1
|
Beekman C, Carrasco-Rojas N, Withrow J, Dawson R, Bolch WE, Paganetti H. Radiation-Induced Lymphopenia: In Silico Replications of Preclinical Studies Suggest Importance of Dose to Lymphoid Organs. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00358-X. [PMID: 40239822 DOI: 10.1016/j.ijrobp.2025.03.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
PURPOSE To develop a computational framework to investigate the implications of lymphocyte recirculation for understanding radiation-induced lymphopenia (RIL) and to compare model predictions with preclinical in vivo studies. METHODS AND MATERIALS A whole-body compartmental model of lymphocyte migration in mice was developed, and unknown rate parameters were fitted to published experimental data. Using a stochastic representation of the model in combination with detailed mouse phantom meshes, implicit lymphocyte trajectories were computed. In parallel, a module was developed to reproduce small animal irradiation plans using either photon or proton beams. Combining these computational tools, we calculated the dose distribution of the recirculating lymphocyte pool in different irradiation scenarios and simulated the subsequent redistribution of viable lymphocytes. The relative importance of irradiation of secondary lymphoid organs (SLOs) versus the blood was investigated through in silico replications of 3 preclinical studies in which mice were locally irradiated. RESULTS Lymphocyte recirculation between the blood and SLOs attenuates lymphocyte depletion in 1 compartment by distributing the loss throughout the system. Because only a relatively small fraction (∼17% for mice) of the recirculating lymphocyte pool is in the blood at any given time, with most lymphocytes in the SLOs, the effect of SLO irradiation is greater than that of the blood. Predicted depletion trends correlated with those observed in preclinical studies but underestimated the degree of lymphopenia. The finding that proton beams can avert lymphopenia after whole-brain irradiation by sparing head and neck lymph nodes was reproduced. CONCLUSIONS The occurrence of RIL is associated with worse outcomes in patients with cancer but remains poorly understood. Therefore, a computational framework to replicate preclinical studies was developed to systematically investigate this phenomenon. Our simulations indicate that irradiation of SLOs contributes more to lymphocyte dose than blood irradiation. However, the expected cytotoxicity associated with the replicated preclinical studies could not fully account for the degree of lymphopenia observed.
Collapse
Affiliation(s)
- Chris Beekman
- Department of Radiation Oncology, Mass General Hospital/Harvard Medical School, Boston, Massachusetts.
| | | | - Julia Withrow
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Robert Dawson
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Wesley E Bolch
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Harald Paganetti
- Department of Radiation Oncology, Mass General Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Carey AE, Weeraratna AT. Entering the TiME machine: How age-related changes in the tumor immune microenvironment impact melanoma progression and therapy response. Pharmacol Ther 2024; 262:108698. [PMID: 39098769 DOI: 10.1016/j.pharmthera.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Melanoma is the deadliest form of skin cancer in the United States, with its incidence rates rising in older populations. As the immune system undergoes age-related changes, these alterations can significantly influence tumor progression and the effectiveness of cancer treatments. Recent advancements in understanding immune checkpoint molecules have paved the way for the development of innovative immunotherapies targeting solid tumors. However, the aging tumor microenvironment can play a crucial role in modulating the response to these immunotherapeutic approaches. This review seeks to examine the intricate relationship between age-related changes in the immune system and their impact on the efficacy of immunotherapies, particularly in the context of melanoma. By exploring this complex interplay, we hope to elucidate potential strategies to optimize treatment outcomes for older patients with melanoma, and draw parallels to other cancers.
Collapse
Affiliation(s)
- Alexis E Carey
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Lin TD, Rubinstein ND, Fong NL, Smith M, Craft W, Martin-McNulty B, Perry R, Delaney MA, Roy MA, Buffenstein R. Evolution of T cells in the cancer-resistant naked mole-rat. Nat Commun 2024; 15:3145. [PMID: 38605005 PMCID: PMC11009300 DOI: 10.1038/s41467-024-47264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αβT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.
Collapse
Affiliation(s)
- Tzuhua D Lin
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Nicole L Fong
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Wendy Craft
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | | | - Rebecca Perry
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA
| | | | - Margaret A Roy
- Calico Life Sciences LLC, South San Francisco, California, CA, USA
| | - Rochelle Buffenstein
- Calico Life Sciences LLC, South San Francisco, California, CA, USA.
- Department of Biological Science, University of Illinois at Chicago, Illinois, IL, USA.
| |
Collapse
|
4
|
Vo MC, Jung SH, Nguyen VT, Tran VDH, Ruzimurodov N, Kim SK, Nguyen XH, Kim M, Song GY, Ahn SY, Ahn JS, Yang DH, Kim HJ, Lee JJ. Exploring cellular immunotherapy platforms in multiple myeloma. Heliyon 2024; 10:e27892. [PMID: 38524535 PMCID: PMC10957441 DOI: 10.1016/j.heliyon.2024.e27892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Despite major advances in therapeutic platforms, most patients with multiple myeloma (MM) eventually relapse and succumb to the disease. Among the novel therapeutic options developed over the past decade, genetically engineered T cells have a great deal of potential. Cellular immunotherapies, including chimeric antigen receptor (CAR) T cells, are rapidly becoming an effective therapeutic modality for MM. Marrow-infiltrating lymphocytes (MILs) derived from the bone marrow of patients with MM are a novel source of T cells for adoptive T-cell therapy, which robustly and specifically target myeloma cells. In this review, we examine the recent innovations in cellular immunotherapies, including the use of dendritic cells, and cellular tools based on MILs, natural killer (NK) cells, and CAR T cells, which hold promise for improving the efficacy and/or reducing the toxicity of treatment in patients with MM.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Institute of Research and Development, Duy Tan University, Danang, Viet Nam
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Tan Nguyen
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Van-Dinh-Huan Tran
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nodirjon Ruzimurodov
- Institute of Immunology and Human Genomics of the Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Sang Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Laboratory and Companion Animal Science, College of Industrial Science, Kongju National University, Yesan-eup, Yesan-gun, Chungnam, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare system, Hanoi, Vietnam
| | - Mihee Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Ga-Young Song
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Seo-Yeon Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
5
|
Barry PA, Iyer SS, Gibson L. Re-Evaluating Human Cytomegalovirus Vaccine Design: Prediction of T Cell Epitopes. Vaccines (Basel) 2023; 11:1629. [PMID: 38005961 PMCID: PMC10674879 DOI: 10.3390/vaccines11111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023] Open
Abstract
HCMV vaccine development has traditionally focused on viral antigens identified as key targets of neutralizing antibody (NAb) and/or T cell responses in healthy adults with chronic HCMV infection, such as glycoprotein B (gB), the glycoprotein H-anchored pentamer complex (PC), and the unique long 83 (UL83)-encoded phosphoprotein 65 (pp65). However, the protracted absence of a licensed HCMV vaccine that reduces the risk of infection in pregnancy regardless of serostatus warrants a systematic reassessment of assumptions informing vaccine design. To illustrate this imperative, we considered the hypothesis that HCMV proteins infrequently detected as targets of T cell responses may contain important vaccine antigens. Using an extant dataset from a T cell profiling study, we tested whether HCMV proteins recognized by only a small minority of participants encompass any T cell epitopes. Our analyses demonstrate a prominent skewing of T cell responses away from most viral proteins-although they contain robust predicted CD8 T cell epitopes-in favor of a more restricted set of proteins. Our findings raise the possibility that HCMV may benefit from evading the T cell recognition of certain key proteins and that, contrary to current vaccine design approaches, including them as vaccine antigens could effectively take advantage of this vulnerability.
Collapse
Affiliation(s)
- Peter A. Barry
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, University of California Davis School of Medicine, Sacramento, CA 95817, USA;
- California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Smita S. Iyer
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Laura Gibson
- Departments of Medicine and of Pediatrics, Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
6
|
Abstract
Bone marrow is known as the site of hematopoiesis. What is not being described in textbooks of immunology is the fact that bone marrow is not only a generative, but also an antigen-responsive, immune organ. It is also a major storage site for antigen-specific memory B and T cells. That bone marrow is a priming site for T cell responses to blood borne antigens was discovered exactly 20 years ago. This review celebrates this important discovery. The review provides a number of examples of medical relevance of bone marrow as a central immune system, including cancer, microbial infections, autoimmune reactions, and bone marrow transplantation. Bone marrow mesenchymal stem cell-derived stromal cells provide distinct bone marrow niches for stem cells and immune cells. By transmitting anti-inflammatory dampening effects, facilitating wound healing and tissue regeneration mesenchymal stem cells contribute to homeostasis of bone and other tissues. Based on the evidence presented, the review proposes that bone marrow is a multifunctional and protective immune system. In an analogy to the central nervous system, it is suggested that bone marrow be designated as the central immune system.
Collapse
|
7
|
Herd CL, Mellet J, Mashingaidze T, Durandt C, Pepper MS. Consequences of HIV infection in the bone marrow niche. Front Immunol 2023; 14:1163012. [PMID: 37497228 PMCID: PMC10366613 DOI: 10.3389/fimmu.2023.1163012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Dysregulation of the bone marrow niche resulting from the direct and indirect effects of HIV infection contributes to haematological abnormalities observed in HIV patients. The bone marrow niche is a complex, multicellular environment which functions primarily in the maintenance of haematopoietic stem/progenitor cells (HSPCs). These adult stem cells are responsible for replacing blood and immune cells over the course of a lifetime. Cells of the bone marrow niche support HSPCs and help to orchestrate the quiescence, self-renewal and differentiation of HSPCs through chemical and molecular signals and cell-cell interactions. This narrative review discusses the HIV-associated dysregulation of the bone marrow niche, as well as the susceptibility of HSPCs to infection by HIV.
Collapse
|
8
|
Shevchenko JA, Perik-Zavodskii RY, Nazarov KV, Denisova VV, Perik-Zavodskaya OY, Philippova YG, Alsalloum A, Sennikov SV. Immunoregulatory properties of erythroid nucleated cells induced from CD34+ progenitors from bone marrow. PLoS One 2023; 18:e0287793. [PMID: 37390055 PMCID: PMC10313023 DOI: 10.1371/journal.pone.0287793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023] Open
Abstract
CD 71+ erythroid nucleated cells have pronounced immunoregulatory properties in normal and pathological conditions. Many populations of cells with immunoregulatory properties are considered candidates for cellular immunotherapy for various pathologies. This study characterized the immunoregulatory properties of CD71+ erythroid cells derived from CD34-positive bone marrow cells under the influence of growth factors that stimulate differentiation into erythroid cells. CD34-negative bone marrow cells were used to isolate CD71+ erythroid nuclear cells. The resulting cells were used to assess the phenotype, determine the mRNA spectrum of the genes responsible for the main pathways and processes of the immune response, and obtain culture supernatants for the analysis of immunoregulatory factors. It was found that CD71+ erythroid cells derived from CD34+ cells carry the main markers of erythroid cells, but differ markedly from natural bone marrow CD71+ erythroid cells. The main differences are in the presence of the CD45+ subpopulation, distribution of terminal differentiation stages, transcriptional profile, secretion of certain cytokines, and immunosuppressive activity. The properties of induced CD71+ erythroid cells are closer to the cells of extramedullary erythropoiesis foci than to natural bone marrow CD71+ erythroid cells. Thus, when cultivating CD71+ erythroid cells for clinical experimental studies, it is necessary to take into account their pronounced immunoregulatory activity.
Collapse
Affiliation(s)
- Julia A. Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Roman Yu Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Kirill V. Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Vera V. Denisova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Olga Yu. Perik-Zavodskaya
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Yulia G. Philippova
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Alaa Alsalloum
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| | - Sergey V. Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, Novosibirsk, Russia
| |
Collapse
|
9
|
Costa MD, Donner S, Bertrand J, Pop OL, Lohmann CH. Hypersensitivity and lymphocyte activation after total hip arthroplasty. ORTHOPADIE (HEIDELBERG, GERMANY) 2023; 52:214-221. [PMID: 36820851 DOI: 10.1007/s00132-023-04349-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
In the last decades total hip arthroplasty (THA) has become a standard procedure with many benefits but also a few still unsolved complications, which can lead to surgical revision in 19-23% of cases. Thus, aseptic loosening and metal hypersensitivity remain challenges. The phenomenon of wear debris causes chronic inflammation, which produces osteolysis and aseptic loosening. Wear debris promotes osteoclast production and inhibits osteoblasts by secretion of pro-inflammatory cytokines. Micro-abrasions can be induced by abrasive, adhesive and fatigue wear and cause a liberation of metal ions, which lead to another immune response elicited mostly by macrophages. Another reaction in the neocapsule can be a type IV hypersensitivity reaction to various alloys, containing metals such as nickel, cobalt and chromium. Patch testing and the lymphocyte transformation test (LTT) are not the best diagnostic possibilities to exclude a postoperative hypersensitivity reaction, because of the different alignment of the epicutaneous cells compared to the periprosthetic deep tissue. This hypersensitivity reaction is mostly induced by cytokines, which are secreted by macrophages rather than lymphocytes. In cell cultures and in animal studies, multipotent mesenchymal stem cells (MSC) have been shown to play a role in improving initial implant integration, to limit periprosthetic osteolysis and also to reconstitute peri-implant bone stock during implant revision. Thus, MSC might be used in the future to prolong the durability of THA. A better understanding of the interactions between primary chronic inflammation, corrosion, osteolysis and hypersensitivity is mandatory to develop new therapeutic strategies, aiming at the reduction of the incidence of implant failures. In this article the underlying immunological mechanisms to aseptic loosening are presented.
Collapse
Affiliation(s)
- Maximilian D Costa
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Stefanie Donner
- Centre for Musculoskeletal Surgery, Charité-University Medicine, Berlin, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Ovidiu-Laurean Pop
- Department of Morphological Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
10
|
Lee HS, Jang HJ, Ramineni M, Wang DY, Ramos D, Choi JM, Splawn T, Espinoza M, Almarez M, Hosey L, Jo E, Hilsenbeck S, Amos CI, Ripley RT, Burt BM. A Phase II Window of Opportunity Study of Neoadjuvant PD-L1 versus PD-L1 plus CTLA-4 Blockade for Patients with Malignant Pleural Mesothelioma. Clin Cancer Res 2023; 29:548-559. [PMID: 36469573 PMCID: PMC9898180 DOI: 10.1158/1078-0432.ccr-22-2566] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE We report the results of a phase II, randomized, window-of-opportunity trial of neoadjuvant durvalumab versus durvalumab plus tremelimumab followed by surgery in patients with resectable malignant pleural mesothelioma (MPM; NCT02592551). PATIENTS AND METHODS The primary objective was alteration of the intratumoral CD8/regulatory T cell (Treg) ratio after combination immune checkpoint blockade (ICB) therapy. Secondary and exploratory objectives included other changes in the tumor microenvironment, survival, safety, tumor pathologic response (PR), and systemic immune responses. RESULTS Nine patients received monotherapy and 11 received combination therapy. Seventeen of the 20 patients (85%) receiving ICB underwent planned thoracotomy. Both ICB regimens induced CD8 T-cell infiltration into MPM tumors but did not alter CD8/Treg ratios. At 34.1 months follow-up, patients receiving combination ICB had longer median overall survival (not reached) compared with those receiving monotherapy (14.0 months). Grade ≥3 immunotoxicity occurred in 8% of patients in the monotherapy group and 27% of patients in the combination group. Tumor PR occurred in 6 of 17 patients receiving ICB and thoracotomy (35.3%), among which major PR (>90% tumor regression) occurred in 2 (11.8%). Single-cell profiling of tumor, blood, and bone marrow revealed that combination ICB remodeled the immune contexture of MPM tumors; mobilized CD57+ effector memory T cells from the bone marrow to the circulation; and increased the formation of tertiary lymphoid structures in MPM tumors that were rich in CD57+ T cells. CONCLUSIONS These data indicate that neoadjuvant durvalumab plus tremelimumab orchestrates de novo systemic immune responses that extend to the tumor microenvironment and correlate with favorable clinical outcomes.
Collapse
Affiliation(s)
- Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maheshwari Ramineni
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Daniel Y. Wang
- Section of Hematology and Oncology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela Ramos
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Taylor Splawn
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Monica Espinoza
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle Almarez
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leandria Hosey
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eunji Jo
- Advanced Technology Cores, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Susan Hilsenbeck
- Advanced Technology Cores, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX
| | - R. Taylor Ripley
- David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bryan M. Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Serroukh Y, Hébert J, Busque L, Mercier F, Rudd CE, Assouline S, Lachance S, Delisle JS. Blasts in context: the impact of the immune environment on acute myeloid leukemia prognosis and treatment. Blood Rev 2023; 57:100991. [PMID: 35941029 DOI: 10.1016/j.blre.2022.100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
Acute myeloid leukemia (AML) is a cancer that originates from the bone marrow (BM). Under physiological conditions, the bone marrow supports the homeostasis of immune cells and hosts memory lymphoid cells. In this review, we summarize our present understanding of the role of the immune microenvironment on healthy bone marrow and on the development of AML, with a focus on T cells and other lymphoid cells. The types and function of different immune cells involved in the AML microenvironment as well as their putative role in the onset of disease and response to treatment are presented. We also describe how the immune context predicts the response to immunotherapy in AML and how these therapies modulate the immune status of the bone marrow. Finally, we focus on allogeneic stem cell transplantation and summarize the current understanding of the immune environment in the post-transplant bone marrow, the factors associated with immune escape and relevant strategies to prevent and treat relapse.
Collapse
Affiliation(s)
- Yasmina Serroukh
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Erasmus Medical center Cancer Institute, University Medical Center Rotterdam, Department of Hematology, Rotterdam, the Netherlands; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada.
| | - Josée Hébert
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada; The Quebec Leukemia Cell Bank, Canada
| | - Lambert Busque
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - François Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Christopher E Rudd
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Sarit Assouline
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, 3755 Côte-Sainte-Catherine Road, Montreal, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte-Sainte-Catherine Road, Montreal, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| | - Jean-Sébastien Delisle
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, 5415 Boul. de L'Assomption, Montréal, Canada; Department of Medicine, Université de Montréal, Montreal, Canada; Institute for Hematology-Oncology, Transplantation, Cell and Gene Therapy, Hôpital Maisonneuve-Rosemont, Montreal, Canada
| |
Collapse
|
12
|
Yao D, Lai J, Lu Y, Zhong J, Zha X, Huang X, Liu L, Zeng X, Chen S, Weng J, Du X, Li Y, Xu L. Comprehensive analysis of the immune pattern of T cell subsets in chronic myeloid leukemia before and after TKI treatment. Front Immunol 2023; 14:1078118. [PMID: 36742315 PMCID: PMC9893006 DOI: 10.3389/fimmu.2023.1078118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background Immunological phenotypes and differentiation statuses commonly decide the T cell function and anti-tumor ability. However, little is known about these alterations in CML patients. Method Here, we investigated the immunologic phenotypes (CD38/CD69/HLA-DR/CD28/CD57/BTLA/TIGIT/PD-1) of T subsets (TN, TCM, TEM, and TEMRA) in peripheral blood (PB) and bone marrow (BM) from de novo CML patients (DN-CML), patients who achieved a molecular response (MR) and those who failed to achieve an MR (TKI-F) after tyrosine kinase inhibitor (TKI) treatment using multicolor flow cytometry. Results CD38 or HLA-DR positive PB CD8+TN and TCM cells decreased in the DN-CML patients and this was further decreased in TKI-F patients. Meanwhile, the level of PD-1 elevated in CD8+ TEM and TEMRA cells from PB in all groups. Among BM sample, the level of HLA-DR+CD8+TCM cells significantly decreased in all groups and CD8+TEMRA cells from TKI-F patients exhibited increased level of TIGIT and CD8+ tissue-residual T cells (TRM) from DN-CML patients expressed a higher level of PD-1 and TIGIT. Lastly, we found a significantly decreased proportion of CD86+ dendritic cells (DCs) and an imbalanced CD80/CD86 in the PB and BM of DN-CML patients, which may impair the activation of T cells. Conclusion In summary, early differentiated TN and TCM cells from CML patients may remain in an inadequate activation state, particularly for TKI-F patients. And effector T cells (TEM, TEMRA and TRM) may be dysfunctional due to the expression of PD-1 and TIGIT in CML patients. Meanwhile, DCs cells exhibited the impairment of costimulatory molecule expression in DN-CML patients. Those factors may jointly contribute to the immune escape in CML patients.
Collapse
Affiliation(s)
- Danlin Yao
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.,Department of Hematology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing Lai
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuhong Lu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jun Zhong
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xianfeng Zha
- Department of Clinical Laboratory, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lian Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangbo Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
13
|
van de Ven K, Lanfermeijer J, van Dijken H, Muramatsu H, Vilas Boas de Melo C, Lenz S, Peters F, Beattie MB, Lin PJC, Ferreira JA, van den Brand J, van Baarle D, Pardi N, de Jonge J. A universal influenza mRNA vaccine candidate boosts T cell responses and reduces zoonotic influenza virus disease in ferrets. SCIENCE ADVANCES 2022; 8:eadc9937. [PMID: 36516261 PMCID: PMC9750153 DOI: 10.1126/sciadv.adc9937] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Universal influenza vaccines should protect against continuously evolving and newly emerging influenza viruses. T cells may be an essential target of such vaccines, as they can clear infected cells through recognition of conserved influenza virus epitopes. We evaluated a novel T cell-inducing nucleoside-modified messenger RNA (mRNA) vaccine that encodes the conserved nucleoprotein, matrix protein 1, and polymerase basic protein 1 of an H1N1 influenza virus. To mimic the human situation, we applied the mRNA vaccine as a prime-boost regimen in naïve ferrets (mimicking young children) and as a booster in influenza-experienced ferrets (mimicking adults). The vaccine induced and boosted broadly reactive T cells in the circulation, bone marrow, and respiratory tract. Booster vaccination enhanced protection against heterosubtypic infection with a potential pandemic H7N9 influenza virus in influenza-experienced ferrets. Our findings show that mRNA vaccines encoding internal influenza virus proteins represent a promising strategy to induce broadly protective T cell immunity against influenza viruses.
Collapse
Affiliation(s)
- Koen van de Ven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Josien Lanfermeijer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Harry van Dijken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caroline Vilas Boas de Melo
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Stefanie Lenz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Florence Peters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | | | | - José A. Ferreira
- Department of Statistics, Informatics and Modelling, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Judith van den Brand
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Debbie van Baarle
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, Netherlands
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jørgen de Jonge
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
14
|
IL-10-Secreting CD8 + T Cells Specific for Human Cytomegalovirus (HCMV): Generation, Maintenance and Phenotype. Pathogens 2022; 11:pathogens11121530. [PMID: 36558866 PMCID: PMC9781655 DOI: 10.3390/pathogens11121530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
HCMV-specific CD8+ T-cells are potent anti-viral effector cells in HCMV infected individuals, but evidence from other viral infections suggests that CD8+ T-cells can also produce the immunomodulatory cytokine IL-10. In this work we show that there are HCMV-specific IL-10 CD8+ T-cell responses in a cohort of individuals aged 23-76 years of age, predominantly directed against the HCMV proteins known to be expressed during latent infections as well as towards the proteins US3 and pp71. The analysis of HCMV-specific responses established during primary infection has shown that the IL-10 responses to US3 and pp71 HCMV proteins are detectable in the first weeks post infection, but not the responses to latency-associated proteins, and this IL-10 response is produced by both CD8+ and CD4+ T-cells. Phenotyping studies of HCMV-specific IL-10+ CD8+ T-cells show that these are CD45RA+ effector memory cells and co-express CD28 and CD57, however, the expression of the inhibitory receptor PD-1 varied from 90% to 30% between donors. In this study we have described for the first time the HCMV-specific IL-10 CD8+ T-cell responses and have demonstrated their broad specificity and the potential immune modulatory role of the immune response to HCMV latent carriage and periodic reactivation.
Collapse
|
15
|
Tolstykh EI, Degteva MO, Vozilova AV, Akleyev AV. Approaches to Cytogenetic Assessment of the Dose due to Radiation Exposure of the Gut-Associated Lymphoid Tissue. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
16
|
Li J, Reinke S, Shen Y, Schollmeyer L, Liu YC, Wang Z, Hardt S, Hipfl C, Hoffmann U, Frischbutter S, Chang HD, Alexander T, Perka C, Radbruch H, Qin Z, Radbruch A, Dong J. A ubiquitous bone marrow reservoir of preexisting SARS-CoV-2-reactive memory CD4+ T lymphocytes in unexposed individuals. Front Immunol 2022; 13:1004656. [PMID: 36268016 PMCID: PMC9576920 DOI: 10.3389/fimmu.2022.1004656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating, blood-borne SARS-CoV-2-reactive memory T cells in persons so far unexposed to SARS-CoV-2 or the vaccines have been described in 20-100% of the adult population. They are credited with determining the efficacy of the immune response in COVID-19. Here, we demonstrate the presence of preexisting memory CD4+ T cells reacting to peptides of the spike, membrane, or nucleocapsid proteins of SARS-CoV-2 in the bone marrow of all 17 persons investigated that had previously not been exposed to SARS-CoV-2 or one of the vaccines targeting it, with only 15 of these persons also having such cells detectable circulating in the blood. The preexisting SARS-CoV-2-reactive memory CD4+ T cells of the bone marrow are abundant and polyfunctional, with the phenotype of central memory T cells. They are tissue-resident, at least in those persons who do not have such cells in the blood, and about 30% of them express CD69. Bone marrow resident SARS-CoV-2-reactive memory CD4+ memory T cells are also abundant in vaccinated persons analyzed 10-168 days after 1°-4° vaccination. Apart from securing the bone marrow, preexisting cross-reactive memory CD4+ T cells may play an important role in shaping the systemic immune response to SARS-CoV-2 and the vaccines, and contribute essentially to the rapid establishment of long-lasting immunity provided by memory plasma cells, already upon primary infection.
Collapse
Affiliation(s)
- Jinchan Li
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Simon Reinke
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yu Shen
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Lena Schollmeyer
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Yuk-Chien Liu
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Zixu Wang
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Hipfl
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ute Hoffmann
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
- Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Frischbutter
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Berlin, Germany
| | - Hyun-Dong Chang
- Schwiete-Laboratory for Microbiota and Inflammation, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Jun Dong
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Institute of the Leibniz Association, Berlin, Germany
- *Correspondence: Jun Dong,
| |
Collapse
|
17
|
Eldewi DM, El‑Hagrasy HA, Gouda RM, Hassan MAEM, Kamel SM, Abd El Haliem NF, Anani HAA. Residual Bone Marrow T & NK-Cells at Diagnosis in Pediatric Pre-B-ALL: A Case-Control Study. Int J Gen Med 2022; 15:6475-6483. [PMID: 35966509 PMCID: PMC9369084 DOI: 10.2147/ijgm.s375991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mature bone marrow T lymphocytes and NK may have a special relevance in the control of the malignant growth. Objective We aimed to assess the percentage of the residual BM T-cells, (T-helper -T-cytotoxic- NKT) and the NK cells of childhood precursor B-lymphoblastic leukemia (B-ALL) as an indicator of innate and adaptive immunity in these patients. Subjects and Methods This study was conducted on 40 B-ALL patients, and 40 apparently healthy matched children served as a control group. The flow cytometry was used to assess the percentage of the residual BM T-cells (T-helper, T-cytotoxic and NKT), and the NK cells. Results Compared with the control group, the percentage of the residual BM T-cells, its subtypes (T-helper, T-cytotoxic), and NKT cells in addition to the NK cells was significantly decreased in Group IA, and Group IB, but there was no significant difference between Group IA and Group IB in all studied parameters. In terms of the CD4/CD8 ratio, there was a significant increase in Group IA as compared to the control group (P < 0.026), but there were no significant statistical differences in CD4/CD8 ratio between Groups IB, and the control. Likewise, in CD4/CD8 ratio between groups IA, and Groups IB (P > 0.05). The percentage of NK, and NKT cells shows a significant increase in Hepatomegaly and Splenomegaly, as compared to non-Hepatomegaly and non-Splenomegaly patients of Groups IB (P < 0.05). However, there was a significant increase in statistical differences in the percentage of NKT cell between non-Splenomegaly, as compared to Splenomegaly patients of Group IA (P < 0.05). Additionally, there is a negative correlation between B.M Blast% to CD4/CD8 ratio and NK%, but there is no significant correlation between B.M Blast% to NK T% in the group 1 A.
Collapse
Affiliation(s)
- Dalia Mahmoud Eldewi
- Department of Clinical Pathology - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Hanan A El‑Hagrasy
- Department of Clinical Pathology - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Rasha Mahmoud Gouda
- Department of Pediatric - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | | | - Shimaa Moustafa Kamel
- Department of Pediatric - Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Naglaa F Abd El Haliem
- Departments of Medical Microbiology and Immunology Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| | - Haneya A A Anani
- Departments of Medical Microbiology and Immunology Faculty of Medicine (For Girls), Al‑Azhar University, Cairo, Egypt
| |
Collapse
|
18
|
Shi K, Li H, Chang T, He W, Kong Y, Qi C, Li R, Huang H, Zhu Z, Zheng P, Ruan Z, Zhou J, Shi FD, Liu Q. Bone marrow hematopoiesis drives multiple sclerosis progression. Cell 2022; 185:2234-2247.e17. [PMID: 35709748 DOI: 10.1016/j.cell.2022.05.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/01/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system (CNS). Bone marrow hematopoietic stem and progenitor cells (HSPCs) rapidly sense immune activation, yet their potential interplay with autoreactive T cells in MS is unknown. Here, we report that bone marrow HSPCs are skewed toward myeloid lineage concomitant with the clonal expansion of T cells in MS patients. Lineage tracing in experimental autoimmune encephalomyelitis, a mouse model of MS, reveals remarkable bone marrow myelopoiesis with an augmented output of neutrophils and Ly6Chigh monocytes that invade the CNS. We found that myelin-reactive T cells preferentially migrate into the bone marrow compartment in a CXCR4-dependent manner. This aberrant bone marrow myelopoiesis involves the CCL5-CCR5 axis and augments CNS inflammation and demyelination. Our study suggests that targeting the bone marrow niche presents an avenue to treat MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Kaibin Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Handong Li
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Wenyan He
- Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ying Kong
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Caiyun Qi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ran Li
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huachen Huang
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhibao Zhu
- Department of Neurology, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Pei Zheng
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, China
| | - Jie Zhou
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fu-Dong Shi
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Neurological Diseases, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Qiang Liu
- Department of Neurology, Institute of Neuroimmunology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
19
|
Barakos GP, Hatzimichael E. Microenvironmental Features Driving Immune Evasion in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Diseases 2022; 10:diseases10020033. [PMID: 35735633 PMCID: PMC9221594 DOI: 10.3390/diseases10020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bone marrow, besides the known functions of hematopoiesis, is an active organ of the immune system, functioning as a sanctuary for several mature immune cells. Moreover, evidence suggests that hematopoietic stem cells (the bone marrow’s functional unit) are capable of directly sensing and responding to an array of exogenous stimuli. This chronic immune stimulation is harmful to normal hematopoietic stem cells, while essential for the propagation of myeloid diseases, which show a dysregulated immune microenvironment. The bone marrow microenvironment in myelodysplastic syndromes (MDS) is characterized by chronic inflammatory activity and immune dysfunction, that drive excessive cellular death and through immune evasion assist in cancer cell expansion. Acute myeloid leukemia (AML) is another example of immune response failure, with features that augment immune evasion and suppression. In this review, we will outline some of the functions of the bone marrow with immunological significance and describe the alterations in the immune landscape of MDS and AML that drive disease progression.
Collapse
Affiliation(s)
- Georgios Petros Barakos
- First Department of Internal Medicine, General Hospital of Piraeus “Tzaneio”, 18536 Piraeus, Greece;
| | - Eleftheria Hatzimichael
- Department of Haematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece
- Correspondence:
| |
Collapse
|
20
|
Ellis GI, Coker KE, Winn DW, Deng MZ, Shukla D, Bhoj V, Milone MC, Wang W, Liu C, Naji A, Duran-Struuck R, Riley JL. Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory T cells in Cynomolgus macaque. Cell Rep Med 2022; 3:100614. [PMID: 35551746 PMCID: PMC9133392 DOI: 10.1016/j.xcrm.2022.100614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
Abstract
Adoptive transfer of chimeric antigen receptor regulatory T cells (CAR Tregs) is a promising way to prevent allograft loss without the morbidity associated with current therapies. Non-human primates (NHPs) are a clinically relevant model to develop transplant regimens, but manufacturing and engraftment of NHP CAR Tregs have not been demonstrated yet. Here, we describe a culture system that massively expands CAR Tregs specific for the Bw6 alloantigen. In vitro, these Tregs suppress in an antigen-specific manner without pro-inflammatory cytokine secretion or cytotoxicity. In vivo, Bw6-specific CAR Tregs preferentially traffic to and persist in bone marrow for at least 1 month. Following transplant of allogeneic Bw6+ islets and autologous CAR Tregs into the bone marrow of diabetic recipients, CAR Tregs traffic to the site of islet transplantation and maintain a phenotype of suppressive Tregs. Our results establish a framework for the optimization of CAR Treg therapy in NHP disease models.
Collapse
Affiliation(s)
- Gavin I Ellis
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Coker
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaine W Winn
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Mosha Z Deng
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Divanshu Shukla
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay Bhoj
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Cifuentes-Mendiola SE, Solis-Suarez DL, Martínez-Dávalos A, Godínez-Victoria M, García-Hernández AL. CD4 + T-cell activation of bone marrow causes bone fragility and insulin resistance in type 2 diabetes. Bone 2022; 155:116292. [PMID: 34896656 DOI: 10.1016/j.bone.2021.116292] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) causes an increased risk of bone fractures. However, the pathophysiology of diabetic bone fragility is not completely understood. It has been proposed that an inflammatory microenvironment in bone could be a major mechanism by inducing uncontrolled bone resorption, inadequate bone formation and consequently more porous bones. We propose that activated T-cells in the bone marrow cause a pro-inflammatory microenvironment in bone, and cause bone fragility in T2DM. We induced T2DM in C57BL/6 male mice through a hypercaloric diet rich in carbohydrates and low doses of streptozocin. In T2DM mice we inhibited systemic activation of T-cells with a fusion protein between the extracellular domain of Cytotoxic T-Lymphocyte Antigen 4 and the Fc domain of human immunoglobulin G (CTLA4-Ig). We analysed the effects of T2DM or CTLA4-Ig in lymphocyte cell subsets and antigen-presenting cells in peripheral blood and femoral bone marrow; and their effect on the metabolic phenotype, blood and bone cytokine concentration, femoral bone microarchitecture and biomechanical properties, and the number of osteoblast-like cells in the femoral endosteum. We performed a Pearson multiple correlation analysis between all variables in order to understand the global mechanism. Results demonstrated that CTLA4-Ig decreased the number of activated CD4+ T-cells in the femoral bone marrow and consequently decreased TNF-α and RANK-L concentration in bone, notably improved femoral bone microarchitecture and biomechanical properties, increased the number of osteoblast-like cells, and reduces osteoclastic activity compared to T2DM mice that did not receive the inhibitor. Interestingly, we observed that blood glucose levels and insulin resistance may be related to the increase in activated CD4+ T-cells in the bone marrow. We conclude that bone marrow activated CD4+ T-cells cause poor bone quality and insulin resistance in T2DM.
Collapse
Affiliation(s)
- S E Cifuentes-Mendiola
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico; Postgraduate in Biological Sciences, National Autonomous University of Mexico, Mexico, Mexico
| | - D L Solis-Suarez
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico
| | - A Martínez-Dávalos
- Physics Institute, National Autonomous University of Mexico, Circuito de la Investigación Científica, Ciudad Universitaria, 04510 México City, Mexico
| | - M Godínez-Victoria
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico, Mexico
| | - A L García-Hernández
- Laboratory of Dental Research, Section of Osteoimmunology and Oral Immunology, FES Iztacala, National Autonomous University of Mexico, A. Jiménez Gallardo SN, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP 54714, Mexico.
| |
Collapse
|
22
|
Gitto S, Natalini A, Antonangeli F, Di Rosa F. The Emerging Interplay Between Recirculating and Tissue-Resident Memory T Cells in Cancer Immunity: Lessons Learned From PD-1/PD-L1 Blockade Therapy and Remaining Gaps. Front Immunol 2021; 12:755304. [PMID: 34867987 PMCID: PMC8640962 DOI: 10.3389/fimmu.2021.755304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Remarkable progress has been made in the field of anti-tumor immunity, nevertheless many questions are still open. Thus, even though memory T cells have been implicated in long-term anti-tumor protection, particularly in prevention of cancer recurrence, the bases of their variable effectiveness in tumor patients are poorly understood. Two types of memory T cells have been described according to their traffic pathways: recirculating and tissue-resident memory T cells. Recirculating tumor-specific memory T cells are found in the cell infiltrate of solid tumors, in the lymph and in the peripheral blood, and they constantly migrate in and out of lymph nodes, spleen, and bone marrow. Tissue-resident tumor-specific memory T cells (TRM) permanently reside in the tumor, providing local protection. Anti-PD-1/PD-L1, a type of immune checkpoint blockade (ICB) therapy, can considerably re-invigorate T cell response and lead to successful tumor control, even in patients at advanced stages. Indeed, ICB has led to unprecedented successes against many types of cancers, starting a ground-breaking revolution in tumor therapy. Unfortunately, not all patients are responsive to such treatment, thus further improvements are urgently needed. The mechanisms underlying resistance to ICB are still largely unknown. A better knowledge of the dynamics of the immune response driven by the two types of memory T cells before and after anti-PD-1/PD-L1 would provide important insights on the variability of the outcomes. This would be instrumental to design new treatments to overcome resistance. Here we provide an overview of T cell contribution to immunity against solid tumors, focusing on memory T cells. We summarize recent evidence on the involvement of recirculating memory T cells and TRM in anti-PD-1/PD-L1-elicited antitumor immunity, outline the open questions in the field, and propose that a synergic action of the two types of memory T cells is required to achieve a full response. We argue that a T-centric vision focused on the specific roles and the possible interplay between TRM and recirculating memory T cells will lead to a better understanding of anti-PD-1/PD-L1 mechanism of action, and provide new tools for improving ICB therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Gitto
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza", Rome, Italy
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
23
|
Cell-based therapeutics for the treatment of hematologic diseases inside the bone marrow. J Control Release 2021; 339:1-13. [PMID: 34536449 DOI: 10.1016/j.jconrel.2021.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Cell-based therapies could overcome the limitations of traditional drugs for the treatment of refractory diseases. Cell exchange between the bone marrow and blood is bidirectional. Several kinds of cells in the blood have the capability to enter the bone marrow by interacting with sinusoidal cells under specific physiological or pathological conditions. These cells are the potential living therapeutics or delivery vehicles to treat or prevent bone marrow-related hematologic diseases. In this review, we summarized the in vivo molecular mechanisms and kinetics of these cells in entering the bone marrow. The advances in the fabrication of living cell drugs and the strategies to design cell-based carriers into the bone marrow were discussed. The latest studies on how to use blood cells as living drugs or as drug carriers to improve therapeutic outcomes of hematologic diseases inside the bone marrow were highlighted.
Collapse
|
24
|
Effector memory CD4 +T cells in mesenteric lymph nodes mediate bone loss in food-allergic enteropathy model mice, creating IL-4 dominance. Mucosal Immunol 2021; 14:1335-1346. [PMID: 34326478 DOI: 10.1038/s41385-021-00434-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Intestinal inflammation can be accompanied by osteoporosis, but their relationship, mediated by immune responses, remains unclear. Here, we investigated a non-IgE-mediated food-allergic enteropathy model of ovalbumin (OVA) 23-3 mice expressing OVA-specific T-cell-receptor transgenes. Mesenteric lymph nodes (MLNs) and their pathogenic CD4+T cells were important to enteropathy occurrence and exacerbation when the mice were fed an egg-white (EW) diet. EW-fed OVA23-3 mice also developed bone loss and increased CD44hiCD62LloCD4+T cells in the MLNs and bone marrow (BM); these changes were attenuated by MLN, but not spleen, resection. We fed an EW diet to F1 cross offspring from OVA23-3 mice and a mouse line expressing the photoconvertible protein KikGR to track MLN CD4+T cells. Photoconverted MLN CD44hiCD62LloCD4+T cells migrated predominantly to the BM; pit formation assay proved their ability to promote bone damage via osteoclasts. Significantly greater expression of IL-4 mRNA in MLN CD44hiCD62LloCD4+T cells and bone was observed in EW-fed OVA23-3 mice. Anti-IL-4 monoclonal antibody injection canceled bone loss in the primary inflammation phase in EW-fed mice, but less so in the chronic phase. This novel report shows the specific inflammatory relationship, via Th2-dominant-OVA-specific T cells and IL-4 production, between MLNs and bone, a distant organ, in food-allergic enteropathy.
Collapse
|
25
|
Kalia V, Yuzefpolskiy Y, Vegaraju A, Xiao H, Baumann F, Jatav S, Church C, Prlic M, Jha A, Nghiem P, Riddell S, Sarkar S. Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Sci Transl Med 2021; 13:eaba6006. [PMID: 34644150 DOI: 10.1126/scitranslmed.aba6006] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vandana Kalia
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yevgeniy Yuzefpolskiy
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Adithya Vegaraju
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Hanxi Xiao
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Florian Baumann
- QIAGEN Sciences LLC, 19300 Germantown Rd, Germantown, MD 20874, USA
| | | | - Candice Church
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Global Health, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Paul Nghiem
- Dermatology Division, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stanley Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Surojit Sarkar
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA.,Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Wang X, Chen Y, Li Z, Huang B, Xu L, Lai J, Lu Y, Zha X, Liu B, Lan Y, Li Y. Single-Cell RNA-Seq of T Cells in B-ALL Patients Reveals an Exhausted Subset with Remarkable Heterogeneity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101447. [PMID: 34365737 PMCID: PMC8498858 DOI: 10.1002/advs.202101447] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/27/2021] [Indexed: 06/02/2023]
Abstract
Characterization of functional T cell clusters is key to developing strategies for immunotherapy and predicting clinical responses in leukemia. Here, single-cell RNA sequencing is performed with T cells sorted from the peripheral blood of healthy individuals and patients with B cell-acute lymphoblastic leukemia (B-ALL). Unbiased bioinformatics analysis enabled the authors to identify 13 T cell clusters in the patients based on their molecular properties. All 11 major T cell subsets in healthy individuals are found in the patients with B-ALL, with the counterparts in the patients universally showing more activated characteristics. Two exhausted T cell populations, characterized by up-regulation of TIGIT, PDCD1, HLADRA, LAG3, and CTLA4 are specifically discovered in B-ALL patients. Of note, these exhausted T cells possess remarkable heterogeneity, and ten sub-clusters are further identified, which are characterized by different cell cycle phases, naïve states, and GNLY (coding granulysin) expression. Coupled with single-cell T cell receptor repertoire profiling, diverse originations of the exhausted T cells in B-ALL are suggested, and clonally expanded exhausted T cells are likely to originate from CD8+ effector memory/terminal effector cells. Together, these data provide for the first-time valuable insights for understanding exhausted T cell populations in leukemia.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Yanjuan Chen
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Zongcheng Li
- State Key Laboratory of Experimental HematologyInstitute of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Bingyan Huang
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Ling Xu
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Jing Lai
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
| | - Yuhong Lu
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
| | - Xianfeng Zha
- Department of Clinical LaboratoryFirst Affiliated HospitalSchool of MedicineJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
| | - Bing Liu
- State Key Laboratory of Experimental HematologyInstitute of HematologyFifth Medical Center of Chinese PLA General HospitalBeijing100071China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| | - Yangqiu Li
- Department of HematologyFirst Affiliated HospitalJinan UniversityNo. 601 West of Huangpu AvenueGuangzhou510632China
- Key Laboratory for Regenerative Medicine of Ministry of EducationInstitute of HematologySchool of MedicineJinan UniversityGuangzhou510632China
| |
Collapse
|
27
|
Minoura K, Abe K, Nam H, Nishikawa H, Shimamura T. A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. CELL REPORTS METHODS 2021; 1:100071. [PMID: 35474667 PMCID: PMC9017195 DOI: 10.1016/j.crmeth.2021.100071] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
The recent development of single-cell multiomics analysis has enabled simultaneous detection of multiple traits at the single-cell level, providing deeper insights into cellular phenotypes and functions in diverse tissues. However, currently, it is challenging to infer the joint representations and learn relationships among multiple modalities from complex multimodal single-cell data. Here, we present scMM, a novel deep generative model-based framework for the extraction of interpretable joint representations and crossmodal generation. scMM addresses the complexity of data by leveraging a mixture-of-experts multimodal variational autoencoder. The pseudocell generation strategy of scMM compensates for the limited interpretability of deep learning models, and the proposed approach experimentally discovered multimodal regulatory programs associated with latent dimensions. Analysis of recently produced datasets validated that scMM facilitates high-resolution clustering with rich interpretability. Furthermore, we show that crossmodal generation by scMM leads to more precise prediction and data integration compared with the state-of-the-art and conventional approaches.
Collapse
Affiliation(s)
- Kodai Minoura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ko Abe
- Laboratory of Medical Statistics, Kobe Pharmaceutical University
| | - Hyunha Nam
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo/Chiba, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
28
|
Imaging Tolerance Induction in Neonatal Mice: Hierarchical Interplay Between Allogeneic Adult and Neonatal Immune Cells. Transplantation 2021; 105:1730-1746. [PMID: 33273316 DOI: 10.1097/tp.0000000000003566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In Medawar's murine neonatal tolerance model, injection of adult semiallogeneic lymphohematopoietic cells (spleen cells [SC] and bone marrow cells [BMC]) tolerizes the neonatal immune system. An eventual clinical application would require fully allogeneic (allo) cells, yet little is known about the complex in vivo/in situ interplay between those cells and the nonconditioned neonatal immune system. METHODS To this end, labeled adult SC and BMC were injected into allogeneic neonates; interactions between donor and host cells were analyzed and modulated by systematic depletion/inactivation of specific donor and host immune effector cell types. RESULTS Consistent with effector cell compositions, allo-SC and allo-SC/BMC each induced lethal acute graft-versus-host disease, whereas allo-BMC alone did so infrequently. CD8 T cells from SC inoculum appeared naïve, while those of BMC were more memory-like. Age-dependent, cell-type dominance defined the interplay between adult donor cells and the neonatal host immune system such that if the dominant adult effector type was removed, then the equivalent neonatal one became dominant. Depletion of donor/host peripheral T cells protected against acute graft-versus-host disease and prolonged heart allograft survival; peripheral CD8 T-cell depletion together with CD4 T cell-costimulation blockade induced more robust tolerance. CONCLUSIONS This comprehensive study provides direct observation of the cellular interplay between allogeneic donor and host immune systems, adds to our previous work with semiallogeneic donor cells, and provides important insights for robust tolerance induction. Induction of transplant tolerance in neonates will likely require "crowd sourcing" of multiple tolerizing cell types and involve depletion of immune effector cells with costimulation blockade.
Collapse
|
29
|
Casey M, Nakamura K. The Cancer-Immunity Cycle in Multiple Myeloma. Immunotargets Ther 2021; 10:247-260. [PMID: 34295843 PMCID: PMC8291851 DOI: 10.2147/itt.s305432] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma is a plasma cell malignancy that primarily affects the elderly. The global burden of multiple myeloma is increasing in many countries due to an aging population. Despite recent advances in therapy, myeloma remains an incurable disease, highlighting the pressing need for new therapies. Accumulating evidence supports that triggering the host immune system is a critical therapeutic mechanism of action by various anti-myeloma therapies. These anti-myeloma therapies include proteasome inhibitors, immunomodulatory drugs, monoclonal antibody drugs, and autologous stem cell transplantation. More recently, T cell-based immunotherapeutics (including chimeric antigen receptor T-cell therapies and bispecific T-cell engagers) have shown dramatic clinical benefits in patients with relapsed or refractory multiple myeloma. While immune-based therapeutic approaches are recognized as key modalities for improved clinical outcomes in myeloma patients, understanding the immune system in multiple myeloma patients remains elusive. The cancer-immunity cycle is a conceptual framework illustrating how immune cells recognize and eliminate tumor cells. Based on this framework, this review will provide an overview of the immune system in multiple myeloma patients and discuss potential therapeutic approaches to stimulate anti-tumor immunity.
Collapse
Affiliation(s)
- Mika Casey
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia
| | - Kyohei Nakamura
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia
| |
Collapse
|
30
|
The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells 2021; 10:cells10061508. [PMID: 34203839 PMCID: PMC8232593 DOI: 10.3390/cells10061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow (BM) is key to protective immunological memory because it harbors a major fraction of the body’s plasma cells, memory CD4+ and memory CD8+ T-cells. Despite its paramount significance for the human immune system, many aspects of how the BM enables decade-long immunity against pathogens are still poorly understood. In this review, we discuss the relationship between BM survival niches and long-lasting humoral immunity, how intrinsic and extrinsic factors define memory cell longevity and show that the BM is also capable of adopting many responsibilities of a secondary lymphoid organ. Additionally, with more and more data on the differentiation and maintenance of memory T-cells and plasma cells upon vaccination in humans being reported, we discuss what factors determine the establishment of long-lasting immunological memory in the BM and what we can learn for vaccination technologies and antigen design. Finally, using these insights, we touch on how this holistic understanding of the BM is necessary for the development of modern and efficient vaccines against the pandemic SARS-CoV-2.
Collapse
|
31
|
Chang HD, Radbruch A. Maintenance of quiescent immune memory in the bone marrow. Eur J Immunol 2021; 51:1592-1601. [PMID: 34010475 DOI: 10.1002/eji.202049012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/25/2022]
Abstract
The adaptive immune system has the important ability to generate and maintain a memory for antigens once encountered. Recent progress in understanding the organization of immunological memory has challenged the established paradigm of maintenance of memory by restless, circulating, and "homeostatically" proliferating lymphocytes. Among other tissues, the bone marrow has emerged as a preferred resting place for memory lymphocytes providing both local and systemic long-term protection. Why the bone marrow? There, mesenchymal stromal cells provide a privileged environment for quiescent memory B and T lymphocytes, the protagonists of secondary immune reactions, and for memory plasma cells providing persistent humoral immunity. In this review, we discuss the dedicated role of the bone marrow for the maintenance of memory lymphocytes and its implications for immunological memory.
Collapse
Affiliation(s)
- Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
32
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
33
|
Santopaolo M, Sullivan N, Thomas AC, Alvino VV, Nicholson LB, Gu Y, Spinetti G, Kallikourdis M, Blom A, Madeddu P. Activation of Bone Marrow Adaptive Immunity in Type 2 Diabetes: Rescue by Co-stimulation Modulator Abatacept. Front Immunol 2021; 12:609406. [PMID: 33746953 PMCID: PMC7969721 DOI: 10.3389/fimmu.2021.609406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Chronic low-grade inflammation and alterations in innate and adaptive immunity were reported in Type 2 diabetes (T2D). Here, we investigated the abundance and activation of T cells in the bone marrow (BM) of patients with T2D. We then verified the human data in a murine model and tested if the activation of T cells can be rescued by treating mice with abatacept, an immunomodulatory drug employed for the treatment of rheumatoid arthritis. Clinical evidence indicated abatacept can slow the decline in beta-cell function. Methods: A cohort of 24 patients (12 with T2D) undergoing hip replacement surgery was enrolled in the study. Flow cytometry and cytokine analyses were performed on BM leftovers from surgery. We next compared the immune profile of db/db and control wt/db mice. In an additional study, db/db mice were randomized to receive abatacept or vehicle for 4 weeks, with endpoints being immune cell profile, indices of insulin sensitivity, and heart performance. Results: Patients with T2D showed increased frequencies of BM CD4+ (2.8-fold, p = 0.001) and CD8+ T cells (1.8-fold, p = 0.01), with the upregulation of the activation marker CD69 and the homing receptor CCR7 in CD4+ (1.64-fold, p = 0.003 and 2.27-fold, p = 0.01, respectively) and CD8+ fractions (1.79-fold, p = 0.05 and 1.69-fold, p = 0.02, respectively). These differences were confirmed in a multivariable regression model. CCL19 (CCR7 receptor ligand) and CXCL10/11 (CXCR3 receptor ligands), implicated in T-cell migration and activation, were the most differentially modulated chemokines. Studies in mice confirmed the activation of adaptive immunity in T2D. Abatacept reduced the activation of T cells and the levels of proinflammatory cytokines and improved cardiac function but not insulin sensitivity. Conclusions: Results provide proof-of-concept evidence for the activation of BM adaptive immunity in T2D. In mice, treatment with abatacept dampens the activation of adaptive immunity and protects from cardiac damage.
Collapse
Affiliation(s)
- Marianna Santopaolo
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Niall Sullivan
- University Hospitals Bristol NHS Trust, Bristol, United Kingdom
| | - Anita Coral Thomas
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Valeria Vincenza Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Lindsay B Nicholson
- Bristol Medical School, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Yue Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Research, Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Adaptive Immunity Laboratory, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ashley Blom
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
34
|
Tolstykh EI, Vozilova AV, Degteva MO, Akleyev AV. Concept of T-Cell Genus as a Basis for Analysis of the Results of Cytogenetic Studies after Local Bone Marrow Exposure. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Medara N, Lenzo JC, Walsh KA, Holden JA, Reynolds EC, Darby IB, O'Brien-Simpson NM. Peripheral memory T-cell profile is modified in patients undergoing periodontal management. J Clin Periodontol 2020; 48:249-262. [PMID: 33131124 DOI: 10.1111/jcpe.13399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/23/2020] [Accepted: 10/25/2020] [Indexed: 11/28/2022]
Abstract
AIMS T-cells are known to have a role in periodontitis, however, the effect of periodontal therapy on peripheral memory T-cells is unclear. This study evaluated variation in peripheral memory T-cells and red complex bacteria in sub-gingival plaque in patients undergoing periodontal management. METHODS Peripheral blood mononuclear cells and sub-gingival plaque were collected from 54 periodontitis patients at baseline, 3-, 6- and 12-months post-therapy and 40 healthy controls. Periodontitis patients were divided into treatment outcome (TxO) groups based on prevalence of sites with probing depth ≥5 mm as good (<10% of sites), moderate (10-20%) or poor (>20%) at study conclusion. Naïve (TN -CCR7+ CD45RA+ ), central memory (TCM -CCR7+ CD45RA- ), effector memory (TEM -CCR7- CD45RA- ) and effector memory T-cells re-expressing CD45RA (TEMRA -CCR7- CD45RA+ ) were phenotyped using flow cytometry in CD4+ , CD8+ , CD4+ CD8+ and CD4- CD8- T-cells and red complex bacteria were quantified using qPCR. RESULTS At baseline, periodontitis subjects had significantly greater mean probing depths and Porphyromonas gingivalis proportions, lower TN but higher CD4+ TCM , CD8+ TCM , CD4+ CD8+ TEM and CD4- CD8- TEM cell proportions compared to health. Periodontal therapy decreased mean probing depths, P. gingivalis proportions, TEM and CD4+ and CD8+ TCM cells, but increased TN and CD4+ and CD8+ TEMRA cells. The T-cell profile in the good TxO group showed therapy-related changes in CD4+ TEM , and CD8+ TN and TEM cells, whereas, no changes were observed in the poor TxO group. CONCLUSION Management and the reduction in red complex bacteria were associated with changes in peripheral memory T-cells in periodontitis.
Collapse
Affiliation(s)
- Nidhi Medara
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia
| | - Jason C Lenzo
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia.,The Centre for Oral Health Research, The University of Melbourne, Carlton, Vic., Australia
| | | | - James A Holden
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia.,The Centre for Oral Health Research, The University of Melbourne, Carlton, Vic., Australia
| | - Eric C Reynolds
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia.,The Centre for Oral Health Research, The University of Melbourne, Carlton, Vic., Australia
| | - Ivan B Darby
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia
| | - Neil M O'Brien-Simpson
- Melbourne Dental School, The University of Melbourne, Carlton, Vic., Australia.,The Centre for Oral Health Research, The University of Melbourne, Carlton, Vic., Australia
| |
Collapse
|
36
|
Heninger E, Sethakorn N, Kosoff D, Hematti P, Kuczler MD, Pienta KJ, Lang JM. Immune profiling of the bone marrow microenvironment in patients with high-risk localized prostate cancer. Oncotarget 2020; 11:4253-4265. [PMID: 33245727 PMCID: PMC7679037 DOI: 10.18632/oncotarget.27817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 01/03/2023] Open
Abstract
Bone marrow (BM) is a primary metastatic site in prostate cancer (PC) and bone invasion is considered incurable. T cell-mediated immune surveillance is essential in controlling both tumorigenesis and initiation of metastases. Beside tropism, dissemination of PC cells to the BM may be facilitated by defects in BM immune homeostasis predisposing this niche to colonization. To evaluate the BM immune microenvironment in locally advanced, non-metastatic PC, we performed flow cytometry analysis of myeloid and lymphoid subsets in BM aspirates and peripheral blood collected during prostatectomy. Healthy BM aspirates served to establish a reference range for comparison. We found alterations in BM immune composition of PC patients, including an increased CD4/CD8 ratio, enrichment of CD4+ T cells, increased CD56+CD3+ NKT and CD56+CD3- NK yields compared to healthy controls. The lymphoid phenotype remained comparable regarding T cell activation and chemokine receptor-based polarization patterns. Additionally, we found increased B7H3 expression in the myeloid monocyte/macrophage subset and decreased DC infiltration in BM of PC patients. These findings suggest that alterations in the immune milieu may limit immune surveillance that compromise the ability of the BM microenvironment to prevent tumor dissemination, and predispose development of bone metastases in a subset of patients with localized PC.
Collapse
Affiliation(s)
- Erika Heninger
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Nan Sethakorn
- Department of Oncology, University of Wisconsin, Madison, WI, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Peiman Hematti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Morgan D Kuczler
- Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - Kenneth J Pienta
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Urology, The James Buchanan Brady Urological Institute, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.,Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
37
|
Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000412. [PMID: 33101844 PMCID: PMC7578891 DOI: 10.1002/advs.202000412] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/09/2020] [Indexed: 05/13/2023]
Abstract
Metallic implants are frequently used in medicine to support and replace degenerated tissues. Implant loosening due to particle exposure remains a major cause for revision arthroplasty. The exact role of metal debris in sterile peri-implant inflammation is controversial, as it remains unclear whether and how metals chemically alter and potentially accumulate behind an insulating peri-implant membrane, in the adjacent bone and bone marrow (BM). An intensively focused and bright synchrotron X-ray beam allows for spatially resolving the multi-elemental composition of peri-implant tissues from patients undergoing revision surgery. In peri-implant BM, particulate cobalt (Co) is exclusively co-localized with chromium (Cr), non-particulate Cr accumulates in the BM matrix. Particles consisting of Co and Cr contain less Co than bulk alloy, which indicates a pronounced dissolution capacity. Particulate titanium (Ti) is abundant in the BM and analyzed Ti nanoparticles predominantly consist of titanium dioxide in the anatase crystal phase. Co and Cr but not Ti integrate into peri-implant bone trabeculae. The characteristic of Cr to accumulate in the intertrabecular matrix and trabecular bone is reproducible in a human 3D in vitro model. This study illustrates the importance of updating the view on long-term consequences of biomaterial usage and reveals toxicokinetics within highly sensitive organs.
Collapse
Affiliation(s)
- Janosch Schoon
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Bernhard Hesse
- Xploraytion GmbHBerlin10625Germany
- European Synchrotron Radiation FacilityGrenoble38000France
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Melanie J. Ort
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Adrien Lagrange
- Xploraytion GmbHBerlin10625Germany
- Department of Materials Science and EngineeringInstitute of Materials Science and TechnologiesTechnische Universität BerlinBerlin10623Germany
| | - Dorit Jacobi
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | | | - Katrin Huesker
- Endocrinology and Immunology DepartmentInstitute for Medical DiagnosticsBerlin12247Germany
| | - Simon Reinke
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
| | - Marine Cotte
- European Synchrotron Radiation FacilityGrenoble38000France
- CNRSLaboratoire d'archéologie moléculaire et structuraleLAMSSorbonne UniversitéParis75005France
| | - Remi Tucoulou
- European Synchrotron Radiation FacilityGrenoble38000France
| | | | - Carsten Perka
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
- Center for Musculoskeletal SurgeryCharité – Universitätsmedizin BerlinBerlin10117Germany
| | - Georg N. Duda
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| | - Sven Geissler
- Julius Wolff InstituteCharité – Universitätsmedizin BerlinBerlin13353Germany
- Berlin Institute of Health Center for Regenerative TherapiesBerlin Institute of HealthBerlin10178Germany
- Berlin‐Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlin13353Germany
| |
Collapse
|
38
|
Suvas P, Liu L, Rao P, Steinle JJ, Suvas S. Systemic alterations in leukocyte subsets and the protective role of NKT cells in the mouse model of diabetic retinopathy. Exp Eye Res 2020; 200:108203. [PMID: 32890483 DOI: 10.1016/j.exer.2020.108203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
The involvement of leukocytes in the pathophysiology of DR has mostly examined the role of monocytes and neutrophils with little emphasis on other immune cell types. In this study, we determined the systemic alterations in T cell subsets, myeloid cell types, NK cells, and NKT cells in the streptozotocin (STZ) mouse model of diabetic retinopathy (DR), and the role of NKT cells on retinal leukostasis and permeability changes. C57BL/6 J mice were made diabetic with 60 mg/kg dose of STZ given for 5-days. Flow cytometry assay measured the frequency of leukocyte subsets in the peripheral blood, spleen, and bone marrow of STZ- and vehicle-treated C57BL/6 J mice. Our results showed an increased proportion of memory CD8 T cells and interferon-gamma (IFN-γ) secreting CD8 T cells in the bone marrow of STZ-treated compared to control mice. Subsequently, increased production of inflammatory monocytes in the bone marrow and an enhanced frequency of CD11b + cells in the diabetic retina were seen in STZ-treated compared to control mice. The diabetic mice also exhibited a decrease in total NKT and CD4+NKT cells. A monoclonal antibody-based approach depleted NKT cells from STZ-treated mice, followed by measurements of retinal vascular permeability and leukostasis. The depletion of NKT cells in STZ-treated mice resulted in a significant increase in vascular permeability in the retinal tissue. Together, our results strongly imply the involvement of NKT cells in regulating the pathophysiology of the diabetic retina.
Collapse
Affiliation(s)
- Pratima Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Liu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pushpa Rao
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
39
|
Diaz MF, Horton PD, Kumar A, Livingston M, Mohammadalipour A, Xue H, Skibber MA, Ewere A, Toledano Furman NE, Aroom KR, Zhang S, Gill BS, Cox CS, Wenzel PL. Injury intensifies T cell mediated graft-versus-host disease in a humanized model of traumatic brain injury. Sci Rep 2020; 10:10729. [PMID: 32612177 PMCID: PMC7330041 DOI: 10.1038/s41598-020-67723-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
The immune system plays critical roles in promoting tissue repair during recovery from neurotrauma but is also responsible for unchecked inflammation that causes neuronal cell death, systemic stress, and lethal immunodepression. Understanding the immune response to neurotrauma is an urgent priority, yet current models of traumatic brain injury (TBI) inadequately recapitulate the human immune response. Here, we report the first description of a humanized model of TBI and show that TBI places significant stress on the bone marrow. Hematopoietic cells of the marrow are regionally decimated, with evidence pointing to exacerbation of underlying graft-versus-host disease (GVHD) linked to presence of human T cells in the marrow. Despite complexities of the humanized mouse, marrow aplasia caused by TBI could be alleviated by cell therapy with human bone marrow mesenchymal stromal cells (MSCs). We conclude that MSCs could be used to ameliorate syndromes triggered by hypercytokinemia in settings of secondary inflammatory stimulus that upset marrow homeostasis such as TBI. More broadly, this study highlights the importance of understanding how underlying immune disorders including immunodepression, autoimmunity, and GVHD might be intensified by injury.
Collapse
Affiliation(s)
- Miguel F Diaz
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Paulina D Horton
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Akshita Kumar
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan Livingston
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Amina Mohammadalipour
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Hasen Xue
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Max A Skibber
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Adesuwa Ewere
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,School of Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Naama E Toledano Furman
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kevin R Aroom
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Charles S Cox
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Pamela L Wenzel
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Activated Allogeneic Donor-derived Marrow-infiltrating Lymphocytes Display Measurable In Vitro Antitumor Activity. J Immunother 2020; 42:73-80. [PMID: 30829726 DOI: 10.1097/cji.0000000000000256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A major limitation in current allogeneic hematopoietic stem cell transplantation (alloHSCT) is disease relapse after transplant, indicating that donor-derived T cells are inadequate in imparting an effective antitumor response. The current standard treatment approach to relapse utilizes donor lymphocyte infusions that have limited documented efficacy and are also associated with significant morbidity mainly related to graft-versus-host disease. We have previously shown that marrow-infiltrating lymphocytes (MILs) have a broader antigenic specificity compared with their peripheral blood counterpart in an autologous adoptive T-cell therapy setting. Here, we extend these observations to examine the ability of MILs obtained from patients after an alloHSCT to generate measurable tumor-specific immunity. We show here that allogeneic donor-derived marrow-infiltrating lymphocytes (ddMILs) obtained from patients who underwent alloHSCT with posttransplant cyclophosphamide could be reproducibly expanded and activated with anti-CD3/CD28 beads. Phenotypic characterization of ddMILs subpopulations revealed the prevalence of a central memory phenotype. Polyclonally activated ddMILs displayed measurable in vitro antitumor activity. Furthermore, activated ddMILs from all patients effectively targeted third-party allogeneic antigens, but showed no reactivity toward self-antigens presented in an HLA-restricted manner. Collectively, these results underscore the intrinsic polyclonal tumor-specificity of activated ddMILs and describe a novel approach for the generation of tumor-specific T cells that are suitable for adoptive immunotherapy of hematological malignancies relapsed after alloHSCT. This approach has a potential to significantly increase the tumor-specificity and reduce the toxicities associated with current standard donor lymphocyte infusion approaches.
Collapse
|
41
|
Massalska M, Radzikowska A, Kuca-Warnawin E, Plebanczyk M, Prochorec-Sobieszek M, Skalska U, Kurowska W, Maldyk P, Kontny E, Gober HJ, Maslinski W. CD4 +FOXP3 + T Cells in Rheumatoid Arthritis Bone Marrow Are Partially Impaired. Cells 2020; 9:E549. [PMID: 32111105 PMCID: PMC7140449 DOI: 10.3390/cells9030549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
There is evolving evidence that dysregulation of immune homeostasis in the bone marrow (BM) adjacent to the inflamed joints is involved in the pathogenesis of. In this study, we are addressing the phenotype and function of regulatory T cells (Tregs) residing in the BM of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). BM and peripheral blood samples were obtained from RA and OA patients undergoing hip replacement surgery. The number and phenotype of Tregs were analyzed by flow cytometry and immunohistochemistry. The function of Tregs was investigated ex vivo, addressing their suppressive activity on effector T cells. [3H]-Thymidine incorporation assay and specific enzyme-linked immunosorbent assay were used for quantification of cell proliferation and pro-inflammatory (TNF, IFN-γ) cytokine release, respectively. Significantly lower numbers of CD4+FOXP3+ T cells were found in the BM of patients with RA compared to control patients with OA. High expression of CD127 (IL-7 receptor) and relatively low expression of CXCR4 (receptor for stromal cell-derived factor CXCL12) are characteristics of the CD4+FOXP3+ cells residing in the BM of RA patients. The BM-resident Tregs of RA patients demonstrated a limited suppressive activity on the investigated immune response. Our results indicate that the reduced number and impaired functional properties of CD4+FOXP3+ T cells present in the BM of RA patients may favor the inflammatory process, which is observed in RA BM.
Collapse
Affiliation(s)
- Magdalena Massalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Anna Radzikowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Magdalena Plebanczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Monika Prochorec-Sobieszek
- Department of Pathology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Urszula Skalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Weronika Kurowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Pawel Maldyk
- Department of Rheumoorthopaedic Surgery, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland;
- Clinical Department of Orthopedic and Traumatology of Locomotor System, Enfant-Jesus Clinical Hospital, 02-005 Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| | - Hans-Jürgen Gober
- Department of Pharmacy, Kepler University Hospital, 4020 Linz, Austria;
- Pharmaceutical Outcomes Programme, British Columbia Children’s Hospital, Vancouver, BC V5Z 4H4, Canada
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology, and Rehabilitation, 02-637 Warsaw, Poland; (A.R.); (E.K.-W.); (M.P.); (U.S.); (W.K.); (E.K.); (W.M.)
| |
Collapse
|
42
|
Fan P, Han B, Hu H, Wei Q, Zhang X, Meng L, Nie J, Tang X, Tian X, Zhang L, Wang L, Li J. Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice. Expert Opin Ther Targets 2020; 24:267-279. [PMID: 32077781 DOI: 10.1080/14728222.2020.1733529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: 10-hydroxydec-2-enoic acid (10-HDA), a unique component of royal jelly existing only in nature, has the potential to promote human health. Knowledge of 10-HDA in regulating immuno-activity, however, is lacking. The aim of our work is to gain a novel understanding of 10-HDA in promoting immunity.Methods: Immuno-suppressed mice were generated by cyclophosphamide injection, After 10-HDA supplementation to the mice to rescue their immunity, the proteomes of the thymus and spleen were analyzed.Results: The weight of the body, thymus, and spleen in cyclophosphamide-induced mice recovered by 10-HDA indicate its potential role in immuno-organ protection. In the thymus, the enhanced activity of pathways associated with DNA/RNA/protein activities may be critical for T-lymphocyte proliferation/differentiation, and cytotoxicity. In the spleen, the induced pathways involved in DNA/RNA/protein activities, and cell proliferative stimulation suggest their vital role in B-lymphocyte affinity maturation, antigen presentation, and macrophage activity. The up-regulated proteins highly connected in networks modulated by 10-HDA indicate that the mice may evolve tactics to respond to immuno-organ impairment by activating critical physiological processes.Conclusion: Our data constitute a proof-of-concept that 10-HDA is a potential agent to improve immunity in the thymus and spleen and offer a new venue for applying natural products to the therapy for hypoimmunity.
Collapse
Affiliation(s)
- Pei Fan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Bin Han
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Han Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiaohong Wei
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xufeng Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd, Changsha, PR China
| | - Xiaofeng Tang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd, Changsha, PR China
| | - Xinyue Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Liping Wang
- Department of Research & Development, Henan Jianda Bio Sci. & Tech. Co., Ltd, Zhengzhou, PR China
| | - Jianke Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
43
|
Impact of the Sensory and Sympathetic Nervous System on Fracture Healing in Ovariectomized Mice. Int J Mol Sci 2020; 21:ijms21020405. [PMID: 31936403 PMCID: PMC7013559 DOI: 10.3390/ijms21020405] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
The peripheral nervous system modulates bone repair under physiological and pathophysiological conditions. Previously, we reported an essential role for sensory neuropeptide substance P (SP) and sympathetic nerve fibers (SNF) for proper fracture healing and bone structure in a murine tibial fracture model. A similar distortion of bone microarchitecture has been described for mice lacking the sensory neuropeptide α-calcitonin gene-related peptide (α-CGRP). Here, we hypothesize that loss of SP, α-CGRP, and SNF modulates inflammatory and pain-related processes and also affects bone regeneration during fracture healing under postmenopausal conditions. Intramedullary fixed femoral fractures were set to 28 days after bilateral ovariectomy (OVX) in female wild type (WT), SP-, α-CGRP-deficient, and sympathectomized (SYX) mice. Locomotion, paw withdrawal threshold, fracture callus maturation and numbers of TRAP-, CD4-, CD8-, F4/80-, iNos-, and Arg1-positive cells within the callus were analyzed. Nightly locomotion was reduced in unfractured SP-deficient and SYX mice after fracture. Resistance to pressure was increased for the fractured leg in SP-deficient mice during the later stages of fracture healing, but was decreased in α-CGRP-deficient mice. Hypertrophic cartilage area was increased nine days after fracture in SP-deficient mice. Bony callus maturation was delayed in SYX mice during the later healing stages. In addition, the number of CD 4-positive cells was reduced after five days and the number of CD 8-positive cells was additionally reduced after 21 days in SYX mice. The number of Arg1-positive M2 macrophages was higher in α-CGRP-deficient mice five days after fracture. The alkaline phosphatase level was increased in SYX mice 16 days after fracture. Absence of α-CGRP appears to promote M2 macrophage polarization and reduces the pain threshold, but has no effect on callus tissue maturation. Absence of SP reduces locomotion, increases the pain-threshold, and accelerates hypertrophic callus tissue remodeling. Destruction of SNF reduces locomotion after fracture and influences bony callus tissue remodeling during the later stages of fracture repair, whereas pain-related processes are not affected.
Collapse
|
44
|
Abstract
Advances in academic and clinical studies during the last several years have resulted in practical outcomes in adoptive immune therapy of cancer. Immune cells can be programmed with molecular modules that increase their therapeutic potency and specificity. It has become obvious that successful immunotherapy must take into account the full complexity of the immune system and, when possible, include the use of multifactor cell reprogramming that allows fast adjustment during the treatment. Today, practically all immune cells can be stably or transiently reprogrammed against cancer. Here, we review works related to T cell reprogramming, as the most developed field in immunotherapy. We discuss factors that determine the specific roles of αβ and γδ T cells in the immune system and the structure and function of T cell receptors in relation to other structures involved in T cell target recognition and immune response. We also discuss the aspects of T cell engineering, specifically the construction of synthetic T cell receptors (synTCRs) and chimeric antigen receptors (CARs) and the use of engineered T cells in integrative multifactor therapy of cancer.
Collapse
Affiliation(s)
- Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
45
|
Ladinsky MS, Khamaikawin W, Jung Y, Lin S, Lam J, An DS, Bjorkman PJ, Kieffer C. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. eLife 2019; 8:46916. [PMID: 31657719 PMCID: PMC6839903 DOI: 10.7554/elife.46916] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Immune progenitor cells differentiate in bone marrow (BM) and then migrate to tissues. HIV-1 infects multiple BM cell types, but virus dissemination within BM has been poorly understood. We used light microscopy and electron tomography to elucidate mechanisms of HIV-1 dissemination within BM of HIV-1–infected BM/liver/thymus (BLT) mice. Tissue clearing combined with confocal and light sheet fluorescence microscopy revealed distinct populations of HIV-1 p24-producing cells in BM early after infection, and quantification of these populations identified macrophages as the principal subset of virus-producing cells in BM over time. Electron tomography demonstrated three modes of HIV-1 dissemination in BM: (i) semi-synchronous budding from T-cell and macrophage membranes, (ii) mature virus association with virus-producing T-cell uropods contacting putative target cells, and (iii) macrophages engulfing HIV-1–producing T-cells and producing virus within enclosed intracellular compartments that fused to invaginations with access to the extracellular space. These results illustrate mechanisms by which the specialized environment of the BM can promote virus spread locally and to distant lymphoid tissues.
Collapse
Affiliation(s)
- Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Wannisa Khamaikawin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Yujin Jung
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Samantha Lin
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Jennifer Lam
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Dong Sung An
- School of Nursing, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, United States
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Collin Kieffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
46
|
Tolstykh EI, Degteva MO, Vozilova AV, Akleyev AV. Interpretation of FISH Results in the Case of Nonuniform Internal Radiation Exposure of Human Body with the Use of Model Approach. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Ort MJ, Geissler S, Rakow A, Schoon J. The Allergic Bone Marrow? The Immuno-Capacity of the Human Bone Marrow in Context of Metal-Associated Hypersensitivity Reactions. Front Immunol 2019; 10:2232. [PMID: 31620137 PMCID: PMC6759684 DOI: 10.3389/fimmu.2019.02232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
Arthroplasty ranks among the greatest achievements of surgical medicine, with total hip replacement termed “the operation of the century.” Despite its wide success, arthroplasty bears risks, such as local reactions to implant derived wear and corrosion products. Prevalence of allergies across Western society increases and along the number of reported hypersensitivity reactions to orthopedic implant materials. In this context the main focus is on delayed hypersensitivity (DTH). This mechanism is mainly attributed to T cells and an overreaction of the adaptive immune system. Arthroplasty implant materials are in direct contact with bone marrow (BM), which is discussed as a secondary lymphoid organ. However, the mechanisms of sensitization toward implant wear remain elusive. Nickel and cobalt ions can form haptens with native peptides to activate immune cell receptors and are therefore common T helper allergens in cutaneous DTH. The rising prevalence of metal-related allergy in the general population and evidence for the immune-modulating function of BM allow for the assumption hypersensitivity reactions could occur in peri-implant BM. There is evidence that pro-inflammatory factors released during DTH reactions enhance osteoclast activity and inhibit osteoblast function, an imbalance characteristic for osteolysis. Even though some mechanisms are understood, hypersensitivity has remained a diagnosis of exclusion. This review aims to summarize current views on the pathomechanism of DTH in arthroplasty with emphasis on BM and discusses recent advances and future directions for basic research and clinical diagnostics.
Collapse
Affiliation(s)
- Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anastasia Rakow
- Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janosch Schoon
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
48
|
Fontana G, Martin HL, Lee JS, Schill K, Hematti P, Murphy WL. Mineral-Coated Microparticles Enhance mRNA-Based Transfection of Human Bone Marrow Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:455-464. [PMID: 31655263 PMCID: PMC6831872 DOI: 10.1016/j.omtn.2019.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
The regenerative potential of bone marrow cells could be harnessed for tissue engineering applications. Bone marrow can be easily collected from patients, providing a valuable autologous source of therapeutic cells. However, years of delivery of bone marrow cells have highlighted the need for their genetic manipulation to overcome heterogeneity and to confer specificity to the regenerative process. In this study, we optimized the use of condensed mRNA as a non-viral alternative. As a proof of concept, we used mRNA encoding for reporter proteins such as EGFP or Firefly luciferase, which was condensed by complexing agents and delivered to human bone marrow cells using mineral-coated microparticles. We demonstrated that human bone marrow cells could be transfected with complexed mRNA, and that this approach was more efficient than the delivery of complexed plasmid DNA. In addition, human bone marrow cells were vulnerable to the toxicity of mRNA complexing agents, but these deleterious effects were mitigated by using mineral-coated microparticles as a carrier of complexed mRNA. Microparticle-mediated delivery of complexed mRNA also enabled higher cell metabolic activity and higher transfection in multiple in vitro culture conditions, including suspension culture and three-dimensional culture.
Collapse
Affiliation(s)
- Gianluca Fontana
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Jae Sung Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Kristen Schill
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Peiman Hematti
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Material Sciences and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
49
|
Islet Allotransplantation in the Bone Marrow of Patients With Type 1 Diabetes: A Pilot Randomized Trial. Transplantation 2019; 103:839-851. [PMID: 30130323 DOI: 10.1097/tp.0000000000002416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Results in murine and nonhuman primate suggested that the bone marrow (BM) might be an alternative site for pancreatic islet transplantation. METHODS We report the results of 2 clinical studies in patients with type 1 diabetes receiving an intra-BM allogeneic islet transplantation: a feasibility study in patients with hepatic contraindications for liver islet allotransplantation receiving a single intra-BM islet infusion (n = 4) and a pilot randomized trial (1:1 allocation using blocks of size 6) in which patients were randomized to receive islets into either the liver (n = 6) or BM (n = 3) to evaluate islet transplant function and survival. RESULTS We observed no adverse events related to the intrabone injection procedure or the presence of islets in the BM. None of the recipient of an intra-BM allogeneic islet transplantation had a primary nonfunction, as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples collected during follow-up. All patients receiving islets in the BM except 1 lost islet function during the first 4 months after infusion (2 with an early graft loss). Based on biopsies and immunomonitoring, we concluded that the islet loss was primarily caused by the recurrence of autoimmunity. CONCLUSIONS Bone marrow is not a suitable alternative site for pancreatic islet allotransplantation in patients with type 1 diabetes.
Collapse
|
50
|
Labarthe L, Henriquez S, Lambotte O, Di Santo JP, Le Grand R, Pflumio F, Arcangeli ML, Legrand N, Bourgeois C. Frontline Science: Exhaustion and senescence marker profiles on human T cells in BRGSF-A2 humanized mice resemble those in human samples. J Leukoc Biol 2019; 107:27-42. [PMID: 31378988 DOI: 10.1002/jlb.5hi1018-410rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
This work sought to confirm the human-like expression of exhaustion and senescence markers in a mouse model with a humanized immune system (HIS): the Balb/c Rag2KO IL2rgcKO SirpαNOD Flk2KO HLA-A2HHD (BRGSF-A2) mouse reconstituted with human CD34+ cord blood cells. With regard to senescence markers, the percentage of CD57+ T cells was higher in the bone marrow (BM) than in the spleen or blood. The same was true for KLRG1+ hCD8+ T cells. With regard to exhaustion markers, the percentage of programmed death 1 (PD-1+ ) T cells was higher in the BM than in the spleen or blood; the same was true for TIGIT+ hCD4+ cells. These tissue-specific differences were related to both higher proportions of memory T cells in BM and intrinsic differences in expression within the memory fraction. In blood samples from HIS mice and healthy human donors (HDs), we found that the percentage of KLRG1+ cells among hCD8+ T cells was lower in HIS compared to HDs. The opposite was true for CD4+ T cells. Unexpectedly, a high frequency of KLRG1+ cells was observed among naive T cells in HIS mice. CD57 expression on T cells was similar in blood samples from HIS mice and HDs. Likewise, PD-1 expression was similar in the two systems, although a relatively low proportion of HIS hCD4+ T cells expressed TIGIT. The BRGSF-A2 HIS mouse's exhaustion and senescence profile was tissue specific and relatively human like; hence, this mouse might be a valuable tool for determining the preclinical efficacy of immunotherapies.
Collapse
Affiliation(s)
- Laura Labarthe
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France.,genOway Paris, F-92265, Fontenay-aux-Roses, France
| | - Soledad Henriquez
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France
| | - Olivier Lambotte
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, F-94276, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, F-75015, Paris, France.,INSERM U1223, F-75015, Paris, France
| | - Roger Le Grand
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France
| | - Françoise Pflumio
- IRCM, CEA-Université Paris 7-Université Paris Sud 11, INSERM U1274, Paris, France
| | | | | | - Christine Bourgeois
- IDMIT Department, CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IBFJ, F-92265, Paris, France
| |
Collapse
|