Type 2 alveolar epithelial (AT2) cells of the lung are fundamental in regulating alveolar inflammation in response to injury. Impaired mitochondrial long-chain fatty acid β-oxidation (mtLCFAO) in AT2 cells is assumed to aggravate alveolar inflammation in acute lung injury (ALI), yet the importance of mtLCFAO to AT2 cell function needs to be defined. Here we show that expression of carnitine palmitoyltransferase 1a (CPT1a), a mtLCFAO rate limiting enzyme, in AT2 cells is significantly decreased in acute respiratory distress syndrome (ARDS). In mice, Cpt1a deletion in AT2 cells impairs mtLCFAO without reducing ATP production and alters surfactant phospholipid abundance in the alveoli. Impairing mtLCFAO in AT2 cells via deleting either Cpt1a or Acadl (acyl-CoA dehydrogenase long chain) restricts alveolar inflammation in ALI by hindering the production of the neutrophilic chemokine CXCL2 from AT2 cells. This study thus highlights mtLCFAO as immunometabolism to injury in AT2 cells and suggests impaired mtLCFAO in AT2 cells as an anti-inflammatory response in ARDS.
Collapse
Grants
- K08 HL157728 NHLBI NIH HHS
- 109-O04, 110-O07, 110-S4872, 111-S0075, 113-S0079 National Taiwan University Hospital (NTUH)
- NTUCDP-112L7745, NTUCDP-112L7746, 110T099, NTU-NFG-110L7422 National Taiwan University (NTU)
- National Science and Technology Council (Taiwan) (MOST-108-2628-B-002-017 [K.P.C.], MOST-109-2628-B-002-044 [K.P.C.], MOST-110-2628-B-002-029 [K.P.C.], MOST-110-2628-B-002-045-MY3 [K.P.C.], MOST-111-2628-B-002-030-MY3 [K.P.C.])
- National Science and Technology Council (Taiwan), MOST 107-2314-B-002-235-MY3
- National Science and Technology Council (Taiwan), MOST 110-2314-B-002-262
- National Taiwan University School of Pharmacy Endowment Fund in support of the Platform for Clinical Mass Spectrometry and NMR Structure Elucidation
- Research funding provided by Mr. Barry Lam, the chairman of Quanta Computer Inc
Collapse
Affiliation(s)
- Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chih-Ning Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Ting Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University, Kashihara, Nara, Japan
| | - Yen-Fu Chen
- Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
- Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, Leuven, Belgium
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Presbyterian Hospital-Weill Cornell Medical Center, New York, NY, USA
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
- The Metabolomics Core Laboratory, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan.
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
6
|
Kenny G, Saini G, Gaillard CM, Negi R, Alalwan D, Garcia Leon A, McCann K, Tinago W, Kelly C, Cotter AG, de Barra E, Horgan M, Yousif O, Gautier V, Landay A, McAuley D, Feeney ER, O'Kane C, Mallon PWG. Early inflammatory profiles predict maximal disease severity in COVID-19: An unsupervised cluster analysis. Heliyon 2024; 10:e34694. [PMID: 39144942 PMCID: PMC11320140 DOI: 10.1016/j.heliyon.2024.e34694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background The inflammatory changes that underlie the heterogeneous presentations of COVID-19 remain incompletely understood. In this study we aimed to identify inflammatory profiles that precede the development of severe COVID-19, that could serve as targets for optimised delivery of immunomodulatory therapies and provide insights for the development of new therapies. Methods We included individuals sampled <10 days from COVID-19 symptom onset, recruited from both inpatient and outpatient settings. We measured 61 biomarkers in plasma, including markers of innate immune and T cell activation, coagulation, tissue repair and lung injury. We used principal component analysis and hierarchical clustering to derive biomarker clusters, and ordinal logistic regression to explore associations between cluster membership and maximal disease severity, adjusting for known risk factors for severe COVID-19. Results In 312 individuals, median (IQR) 7 (4-9) days from symptom onset, we found four clusters. Cluster 1 was characterised by low overall inflammation, cluster 2 was characterised by higher levels of growth factors and markers of endothelial activation (EGF, VEGF, PDGF, TGFα, PAI-1 and p-selectin). Cluster 3 and 4 both had higher overall inflammation. Cluster 4 had the highest levels of most markers including markers of innate immune activation (IL6, procalcitonin, CRP, TNFα), and coagulation (D-dimer, TPO), in contrast cluster 3 had the highest levels of alveolar epithelial injury markers (RAGE, ST2), but relative downregulation of growth factors and endothelial activation markers, suggesting a dysfunctional inflammatory pattern. In unadjusted and adjusted analysis, compared to cluster 1, cluster 3 had the highest odds of progressing to more severe disease (unadjusted OR (95%CI) 9.02 (4.53-17.96), adjusted OR (95%CI) 6.02 (2.70-13.39)). Conclusion Early inflammatory profiles predicted subsequent maximal disease severity independent of risk factors for severe COVID-19. A cluster with downregulation of growth factors and endothelial activation markers, and early evidence of alveolar epithelial injury, had the highest risk of severe COVID-19.
Collapse
Affiliation(s)
- Grace Kenny
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Gurvin Saini
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Colette Marie Gaillard
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Riya Negi
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Dana Alalwan
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Alejandro Garcia Leon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Kathleen McCann
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Willard Tinago
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Christine Kelly
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Eoghan de Barra
- Department of International Health and Tropical Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mary Horgan
- Department of Infectious Diseases, Cork University Hospital, Wilton, Cork, Ireland
| | - Obada Yousif
- Department of Endocrinology, Wexford General Hospital, Wexford, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, IL, USA
| | | | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| | | | - Patrick WG. Mallon
- Centre for Experimental Pathogen Host Research, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
7
|
Yang Y, Lin Y, Han Z, Wang B, Zheng W, Wei L. Ferroptosis: a novel mechanism of cell death in ophthalmic conditions. Front Immunol 2024; 15:1440309. [PMID: 38994366 PMCID: PMC11236620 DOI: 10.3389/fimmu.2024.1440309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Ferroptosis, a new type of programmed cell death proposed in recent years, is characterized mainly by reactive oxygen species and iron-mediated lipid peroxidation and differs from programmed cell death, such as apoptosis, necrosis, and autophagy. Ferroptosis is associated with a variety of physiological and pathophysiological processes. Recent studies have shown that ferroptosis can aggravate or reduce the occurrence and development of diseases by targeting metabolic pathways and signaling pathways in tumors, ischemic organ damage, and other degenerative diseases related to lipid peroxidation. Increasing evidence suggests that ferroptosis is closely linked to the onset and progression of various ophthalmic conditions, including corneal injury, glaucoma, age-related macular degeneration, diabetic retinopathy, retinal detachment, and retinoblastoma. Our review of the current research on ferroptosis in ophthalmic diseases reveals significant advancements in our understanding of the pathogenesis, aetiology, and treatment of these conditions.
Collapse
Affiliation(s)
- Yaqi Yang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yumeng Lin
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
- Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bo Wang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Wei Zheng
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
8
|
Nymark P, Clerbaux LA, Amorim MJ, Andronis C, de Bernardi F, Bezemer GFG, Coecke S, Gavins FNE, Jacobson D, Lekka E, Margiotta-Casaluci L, Martens M, Mayasich SA, Mortensen HM, Kim YJ, Sachana M, Tanabe S, Virvilis V, Edwards SW, Halappanavar S. Building an Adverse Outcome Pathway network for COVID-19. FRONTIERS IN SYSTEMS BIOLOGY 2024; 4:1384481. [PMID: 40206642 PMCID: PMC11977783 DOI: 10.3389/fsysb.2024.1384481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The COVID-19 pandemic generated large amounts of data on the disease pathogenesis leading to a need for organizing the vast knowledge in a succinct manner. Between April 2020 and February 2023, the CIAO consortium exploited the Adverse Outcome Pathway (AOP) framework to comprehensively gather and systematically organize published scientific literature on COVID-19 pathology. The project considered 24 pathways relevant for COVID-19 by identifying essential key events (KEs) leading to 19 adverse outcomes observed in patients. While an individual AOP defines causally linked perturbed KEs towards an outcome, building an AOP network visually reflect the interrelatedness of the various pathways and outcomes. In this study, 17 of those COVID-19 AOPs were selected based on quality criteria to computationally derive an AOP network. This primary network highlighted the need to consider tissue specificity and helped to identify missing or redundant elements which were then manually implemented in the final network. Such a network enabled visualization of the complex interactions of the KEs leading to the various outcomes of the multifaceted COVID-19 and confirmed the central role of the inflammatory response in the disease. In addition, this study disclosed the importance of terminology harmonization and of tissue/organ specificity for network building. Furthermore the unequal completeness and quality of information contained in the AOPs highlighted the need for tighter implementation of the FAIR principles to improve AOP findability, accessibility, interoperability and re-usability. Finally, the study underlined that describing KEs specific to SARS-CoV-2 replication and discriminating physiological from pathological inflammation is necessary but requires adaptations to the framework. Hence, based on the challenges encountered, we proposed recommendations relevant for ongoing and future AOP-aligned consortia aiming to build computationally biologically meaningful AOP networks in the context of, but not limited to, viral diseases.
Collapse
Affiliation(s)
- Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Laure-Alix Clerbaux
- Institute of Clinical and Experimental Research (IREC), UCLouvain, Brussels, Belgium
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Maria-João Amorim
- Research Centre, Universidade Católica Portuguesa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Fundação Calouste Gulbenkian, Oeiras, Portugal
| | | | - Francesca de Bernardi
- Division of Otorhinolaryngology, Department of Biotechnologies and Life Sciences, University of Insubria, Ospedale di Circolo e Fondazione Macchi, Varese, Italy
| | - Gillina F. G. Bezemer
- Impact Station, Hilversum, Netherlands
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Felicity N. E. Gavins
- The Centre for Inflammation Research and Translational Medicine, Brunel University London, London, United Kingdom
| | - Daniel Jacobson
- Biosciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | | | - Marvin Martens
- Department of Bioinformatics (BiGCaT), NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Sally A. Mayasich
- Aquatic Sciences Center, University of Wisconsin-Madison at US EPA, Duluth, MN, United States
| | - Holly M. Mortensen
- U.S. Environmental Protection Agency (US EPA), Research Triangle Park, NC, United States
| | - Young Jun Kim
- Environmental Safety Group, KIST Europe, Saarbrucken, Germany
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Cooperation and Development (OECD), Paris, France
| | | | | | | | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Dong J, Liu W, Liu W, Wen Y, Liu Q, Wang H, Xiang G, Liu Y, Hao H. Acute lung injury: a view from the perspective of necroptosis. Inflamm Res 2024; 73:997-1018. [PMID: 38615296 DOI: 10.1007/s00011-024-01879-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/23/2024] [Accepted: 03/31/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.
Collapse
Affiliation(s)
- Jinyan Dong
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Wenli Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yuqi Wen
- Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Qingkuo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Hongtao Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Guohan Xiang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, Shandong, China.
| |
Collapse
|
10
|
Gaudin C, Born-Bony M, Villeret B, Jaillet M, Faille D, Timsit JF, Tran-Dinh A, Montravers P, Crestani B, Garcia-Verdugo I, Sallenave JM. COVID-19 PBMCs are doubly harmful, through LDN-mediated lung epithelial damage and monocytic impaired responsiveness to live Pseudomonas aeruginosa exposure. Front Immunol 2024; 15:1398369. [PMID: 38835759 PMCID: PMC11148249 DOI: 10.3389/fimmu.2024.1398369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Although many studies have underscored the importance of T cells, phenotypically and functionally, fewer have studied the functions of myeloid cells in COVID disease. In particular, the potential role of myeloid cells such as monocytes and low-density neutrophils (LDNs) in innate responses and particular in the defense against secondary bacterial infections has been much less documented. Methods Here, we compared, in a longitudinal study, healthy subjects, idiopathic fibrosis patients, COVID patients who were either hospitalized/moderate (M-) or admitted to ICU (COV-ICU) and patients in ICU hospitalized for other reasons (non-COV-ICU). Results We show that COVID patients have an increased proportion of low-density neutrophils (LDNs), which produce high levels of proteases (particularly, NE, MMP-8 and MMP-9) (unlike non-COV-ICU patients), which are partly responsible for causing type II alveolar cell damage in co-culture experiments. In addition, we showed that M- and ICU-COVID monocytes had reduced responsiveness towards further live Pseudomonas aeruginosa (PAO1 strain) infection, an important pathogen colonizing COVID patients in ICU, as assessed by an impaired secretion of myeloid cytokines (IL-1, TNF, IL-8,…). By contrast, lymphoid cytokines (in particular type 2/type 3) levels remained high, both basally and post PAO1 infection, as reflected by the unimpaired capacity of T cells to proliferate, when stimulated with anti-CD3/CD28 beads. Discussion Overall, our results demonstrate that COVID circulatory T cells have a biased type 2/3 phenotype, unconducive to proper anti-viral responses and that myeloid cells have a dual deleterious phenotype, through their LDN-mediated damaging effect on alveolar cells and their impaired responsiveness (monocyte-mediated) towards bacterial pathogens such as P. aeruginosa.
Collapse
Affiliation(s)
- Clémence Gaudin
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Maëlys Born-Bony
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Bérengère Villeret
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Madeleine Jaillet
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Dorothée Faille
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, LVTS, Paris, France
- Laboratoire d'Hématologie, AP-HP, Hôpital Bichat, Paris, France
| | - Jean-François Timsit
- Réanimation Médicale et des Maladies Infectieuses, Centre Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexy Tran-Dinh
- Inserm UMR1148, Laboratory for Vascular Translational Science Bichat Hospital, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Philippe Montravers
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- AP-HP Nord, Anesthesiology and Intensive Care Department, Bichat-Claude Bernard University Hospital, Paris, France
| | - Bruno Crestani
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
- Service de Pneumologie A, Hôpital Bichat, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Ignacio Garcia-Verdugo
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| | - Jean-Michel Sallenave
- Laboratoire d'Excellence Inflamex, Institut National de la Santé et de la Recherche Medicale U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université de Paris-Cité, Paris, France
| |
Collapse
|
11
|
Albert MC, Uranga-Murillo I, Arias M, De Miguel D, Peña N, Montinaro A, Varanda AB, Theobald SJ, Areso I, Saggau J, Koch M, Liccardi G, Peltzer N, Rybniker J, Hurtado-Guerrero R, Merino P, Monzón M, Badiola JJ, Reindl-Schwaighofer R, Sanz-Pamplona R, Cebollada-Solanas A, Megyesfalvi Z, Dome B, Secrier M, Hartmann B, Bergmann M, Pardo J, Walczak H. Identification of FasL as a crucial host factor driving COVID-19 pathology and lethality. Cell Death Differ 2024; 31:544-557. [PMID: 38514848 PMCID: PMC11093991 DOI: 10.1038/s41418-024-01278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.
Collapse
Affiliation(s)
- Marie-Christine Albert
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
| | - Iratxe Uranga-Murillo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Maykel Arias
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Diego De Miguel
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
| | - Natacha Peña
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
| | - Antonella Montinaro
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Ana Beatriz Varanda
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, 50931, Germany
| | - Itziar Areso
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Julia Saggau
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
| | - Manuel Koch
- Institue for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, Cologne, 50931, Germany
| | - Gianmaria Liccardi
- Genome instability, inflammation and cell death laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
| | - Nieves Peltzer
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- Department of Translational Genomics, University of Cologne, Cologne, 50931, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, 50931, Germany
- Faculty of Medicine and University Hospital of Cologne, Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, 50931, Germany
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, 2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Pedro Merino
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), University of Zaragoza, Zaragoza, 50018, Spain
| | - Marta Monzón
- Research Centre for Encephalopaties and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, Zaragoza, 50013, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
| | - Juan J Badiola
- Research Centre for Encephalopaties and Transmissible Emerging Diseases, Institute for Health Research Aragón (IIS), University of Zaragoza, Zaragoza, 50013, Spain
| | | | - Rebeca Sanz-Pamplona
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Fundación ARAID, Zaragoza, 50018, Spain
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Alberto Cebollada-Solanas
- Aragon Biomedical Research Center (CIBA), Instituto Aragonés de Ciencias de la Salud (IACS), Unidad de Biocomputación, Zaragoza, 50018, Spain
| | - Zsolt Megyesfalvi
- Deparment of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, 1122, Hungary
- National Koranyi Institute of Pulmonology, Budapest, 1121, Hungary
| | - Balazs Dome
- Deparment of Thoracic Surgery, Medical University of Vienna, Vienna, 1090, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, 1122, Hungary
- National Koranyi Institute of Pulmonology, Budapest, 1121, Hungary
- Department of Translational Medicine, Lund University, Lund, SE-22100, Sweden
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Boris Hartmann
- Virology Group, Institute for Veterinary Disease Control at AGES, Moedling, 2340, Austria
| | - Michael Bergmann
- Div. of Visceral Surgery, Dept. of General Surgery, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, 1090, Austria
| | - Julián Pardo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Aragón Health Research Institute (IIS Aragón), San Juan Bosco 13, Zaragoza, 50009, Spain
- Department of Microbiology, Paediatrics, Radiology and Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, 50009, Spain
| | - Henning Walczak
- Cell death, inflammation and immunity laboratory, CECAD Cluster of Excellence, University of Cologne, Cologne, 50931, Germany.
- Cell death, inflammation and immunity laboratory, Institute of Biochemistry I, Centre for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, 50931, Germany.
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, WC1E 6DD, UK.
| |
Collapse
|
12
|
Heil M. Self-DNA driven inflammation in COVID-19 and after mRNA-based vaccination: lessons for non-COVID-19 pathologies. Front Immunol 2024; 14:1259879. [PMID: 38439942 PMCID: PMC10910434 DOI: 10.3389/fimmu.2023.1259879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/26/2023] [Indexed: 03/06/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic triggered an unprecedented concentration of economic and research efforts to generate knowledge at unequalled speed on deregulated interferon type I signalling and nuclear factor kappa light chain enhancer in B-cells (NF-κB)-driven interleukin (IL)-1β, IL-6, IL-18 secretion causing cytokine storms. The translation of the knowledge on how the resulting systemic inflammation can lead to life-threatening complications into novel treatments and vaccine technologies is underway. Nevertheless, previously existing knowledge on the role of cytoplasmatic or circulating self-DNA as a pro-inflammatory damage-associated molecular pattern (DAMP) was largely ignored. Pathologies reported 'de novo' for patients infected with Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 to be outcomes of self-DNA-driven inflammation in fact had been linked earlier to self-DNA in different contexts, e.g., the infection with Human Immunodeficiency Virus (HIV)-1, sterile inflammation, and autoimmune diseases. I highlight particularly how synergies with other DAMPs can render immunogenic properties to normally non-immunogenic extracellular self-DNA, and I discuss the shared features of the gp41 unit of the HIV-1 envelope protein and the SARS-CoV 2 Spike protein that enable HIV-1 and SARS-CoV-2 to interact with cell or nuclear membranes, trigger syncytia formation, inflict damage to their host's DNA, and trigger inflammation - likely for their own benefit. These similarities motivate speculations that similar mechanisms to those driven by gp41 can explain how inflammatory self-DNA contributes to some of most frequent adverse events after vaccination with the BNT162b2 mRNA (Pfizer/BioNTech) or the mRNA-1273 (Moderna) vaccine, i.e., myocarditis, herpes zoster, rheumatoid arthritis, autoimmune nephritis or hepatitis, new-onset systemic lupus erythematosus, and flare-ups of psoriasis or lupus. The hope is to motivate a wider application of the lessons learned from the experiences with COVID-19 and the new mRNA vaccines to combat future non-COVID-19 diseases.
Collapse
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV)-Unidad Irapuato, Irapuato, Mexico
| |
Collapse
|
13
|
Guo L, Bao W, Yang S, Liu Y, Lyu J, Wang T, Lu Y, Li H, Zhu H, Chen D. Rhei Radix et Rhizoma in Xuanbai-Chengqi decoction strengthens the intestinal barrier function and promotes lung barrier repair in preventing severe viral pneumonia induced by influenza A virus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117231. [PMID: 37783404 DOI: 10.1016/j.jep.2023.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuanbai-Chengqi decoction (XCD) is a traditional prescription for treating multiple organ injuries, which has been used to manage pneumonia caused by various pathogens. However, the effects of XCD on repairing pulmonary/intestinal barrier damage remain unclear, and there is a need to understand the compatibility mechanism of rhubarb. AIM OF THE STUDY This work aims to investigate the protective effect and mechanism of XCD on the pulmonary/intestinal barrier guided by the theory of "gut-lung concurrent treatment". Moreover, we elucidate the compatibility mechanism of rhubarb in XCD. MATERIALS AND METHODS An H1N1 virus-infected mouse model was adopted to investigate the reparative effects of XCD on the lung-intestinal barrier by assessing lung-intestinal permeability. Additionally, the characterization of type I alveolar epithelial cells (AT1) and type II alveolar epithelial cells (AT2) was performed to evaluate the damage to the alveolar epithelial barrier. The specific barrier-protective mechanisms of XCD were elucidated by detecting tight junction proteins and the epithelial cell repair factor IL-22. The role of rhubarb in XCD to pneumonia treatment was investigated through lung tissue transcriptome sequencing and flow cytometry. RESULTS XCD significantly improved lung tissue edema, inflammation, and alveolar epithelial barrier damage by regulating IL-6, IL-10, and IL-22, which, could further improve pulmonary barrier permeability when combined with the protection of alveolar epithelial cells (AT1 and AT2) as well as inhibition of H1N1 virus replication. Simultaneously, XCD significantly reduced intestinal inflammation and barrier damage by regulating IL-6, IL-1β, and tight junction protein levels (Claudin-1 and ZO-1), improving intestinal barrier permeability. The role of rhubarb in the treatment of pneumonia is clarified for the first time. In the progression of severe pneumonia, rhubarb can significantly protect the intestinal barrier, promote the repair of AT2 cells, and inhibit the accumulation of CD11b+Ly6Gvariable aberrant neutrophils by regulating the S100A8 protein. CONCLUSION In summary, our findings suggest that rhubarb in XCD plays a critical role in protecting intestinal barrier function and promoting lung barrier repair in preventing severe viral pneumonia caused by influenza A virus.
Collapse
Affiliation(s)
- Linfeng Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Shuiyuan Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Yang Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Jiaren Lyu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Ting Wang
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, District, Shanghai, 201203, PR China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, Shanghai, 201203, PR China
| | - Haiyan Zhu
- Department of Biological Medicines, Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong, District, Shanghai, 201203, PR China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, 3728# Jinke Rd., Pudong District, Shanghai, 201203, PR China.
| |
Collapse
|
14
|
Angioni R, Bonfanti M, Caporale N, Sánchez-Rodríguez R, Munari F, Savino A, Pasqualato S, Buratto D, Pagani I, Bertoldi N, Zanon C, Ferrari P, Ricciardelli E, Putaggio C, Ghezzi S, Elli F, Rotta L, Scardua A, Weber J, Cecatiello V, Iorio F, Zonta F, Cattelan AM, Vicenzi E, Vannini A, Molon B, Villa CE, Viola A, Testa G. RAGE engagement by SARS-CoV-2 enables monocyte infection and underlies COVID-19 severity. Cell Rep Med 2023; 4:101266. [PMID: 37944530 PMCID: PMC10694673 DOI: 10.1016/j.xcrm.2023.101266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Matteo Bonfanti
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Aurora Savino
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Damiano Buratto
- Institute of Quantitative Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Nicole Bertoldi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Paolo Ferrari
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Cristina Putaggio
- Infectious Disease Unit, Padova University Hospital, 35128 Padova, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Francesco Elli
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | | | - Janine Weber
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | | | - Francesco Iorio
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | | | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica - Città Della Speranza, 35127 Padova, Italy.
| | - Giuseppe Testa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
15
|
Azagew AW, Beko ZW, Ferede YM, Mekonnen HS, Abate HK, Mekonnen CK. Global prevalence of COVID-19-induced acute respiratory distress syndrome: systematic review and meta-analysis. Syst Rev 2023; 12:212. [PMID: 37957723 PMCID: PMC10644454 DOI: 10.1186/s13643-023-02377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is potentially a fatal form of respiratory failure among COVID-19 patients. Globally, there are inconsistent findings regarding ARDS among COVID-19 patients. Therefore, this study aimed to estimate the pooled prevalence of COVID-19-induced ARDS among COVID-19 patients worldwide. METHODS To retrieve relevant studies, the authors searched Embase, MEDLINE, PubMed, Web of Science, Cochrane Library, Google, and Google Scholar using a combination of search terms. The search was conducted for articles published from December 2019 to September 2022. Articles were searched and screened by title (ti), abstract (ab), and full-text (ft) by two reviewers independently. The quality of each included article was assessed using the Newcastle-Ottawa Assessment Scale. Data were entered into Microsoft Word and exported to Stata version 14 for analysis. Heterogeneity was detected using the Cochrane Q statistics and I-square (I2). Then the sources of variations were identified by subgroup and meta-regression analysis. A random effect meta-analysis model was used. The publication bias was detected using the graphic asymmetry test of the funnel plot and/or Egger's test (p value < 0.05). To treat the potential publication bias, trim and fill analysis were computed. The protocol has been registered in an international database, the Prospective Register of Systematic Reviews (PROSPERO) with reference number: CRD42023438277. RESULTS A total of 794 studies worldwide were screened for their eligibility. Of these 11 studies with 2845 participants were included in this systematic review and meta-analysis. The overall pooled prevalence of COVID-19-induced ARDS in the world was found to be 32.2% (95%CI = 27.70-41.73%), I2 = 97.3%, and p value < 0.001). CONCLUSION The pooled prevalence of COVID-19-induced ARDS was found to be high. The virus remains a global burden because its genetic causes are constantly changing or it mutated throughout the pandemic to emerge a new strain of infection. Therefore, interventions such as massive vaccination, early case detection, screening, isolation, and treatment of the cases need to be implemented to tackle its severity.
Collapse
Affiliation(s)
- Abere Woretaw Azagew
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Zerko Wako Beko
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yohannes Mulu Ferede
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Habtamu Sewunet Mekonnen
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Hailemichael Kindie Abate
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Chilot Kassa Mekonnen
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
16
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
17
|
Peleman C, Van Coillie S, Ligthart S, Choi SM, De Waele J, Depuydt P, Benoit D, Schaubroeck H, Francque SM, Dams K, Jacobs R, Robert D, Roelandt R, Seurinck R, Saeys Y, Rajapurkar M, Jorens PG, Hoste E, Vanden Berghe T. Ferroptosis and pyroptosis signatures in critical COVID-19 patients. Cell Death Differ 2023; 30:2066-2077. [PMID: 37582864 PMCID: PMC10482958 DOI: 10.1038/s41418-023-01204-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Critical COVID-19 patients admitted to the intensive care unit (ICU) frequently suffer from severe multiple organ dysfunction with underlying widespread cell death. Ferroptosis and pyroptosis are two detrimental forms of regulated cell death that could constitute new therapeutic targets. We enrolled 120 critical COVID-19 patients in a two-center prospective cohort study to monitor systemic markers of ferroptosis, iron dyshomeostasis, pyroptosis, pneumocyte cell death and cell damage on the first three consecutive days after ICU admission. Plasma of 20 post-operative ICU patients (PO) and 39 healthy controls (HC) without organ failure served as controls. Subsets of COVID-19 patients displayed increases in individual biomarkers compared to controls. Unsupervised clustering was used to discern latent clusters of COVID-19 patients based on biomarker profiles. Pyroptosis-related interleukin-18 accompanied by high pneumocyte cell death was independently associated with higher odds at mechanical ventilation, while the subgroup with high interleuking-1 beta (but limited pneumocyte cell death) displayed reduced odds at mechanical ventilation and lower mortality hazard. Meanwhile, iron dyshomeostasis with a tendency towards higher ferroptosis marker malondialdehyde had no association with outcome, except for the small subset of patients with very high catalytic iron independently associated with reduced survival. Forty percent of patients did not have a clear signature of the cell death mechanisms studied in this cohort. Moreover, repeated moderate levels of soluble receptor of advanced glycation end products and growth differentiation factor 15 during the first three days after ICU admission are independently associated with adverse clinical outcome compared to sustained lower levels. Altogether, the data point towards distinct subgroups in this cohort of critical COVID-19 patients with different systemic signatures of pyroptosis, iron dyshomeostasis, ferroptosis or pneumocyte cell death markers that have different outcomes in ICU. The distinct groups may allow 'personalized' treatment allocation in critical COVID-19 based on systemic biomarker profiles.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Samya Van Coillie
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Symen Ligthart
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Sze Men Choi
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Pieter Depuydt
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dominique Benoit
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Hannah Schaubroeck
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sven M Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Karolien Dams
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Rita Jacobs
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Dominique Robert
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Ria Roelandt
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Mohan Rajapurkar
- Department of Nephrology, Muljibhai Patel Society for Research in Nephro-Urology, Nadiad, India
| | - Philippe G Jorens
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Division of Intensive Care, Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Eric Hoste
- Intensive Care Unit, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
18
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
19
|
Abstract
The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.
Collapse
Affiliation(s)
- Mark C. Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
20
|
Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci 2023; 24:ijms24054523. [PMID: 36901955 PMCID: PMC10002980 DOI: 10.3390/ijms24054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Correspondence:
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Galina V. Beznoussenko
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|