1
|
Bao YT, Lv M, Huang XJ, Zhao XY. The mechanisms and countermeasures for CAR-T cell expansion and persistence deficiency. Cancer Lett 2025; 626:217771. [PMID: 40320041 DOI: 10.1016/j.canlet.2025.217771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological malignancies, particularly B-cell malignancies. However, its high risk of relapse and low efficacy in malignancies such as chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) have limited its clinical utility. The expansion, infiltration and persistence of CAR-T cells are key determinants of their efficacy. It has been recognized that limited expansion and lack of persistence are major contributors to non-remission and early relapse, highlighting the need to elucidate their mechanisms and countermeasures. In this review, we described features of CAR-T cell expansion and persistence in various hematogenic malignancies and solid tumors. Then, current knowledge on the mechanisms underlying deficiency in CAR-T cell expansion and persistence is presented, focusing on the intrinsic deficiency of CAR-T cells as well as their interaction with the systemic and local immune environment. Finally, we summarize approaches to enhance CAR-T cell expansion and persistence by improving CAR-T cell quality and overcoming the immunosuppressive environment.
Collapse
Affiliation(s)
- Yu-Tong Bao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Beijing, China.
| |
Collapse
|
2
|
Mougiakakos D, Meyer EH, Schett G. CAR T cells in autoimmunity: game changer or stepping stone? Blood 2025; 145:1841-1849. [PMID: 39700499 DOI: 10.1182/blood.2024025413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
ABSTRACT The advent of chimeric antigen receptor (CAR) T cells has revolutionized the treatment landscape for hematologic malignancies, and emerging evidence suggests their potential in autoimmune diseases (AIDs). This article evaluates the early successes and future implications of B-cell-targeting CAR T-cell therapy in AIDs. Initial applications, particularly in refractory systemic lupus erythematosus, have demonstrated significant and durable clinical remissions, with accompanying evaluation of the immune system suggesting a so-called "reset" of innate inflammation and adaptive autoimmunity. This has generated widespread interest in expanding this therapeutic approach. CAR T cells offer unique advantages over other treatment modalities, including very deep B-cell depletion and unique therapeutic activity within inflamed tissues and associated lymphoid structures. However, the field must address key concerns, including long-term toxicity, particularly the risk of secondary malignancies, and future accessibility given the higher prevalence of AIDs compared with malignancies. Technological advances in cell therapy, such as next-generation CAR T cells, allogeneic off-the-shelf products, and alternative cell types, such as regulatory CAR T cells, are being explored in AIDs to improve efficacy and safety. In addition, bispecific antibodies are emerging as potential alternatives or complements to CAR T cells, potentially offering comparable efficacy without the need for complex logistics, lymphodepletion, and the risk of insertional mutagenesis. As the field evolves, cellular therapists will play a critical role in the multidisciplinary teams managing these complex cases. The transformative potential of CAR T cells in AIDs is undeniable, but careful consideration of safety, efficacy, and implementation is essential as this novel therapeutic approach moves forward.
Collapse
Affiliation(s)
- Dimitrios Mougiakakos
- Department of Hematology, Oncology, and Cell Therapy, Otto von Guericke University, Magdeburg, Germany
| | - Everett H Meyer
- Cellular Immune Tolerance Program, Blood and Marrow Transplantation and Cellular Therapy Division, Stanford School of Medicine, Stanford University, Stanford, CA
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University, Erlangen, Germany
| |
Collapse
|
3
|
Pherez-Farah A, Boncompagni G, Chudnovskiy A, Pasqual G. The Bidirectional Interplay between T Cell-Based Immunotherapies and the Tumor Microenvironment. Cancer Immunol Res 2025; 13:463-475. [PMID: 39786986 PMCID: PMC7617322 DOI: 10.1158/2326-6066.cir-24-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
T cell-based therapies, including tumor-infiltrating lymphocyte therapy, T-cell receptor-engineered T cells, and chimeric antigen receptor T cells, are powerful therapeutic approaches for cancer treatment. Whereas these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME) by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behavior of these therapies within the host by either supporting or inhibiting their activity. In this review, we provide an overview of clinical and preclinical data on the bidirectional influences between T-cell therapies and the TME. Unraveling the interactions between T cell-based therapies and the TME is critical for a better understanding of their mechanisms of action, resistance, and toxicity, with the goal of optimizing efficacy and safety.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Gioia Boncompagni
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV IRCCS, Padua, Italy
| |
Collapse
|
4
|
Cai Y, Zhao G, Ma P, Fang H, Dong X, Wang Y, Ding J, Wang S, Li N. Harnessing the power of TCR-T cell therapy: A new era in cancer immunotherapy. Cancer Lett 2025; 613:217507. [PMID: 39892699 DOI: 10.1016/j.canlet.2025.217507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/30/2024] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Affiliation(s)
- Yuanting Cai
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo Zhao
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiwen Ma
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Fang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueyuan Dong
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuning Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiatong Ding
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhang Wang
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ning Li
- Clinical Cancer Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Leonard-Murali S, Kammula US. Optimizing TIL therapy for uveal melanoma: lessons learned and unlearned from cutaneous melanoma. Immunotherapy 2025; 17:283-291. [PMID: 40098478 PMCID: PMC12013418 DOI: 10.1080/1750743x.2025.2478808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Adoptive transfer of tumor infiltrating lymphocytes (TIL-ACT) is a personalized cancer therapy that harnesses the anti-tumor activity of tumor resident T cells through ex vivo activation and expansion. This therapy involves the infusion of a single dose of ex vivo expanded TIL together with high dose IL-2 following a preparative lymphodepleting chemotherapy. The United States Food and Drug Administration approved lifileucel in 2024 as the first autologous TIL product for patients with advanced cutaneous melanoma (CM), adding to the list of approved immunotherapies for this highly immunogenic cancer. However, the role for TIL-ACT in other solid tumors is unclear, especially for poorly immunogenic cancers with low tumor mutational burden. In this review, we describe the historical development of TIL-ACT, summarize the clinical results in advanced CM, and describe the novel application of TIL-ACT to metastatic uveal melanoma (UM), a prototypic immunotherapy-resistant solid tumor. We will highlight key biologic differences between CM and UM, their consequential influence on the manufacturing of UM-specific TIL products, and the development of novel biomarkers for precision TIL-ACT for metastatic UM.
Collapse
Affiliation(s)
- Shravan Leonard-Murali
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, Allegheny Health Network, Pittsburgh, PA, USA
| | - Udai S. Kammula
- Solid Tumor Cellular Immunotherapy Program, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Amaria RN, Komanduri KV, Schoenfeld AJ, Ramsingh G, Burga RA, Jagasia MH. Entering a new era of tumor-infiltrating lymphocyte cell therapy innovation. Cytotherapy 2024:S1465-3249(24)00970-8. [PMID: 40131263 DOI: 10.1016/j.jcyt.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 03/26/2025]
Abstract
The therapeutic potential of adoptive cell therapy using tumor-infiltrating lymphocytes (TIL) has been established in advanced melanoma. In February 2024, lifileucel became the first TIL cell therapy to be approved by the FDA and is indicated for adult patients with advanced melanoma. Although the benefit of TIL cell therapy is best characterized in patients with advanced melanoma, several trials are ongoing investigating its safety and efficacy in other solid tumor indications. Nevertheless, wider applicability and adoption of TIL cell therapy will require continued innovation to provide a safer and more efficacious cell therapy product. Several investigational TIL cell therapy products are in preclinical and early clinical development and are applying novel technologies to overcome key challenges. Herein, we summarize the current state of TIL cell therapy and highlight innovations that may reshape its future.
Collapse
Affiliation(s)
- Rodabe N Amaria
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna V Komanduri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
7
|
Brudno JN, Maus MV, Hinrichs CS. CAR T Cells and T-Cell Therapies for Cancer: A Translational Science Review. JAMA 2024; 332:1924-1935. [PMID: 39495525 PMCID: PMC11808657 DOI: 10.1001/jama.2024.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Importance Chimeric antigen receptor (CAR) T cells are T lymphocytes that are genetically engineered to express a synthetic receptor that recognizes a tumor cell surface antigen and causes the T cell to kill the tumor cell. CAR T treatments improve overall survival for patients with large B-cell lymphoma and progression-free survival for patients with multiple myeloma. Observations Six CAR T-cell products are approved by the US Food and Drug Administration (FDA) for 6 hematologic malignancies: B-cell acute lymphoblastic leukemia, large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia, and multiple myeloma. Compared with standard chemotherapy followed by stem cell transplant, CAR T cells improved 4-year overall survival in patients with large B-cell lymphoma (54.6% vs 46.0%). Patients with pediatric acute lymphoblastic leukemia achieved durable remission after CAR T-cell therapy. At 3-year follow-up, 48% of patients were alive and relapse free. In people with multiple myeloma treated previously with 1 to 4 types of non-CAR T-cell therapy, CAR T-cell therapy prolonged treatment-free remissions compared with standard treatments (in 1 trial, CAR T-cell therapy was associated with progression-free survival of 13.3 months compared with 4.4 months with standard therapy). CAR T-cell therapy is associated with reversible acute toxicities, such as cytokine release syndrome in approximately 40% to 95% of patients, and neurologic disorders in approximately 15% to 65%. New CAR T-cell therapies in development aim to increase efficacy, decrease adverse effects, and treat other types of cancer. No CAR T-cell therapies are FDA approved for solid tumors, but recently, 2 other T lymphocyte-based treatments gained approvals: 1 for melanoma and 1 for synovial cell sarcoma. Additional cellular therapies have attained responses for certain solid tumors, including pediatric neuroblastoma, synovial cell sarcoma, melanoma, and human papillomavirus-associated cancers. A common adverse effect occurring with these T lymphocyte-based therapies is capillary leak syndrome, which is characterized by fluid retention, pulmonary edema, and kidney dysfunction. Conclusions and Relevance CAR T-cell therapy is an FDA-approved therapy that has improved progression-free survival for multiple myeloma, improved overall survival for large B-cell lymphoma, and attained high rates of cancer remission for other hematologic malignancies such as acute lymphoblastic leukemia, follicular lymphoma, and mantle cell lymphoma. Recently approved T lymphocyte-based therapies demonstrated the potential for improved outcomes in solid tumor malignancies.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/therapeutic use
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/mortality
- Hematologic Neoplasms/therapy
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick
| |
Collapse
|
8
|
Ganina A, Askarov M, Kozina L, Karimova M, Shayakhmetov Y, Mukhamedzhanova P, Brimova A, Berikbol D, Chuvakova E, Zaripova L, Baigenzhin A. Prospects for Treatment of Lung Cancer Using Activated Lymphocytes Combined with Other Anti-Cancer Modalities. Adv Respir Med 2024; 92:504-525. [PMID: 39727496 PMCID: PMC11673795 DOI: 10.3390/arm92060045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
This review explores the significance and prospects of using diverse T-cell variants in the context of combined therapy for lung cancer treatment. Recently, there has been an increase in research focused on understanding the critical role of tumor-specific T lymphocytes and the potential benefits of autologous T-cell-based treatments for individuals with lung cancer. One promising approach involves intravenous administration of ex vivo-activated autologous lymphocytes to improve the immune status of patients with cancer. Investigations are also exploring the factors that influence the success of T-cell therapy and the methods used to stimulate them. Achieving a comprehensive understanding of the characteristics of activated lymphocytes and deciphering the mechanisms underlying their activation of innate anti-tumor immunity will pave the way for numerous clinical trials and the development of innovative strategies for cancer therapy like combined immunotherapy and radiation therapy.
Collapse
Affiliation(s)
- Anastasia Ganina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Manarbek Askarov
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Larissa Kozina
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Madina Karimova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Yerzhan Shayakhmetov
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Perizat Mukhamedzhanova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Aigul Brimova
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Daulet Berikbol
- International Oncological Tomotherapy Center “YMIT”, Astana 010009, Kazakhstan; (Y.S.); (P.M.); (A.B.); (D.B.)
| | - Elmira Chuvakova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Lina Zaripova
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| | - Abay Baigenzhin
- JSC National Scientific Medical Center, Astana 010009, Kazakhstan; (M.A.); (L.K.); (M.K.); (E.C.); (L.Z.); (A.B.)
| |
Collapse
|
9
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
12
|
Chen S, van den Brink MRM. Allogeneic "Off-the-Shelf" CAR T cells: Challenges and advances. Best Pract Res Clin Haematol 2024; 37:101566. [PMID: 39396256 DOI: 10.1016/j.beha.2024.101566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown impressive clinical efficacy in B cell malignancies and multiple myeloma, leading to the approval of six CAR T cell products by the U.S. Food and Drug Administration (FDA) to date. However, broad application of these autologous (patient-derived) CAR T cells is limited by several factors, including high production costs, inconsistent product quality, contamination of the cell product with malignant cells, manufacturing failure especially in heavily pre-treated patients, and lengthy manufacturing times resulting in subsequent treatment delay. A potential solution to these barriers lies in the use of allogeneic "off-the-shelf" CAR T cells produced from healthy donors. Many efforts are underway to make allogeneic CAR T cells a safe and efficacious therapeutic option. In this review, we will discuss the major challenges that have to be addressed to successfully develop allogeneic CAR T cell therapies, specifically graft-versus-host disease (GVHD) and host-mediated immune rejection of the donor cells. Furthermore, we will summarize approaches that have been utilized to overcome these limitations, focusing on the use of gene editing technologies and strategies employing alternative cell populations as the source for allogeneic CAR T cell production.
Collapse
Affiliation(s)
- Sophia Chen
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 417 E 68th St, New York, NY, 10065, USA; City of Hope National Medical Center, 1500 E Duarte Rd, Duarte, CA, 91010, USA.
| | | |
Collapse
|
13
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Espinosa-Carrasco G, Chiu E, Scrivo A, Zumbo P, Dave A, Betel D, Kang SW, Jang HJ, Hellmann MD, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for immunotherapy-mediated elimination of solid tumors. Cancer Cell 2024; 42:1202-1216.e8. [PMID: 38906155 PMCID: PMC11413804 DOI: 10.1016/j.ccell.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Tumor-specific CD8+ T cells are frequently dysfunctional and unable to halt tumor growth. We investigated whether tumor-specific CD4+ T cells can be enlisted to overcome CD8+ T cell dysfunction within tumors. We find that the spatial positioning and interactions of CD8+ and CD4+ T cells, but not their numbers, dictate anti-tumor responses in the context of adoptive T cell therapy as well as immune checkpoint blockade (ICB): CD4+ T cells must engage with CD8+ T cells on the same dendritic cell during the effector phase, forming a three-cell-type cluster (triad) to license CD8+ T cell cytotoxicity and cancer cell elimination. When intratumoral triad formation is disrupted, tumors progress despite equal numbers of tumor-specific CD8+ and CD4+ T cells. In patients with pleural mesothelioma treated with ICB, triads are associated with clinical responses. Thus, CD4+ T cells and triads are required for CD8+ T cell cytotoxicity during the effector phase and tumor elimination.
Collapse
Affiliation(s)
| | - Edison Chiu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Matthew D Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Thoracic Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
15
|
Bharadwaj S, Lau E, Hamilton MP, Goyal A, Srinagesh H, Jensen A, Lee D, Mallampet J, Elkordy S, Syal S, Patil S, Latchford T, Sahaf B, Arai S, Johnston LJ, Lowsky R, Negrin R, Rezvani AR, Shizuru J, Meyer EH, Shiraz P, Mikkilineni L, Weng WK, Smith M, Sidana S, Muffly L, Maecker HT, Frank MJ, Mackall C, Miklos D, Dahiya S. Bendamustine is a safe and effective lymphodepletion agent for axicabtagene ciloleucel in patients with refractory or relapsed large B-cell lymphoma. J Immunother Cancer 2024; 12:e008975. [PMID: 38955420 PMCID: PMC11218002 DOI: 10.1136/jitc-2024-008975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Fludarabine in combination with cyclophosphamide (FC) is the standard lymphodepletion regimen for CAR T-cell therapy (CAR T). A national fludarabine shortage in 2022 necessitated the exploration of alternative regimens with many centers employing single-agent bendamustine as lymphodepletion despite a lack of clinical safety and efficacy data. To fill this gap in the literature, we evaluated the safety, efficacy, and expansion kinetics of bendamustine as lymphodepletion prior to axicabtagene ciloleucel (axi-cel) therapy. METHODS 84 consecutive patients with relapsed or refractory large B-cell lymphoma treated with axi-cel and managed with a uniform toxicity management plan at Stanford University were studied. 27 patients received alternative lymphodepletion with bendamustine while 57 received FC. RESULTS Best complete response rates were similar (73.7% for FC and 74% for bendamustine, p=0.28) and there was no significant difference in 12-month progression-free survival or overall survival estimates (p=0.17 and p=0.62, respectively). The frequency of high-grade cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome was similar in both the cohorts. Bendamustine cohort experienced lower proportions of hematological toxicities and antibiotic use for neutropenic fever. Immune reconstitution, as measured by quantitative assessment of cellular immunity, was better in bendamustine cohort as compared with FC cohort. CAR T expansion as measured by peak expansion and area under the curve for expansion was comparable between cohorts. CONCLUSIONS Bendamustine is a safe and effective alternative lymphodepletion conditioning for axi-cel with lower early hematological toxicity and favorable immune reconstitution.
Collapse
Affiliation(s)
- Sushma Bharadwaj
- Stanford University School of Medicine, Stanford, California, USA
| | - Eric Lau
- Stanford University School of Medicine, Stanford, California, USA
| | - Mark P Hamilton
- Stanford University School of Medicine, Stanford, California, USA
| | - Anmol Goyal
- Stanford University School of Medicine, Stanford, California, USA
| | - Hrishi Srinagesh
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Dasom Lee
- Stanford University School of Medicine, Stanford, California, USA
| | - Jayasindhu Mallampet
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Sarah Elkordy
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Shriya Syal
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | - Sunita Patil
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, California, USA
| | | | - Bita Sahaf
- Cancer Institute, Stanford University School of Medicine, Palo Alto, California, USA
| | - Sally Arai
- Stanford University School of Medicine, Stanford, California, USA
| | - Laura J Johnston
- Stanford University School of Medicine, Stanford, California, USA
| | - Robert Lowsky
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Andrew R Rezvani
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Everett H Meyer
- Stanford University School of Medicine, Stanford, California, USA
| | - Parveen Shiraz
- Stanford University School of Medicine, Stanford, California, USA
| | | | - Wen-Kai Weng
- Stanford University School of Medicine, Stanford, California, USA
| | - Melody Smith
- Stanford University School of Medicine, Stanford, California, USA
| | - Surbhi Sidana
- Stanford University School of Medicine, Stanford, California, USA
| | - Lori Muffly
- Stanford University, Palo Alto, California, USA
| | | | - Matthew J Frank
- Stanford University School of Medicine, Stanford, California, USA
| | | | | | - Saurabh Dahiya
- Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
16
|
Hu B, Korsos V, Palomba ML. Chimeric antigen receptor T-cell therapy for aggressive B-cell lymphomas. Front Oncol 2024; 14:1394057. [PMID: 39011476 PMCID: PMC11246842 DOI: 10.3389/fonc.2024.1394057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/17/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary approach in the treatment of lymphoma. This review article provides an overview of the four FDA-approved CAR T-cell products for aggressive B-cell lymphoma, including diffuse large B-cell lymphoma and mantle cell lymphoma, highlighting their efficacy and toxicity as well as discussing future directions.
Collapse
Affiliation(s)
- Bei Hu
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute/Wake Forest School of Medicine, Charlotte, NC, United States
| | - Victoria Korsos
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - M. Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
17
|
Wittling MC, Knochelmann HM, Wyatt MM, Rangel Rivera GO, Cole AC, Lesinski GB, Paulos CM. Distinct host preconditioning regimens differentially impact the antitumor potency of adoptively transferred Th17 cells. J Immunother Cancer 2024; 12:e008715. [PMID: 38945552 PMCID: PMC11216073 DOI: 10.1136/jitc-2023-008715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND How distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown. METHODS CD4+ T cells with a transgenic T-cell receptor that recognize tyrosinase-related peptide (TRP)-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy. RESULTS We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (cyclophosphamide (CTX) of 200 mg/kg) at augmenting therapeutic activity of antitumor TRP-1 Th17 cells. Antitumor Th17 cells engrafted better following preconditioning with TBI and regressed large established melanoma in all animals. Conversely, only half of mice survived long-term when preconditioned with CTX and infused with anti-melanoma Th17 cells. Interleukin (IL)-17 and interferon-γ, produced by the infused Th17 cells, were detected in animals given either TBI or CTX preconditioning. Interestingly, inflammatory cytokines (granulocyte colony stimulating factor, IL-6, monocyte chemoattractant protein-1, IL-5, and keratinocyte chemoattractant) were significantly elevated in the serum of mice preconditioned with TBI versus CTX after Th17 therapy. The addition of fludarabine (FLU, 200 mg/kg) to CTX (200 mg/kg) improved the antitumor response to the same degree mediated by TBI, whereas FLU alone with Th17 therapy was ineffective. CONCLUSIONS Our results indicate, for the first time, that the antitumor response, persistence, and cytokine profiles resulting from Th17 therapy are impacted by the specific regimen of host preconditioning. This work is important for understanding mechanisms that promote long-lived responses by adoptive cellular therapy, particularly as CD4+ based T-cell therapies are now emerging in the clinic.
Collapse
Affiliation(s)
- Megen C Wittling
- Surgery/Oncology & Microbiology/Immunology, Emory University, Atlanta, Georgia, USA
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Hannah M Knochelmann
- Surgery/Oncology & Microbiology/Immunology, Emory University, Atlanta, Georgia, USA
- Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Megan M Wyatt
- Surgery/Oncology & Microbiology/Immunology, Emory University, Atlanta, Georgia, USA
| | - Guillermo O Rangel Rivera
- Surgery/Oncology & Microbiology/Immunology, Emory University, Atlanta, Georgia, USA
- Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Anna C Cole
- Surgery/Oncology & Microbiology/Immunology, Emory University, Atlanta, Georgia, USA
| | | | - Chrystal M Paulos
- Surgery/Oncology & Microbiology/Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Liu W, Liu W, Zou H, Chen L, Huang W, Lv R, Xu Y, Liu H, Shi Y, Wang K, Wang Y, Xiong W, Deng S, Yi S, Sui W, Peng G, Ma Y, Wang H, Lv L, Wang J, Wei J, Qiu L, Zheng W, Zou D. Combinational therapy of CAR T-cell and HDT/ASCT demonstrates impressive clinical efficacy and improved CAR T-cell behavior in relapsed/refractory large B-cell lymphoma. J Immunother Cancer 2024; 12:e008857. [PMID: 38631712 PMCID: PMC11029269 DOI: 10.1136/jitc-2024-008857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Approximately two-thirds of patients with relapsed or refractory large B-cell lymphoma (R/R LBCL) do not respond to or relapse after anti-CD19 chimeric antigen receptor T (CAR T)-cell therapy, leading to poor outcomes. Previous studies have suggested that intensified lymphodepletion and hematological stem cell infusion can promote adoptively transferred T-cell expansion, enhancing antitumor effects. Therefore, we conducted a phase I/II clinical trial in which CNCT19 (an anti-CD19 CAR T-cell) was administered after myeloablative high-dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) in patients with R/R LBCL. METHODS Transplant-eligible patients with LBCL who were refractory to first-line immunochemotherapy or experiencing R/R status after salvage chemotherapy were enrolled. The study aimed to evaluate the safety and efficacy of this combinational therapy. Additionally, frozen peripheral blood mononuclear cell samples from this trial and CNCT19 monotherapy studies for R/R LBCL were used to evaluate the impact of the combination therapy on the in vivo behavior of CNCT19 cells. RESULTS A total of 25 patients with R/R LBCL were enrolled in this study. The overall response and complete response rates were 92.0% and 72.0%, respectively. The 2-year progression-free survival rate was 62.3%, and the overall survival was 68.5% after a median follow-up of 27.0 months. No unexpected toxicities were observed. All cases of cytokine release syndrome were of low grade. Two cases (8%) experienced grade 3 or higher CAR T-cell-related encephalopathy syndrome. The comparison of CNCT19 in vivo behavior showed that patients in the combinational therapy group exhibited enhanced in vivo expansion of CNCT19 cells and reduced long-term exhaustion formation, as opposed to those receiving CNCT19 monotherapy. CONCLUSIONS The combinational therapy of HDT/ASCT and CNCT19 demonstrates impressive efficacy, improved CNCT19 behavior, and a favorable safety profile. TRIAL REGISTRATION NUMBERS ChiCTR1900025419 and NCT04690192.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hesong Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lianting Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rui Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huimin Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yin Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Guangxin Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yueshen Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Huijun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lulu Lv
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| | - Jun Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenting Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Tianjin, China
| |
Collapse
|
19
|
Wolf SP, Anastasopoulou V, Drousch K, Diehl MI, Engels B, Yew PY, Kiyotani K, Nakamura Y, Schreiber K, Schreiber H, Leisegang M. One CD4+TCR and One CD8+TCR Targeting Autochthonous Neoantigens Are Essential and Sufficient for Tumor Eradication. Clin Cancer Res 2024; 30:1642-1654. [PMID: 38190111 PMCID: PMC11018470 DOI: 10.1158/1078-0432.ccr-23-2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
PURPOSE To achieve eradication of solid tumors, we examined how many neoantigens need to be targeted with how many T-cell receptors (TCR) by which type of T cells. EXPERIMENTAL DESIGN Unmanipulated, naturally expressed (autochthonous) neoantigens were targeted with adoptively transferred TCR-engineered autologous T cells (TCR-therapy). TCR-therapy used CD8+ T-cell subsets engineered with TCRs isolated from CD8+ T cells (CD8+TCR-therapy), CD4+ T-cell subsets engineered with TCRs isolated from CD4+ T cells (CD4+TCR-therapy), or combinations of both. The targeted tumors were established for at least 3 weeks and derived from primary autochthonous cancer cell cultures, resembling natural solid tumors and their heterogeneity as found in humans. RESULTS Relapse was common with CD8+TCR-therapy even when targeting multiple different autochthonous neoantigens on heterogeneous solid tumors. CD8+TCR-therapy was only effective against homogenous tumors artificially derived from a cancer cell clone. In contrast, a combination of CD8+TCR-therapy with CD4+TCR-therapy, each targeting one neoantigen, eradicated large and established solid tumors of natural heterogeneity. CD4+TCR-therapy targeted a mutant neoantigen on tumor stroma while direct cancer cell recognition by CD8+TCR-therapy was essential for cure. In vitro data were consistent with elimination of cancer cells requiring a four-cell cluster composed of TCR-engineered CD4+ and CD8+ T cells together with antigen-presenting cells and cancer cells. CONCLUSIONS Two cancer-specific TCRs can be essential and sufficient to eradicate heterogeneous solid tumors expressing unmanipulated, autochthonous targets. We demonstrate that simplifications to adoptive TCR-therapy are possible without compromising efficacy.
Collapse
Affiliation(s)
- Steven P. Wolf
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
| | - Vasiliki Anastasopoulou
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kimberley Drousch
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Markus I. Diehl
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Boris Engels
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Poh Yin Yew
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Karin Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
| | - Hans Schreiber
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
- Committee on Cancer Biology, Committee on Immunology and the Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- These authors contributed equally as senior authors
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago, Chicago, IL 60637 USA
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- These authors contributed equally as senior authors
| |
Collapse
|
20
|
Albarrán Fernández V, Ballestín Martínez P, Stoltenborg Granhøj J, Borch TH, Donia M, Marie Svane I. Biomarkers for response to TIL therapy: a comprehensive review. J Immunother Cancer 2024; 12:e008640. [PMID: 38485186 PMCID: PMC10941183 DOI: 10.1136/jitc-2023-008640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) has demonstrated durable clinical responses in patients with metastatic melanoma, substantiated by recent positive results of the first phase III trial on TIL therapy. Being a demanding and logistically complex treatment, extensive preclinical and clinical effort is required to optimize patient selection by identifying predictive biomarkers of response. This review aims to comprehensively summarize the current evidence regarding the potential impact of tumor-related factors (such as mutational burden, neoantigen load, immune infiltration, status of oncogenic driver genes, and epigenetic modifications), patient characteristics (including disease burden and location, baseline cytokines and lactate dehydrogenase serum levels, human leucocyte antigen haplotype, or prior exposure to immune checkpoint inhibitors and other anticancer therapies), phenotypic features of the transferred T cells (mainly the total cell count, CD8:CD4 ratio, ex vivo culture time, expression of exhaustion markers, costimulatory signals, antitumor reactivity, and scope of target tumor-associated antigens), and other treatment-related factors (such as lymphodepleting chemotherapy and postinfusion administration of interleukin-2).
Collapse
Affiliation(s)
- Víctor Albarrán Fernández
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Ramón y Cajal University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Pablo Ballestín Martínez
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Clínico San Carlos University Hospital, Department of Medical Oncology, Madrid, Spain
| | - Joachim Stoltenborg Granhøj
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Troels Holz Borch
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
21
|
Betof Warner A, Hamid O, Komanduri K, Amaria R, Butler MO, Haanen J, Nikiforow S, Puzanov I, Sarnaik A, Bishop MR, Schoenfeld AJ. Expert consensus guidelines on management and best practices for tumor-infiltrating lymphocyte cell therapy. J Immunother Cancer 2024; 12:e008735. [PMID: 38423748 PMCID: PMC11005706 DOI: 10.1136/jitc-2023-008735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Adoptive cell therapy with autologous, ex vivo-expanded, tumor-infiltrating lymphocytes (TILs) is being investigated for treatment of solid tumors and has shown robust responses in clinical trials. Based on the encouraging efficacy, tolerable safety profile, and advancements in a central manufacturing process, lifileucel is now the first US Food and Drug Administration (FDA)-approved TIL cell therapy product. To this end, treatment management and delivery practice guidance is needed to ensure successful integration of this modality into clinical care. This review includes clinical and toxicity management guidelines pertaining to the TIL cell therapy regimen prepared by the TIL Working Group, composed of internationally recognized hematologists and oncologists with expertize in TIL cell therapy, and relates to patient care and operational aspects. Expert consensus recommendations for patient management, including patient eligibility, screening tests, and clinical and toxicity management with TIL cell therapy, including tumor tissue procurement surgery, non-myeloablative lymphodepletion, TIL infusion, and IL-2 administration, are discussed in the context of potential standard of care TIL use. These recommendations provide practical guidelines for optimal clinical management during administration of the TIL cell therapy regimen, and recognition of subsequent management of toxicities. These guidelines are focused on multidisciplinary teams of physicians, nurses, and stakeholders involved in the care of these patients.
Collapse
Affiliation(s)
| | - Omid Hamid
- The Angeles Clinic and Research Institute - West Los Angeles Office, Los Angeles, California, USA
| | - Krishna Komanduri
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Rodabe Amaria
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marcus O Butler
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - John Haanen
- Medical Oncology, Antoni van Leeuwenhoek Nederlands Kanker Instituut, Amsterdam, Netherlands
| | | | - Igor Puzanov
- Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Roswell Park Cancer Institute
| | | | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, Chicago, Illinois, USA
| | - Adam J Schoenfeld
- Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 PMCID: PMC12047531 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
23
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Lickefett B, Chu L, Ortiz-Maldonado V, Warmuth L, Barba P, Doglio M, Henderson D, Hudecek M, Kremer A, Markman J, Nauerth M, Negre H, Sanges C, Staber PB, Tanzi R, Delgado J, Busch DH, Kuball J, Luu M, Jäger U. Lymphodepletion - an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front Immunol 2023; 14:1303935. [PMID: 38187393 PMCID: PMC10770848 DOI: 10.3389/fimmu.2023.1303935] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Lymphodepletion (LD) or conditioning is an essential step in the application of currently used autologous and allogeneic chimeric antigen receptor T-cell (CAR-T) therapies as it maximizes engraftment, efficacy and long-term survival of CAR-T. Its main modes of action are the depletion and modulation of endogenous lymphocytes, conditioning of the microenvironment for improved CAR-T expansion and persistence, and reduction of tumor load. However, most LD regimens provide a broad and fairly unspecific suppression of T-cells as well as other hematopoietic cells, which can also lead to severe side effects, particularly infections. We reviewed 1271 published studies (2011-2023) with regard to current LD strategies for approved anti-CD19 CAR-T products for large B cell lymphoma (LBCL). Fludarabine (Flu) and cyclophosphamide (Cy) (alone or in combination) were the most commonly used agents. A large number of different schemes and combinations have been reported. In the respective schemes, doses of Flu and Cy (range 75-120mg/m2 and 750-1.500mg/m2) and wash out times (range 2-5 days) differed substantially. Furthermore, combinations with other agents such as bendamustine (benda), busulfan or alemtuzumab (for allogeneic CAR-T) were described. This diversity creates a challenge but also an opportunity to investigate the impact of LD on cellular kinetics and clinical outcomes of CAR-T. Only 21 studies explicitly investigated in more detail the influence of LD on safety and efficacy. As Flu and Cy can potentially impact both the in vivo activity and toxicity of CAR-T, a more detailed analysis of LD outcomes will be needed before we are able to fully assess its impact on different T-cell subsets within the CAR-T product. The T2EVOLVE consortium propagates a strategic investigation of LD protocols for the development of optimized conditioning regimens.
Collapse
Affiliation(s)
- Benno Lickefett
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Lulu Chu
- Cell Therapy Clinical Pharmacology and Modeling, Takeda, Boston, MA, United States
| | | | - Linda Warmuth
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Pere Barba
- Hematology Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Matteo Doglio
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - David Henderson
- Bayer Aktiengesellschaft (AG), Business Development & Licensing & Open Innovation (OI), Pharmaceuticals, Berlin, Germany
| | - Michael Hudecek
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Kremer
- ITTM S.A. (Information Technology for Translational Medicine), Esch-sur-Alzette, Luxembourg
| | - Janet Markman
- Cell Therapy Clinical Pharmacology and Modeling, Takeda, Boston, MA, United States
| | - Magdalena Nauerth
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Helene Negre
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Carmen Sanges
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Philipp B. Staber
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Rebecca Tanzi
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Julio Delgado
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Dirk H. Busch
- Institut für Med. Mikrobiologie, Immunologie und Hygiene, Technische Universität Munich, Munich, Germany
| | - Jürgen Kuball
- Legal and Regulatory Affairs Committee of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Maik Luu
- Lehrstuhl für Zelluläre Immuntherapie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Ulrich Jäger
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Wittling MC, Knochelmann HM, Wyatt MM, Rangel Rivera GO, Cole AC, Lesinski GB, Paulos CM. Distinct host preconditioning regimens differentially impact the antitumor potency of adoptively transferred Th17 cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572179. [PMID: 38187594 PMCID: PMC10769197 DOI: 10.1101/2023.12.18.572179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Mechanisms by which distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown. Methods CD4 + T cells with a transgenic TCR that recognize TRP-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy. Results We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (CTX at 200 mg/kg) at augmenting therapeutic activity of anti-tumor TRP-1 Th17 cells. Anti-tumor Th17 cells engrafted better following preconditioning with TBI and regressed large established melanoma in all animals. Conversely, only half of mice survived long-term when preconditioned with CTX and infused with anti-melanoma Th17 cells. IL-17 and IFN-g produced by the infused Th17 cells, were detected in animals given either TBI or CTX preconditioning. Interestingly, inflammatory cytokines (G-CSF, IL-6, MCP-1, IL-5, and KC) were significantly elevated in the serum of mice preconditioned with TBI versus CTX after Th17 therapy. Conclusions Our results indicate, for the first time, that the antitumor response, persistence, and cytokine profiles resulting from Th17 therapy are impacted by the specific regimen of host preconditioning. This work is important for understanding mechanisms that promote long-lived responses by ACT, particularly as CD4 + based T cell therapies are now emerging in the clinic.
Collapse
|
27
|
Tsimberidou AM, Baysal MA, Chakraborty A, Andersson BS. Autologous engineered T cell receptor therapy in advanced cancer. Hum Vaccin Immunother 2023; 19:2290356. [PMID: 38114231 PMCID: PMC10732691 DOI: 10.1080/21645515.2023.2290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
To overcome challenges associated with adoptive cell therapy (ACT), we developed a personalized autologous T-cell therapy program. Patients with advanced cancer with HLA-A *02:01 allele and tumor expression of PRAME, MAGEA1, MAGEA4, MAGEA8, NY-ESO-1, COL6A3 exon 6, MXRA5, and/or MMP1 underwent leukapheresis and T-cell product manufacturing. Patients received lymphodepletion, IMA101 infusion and interleukin 2 for 14 days. Of 214 screened patients, 14 were treated (6, IMA101; 8, IMA101 and atezolizumab). The most common adverse events were cytokine release syndrome (G1, n = 6; G2, n = 4) and cytopenia. At 6 weeks, 12 (85.7%) patients had stable disease. Three patients had prolonged disease stabilization for 12.9, 7.3, and 13.7 months, respectively. The median progression-free survival and overall survival were 3.4 months and 9.4 months, respectively. Target-specific T cells expanded to constitute up to 78.7% of CD8+ cells. In conclusion, IMA101 was feasible and well tolerated, leveraging the potential of multi-targeted ACT that warrants further investigation.
Collapse
Affiliation(s)
- Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
28
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
29
|
Choi W, Lee Y, Choi BK, Park BM, Kim YH, Yun T, Lee WJ, Yoo H, Baek JY, Woo SM, Lim MC, Kwon BS. Phase 1 trial of 4-1BB-based adoptive T-cell therapy targeting human telomerase reverse transcriptase in patients with advanced refractory solid tumors. Cytotherapy 2023; 25:1236-1241. [PMID: 37632518 DOI: 10.1016/j.jcyt.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND AIMS Human telomerase reverse transcriptase (hTERT) is an attractive target for anti-cancer therapies. We developed an effective method for generating hTERT-specific CD8+ T cells (hTERT-induced natural T cells [TERTiNTs]) using peripheral blood mononuclear cells (PBMCs) from patients with solid cancers and investigated their feasibility and safety. METHODS This was a single-center phase 1 trial using a 3 + 3 dose escalation design to evaluate six dose levels of TERTiNTs. PBMCs from each patient were screened using an hTERT peptide panel to select those that stimulated CD8+ T cells. The four most stimulatory peptides were used to produce autologous CD8+ T cells from patients refractory or intolerant to standard therapies. Eligible patients received a single intravenous infusion of TERTiNTs at different dose levels (4 × 108 cells/m2, 8 × 108 cells/m2 and 16 × 108 cells/m2). Pre-conditioning chemotherapy, including cyclophosphamide alone or in combination with fludarabine, was administered to induce lymphodepletion. RESULTS From January 2014 to October 2019, a total of 24 patients with a median of three prior lines of therapy were enrolled. The most common adverse events were lymphopenia (79.2%), nausea (58.3%) and neutropenia (54.2%), mostly caused by pre-conditioning chemotherapy. The TERTiNT infusion was well tolerated, and dose-limiting toxicities were not observed. None of the patients showed objective responses. Seven patients (30.4%) achieved stable disease with a median progression-free survival of 3.9 months (range, 3.2-11.3). At the highest dose level (16 × 108 cells/m2), four of five patients showed disease stabilization. CONCLUSIONS The generation of TERTiNTs was feasible and safe and provided an interesting disease control rate in heavily pre-treated cancer patients.
Collapse
Affiliation(s)
- Wonyoung Choi
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Youngjoo Lee
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Lung Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Beom K Choi
- Immuno-Oncology Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Bo-Mi Park
- Biomedicine Production Branch, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Young H Kim
- Eutilex Institute for Biomedical Research, Eutilex Co, Ltd, Seoul, Republic of Korea
| | - Tak Yun
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Rare Cancers, National Cancer Center, Goyang, Republic of Korea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Heon Yoo
- Neuro-Oncology Clinic, National Cancer Center, Goyang, Republic of Korea
| | - Ji Yeon Baek
- Center for Clinical Trials, National Cancer Center, Goyang, Republic of Korea; Center for Colorectal Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Sang Myung Woo
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Myeong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Byoung S Kwon
- Eutilex Institute for Biomedical Research, Eutilex Co, Ltd, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Marchais M, Simula L, Phayanouvong M, Mami-Chouaib F, Bismuth G, Decroocq J, Bouscary D, Dutrieux J, Mangeney M. FOXO1 Inhibition Generates Potent Nonactivated CAR T Cells against Solid Tumors. Cancer Immunol Res 2023; 11:1508-1523. [PMID: 37649096 DOI: 10.1158/2326-6066.cir-22-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/09/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have shown promising results in the treatment of B-cell malignancies. Despite the successes, challenges remain. One of them directly involves the CAR T-cell manufacturing process and especially the ex vivo activation phase. While this is required to allow infection and expansion, ex vivo activation dampens the antitumor potential of CAR T cells. Optimizing the nature of the T cells harboring the CAR is a strategy to address this obstacle and has the potential to improve CAR T-cell therapy, including for solid tumors. Here, we describe a protocol to create CAR T cells without ex vivo preactivation by inhibiting the transcription factor FOXO1 (CAR TAS cells). This approach made T cells directly permissive to lentiviral infection, allowing CAR expression, with enhanced antitumor functions. FOXO1 inhibition in primary T cells (TAS cells) correlated with acquisition of a stem cell memory phenotype, high levels of granzyme B, and increased production of TNFα. TAS cells displayed enhanced proliferative and cytotoxic capacities as well as improved migratory properties. In vivo experiments showed that CAR TAS cells were more efficient at controlling solid tumor growth than classical CAR T cells. The production of CAR TAS from patients' cells confirmed the feasibility of the protocol in clinic.
Collapse
Affiliation(s)
- Maude Marchais
- CNRS UMR9196, Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Luca Simula
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Mélanie Phayanouvong
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| | - Justine Decroocq
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie Clinique, Hôpital Cochin, Paris, France
| | - Didier Bouscary
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service d'Hématologie Clinique, Hôpital Cochin, Paris, France
| | - Jacques Dutrieux
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Paris, France
| | - Marianne Mangeney
- CNRS UMR9196, Physiologie et Pathologie Moléculaires des Rétrovirus Endogènes et Infectieux, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, Paris, France
| |
Collapse
|
31
|
Tang OY, Binder ZA, O'Rourke DM, Bagley SJ. Optimizing CAR-T Therapy for Glioblastoma. Mol Diagn Ther 2023; 27:643-660. [PMID: 37700186 DOI: 10.1007/s40291-023-00671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Chimeric antigen receptor T-cell therapies have transformed the management of hematologic malignancies but have not yet demonstrated consistent efficacy in solid tumors. Glioblastoma is the most common primary malignant brain tumor in adults and remains a major unmet medical need. Attempts at harnessing the potential of chimeric antigen receptor T-cell therapy for glioblastoma have resulted in glimpses of promise but have been met with substantial challenges. In this focused review, we discuss current and future strategies being developed to optimize chimeric antigen receptor T cells for efficacy in patients with glioblastoma, including the identification and characterization of new target antigens, reversal of T-cell dysfunction with novel chimeric antigen receptor constructs, regulatable platforms, and gene knockout strategies, and the use of combination therapies to overcome the immune-hostile microenvironment.
Collapse
Affiliation(s)
- Oliver Y Tang
- Warren Alpert Medical School, Brown University, Providence, RI, 02903, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Sharma S, Sauer T, Omer BA, Shum T, Rollins LA, Rooney CM. Constitutive Interleukin-7 Cytokine Signaling Enhances the Persistence of Epstein-Barr Virus-Specific T-Cells. Int J Mol Sci 2023; 24:15806. [PMID: 37958791 PMCID: PMC10649234 DOI: 10.3390/ijms242115806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The efficacy of therapeutic T-cells is limited by a lack of positive signals and excess inhibitory signaling in tumor microenvironments. We previously showed that a constitutively active IL7 receptor (C7R) enhanced the persistence, expansion, and anti-tumor activity of T-cells expressing chimeric antigen receptors (CARs), and C7R-modified GD2.CAR T-cells are currently undergoing clinical trials. To determine if the C7R could also enhance the activity of T-cells recognizing tumors via their native T-cell receptors (TCRs), we evaluated its effects in Epstein-Barr virus (EBV)-specific T-cells (EBVSTs) that have produced clinical benefits in patients with EBV-associated malignancies. EBVSTs were generated by stimulation of peripheral blood T-cells with overlapping peptide libraries spanning the EBV lymphoma antigens, LMP1, LMP2, and EBNA 1, followed by retroviral vector transduction to express the C7R. The C7R increased STAT5 signaling in EBVSTs and enhanced their expansion over 30 days of culture in the presence or absence of exogenous cytokines. C7R-EBVSTs maintained EBV antigen specificity but were dependent on TCR stimulation for continued expansion. C7R-EBVSTs produced more rapid lymphoma control in a murine xenograft model than unmodified EBVSTs and persisted for longer. The findings have led to a clinical trial, evaluating C7R-EBVSTs for the treatment of refractory or relapsed EBV-positive lymphoma (NCT04664179).
Collapse
Affiliation(s)
- Sandhya Sharma
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.)
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tim Sauer
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bilal A. Omer
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thomas Shum
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (S.S.)
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lisa A. Rollins
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cliona M. Rooney
- Center for Cell and Gene Therapy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology-Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
33
|
Wang JY, Wang L. CAR-T cell therapy: Where are we now, and where are we heading? BLOOD SCIENCE 2023; 5:237-248. [PMID: 37941917 PMCID: PMC10629745 DOI: 10.1097/bs9.0000000000000173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 11/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapies have exhibited remarkable efficacy in the treatment of hematologic malignancies, with 9 CAR-T-cell products currently available. Furthermore, CAR-T cells have shown promising potential for expanding their therapeutic applications to diverse areas, including solid tumors, myocardial fibrosis, and autoimmune and infectious diseases. Despite these advancements, significant challenges pertaining to treatment-related toxic reactions and relapses persist. Consequently, current research efforts are focused on addressing these issues to enhance the safety and efficacy of CAR-T cells and reduce the relapse rate. This article provides a comprehensive overview of the present state of CAR-T-cell therapies, including their achievements, existing challenges, and potential future developments.
Collapse
Affiliation(s)
- Jia-Yi Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
34
|
Scordo M, Flynn JR, Gonen M, Devlin SM, Parascondola A, Tomas AA, Shouval R, Brower J, Porter DL, Schuster SJ, Bachanova V, Maakaron J, Maziarz RT, Chen AI, Nastoupil LJ, McGuirk JP, Oluwole OO, Ip A, Leslie LA, Bishop MR, Riedell PA, Perales MA. Identifying an optimal fludarabine exposure for improved outcomes after axi-cel therapy for aggressive B-cell non-Hodgkin lymphoma. Blood Adv 2023; 7:5579-5585. [PMID: 37522731 PMCID: PMC10514205 DOI: 10.1182/bloodadvances.2023010302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Fludarabine is one of the most common agents given for lymphodepletion before CD19 chimeric antigen receptor T cells, but its optimal therapeutic intensity is unknown. Using data from a multicenter consortium, we estimated fludarabine exposure (area under the curve [AUC]) using a population pharmacokinetic (PK) model in 199 adult patients with aggressive B-cell non-Hodgkin lymphomas who received commercial axicabtagene ciloleucel (Axi-cel). We evaluated the association of estimated fludarabine AUC with key outcomes, aiming to find an AUC that optimized efficacy and tolerability. We identified low (<18 mg × hour/L [mgh/L]), optimal (18-20 mgh/L), and high (>20 mgh/L) AUC groups for analyses; the 6-month cumulative incidences of relapse/progression of disease (relapse/POD) by AUC groups were 54% (45%-62%), 28% (15%-44%), and 30% (14%-47%), respectively; and the 1-year progression-free survival (PFS) rates were 39% (31%-48%), 66% (52%-84%), and 46% (30%-70%) and the overall survival (OS) rates were 58% (50%-67%), 77% (64%-92%), and 66% (50%-87%), respectively. In multivariable analyses compared with low AUC, an optimal AUC was associated with the highest PFS (hazard ratio [HR], 0.52; 0.3-0.91; P = .02) and lowest risk of relapse/POD (HR, 0.46; 0.25-0.84; P = .01) without an increased risk of any-grade cytokine release syndrome (HR, 1.1; 0.7-1.6; P = .8) or and immune effector cell-associated neurotoxicity syndrome (ICANS) (HR, 1.36; 0.83-2.3; P = .2). A high AUC was associated with the greatest risk of any-grade ICANS (HR, 1.9; 1.1-3.2; P = .02). Although the main cause of death in all groups was relapse/POD, nonrelapse-related deaths, including 3 deaths from ICANS, were more frequent in the high AUC group. These findings suggest that PK-directed fludarabine dosing to achieve an optimal AUC may result in improved outcomes for patients receiving axi-cel.
Collapse
Affiliation(s)
- Michael Scordo
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jessica R. Flynn
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Sean M. Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Roni Shouval
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Jamie Brower
- Cell Therapy and Transplant and Lymphoma Programs, Division of Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - David L. Porter
- Cell Therapy and Transplant and Lymphoma Programs, Division of Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Stephen J. Schuster
- Cell Therapy and Transplant and Lymphoma Programs, Division of Hematology-Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Joseph Maakaron
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Richard T. Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Andy I. Chen
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Loretta J. Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph P. McGuirk
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Olalekan O. Oluwole
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew Ip
- Division of Lymphoma, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Lori A. Leslie
- Division of Lymphoma, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
- Department of Oncology, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Michael R. Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Peter A. Riedell
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
35
|
Zhang B, Hu M, Ma Q, Li K, Li X, He X, Shu P, Chen Y, Gao G, Qin D, Guo F, Zhao J, Liu N, Zhou K, Feng M, Liao W, Li D, Wang X, Wang Y. Optimized CAR-T therapy based on spatiotemporal changes and chemotactic mechanisms of MDSCs induced by hypofractionated radiotherapy. Mol Ther 2023; 31:2105-2119. [PMID: 37073129 PMCID: PMC10362417 DOI: 10.1016/j.ymthe.2023.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
Poor intratumoral infiltration is the major challenge for chimeric antigen receptor (CAR)-T cell therapy in solid tumors. Hypofractionated radiotherapy (HFRT) has been reported to induce immune cell infiltration and reshape the tumor immune microenvironment. Here, we showed that HFRT (5 × 5 Gy) mediated an early accumulation of intratumoral myeloid-derived suppressor cells (MDSCs) and decreased infiltration of T cells in the tumor microenvironment (TME) of immunocompetent mice bearing triple-negative breast cancer (TNBC) or colon cancer, which was further confirmed in tumors from patients. RNA sequencing (RNA-seq) and cytokine profiling analysis revealed that HFRT induced the activation and proliferation of tumor-infiltrated MDSCs, which was mediated by the interactions of multiple chemokines and chemokine receptors. Further investigation showed that when combined with HFRT, CXCR2 blockade significantly inhibited MDSCs trafficking to tumors and effectively enhanced the intratumoral infiltration and treatment efficacy of CAR-T cells. Our study demonstrates that MDSCs blockade combined with HFRT is promising for CAR-T cell therapy optimization in solid tumors.
Collapse
Affiliation(s)
- Benxia Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Qizhi Ma
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xia He
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pei Shu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Diyuan Qin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Zhao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ning Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kexun Zhou
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - MingYang Feng
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weiting Liao
- Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, and Precision Medicine Research Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Tsimberidou AM, Guenther K, Andersson BS, Mendrzyk R, Alpert A, Wagner C, Nowak A, Aslan K, Satelli A, Richter F, Kuttruff-Coqui S, Schoor O, Fritsche J, Coughlin Z, Mohamed AS, Sieger K, Norris B, Ort R, Beck J, Vo HH, Hoffgaard F, Ruh M, Backert L, Wistuba II, Fuhrmann D, Ibrahim NK, Morris VK, Kee BK, Halperin DM, Nogueras-Gonzalez GM, Kebriaei P, Shpall EJ, Vining D, Hwu P, Singh H, Reinhardt C, Britten CM, Hilf N, Weinschenk T, Maurer D, Walter S. Feasibility and Safety of Personalized, Multi-Target, Adoptive Cell Therapy (IMA101): First-in-Human Clinical Trial in Patients with Advanced Metastatic Cancer. Cancer Immunol Res 2023; 11:925-945. [PMID: 37172100 PMCID: PMC10330623 DOI: 10.1158/2326-6066.cir-22-0444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 05/11/2023] [Indexed: 05/14/2023]
Abstract
IMA101 is an actively personalized, multi-targeted adoptive cell therapy (ACT), whereby autologous T cells are directed against multiple novel defined peptide-HLA (pHLA) cancer targets. HLA-A*02:01-positive patients with relapsed/refractory solid tumors expressing ≥1 of 8 predefined targets underwent leukapheresis. Endogenous T cells specific for up to 4 targets were primed and expanded in vitro. Patients received lymphodepletion (fludarabine, cyclophosphamide), followed by T-cell infusion and low-dose IL2 (Cohort 1). Patients in Cohort 2 received atezolizumab for up to 1 year (NCT02876510). Overall, 214 patients were screened, 15 received lymphodepletion (13 women, 2 men; median age, 44 years), and 14 were treated with T-cell products. IMA101 treatment was feasible and well tolerated. The most common adverse events were cytokine release syndrome (Grade 1, n = 6; Grade 2, n = 4) and expected cytopenias. No patient died during the first 100 days after T-cell therapy. No neurotoxicity was observed. No objective responses were noted. Prolonged disease stabilization was noted in three patients lasting for 13.7, 12.9, and 7.3 months. High frequencies of target-specific T cells (up to 78.7% of CD8+ cells) were detected in the blood of treated patients, persisted for >1 year, and were detectable in posttreatment tumor tissue. Individual T-cell receptors (TCR) contained in T-cell products exhibited broad variation in TCR avidity, with the majority being low avidity. High-avidity TCRs were identified in some patients' products. This study demonstrates the feasibility and tolerability of an actively personalized ACT directed to multiple defined pHLA cancer targets. Results warrant further evaluation of multi-target ACT approaches using potent high-avidity TCRs. See related Spotlight by Uslu and June, p. 865.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Anna Nowak
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | - Katrin Aslan
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | - Becky Norris
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rita Ort
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Beck
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Manuel Ruh
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Nuhad K Ibrahim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Texas
| | - Bryan K Kee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Texas
| | - Daniel M Halperin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Texas
| | | | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Vining
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Norbert Hilf
- Immatics Biotechnologies GmbH, Tuebingen, Germany
| | | | | | | |
Collapse
|
37
|
Espinosa-Carrasco G, Scrivo A, Zumbo P, Dave A, Betel D, Hellmann M, Burt BM, Lee HS, Schietinger A. Intratumoral immune triads are required for adoptive T cell therapy-mediated elimination of solid tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547423. [PMID: 37461721 PMCID: PMC10349998 DOI: 10.1101/2023.07.03.547423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Tumor-reactive CD8 T cells found in cancer patients are frequently dysfunctional, unable to halt tumor growth. Adoptive T cell transfer (ACT), the administration of large numbers of in vitro-generated cytolytic tumor-reactive CD8 T cells, is an important cancer immune therapy being pursued. However, a limitation of ACT is that transferred CD8 T cells often rapidly lose effector function, and despite exciting results in certain malignancies, few ACT clinical trials have shown responses in solid tumors. Here, we developed preclinical cancer mouse models to investigate if and how tumor-specific CD4 T cells can be enlisted to overcome CD8 T cell dysfunction in the setting of ACT. In situ confocal microscopy of color-coded cancer cells, tumor-specific CD8 and CD4 T cells, and antigen presenting cells (APC), combined with functional studies, revealed that the spatial positioning and interactions of CD8 and CD4 T cells, but not their numbers, dictates ACT efficacy and anti-tumor responses. We uncover a new role of antigen-specific CD4 T cells in addition to the known requirement for CD4 T cells during priming/activation of naïve CD8 T cells. CD4 T cells must co-engage with CD8 T cells and APC cross-presenting CD8- and CD4-tumor antigens during the effector phase, forming a three-cell-cluster (triad), to license CD8 T cell cytotoxicity and mediate cancer cell elimination. Triad formation transcriptionally and epigenetically reprogram CD8 T cells, prevent T cell dysfunction/exhaustion, and ultimately lead to the elimination of large established tumors and confer long-term protection from recurrence. When intratumoral triad formation was disrupted, adoptively transferred CD8 T cells could not be reprogrammed, and tumors progressed despite equal numbers of tumor-infiltrating CD8 and CD4 T cells. Strikingly, the formation of CD4 T cell::CD8 T cell::APC triads in tumors of patients with lung cancers treated with immune checkpoint blockade was associated with clinical responses, but not CD4::APC dyads or overall numbers of CD8 or CD4 T cells, demonstrating the importance of triads in non-ACT settings in humans. Our work uncovers intratumoral triads as a key requirement for anti-tumor immunity and a new role for CD4 T cells in CD8 T cell cytotoxicity and cancer cell eradication.
Collapse
Affiliation(s)
| | - Aurora Scrivo
- Department of Developmental and Molecular Biology, and Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew Hellmann
- Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
38
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
39
|
Gao Y, Gao Y, Fan Y, Zhu C, Wei Z, Zhou C, Chuai G, Chen Q, Zhang H, Liu Q. Pan-Peptide Meta Learning for T-cell receptor–antigen binding recognition. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
40
|
Pampusch MS, Sevcik EN, Quinn ZE, Davey BC, Berg JM, Gorrell-Brown I, Abdelaal HM, Rakasz EG, Rendahl A, Skinner PJ. Assessment of anti-CD20 antibody pre-treatment for augmentation of CAR-T cell therapy in SIV-infected rhesus macaques. Front Immunol 2023; 14:1101446. [PMID: 36825014 PMCID: PMC9941136 DOI: 10.3389/fimmu.2023.1101446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
During chronic HIV and SIV infections, the majority of viral replication occurs within lymphoid follicles. In a pilot study, infusion of SIV-specific CD4-MBL-CAR-T cells expressing the follicular homing receptor, CXCR5, led to follicular localization of the cells and a reduction in SIV viral loads in rhesus macaques. However, the CAR-T cells failed to persist. We hypothesized that temporary disruption of follicles would create space for CAR-T cell engraftment and lead to increased abundance and persistence of CAR-T cells. In this study we treated SIV-infected rhesus macaques with CAR-T cells and preconditioned one set with anti-CD20 antibody to disrupt the follicles. We evaluated CAR-T cell abundance and persistence in four groups of SIVmac239-infected and ART-suppressed animals: untreated, CAR-T cell treated, CD20 depleted, and CD20 depleted/CAR-T cell treated. In the depletion study, anti-CD20 was infused one week prior to CAR-T infusion and cessation of ART. Anti-CD20 antibody treatment led to temporary depletion of CD20+ cells in blood and partial depletion in lymph nodes. In this dose escalation study, there was no impact of CAR-T cell infusion on SIV viral load. However, in both the depleted and non-depleted animals, CAR-T cells accumulated in and around lymphoid follicles and were Ki67+. CAR-T cells increased in number in follicles from 2 to 6 days post-treatment, with a median 15.2-fold increase in follicular CAR-T cell numbers in depleted/CAR-T treated animals compared to an 8.1-fold increase in non-depleted CAR-T treated animals. The increase in CAR T cells in depleted animals was associated with a prolonged elevation of serum IL-6 levels and a rapid loss of detectable CAR-T cells. Taken together, these data suggest that CAR-T cells likely expanded to a greater extent in depleted/CAR-T cell treated animals. Further studies are needed to elucidate mechanisms mediating the rapid loss of CAR-T cells and to evaluate strategies to improve engraftment and persistence of HIV-specific CAR-T cells. The potential for an inflammatory cytokine response appears to be enhanced with anti-CD20 antibody treatment and future studies may require CRS control strategies. These studies provide important insights into cellular immunotherapy and suggest future studies for improved outcomes.
Collapse
Affiliation(s)
- Mary S. Pampusch
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Emily N. Sevcik
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Zoe E. Quinn
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Brianna C. Davey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - James M. Berg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Ian Gorrell-Brown
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hadia M. Abdelaal
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison WI, United States
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
41
|
Owusu KA, Schiffer M, Perreault S. Chimeric Antigen Receptor T Cells: Toxicity and Management Considerations. AACN Adv Crit Care 2022; 33:301-307. [PMID: 36477845 DOI: 10.4037/aacnacc2022936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kent A Owusu
- Kent A. Owusu is Care Signature Program Manager and Critical Care Pharmacist, Yale New Haven Health, 20 York Street, New Haven, CT 06510
| | - Molly Schiffer
- Molly Schiffer is Clinical Pharmacy Specialist, Bone Marrow Transplant/CAR T-Cell Therapy, Smilow Cancer Hospital, Yale New Haven Health, New Haven, Connecticut
| | - Sarah Perreault
- Sarah Perreault is Clinical Pharmacy Specialist, Bone Marrow Transplant/ CAR T-Cell Therapy, Smilow Cancer Hospital, Yale New Haven Health, New Haven, Connecticut
| |
Collapse
|
42
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
43
|
Liu Y, An L, Huang R, Xiong J, Yang H, Wang X, Zhang X. Strategies to enhance CAR-T persistence. Biomark Res 2022; 10:86. [PMID: 36419115 PMCID: PMC9685914 DOI: 10.1186/s40364-022-00434-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has significantly improved the life expectancy for patients with refractory or relapse B cell lymphoma. As for B cell acute lymphoblastic leukemia (B-ALL), although the primary response rate is promising, the high incidence of early relapse has caused modest long-term survival with CAR-T cell alone. One of the main challenges is the limited persistence of CAR-T cells. To further optimize the clinical effects of CAR-T cells, many studies have focused on modifying the CAR structure and regulating CAR-T cell differentiation. In this review, we focus on CAR-T cell persistence and summarize the latest progress and strategies adopted during the in vitro culture stage to optimize CAR-T immunotherapy by improving long-term persistence. Such strategies include choosing a suitable cell source, improving culture conditions, combining CAR-T cells with conventional drugs, and applying genetic manipulations, all of which may improve the survival of patients with hematologic malignancies by reducing the probability of recurrence after CAR-T cell infusion and provide clues for solid tumor CAR-T cell therapy development.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Jingkang Xiong
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Haoyu Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 400037, Chongqing, China. .,Jinfeng Laboratory, 401329, Chongqing, China.
| |
Collapse
|
44
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
45
|
Kishton RJ, Restifo NP. Fine-tuning T cell function through engineered orthogonal chimeric cytokine receptors. Cell Res 2022; 32:967-968. [PMID: 36002586 PMCID: PMC9652410 DOI: 10.1038/s41422-022-00715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Rigel J Kishton
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
46
|
Castiello L, Santodonato L, Napolitano M, Carlei D, Montefiore E, Monque DM, D’Agostino G, Aricò E. Chimeric Antigen Receptor Immunotherapy for Solid Tumors: Choosing the Right Ingredients for the Perfect Recipe. Cancers (Basel) 2022; 14:5351. [PMID: 36358770 PMCID: PMC9655484 DOI: 10.3390/cancers14215351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 10/21/2023] Open
Abstract
Chimeric antigen receptor T cell therapies are revolutionizing the clinical practice of hematological tumors, whereas minimal progresses have been achieved in the solid tumor arena. Multiple reasons have been ascribed to this slower pace: The higher heterogeneity, the hurdles of defining reliable tumor antigens to target, and the broad repertoire of immune escape strategies developed by solid tumors are considered among the major ones. Currently, several CAR therapies are being investigated in preclinical and early clinical trials against solid tumors differing in the type of construct, the cells that are engineered, and the additional signals included with the CAR constructs to overcome solid tumor barriers. Additionally, novel approaches in development aim at overcoming some of the limitations that emerged with the approved therapies, such as large-scale manufacturing, duration of manufacturing, and logistical issues. In this review, we analyze the advantages and challenges of the different approaches under development, balancing the scientific evidences supporting specific choices with the manufacturing and regulatory issues that are essential for their further clinical development.
Collapse
Affiliation(s)
- Luciano Castiello
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Laura Santodonato
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Mariarosaria Napolitano
- Research Coordination and Support Service, Italian National Institute of Health, 00161 Rome, Italy
| | - Davide Carlei
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Enrica Montefiore
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Domenica Maria Monque
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Giuseppina D’Agostino
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| | - Eleonora Aricò
- Cell Factory FaBioCell, Core Facilities, Italian National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
47
|
Clinical Strategies for Enhancing the Efficacy of CAR T-Cell Therapy for Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14184452. [PMID: 36139611 PMCID: PMC9496667 DOI: 10.3390/cancers14184452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used for hematological malignancies, especially for relapsed/refractory B-cell acute lymphoblastic leukemia and non-Hodgkin’s lymphoma. Patients who have undergone conventional chemo-immunotherapy and have relapsed can achieve complete remission for several months with the infusion of CAR T-cells. However, side effects and short duration of response are still major barriers to further CAR T-cell therapy. To improve the efficacy, multiple targets, the discovery of new target antigens, and CAR T-cell optimization have been extensively studied. Nevertheless, the fact that the determination of the efficacy of CAR T-cell therapy is inseparable from the discussion of clinical application strategies has rarely been discussed. In this review, we will discuss some clinical application strategies, including lymphodepletion regimens, dosing strategies, combination treatment, and side effect management, which are closely related to augmenting and maximizing the efficacy of CAR T-cell therapy.
Collapse
|
48
|
Blokon-Kogan D, Levi-Mann M, Malka-Levy L, Itzhaki O, Besser MJ, Shiftan Y, Szöőr Á, Vereb G, Gross G, Abken H, Weinstein-Marom H. Membrane anchored IL-18 linked to constitutively active TLR4 and CD40 improves human T cell antitumor capacities for adoptive cell therapy. J Immunother Cancer 2022. [PMCID: PMC9442493 DOI: 10.1136/jitc-2020-001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BackgroundAdoptive transfer of tumor-infiltrating lymphocytes (TILs) or blood T cells genetically redirected by an antitumor TCR or CAR induces a strong antitumor response in a proportion of patients with cancer; however, the therapeutic efficacy is often limited by rapid decline in T cell functions. Coadministering supportive cytokines frequently provokes systemic side effects preventing their broad clinical application. We recently showed that cytokines can be anchored to the cell membrane in a functional fashion and that cytokine receptor signaling can synergize with TLR4 and CD40 signaling. Here, we aimed at augmenting T cell activation by simultaneous signaling through the cytokine receptor, toll-like receptor and TNF-type receptor using IL-18, TLR4 and CD40 as prototypes.MethodsGenes were expressed on electroporation of in vitro-transcribed mRNA in CD4+ and CD8+ T cells from healthy donors redirected against melanoma cells with an anti-melanotransferrin CAR and in TILs derived from melanoma patients. Functional assays included the activation of signaling pathways, expression of activation and differentiation markers, cytokine secretion and killing of melanoma target cells.ResultsTo provide IL-18 costimulation to T cells in-cis while avoiding systemic effects, we genetically anchored IL-18 to the T cell membrane, either alone (memIL-18) or fused with constitutively active (ca)TLR4 and caCD40 signaling domains arranged in tandem, creating a synthetic ‘all-in-one’ memIL-18-TLR4-CD40 receptor. MemIL-18-TLR4-CD40, but not memIL-18, triggered strong NF-κB activation in cells lacking the IL-18 receptor, attesting to functionality of the TLR-CD40 moiety. While the membrane-anchored cytokine was found to act mainly in-cis, some T cell activation in-trans was also observed. The electroporated T cells exhibited spontaneous T-bet upregulation and IFN-γ and TNF-α secretion. Melanoma-induced activation of CAR-T cells and TILs as manifested by cytokine secretion and cytolytic activity was substantially augmented by both constructs, with memIL-18-TLR4-CD40 exerting stronger effects than memIL-18 alone.ConclusionsLinking membrane anchored IL-18 with caTLR4 and caCD40 signaling in one hybrid transmembrane protein provides simultaneous activation of three T cell costimulatory pathways through one genetically engineered membrane molecule, strongly amplifying T cell functions for adoptive T cell therapy of cancer.
Collapse
Affiliation(s)
- Dayana Blokon-Kogan
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- The Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Maya Levi-Mann
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- The Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Lior Malka-Levy
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- The Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Orit Itzhaki
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Michal J Besser
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
- Davidoff Center, Rabin Medical Center, Petah Tikvah, Israel
| | - Yuval Shiftan
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, University of Debrecen Faculty of Medicine, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, University of Debrecen Faculty of Medicine, Debrecen, Hungary
| | - Gideon Gross
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- The Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
| | - Hinrich Abken
- Div. Genetic Immunotherapy, Leibniz Institute for Immunotherapy and University Regensburg, Regensburg, Germany
| | - Hadas Weinstein-Marom
- Laboratory of Immunology, MIGAL - Galilee Research Institute, Kiryat Shmona, Israel
- The Faculty of Sciences and Technology, Tel-Hai College, Upper Galilee, Israel
- Ella Lemelbaum Institute for Immuno-Oncology, Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| |
Collapse
|
49
|
Maziarz RT, Diaz A, Miklos DB, Shah NN. Perspective: An International Fludarabine Shortage: Supply Chain Issues Impacting Transplantation and Immune Effector Cell Therapy Delivery. Transplant Cell Ther 2022; 28:723-726. [PMID: 35940526 DOI: 10.1016/j.jtct.2022.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 10/15/2022]
Abstract
Host immune depletion has been recognized as a necessary step for successful adoptive immune cell transfer in both the autologous and allogeneic settings. The chemotherapy agent fludarabine as an immune suppressive agent has a central role in multiple conditioning regimens for both transplantation and immune effector cell therapies. With the recent and sudden recognition of an imminent worldwide fludarabine shortage, novel approaches to overcome supply chain disruption are needed, including exploration of alternative therapies. The fludarabine shortage has highlighted the need to prioritize the development of institutional algorithms for maintaining ongoing clinical trials and standard of care procedures in the setting of critical drug shortages.
Collapse
Affiliation(s)
- Richard T Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.
| | - Amber Diaz
- Department of Pharmacy, Oregon Health and Science University, Portland, Oregon
| | | | - Nirav N Shah
- BMT & Cellular Therapy Program, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
50
|
Mann H, Comenzo RL. Evaluating the Therapeutic Potential of Idecabtagene Vicleucel in the Treatment of Multiple Myeloma: Evidence to Date. Onco Targets Ther 2022; 15:799-813. [PMID: 35912273 PMCID: PMC9327779 DOI: 10.2147/ott.s305429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past two decades, significant progress has been made in the diagnosis, risk assessment and treatment of patients with multiple myeloma, translating into remarkable improvements in survival outcomes. Yet, cure remains elusive, and almost all patients eventually experience relapse, particularly those with high-risk and refractory disease. Immune-based approaches have emerged as highly effective therapeutic options that have heralded a new era in the treatment of multiple myeloma. Idecabtagene vicleucel (ide-cel) is one such therapy that employs the use of genetically modified autologous T-cells to redirect immune activation in a tumor-directed fashion. It has yielded impressive responses even in patients with poor-risk disease and is the first chimeric antigen receptor (CAR) T-cell therapy to be approved for treatment in relapsed or refractory multiple myeloma. In this review, we examine the design and pharmacokinetics of ide-cel, audit evidence that led to its incorporation into the current treatment paradigm and provide insight into its clinical utilization with a focus on real-life intricacies.
Collapse
Affiliation(s)
- Hashim Mann
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| | - Raymond L Comenzo
- Division of Hematology/Oncology, Tufts Medical Center, Boston, MA, USA.,The John Conant Davis Myeloma and Amyloid Program, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|