1
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Vervaeke A, Lamkanfi M. MAP Kinase Signaling at the Crossroads of Inflammasome Activation. Immunol Rev 2025; 329:e13436. [PMID: 39754394 DOI: 10.1111/imr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation. Furthermore, we discuss novel insights into MAPK signaling in human NLRP1 inflammasome activation, focusing on the MAP3K member ZAKα as a key kinase linking ribosomal stress to inflammasome activation. Lastly, we review recent work elucidating how Bacillus anthracis lethal toxin (LeTx) manipulates host MAPK signaling to induce macrophage apoptosis as an immune evasion strategy, and the counteraction of this effect through genotype-specific Nlrp1b inflammasome activation in certain rodent strains.
Collapse
Affiliation(s)
- Alex Vervaeke
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Akash S, Shanto SKHI, Islam MR, Bayil I, Afolabi SO, Guendouzi A, Abdellattif MH, Zaki MEA. Discovery of novel MLK4 inhibitors against colorectal cancer through computational approaches. Comput Biol Med 2024; 182:109136. [PMID: 39298888 DOI: 10.1016/j.compbiomed.2024.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
Colorectal cancer (CRC) is a significant health issue globally, affecting approximately 10 % of the world's population. The prevalence of CRC highlights the need for effective treatments and prevention strategies. The current therapeutic option, such as chemotherapy, has significant side effects. Thus, this study investigated the anticancer properties of Sanguinarine derivatives, an alkaloid found in traditional herbs via chemoinformatic approaches. Six Sanguinarine derivatives were discovered through virtual screening and molecular docking to determine their binding affinities against the mixed lineage kinase (MLK4) protein which is responsible for CRC. All the compounds were found to be more effective than standard drug used for colorectal cancer treatment, with Sanguinarine derivative 11 showing the highest affinity. The stability of the drug was confirmed through molecular dynamics simulations at 500 ns. This suggests that compound 11 has a higher chance of replacing 5-Fluorouracil, which is currently a widely used chemotherapy drug. Before molecular dynamics simulations, the pharmacokinetic and chemical properties of Sanguinarine derivatives were determined using pkCSM server and DFT method, respectively. The results support that compound 11 is a good drug candidate, as evidenced by Lipinski's Rule of Five. Therefore, compound 11 is recommended for further analysis via in vivo and in vitro studies to confirm its efficacy and safety.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - S K Hasibul Islam Shanto
- Department of Pharmacy, Faculty of Health Science, Northern University Bangladesh, Ashkona, Dhaka, 1230, Bangladesh.
| | - Md Rezaul Islam
- Department of Pharmacy, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Imren Bayil
- Department of Bioinformatics and Computational Biology, Gaziantep University, Turkey.
| | | | - Abdelkrim Guendouzi
- Laboratory of Chemistry: Synthesis, Properties and Applications (LCSPA), University of Saïda, Algeria.
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, Saudi Arabia.
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Huang K, He Y, Wan H, Ban XX, Chen XY, Hu XM, Wan XX, Lu R, Zhang Q, Xiong K. Bibliometric and visualized analysis on global trends and hotspots of TAK1 in regulated cell death: 1999 to 2024. Front Immunol 2024; 15:1437570. [PMID: 39474417 PMCID: PMC11518718 DOI: 10.3389/fimmu.2024.1437570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/02/2024] [Indexed: 03/07/2025] Open
Abstract
BACKGROUND Regulated cell death (RCD) is a genetically controlled form of cell death that plays an important role in organogenesis, tissue remodeling, and pathogenesis of cancers. Transforming growth factor-beta-activation kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to internal and external stimuli and participate in inflammatory responses through multiple signaling pathways and cellular processes. In the last two decades, the regulatory roles of TAK1 at the crossroads of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis were revealed by 801 articles retrieved from the Web of Science Core Collection database. To analyze global research trends and hotspots concerning the role of TAK1 in RCD, the bibliometric and visualized analysis were applied in the current study. METHODS The data for this bibliometrics study were retrieved from the Web of Science Core Collection database. The search formula was (TS=(Apoptosis) OR TS=(pyroptosis) OR TS=(Necroptosis) OR TS=(PANoptosis) OR TS=(Autophagy) OR TS=(Ferroptosis) OR TS=(cuproptosis)) AND ((TS=(TAK1)) OR TS=(MAP3K7)). The co-occurrence and co-cited analysis on basic bibliometric parameters were conducted by VOSviewer. The dual-map overlay of journals, citation bursts, keyword timelines, and keyword bursts were analyzed by CiteSpace. RESULTS A total of 801 articles from 46 countries have been included in the analysis. The number of publications demonstrates a consistent increase from 1999 to 2024. The primary research institutions driving this field are Osaka University Notably, the Journal of Biological Chemistry stands out as the most popular journal in this domain. These publications collectively involve contributions from 4663 authors, with Jun Tsuji emerging as a prolific author. Jun Tsuji also gains the highest co-citation frequency. Emerging research hotspots are encapsulated by keywords, including apoptosis, NF-κB, inflammation, autophagy, and TNFα. CONCLUSION This is the first bibliometric and visualized study to analyze the global trends and hotspots of TAK1 in RCD. Based on the analysis of 801 articles, the results provide a retrospective and comprehensive visualized view of the research hotspots and frontiers of TAK1 at the crossroads of multiple RCD signaling pathways and propose ideas for guiding their future investigations in molecular mechanisms and therapeutic strategies in this field.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Changsha Aier Eye Hospital, Changsha, China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiao-Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xi-Min Hu
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Lu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
5
|
Chai N, Stachon T, Berger T, Li Z, Amini M, Suiwal S, Seitz B, Langenbucher A, Szentmáry N. Rose Bengal Photodynamic Therapy (RB-PDT) Modulates the Inflammatory Response in LPS-Stimulated Human Corneal Fibroblasts By Influencing NF-κB and p38 MAPK Signaling Pathways. Curr Eye Res 2024; 49:803-814. [PMID: 38646925 DOI: 10.1080/02713683.2024.2342600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
PURPOSE To investigate the effect of rose bengal photodynamic therapy on lipopolysaccharide-induced inflammation in human corneal fibroblasts. Furthermore, to analyze potential involvement of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways in this process. METHODS Human corneal fibroblast cultures underwent 0-2.0 µg/mL lipopolysaccharide treatment, and 24 h later rose bengal photodynamic therapy (0.001% RB, 565 nm wavelength illumination, 0.17 J/cm2 fluence). Interleukin-6, interleukin-8, intercellular adhesion molecule-1, interferon regulatory factor-3, interferon α2, and interferon β1 gene expressions were determined by quantitative PCR. Interleukin-6, interleukin-8, and C-C motif chemokine ligand-4 concentrations in the cell culture supernatant were measured by enzyme-linked immunosorbent assays and intercellular adhesion molecule-1 protein level in human corneal fibroblasts by western blot. In addition, the nuclear factor kappa B and mitogen-activated protein kinase signaling pathways were investigated by quantitative PCR and phosphorylation of nuclear factor kappa B p65 and p38 mitogen-activated protein kinase by western blot. RESULTS Rose bengal photodynamic therapy in 2.0 µg/mL lipopolysaccharide-stimulated human corneal fibroblasts triggered interleukin-6 and interleukin-8 mRNA (p < .0001) and interleukin-6 protein increase (p < .0001), and downregulated intercellular adhesion molecule-1 expression (p < .001). C-C motif chemokine ligand-4, interferon regulatory factor-3, interferon α2, and interferon β1 expressions remained unchanged (p ≥ .2). Rose bengal photodynamic therapy increased IκB kinase subunit beta, nuclear factor kappa B p65, extracellular signal-regulated kinases-2, c-Jun amino terminal kinase, and p38 transcription (p ≤ .01), and triggered nuclear factor kappa B p65 and p38 mitogen-activated protein kinase phosphorylation (p ≤ .04) in lipopolysaccharide treated human corneal fibroblasts. CONCLUSION Rose bengal photodynamic therapy of lipopolysaccharide-stimulated human corneal fibroblasts can modify the inflammatory response by inducing interleukin-6 and interleukin-8 expression, and decreasing intercellular adhesion molecule-1 production. C-C motif chemokine ligand-4, interferon regulatory factor-3, and interferon α and β expressions are not affected by rose bengal photodynamic therapy in these cells. The underlying mechanisms may be associated with nuclear factor kappa B and p38 mitogen-activated protein kinase pathway activation.
Collapse
Affiliation(s)
- Ning Chai
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Germany
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Germany
| | - Tim Berger
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Germany
| | - Zhen Li
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Germany
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Germany
| | | | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Homburg, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Beghelli D, Giusti L, Zallocco L, Ronci M, Cappelli A, Pontifex MG, Muller M, Damiani C, Cirilli I, Hrelia S, Vauzour D, Vittadini E, Favia G, Angeloni C. Dietary fiber supplementation increases Drosophila melanogaster lifespan and gut microbiota diversity. Food Funct 2024; 15:7468-7477. [PMID: 38912918 DOI: 10.1039/d4fo00879k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dietary fiber has been shown to have multiple health benefits, including a positive effect on longevity and the gut microbiota. In the present study, Drosophila melanogaster has been chosen as an in vivo model organism to study the health effects of dietary fiber supplementation (DFS). DFS extended the mean half-life of male and female flies, but the absolute lifespan only increased in females. To reveal the underlying mechanisms, we examined the effect of DFS on gut microbiota diversity and abundance, local gut immunity, and the brain proteome. A significant difference in the gut microbial community was observed between groups with and without fiber supplementation, which reduced the gut pathogenic bacterial load. We also observed an upregulated expression of dual oxidase and a modulated expression of Attacin and Diptericin genes in the gut of older flies, possibly delaying the gut dysbiosis connected to the age-related gut immune dysfunction. Brain proteome analysis showed that DFS led to the modulation of metabolic processes connected to mitochondrial biogenesis, the RhoV-GTPase cycle, organelle biogenesis and maintenance, membrane trafficking and vesicle-mediated transport, possibly orchestrated through a gut-brain axis interaction. Taken together, our study shows that DFS can prolong the half-life and lifespan of flies, possibly by promoting a healthier gut environment and delaying the physiological dysbiosis that characterizes the ageing process. However, the RhoV-GTPase cycle at the brain level may deserve more attention in future studies.
Collapse
Affiliation(s)
- Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | | | - Maurizio Ronci
- Department of Pharmacy, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Matthew G Pontifex
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Michael Muller
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Elena Vittadini
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy.
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, Corso d'Augusto 237, 47921 Rimini, RN, Italy
| |
Collapse
|
7
|
Junaid M, Lu H, Li Y, Liu Y, Din AU, Qi Z, Xiong Y, Yan J. Novel Synergistic Probiotic Intervention: Transcriptomic and Metabolomic Analysis Reveals Ameliorative Effects on Immunity, Gut Barrier, and Metabolism of Mice during Salmonella typhimurium Infection. Genes (Basel) 2024; 15:435. [PMID: 38674370 PMCID: PMC11050207 DOI: 10.3390/genes15040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.
Collapse
Affiliation(s)
- Muhammad Junaid
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Hongyu Lu
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yixiang Li
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yu Liu
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Ahmad Ud Din
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| | - Yi Xiong
- Guangxi Center for Animals Disease Control and Prevention, Nanning 530004, China
| | - Jianhua Yan
- Medical College, Guangxi University, Nanning 530004, China; (M.J.); (H.L.); (Y.L.); (Y.L.); (Z.Q.)
| |
Collapse
|
8
|
Nandi I, Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int J Mol Sci 2023; 24:11905. [PMID: 37569283 PMCID: PMC10419152 DOI: 10.3390/ijms241511905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Diverse extracellular and intracellular cues activate mammalian mitogen-activated protein kinases (MAPKs). Canonically, the activation starts at cell surface receptors and continues via intracellular MAPK components, acting in the host cell nucleus as activators of transcriptional programs to regulate various cellular activities, including proinflammatory responses against bacterial pathogens. For instance, binding host pattern recognition receptors (PRRs) on the surface of intestinal epithelial cells to bacterial pathogen external components trigger the MAPK/NF-κB signaling cascade, eliciting cytokine production. This results in an innate immune response that can eliminate the bacterial pathogen. However, enteric bacterial pathogens evolved sophisticated mechanisms that interfere with such a response by delivering virulent proteins, termed effectors, and toxins into the host cells. These proteins act in numerous ways to inactivate or activate critical components of the MAPK signaling cascades and innate immunity. The consequence of such activities could lead to successful bacterial colonization, dissemination, and pathogenicity. This article will review enteric bacterial pathogens' strategies to modulate MAPKs and host responses. It will also discuss findings attempting to develop anti-microbial treatments by targeting MAPKs.
Collapse
Affiliation(s)
| | - Benjamin Aroeti
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190410, Israel;
| |
Collapse
|
9
|
Cheung AHK, Wong KY, Liu X, Ji F, Hui CHL, Zhang Y, Kwan JSH, Chen B, Dong Y, Lung RWM, Yu J, Lo KW, Wong CC, Kang W, To KF. MLK4 promotes glucose metabolism in lung adenocarcinoma through CREB-mediated activation of phosphoenolpyruvate carboxykinase and is regulated by KLF5. Oncogenesis 2023; 12:35. [PMID: 37407566 DOI: 10.1038/s41389-023-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/15/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023] Open
Abstract
MLK4, a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, has been implicated in cancer progression. However, its role in lung adenocarcinoma has not been characterized. Here, we showed that MLK4 was overexpressed in a significant subset of lung adenocarcinoma, associated with a worse prognosis, and exerted an oncogenic function in vitro and in vivo. Bioinformatics analyses of clinical datasets identified phosphoenolpyruvate carboxykinase 1 (PCK1) as a novel target of MLK4. We validated that MLK4 regulated PCK1 expression at transcriptional level, by phosphorylating the transcription factor CREB, which in turn mediated PCK1 expression. We further demonstrated that PCK1 is an oncogenic factor in lung adenocarcinoma. Given the importance of PCK1 in the regulation of cellular metabolism, we next deciphered the metabolic effects of MLK4. Metabolic and mass spectrometry analyses showed that MLK4 knockdown led to significant reduction of glycolysis and decreased levels of glycolytic pathway metabolites including phosphoenolpyruvate and lactate. Finally, the promoter analysis of MLK4 unravelled a binding site of transcription factor KLF5, which in turn, positively regulated MLK4 expression in lung adenocarcinoma. In summary, we have revealed a KLF5-MLK4-PCK1 signalling pathway involved in lung tumorigenesis and established an unusual link between MAP3K signalling and cancer metabolism.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kit-Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fenfen Ji
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yihan Zhang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yujuan Dong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
10
|
Qu F, Zeng X, Liu Z, Guo M, Zhang X, Cao S, Zhou Y, He Z, Tang J, Mao Z, Yang Y, Zhou Z, Liu Z. Functional characterization of MEKK3 in the intestinal immune response to bacterial challenges in grass carp (Ctenopharyngodon idella). Front Immunol 2022; 13:981995. [PMID: 35990669 PMCID: PMC9388831 DOI: 10.3389/fimmu.2022.981995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinase 3 (MEKK3) is an evolutionarily conserved Ser/Thr protein kinase of the MEKK family that is essential for the host immune response to pathogen challenges in mammals. However, the immune function of MEKK3s in lower vertebrate species, especially in bony fish, remains largely unknown. In this study, a fish MEKK3 (designated CiMEKK3) gene was cloned and identified from grass carp (Ctenopharyngodon idella). The present CiMEKK3 cDNA encoded a 620 amino acid polypeptide containing a conserved S-TKc domain and a typical PB1 domain. Several potential immune-related transcription factor-binding sites, including activating protein 1 (AP-1), nuclear factor kappa B (NF-κB) and signal transducer and activator of downstream transcription 3 (STAT3), were observed in the 5’ upstream DNA sequence of CiMEKK3. A phylogenetic tree showed that CiMEKK3 exhibits a close evolutionary relationship with MEKK3s from Cyprinus carpio and Carassius auratus. Quantitative real-time PCR analysis revealed that CiMEKK3 transcripts were widely distributed in all selected tissues of healthy grass carp, with a relatively high levels observed in the gill, head kidney and intestine. Upon in vitro challenge with bacterial pathogens (Aeromonas hydrophila and Aeromonas veronii) and pathogen-associated molecular patterns (PAMPs) (lipopolysaccharide (LPS), peptidoglycan (PGN), L-Ala-γ-D-Glu-mDAP (Tri-DAP) and muramyl dipeptide (MDP)), the expression levels of CiMEKK3 in the intestinal cells of grass carp were shown to be significantly upregulated in a time-dependent manner. In vivo injection experiments revealed that CiMEKK3 transcripts were significantly induced by MDP challenge in the intestine; however, these effects could be inhibited by the nutritional dipeptides carnosine and Ala-Gln. Moreover, subcellular localization analysis and luciferase reporter assays indicated that CiMEKK3 could act as a cytoplasmic signal-transducing activator involved in the regulation of NF-κB and MAPK/AP-1 signaling cascades in HEK293T cells. Taken together, these findings strongly suggest that CiMEKK3 plays vital roles in the intestinal immune response to bacterial challenges, which will aid in understanding the pathogenesis of inflammatory bowel disease in bony fish.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xuan Zeng
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhenzhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Meixing Guo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Xia Zhang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhimin He
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Zhuangwen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, China
- *Correspondence: Zhen Liu,
| |
Collapse
|
11
|
Huang ZX, Qiu ZE, Chen L, Hou XC, Zhu YX, Zhou WL, Zhang YL. Cellular mechanism underlying the facilitation of contractile response induced by IL-25 in mouse tracheal smooth muscle. Am J Physiol Lung Cell Mol Physiol 2022; 323:L27-L36. [PMID: 35537103 DOI: 10.1152/ajplung.00468.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Asthma is a common heterogeneous respiratory disease characterized by airway inflammation and airway hyperresponsiveness (AHR) which is associated with abnormality in smooth muscle contractility. The epithelial cell-derived cytokine IL-25 is implicated in type 2 immune pathology including asthma, whereas the underlying mechanisms have not been fully elucidated. This study aims to investigate the effects of IL-25 on mouse tracheal smooth muscle contractility and elucidate the cellular mechanisms. Incubation with IL-25 augmented the contraction of mouse tracheal smooth muscles, which could be suppressed by the L-type voltage-dependent Ca2+ channel (L-VDCC) blocker nifedipine. Furthermore, IL-25 enhanced the cytosolic Ca2+ signals and triggered up-regulation of α1C L-VDCC (CaV1.2) in primary cultured mouse tracheal smooth muscle cells. Knocking down IL-17RA/IL-17RB receptors or inhibiting the transforming growth factor-β-activated kinase 1 (TAK1)-tumor progression locus 2 (TPL2)-MAPK kinase 1/2 (MEK1/2)-ERK1/2-activating protein-1 (AP-1) signaling pathways suppressed the IL-25-elicited up-regulation of CaV1.2 and hyperreactivity in tracheal smooth muscles. Moreover, inhibition of TPL2, ERK1/2 or L-VDCC alleviated the AHR symptom induced by IL-25 in a murine model. This study revealed that IL-25 potentiated the contraction of tracheal smooth muscle and evoked AHR via activation of TPL2-ERK1/2-CaV1.2 signaling, providing novel targets for the treatment of asthma with a high-IL-25 phenotype.
Collapse
Affiliation(s)
- Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
13
|
Li D, Kong L, Cui Z, Zhao F, Deng Y, Tan A, Jiang L. MEKK3 in hybrid snakehead (Channa maculate ♀ ×Channa argus ♂): Molecular characterization and immune response to infection with Nocardia seriolae and Aeromonas schubertii. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110643. [PMID: 34186154 DOI: 10.1016/j.cbpb.2021.110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) is a serine/threonine protein kinase that acts as a key regulator and is widely involved in various innate and acquired immune signaling pathways. In this study, we first cloned the complete open reading frame (ORF) of the MEKK3 gene (named CcMEKK3) in a hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The full-length ORF of CcMEKK3 is 1851 bp, and encodes a putative protein of 616 amino acids containing a serine/threonine kinase catalytic (S-TKc) domain and a Phox and Bem1p (PB1) domain. A sequence alignment and phylogenetic tree analysis showed that CcMEKK3 is highly conserved relative to the MEKK3 proteins of other teleost species. CcMEKK3 was constitutively expressed in all the healthy hybrid snakehead tissues tested, with greatest expression in the immune tissues, such as the head kidney and spleen. The expression of CcMEKK3 was usually upregulated in the head kidney, spleen, and liver at different time points after infection with Nocardia seriolae or Aeromonas schubertii. Similarly, the dynamic expression levels of CcMEKK3 in head kidney leukocytes after stimulation revealed that CcMEKK3 was induced by LTA, LPS, and poly(I:C). In the subcellular localization analysis, CcMEKK3 was evenly distributed in the cytoplasm of HEK293T cells, and its overexpression significantly promoted the activities of NF-κB and AP-1. These results suggest that CcMEKK3 is involved in the immune defense against these two pathogens, and plays a crucial role in activating the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Dongqi Li
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Lulu Kong
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Zhengwei Cui
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fei Zhao
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China.
| | - Yuting Deng
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Aiping Tan
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| | - Lan Jiang
- Key Laboratory of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, China
| |
Collapse
|
14
|
Memon FU, Yang Y, Leghari IH, Lv F, Soliman AM, Zhang W, Si H. Transcriptome Analysis Revealed Ameliorative Effects of Bacillus Based Probiotic on Immunity, Gut Barrier System, and Metabolism of Chicken under an Experimentally Induced Eimeria tenella Infection. Genes (Basel) 2021; 12:genes12040536. [PMID: 33917156 PMCID: PMC8067821 DOI: 10.3390/genes12040536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
In this study, we performed transcriptome analysis in the cecum tissues of negative control untreated non-challenged (NC), positive control untreated challenged (PC), and Bacillus subtilis (B. subtilis) fed challenged chickens (BS + ET) in order to examine the underlying potential therapeutic mechanisms of Bacillus based probiotic feeding under an experimental Eimeria tenella (E. tenella) infection. Our results for clinical parameters showed that birds in probiotic diet decreased the bloody diarrhea scores, oocyst shedding, and lesion scores compared to positive control birds. RNA-sequencing (RNA-seq) analysis revealed that in total, 2509 up-regulated and 2465 down-regulated differentially expressed genes (DEGs) were detected in the PC group versus NC group comparison. In the comparison of BS + ET group versus PC group, a total of 784 up-regulated and 493 down-regulated DEGs were found. Among them, several DEGs encoding proteins involved in immunity, gut barrier integrity, homeostasis, and metabolism were up-regulated by the treatment of probiotic. Functional analysis of DEGs also revealed that some gene ontology (GO) terms related with immunity, metabolism and cellular development were significantly affected by the exposure of probiotic. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the DEGs in the cecum of B. subtilis-fed challenged group were mainly participated in the pathways related with immunity and gut barrier integrity, included mitogen-activated protein kinase (MAPK) signaling pathway, toll-like receptor (TLR) signaling pathway, extracellular matrix (ECM)–receptor interaction, tight junction, and so on. Taken together, these results suggest that Bacillus based probiotic modulate the immunity, maintain gut homeostasis as well as barrier system and improve chicken metabolism during E. tenella infection.
Collapse
Affiliation(s)
- Fareed Uddin Memon
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan;
| | - Yunqiao Yang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Imdad Hussain Leghari
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tando Jam 70060, Pakistan;
| | - Feifei Lv
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Ahmed M. Soliman
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Agricultural Research Center, Biotechnology Department, Animal Health Research Institute, Giza 12618, Egypt
| | - Weiyu Zhang
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
| | - Hongbin Si
- College of Animal Sciences and Technology, Guangxi University, Nanning 530004, China; (F.U.M.); (Y.Y.); (F.L.); (A.M.S.); (W.Z.)
- Correspondence:
| |
Collapse
|
15
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
16
|
Liang H, Luo Z, Miao Z, Shen X, Li M, Zhang X, Chen J, Ze X, Chen Q, He F. Lactobacilli and bifidobacteria derived from infant intestines may activate macrophages and lead to different IL-10 secretion. Biosci Biotechnol Biochem 2020; 84:2558-2568. [PMID: 32862788 DOI: 10.1080/09168451.2020.1811948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, three strains of lactobacilli and bifidobacteria originally isolated from healthy infants, were tested for their abilities to activate RAW264.7 cells. Gene expression and cytokine production of interleukin-10 (IL-10) of RAW264.7 cells were evaluated. The activation of extracellular regulated protein kinases 1/2 (ERK1/2), p38, and nuclear factor-κB (NK-κB) were also assessed. These results suggest lactobacilli and bifidobacteria in infants may promote production of IL-10 in macrophages, conferring a protective effect in hosts suffering from inflammation. Dimerization of TLR2 and MyD88 and subsequent phosphorylation of the key downstream signaling molecules, such as MAPKs and NK-κB, may be one of the key underlying mechanisms of activation of macrophages by these microbes. Bifidobacteria and lactobacilli induced macrophages to secrete IL-10 in a different manner, which may relate to their abilities to activate key signaling pathways mediated by TLR2 and MyD88.
Collapse
Affiliation(s)
- Huijing Liang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Zihao Luo
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Zhonghua Miao
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Xi Shen
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Ming Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Xuguang Zhang
- Nutrition and Health Research Centre, By-Health Co., Ltd , Guangzhou, China
| | - Jiehua Chen
- Nutrition and Health Research Centre, By-Health Co., Ltd , Guangzhou, China
| | - Xiaolei Ze
- Nutrition and Health Research Centre, By-Health Co., Ltd , Guangzhou, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
17
|
Zhao YY, Fu H, Liang XY, Zhang BL, Wei LL, Zhu JX, Chen MW, Zhao YF. Lipopolysaccharide inhibits GPR120 expression in macrophages via Toll-like receptor 4 and p38 MAPK activation. Cell Biol Int 2020; 44:89-97. [PMID: 31322778 DOI: 10.1002/cbin.11204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/05/2019] [Indexed: 01/24/2023]
Abstract
Free fatty acid receptor G protein-coupled receptor 120 (GPR120) is highly expressed in macrophages and was reported to inhibit lipopolysaccharide (LPS)-stimulated cytokine expression. Under inflammation, macrophages exhibit striking functional changes, but changes in GPR120 expression and signaling are not known. In this study, the effects of LPS treatment on macrophage GPR120 expression and activation were investigated. The results showed that LPS inhibited GPR120 expression in mouse macrophage cell line Ana-1 cells. Moreover, LPS treatment inhibited GPR120 expression in mouse alveolar macrophages both in vitro and in vivo. The inhibitory effect of LPS on GPR120 expression was blocked by Toll-like receptor 4 (TLR4) inhibitor TAK242 and p38 mitogen-activated protein kinase inhibitor LY222820, but not by ERK1/2 inhibitor U0126 and c-Jun N-terminal kinase inhibitor SP600125. LPS-induced inhibition of GPR120 expression was not attenuated by GPR120 agonists TUG891 and GW9508. TUG891 inhibited the phagocytosis of alveolar macrophages, and LPS treatment counteracted the effects of TUG891 on phagocytosis. These results indicate that pretreatment with LPS inhibits GPR120 expression and activation in macrophages. It is suggested that LPS-induced inhibition of GPR120 expression is a reaction enhancing the LPS-induced pro-inflammatory response of macrophages.
Collapse
Affiliation(s)
- Yan-Yan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Hui Fu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiang-Yan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Bi-Lin Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Lan-Lan Wei
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Juan-Xia Zhu
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Ming-Wei Chen
- Shaanxi Provincial Research Center for Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, 710021, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| |
Collapse
|
18
|
Liu CY, Wang X, Liu C, Zhang HL. Pharmacological Targeting of Microglial Activation: New Therapeutic Approach. Front Cell Neurosci 2019; 13:514. [PMID: 31803024 PMCID: PMC6877505 DOI: 10.3389/fncel.2019.00514] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mounting evidence suggests that neuroinflammation is not just a consequence but a vital contributor to the development and progression of Parkinson’s disease (PD). Microglia in particular, may contribute to the induction and modulation of inflammation in PD. Upon stimulation, microglia convert into activated phenotypes, which exist along a dynamic continuum and bear different immune properties depending on the disease stage and severity. Activated microglia release various factors involved in neuroinflammation, such as cytokines, chemokines, growth factors, reactive oxygen species (ROS), reactive nitrogen species (RNS), and prostaglandins (PGs). Further, activated microglia interact with other cell types (e.g., neurons, astrocytes and mast cells) and are closely associated with α-synuclein (α-syn) pathophysiology and iron homeostasis disturbance. Taken together, microglial activation and microglia-mediated inflammatory responses play essential roles in the pathogenesis of PD and elucidation of the complexity and imbalance of microglial activation may shed light on novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Cai-Yun Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Liang Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.,Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
19
|
RAF kinases are stabilized and required for dendritic cell differentiation and function. Cell Death Differ 2019; 27:1300-1315. [PMID: 31541179 PMCID: PMC7206131 DOI: 10.1038/s41418-019-0416-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/23/2019] [Accepted: 08/30/2019] [Indexed: 12/05/2022] Open
Abstract
RAF kinases (ARAF, BRAF, and CRAF) are highly conserved enzymes that trigger the RAF-MEK1/2-ERK1/2 (MAPK) pathway upon activation of RAS. Despite enormous clinical interest, relatively little is known on the role of RAFs in mediating immune responses. Here, we investigated the role of RAF kinases and MEK1/2 in dendritic cells (DCs), the central regulators of T cell-mediated antitumor immune responses and the adaptive immune system. We demonstrate that RAF kinases are active and stabilized at their protein levels during DC differentiation. Inhibition of RAF kinases but not MEK1/2 impaired the activation of DCs in both mice and human. As expected, DCs treated with RAF inhibitors show defects in activating T cells. Further, RAF and MEK1/2 kinases are directly required for the activation and proliferation of CD4+ T cells. Our observations suggest that RAF and MEK1/2 have independent roles in regulating DC function that has important implications for administering RAF–MAPK inhibitors in the clinics.
Collapse
|
20
|
Magoro T, Dandekar A, Jennelle LT, Bajaj R, Lipkowitz G, Angelucci AR, Bessong PO, Hahn YS. IL-1β/TNF-α/IL-6 inflammatory cytokines promote STAT1-dependent induction of CH25H in Zika virus-infected human macrophages. J Biol Chem 2019; 294:14591-14602. [PMID: 31375561 DOI: 10.1074/jbc.ra119.007555] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV)3 is an enveloped, single-stranded, positive-sense RNA virus of the Flaviviridae family that has emerged as a public health threat because of its global transmission and link to microcephaly. Currently there is no vaccine for this virus. Conversion of cholesterol to 25-hydroxycholesterol by cholesterol 25-hydroxylase (CH25H) has been shown to have broad antiviral properties. However, the molecular basis of induction of CH25H in humans is not known. Elucidation of signaling and transcriptional events for induction of CH25H expression is critical for designing therapeutic antiviral agents. In this study, we show that CH25H is induced by ZIKV infection or Toll-like receptor stimulation. Interestingly, CH25H is induced by pro-inflammatory cytokines, including IL-1β, tumor necrosis factor α, and IL-6, and this induction depends on the STAT1 transcription factor. Additionally, we observed that cAMP-dependent transcription factor (ATF3) weakly binds to the CH25H promoter, suggesting cooperation with STAT1. However, ZIKV-induced CH25H was independent of type I interferon. These findings provide important information for understanding how the Zika virus induces innate inflammatory responses and promotes the expression of anti-viral CH25H protein.
Collapse
Affiliation(s)
- Tshifhiwa Magoro
- HIV/AIDS and Global Health Research Program, Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa.,Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Aditya Dandekar
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lucas T Jennelle
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Rohan Bajaj
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Gabriel Lipkowitz
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Angelina R Angelucci
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908.,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Pascal O Bessong
- HIV/AIDS and Global Health Research Program, Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908 .,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
21
|
Abstract
Microglia are the most abundant immune cells in the central nervous system (CNS), where they interact with neurons and exhibit a wide array of functions in physiological and pathological conditions. Physiologically, microglia mediate synaptic pruning and remodeling crucial for neural circuits and brain connectivity. In pathological conditions such as neurodegeneration in the Parkinson's disease (PD), microglia are activated, migrated to the injury site, and prone to engulf debris, sense pathology, and secrete possible pro- and anti-inflammatory factors. Microglia mediate responses such as inflammation and phagocytosis associated with neurodegeneration and are pivotal players in exacerbating or relieving disease progression. This chapter provides an overview on microglial function in the neurodegenerative disease-Parkinson's disease (PD). An overview on the pathology of PD will first be given, followed by discussion on receptors and signaling pathways involved in microglia-mediated inflammation and phagocytosis. Mechanism of how microglia contribute to PD by inflammation, phagocytosis of α-Synuclein (α-Syn), and interaction with PD genes will also be discussed.
Collapse
Affiliation(s)
- Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, #B416, L Building, #230 Haike Road, Pudong New District, Shanghai, 201210, China.
| |
Collapse
|
22
|
Qu F, Tang J, Liao J, Chen B, Song P, Luo W, Xiong D, Liu T, Gao Q, Lu S, Liu Z. Mitogen-activated protein kinase kinase 6 is involved in the immune response to bacterial di-/tripeptide challenge in grass carp Ctenopharyngodon idella. FISH & SHELLFISH IMMUNOLOGY 2019; 84:795-801. [PMID: 30393177 DOI: 10.1016/j.fsi.2018.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinase kinase 6 (MKK6) is an essential component of the p38MAPK signaling pathway, which is involved in the modulation of inflammation, cell apoptosis and survival responses in mammals. However, the function of MKK6s in teleosts is still unclear. In this study, a fish MKK6 homolog (CiMKK6) was first identified from the grass carp (Ctenopharyngodon idella), a freshwater fish. CiMKK6 cDNA encodes a putative protein of 357 amino acids that contains conserved structural characteristics of the MKK6 family, including the S_TKc domain, SVAKT motif and DVD site. The deduced CiMKK6 protein exhibits high sequence homology with other reported fish MKK6s and shares the closest relationship with MKK6 from Danio rerio. Quantitative real-time PCR (qRT-PCR) analysis revealed that CiMKK6 mRNA was widely expressed in all tested tissues and stages of embryonic development. Additionally, the transcript levels of CiMKK6 in the intestine were significantly upregulated in response to bacterial muramyl dipeptide (MDP) and L-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) stimulation. Moreover, subcellular localization analysis indicated that CiMKK6 was distributed in both the cytoplasm and the nucleus of HEK293T cells. Finally, overexpression of CiMKK6 significantly enhanced the transcriptional activity of the AP-1 reporter gene in HEK293T cells. Overall, these findings may help better clarify the immune function of teleost MKK6s and provide new insight into the immune defense mechanisms of grass carp.
Collapse
Affiliation(s)
- Fufa Qu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Jianzhou Tang
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Jinting Liao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Bei Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Peng Song
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Wenjie Luo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China
| | - Ding Xiong
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Tianting Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Qianting Gao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Shuangqing Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha University, Changsha, 410022, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
23
|
Sonntag T, Ostojić J, Vaughan JM, Moresco JJ, Yoon YS, Yates JR, Montminy M. Mitogenic Signals Stimulate the CREB Coactivator CRTC3 through PP2A Recruitment. iScience 2018; 11:134-145. [PMID: 30611118 PMCID: PMC6317279 DOI: 10.1016/j.isci.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) stimulates gene expression via the cAMP-regulated transcriptional coactivator (CRTC) family of cAMP response element-binding protein coactivators. In the basal state, CRTCs are phosphorylated by salt-inducible kinases (SIKs) and sequestered in the cytoplasm by 14-3-3 proteins. cAMP signaling inhibits the SIKs, leading to CRTC dephosphorylation and nuclear translocation. Here we show that although all CRTCs are regulated by SIKs, their interactions with Ser/Thr-specific protein phosphatases are distinct. CRTC1 and CRTC2 associate selectively with the calcium-dependent phosphatase calcineurin, whereas CRTC3 interacts with B55 PP2A holoenzymes via a conserved PP2A-binding region (amino acids 380-401). CRTC3-PP2A complex formation was induced by phosphorylation of CRTC3 at S391, facilitating the subsequent activation of CRTC3 by dephosphorylation at 14-3-3 binding sites. As stimulation of mitogenic pathways promoted S391 phosphorylation via the activation of ERKs and CDKs, our results demonstrate how a ubiquitous phosphatase enables cross talk between growth factor and cAMP signaling pathways at the level of a transcriptional coactivator.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jelena Ostojić
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Young-Sil Yoon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Ratajczak-Wrona W, Jablonska E. The Signaling Pathways in Nitric Oxide Production by Neutrophils Exposed to N-nitrosodimethylamine. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180426121503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background:
Polymorphonuclear neutrophils (PMNs) play a crucial role in the innate
immune system’s response to microbial pathogens through the release of reactive nitrogen species,
including Nitric Oxide (NO).
</P><P>
Methods: In neutrophils, NO is produced by the inducible Nitric Oxide Synthase (iNOS), which is
regulated by various signaling pathways and transcription factors. N-nitrosodimethylamine
(NDMA), a potential human carcinogen, affects immune cells. NDMA plays a major part in the
growing incidence of cancers. Thanks to the increasing knowledge on the toxicological role of
NDMA, the environmental factors that condition the exposure to this compound, especially its precursors-
nitrates arouse wide concern.
Results:
In this article, we present a detailed summary of the molecular mechanisms of NDMA’s
effect on the iNOS-dependent NO production in human neutrophils.
Conclusion:
This research contributes to a more complete understanding of the mechanisms that
explain the changes that occur during nonspecific cellular responses to NDMA toxicity.
Collapse
Affiliation(s)
- Wioletta Ratajczak-Wrona
- Department of Immunology Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| | - Ewa Jablonska
- Department of Immunology Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
25
|
Qi S, Feng Z, Li Q, Qi Z, Zhang Y. Inhibition of ROS-mediated activation Src-MAPK/AKT signaling by orientin alleviates H 2O 2-induced apoptosis in PC12 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3973-3984. [PMID: 30510405 PMCID: PMC6248275 DOI: 10.2147/dddt.s178217] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose Reactive oxygen species (ROS) are considered a direct cause of neurodegenerative diseases (NDDs). Drugs developed to target ROS are effective for the treatment of NDDs. Orientin is a pyrone glucoside extracted from Polygonum orientale, and it exhibits many pharmacological activities. In this study, we aimed to determine whether orientin could relieve hydrogen peroxide (H2O2)-induced neuronal apoptosis and to investigate the specific target of orientin. Materials and methods In this study, the neuroprotective effect and its possible mechanisms of orientin in mouse pheochromocytoma cell line (PC12) cells stimulated by H2O2, establishing an oxidative stress model, were investigated. And we further tested the role of ROS in the neuroprotective effects of orientin. Results Orientin (5-100 µg/mL) did not cause toxicity in PC12 cells but significantly decreased H2O2-induced reduction in PC12 cell viability, cell apoptosis rates, and nuclear condensation. It also inhibited the activation of caspase-3 and degradation of poly(ADP-ribose) polymerase (PARP). Under the stimulation of H2O2, MAPKs (ERK, JNK, and p38), AKT, and Src signaling proteins in PC12 cells were activated in a time-dependent manner. The application of inhibitors that were specific for MAPKs, AKT, and Src effectively alleviated H2O2-induced cell apoptosis. In addition, the Src inhibitor decreased the activation of MAPKs and AKT signaling. More importantly, orientin effectively decreased H2O2-induced phosphorylation of MAPKs, AKT, and Src signaling proteins. Finally, we confirmed that orientin effectively inhibited H2O2-induced accumulation of ROS in cells. In addition, ROS inhibitors blocked the Src-MAPKs/AKT signaling pathway-dependent cell apoptosis stimulated by H2O2. Conclusion These results indicate that alleviation of H2O2-induced cell apoptosis by orientin is Src-MAPKs/AKT dependent. Overall, our study confirms that orientin alleviates H2O2-induced cell apoptosis by inhibiting the ROS-mediated activation of Src-MAPKs/AKT signaling.
Collapse
Affiliation(s)
- Shimei Qi
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Zunyong Feng
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Forensic Medicine, Wannan Medical College, Wuhu 241002, People's Republic of China
| | - Qiang Li
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Zhilin Qi
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, People's Republic of China, .,Department of Biochemistry, Wannan Medical College, Wuhu 241002, People's Republic of China,
| |
Collapse
|
26
|
SslE (YghJ), a Cell-Associated and Secreted Lipoprotein of Neonatal Septicemic Escherichia coli, Induces Toll-Like Receptor 2-Dependent Macrophage Activation and Proinflammation through NF-κB and MAP Kinase Signaling. Infect Immun 2018; 86:IAI.00399-18. [PMID: 29891541 DOI: 10.1128/iai.00399-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
SslE (YghJ), a cell surface-associated and secreted lipoprotein, was identified as a potential vaccine candidate for extraintestinal pathogenic Escherichia coli, providing nearly complete protection from sepsis in a mouse model. We earlier found that SslE from neonatal septicemic E. coli could trigger the secretion of various proinflammatory cytokines in murine macrophages, the signaling pathway of which is still obscure. In this study, we showed that SslE specifically binds to Toll-like receptor 2 (TLR2)/TLR1 heterodimers and recruits downstream adaptors MyD88, TIRAP, and TRAF6. In addition, SslE stimulates nuclear translocation of NF-κB and activates different mitogen-activated protein (MAP) kinase signaling cascades specific to the secretion of each cytokine in murine macrophages, which becomes impaired in TLR2 small interfering RNA (siRNA)-transfected cells and in cells blocked with a monoclonal antibody (MAb) against TLR2, suggesting the involvement of TLR2 in NF-κB and MAP kinase activation and subsequent cytokine secretion. Furthermore, our study is the first to show that SslE can stimulate TLR2-dependent production of other proinflammatory hallmarks, such as reactive nitrogen and oxygen species as well as type 1 chemokines, which contribute to the anti-infection immune response of the host. Also, the overexpression of major histocompatibility complex class II (MHC II) and other costimulatory molecules (CD80 and CD86) in macrophages essentially indicates that SslE promotes macrophage activation and M1 polarization, which are crucial in framing the host's innate immune response to this protein, and hence, SslE could be a potent immunotherapeutic target against E. coli sepsis.
Collapse
|
27
|
Pirfenidone Ointment Modulates the Burn Wound Bed in C57BL/6 Mice by Suppressing Inflammatory Responses. Inflammation 2018; 42:45-53. [DOI: 10.1007/s10753-018-0871-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Caplan IF, Maguire-Zeiss KA. Toll-Like Receptor 2 Signaling and Current Approaches for Therapeutic Modulation in Synucleinopathies. Front Pharmacol 2018; 9:417. [PMID: 29780321 PMCID: PMC5945810 DOI: 10.3389/fphar.2018.00417] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 12/18/2022] Open
Abstract
The innate immune response in the central nervous system (CNS) is implicated as both beneficial and detrimental to health. Integral to this process are microglia, the resident immune cells of the CNS. Microglia express a wide variety of pattern-recognition receptors, such as Toll-like receptors, that detect changes in the neural environment. The activation of microglia and the subsequent proinflammatory response has become increasingly relevant to synucleinopathies, including Parkinson's disease the second most prevalent neurodegenerative disease. Within these diseases there is evidence of the accumulation of endogenous α-synuclein that stimulates an inflammatory response from microglia via the Toll-like receptors. There have been recent developments in both new and old pharmacological agents designed to target microglia and curtail the inflammatory environment. This review will aim to delineate the process of microglia-mediated inflammation and new therapeutic avenues to manage the response.
Collapse
Affiliation(s)
- Ian F Caplan
- Biology Department, Georgetown University, Washington, DC, United States
| | - Kathleen A Maguire-Zeiss
- Biology Department, Georgetown University, Washington, DC, United States.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
29
|
Yang R, Liu W, Miao L, Yang X, Fu J, Dou B, Cai A, Zong X, Tan C, Chen H, Wang X. Induction of VEGFA and Snail-1 by meningitic Escherichia coli mediates disruption of the blood-brain barrier. Oncotarget 2018; 7:63839-63855. [PMID: 27588479 PMCID: PMC5325408 DOI: 10.18632/oncotarget.11696] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is the most common Gram-negative bacterium that possesses the ability to cause neonatal meningitis, which develops as circulating bacteria penetrate the blood-brain barrier (BBB). However, whether meningitic E. coli could induce disruption of the BBB and the underlying mechanisms are poorly understood. Our current work highlight for the first time the participation of VEGFA and Snail-1, as well as the potential mechanisms, in meningitic E. coli induced disruption of the BBB. Here, we characterized a meningitis-causing E. coli PCN033, and demonstrated that PCN033 invasion could increase the BBB permeability through downregulating and remodeling the tight junction proteins (TJ proteins). This process required the PCN033 infection-induced upregulation of VEGFA and Snail-1, which involves the activation of TLR2-MAPK-ERK1/2 signaling cascade. Moreover, production of proinflammatory cytokines and chemokines in response to infection also promoted the upregulation of VEGFA and Snail-1, therefore further mediating the BBB disruption. Our observations reported here directly support the involvement of VEGFA and Snail-1 in meningitic E. coli induced BBB disruption, and VEGFA and Snail-1 would therefore represent the essential host targets for future prevention of clinical E. coli meningitis.
Collapse
Affiliation(s)
- Ruicheng Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wentong Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Miao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaopei Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiyang Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Aoling Cai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China.,Key Laboratory of development of veterinary diagnostic products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
30
|
Liu J, Yu Q, Wu W, Huang X, Broering R, Werner M, Roggendorf M, Yang D, Lu M. TLR2 Stimulation Strengthens Intrahepatic Myeloid-Derived Cell-Mediated T Cell Tolerance through Inducing Kupffer Cell Expansion and IL-10 Production. THE JOURNAL OF IMMUNOLOGY 2018; 200:2341-2351. [PMID: 29459406 DOI: 10.4049/jimmunol.1700540] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022]
Abstract
Hepatic APCs play a critical role in promoting immune tolerance in the liver. Recently, we have demonstrated that TLR2 stimulation on liver sinusoidal endothelial cells reverted their suppressive properties to induce T cell immunity. However, there is a paucity of information about how TLR2 stimulation modulates the immunological function of other hepatic APCs. In the current study, we investigated whether TLR2 stimulation influences the function of intrahepatic myeloid-derived cells (iMDCs) and elucidated the mechanisms involved in iMDC-induced T cell immunity. We could show that iMDCs from C57BL/6 mice can potently suppress T cell activation in a cell contact-independent manner. Ag presentation by iMDCs leads to naive CD8 T cell tolerance. To our surprise, instead of inducing cell functional maturation, TLR2 ligand palmitoyl-3-cysteine-serine-lysine-4 (P3C) stimulation further strengthens the suppressive and tolerogenic properties of iMDCs. After P3C administration, the population of Kupffer cells (KCs) of iMDCs dramatically increased. Mechanism analysis shows that KCs are essential for the enhanced inhibition of T cell activation by P3C-stimulated iMDCs. The iMDC-mediated CD8 T cell inhibition was mediated by soluble mediators, one of which was IL-10 secreted by KCs after P3C stimulation. IL-10 blockade could partially abolish iMDC-mediated T cell inhibition. Moreover, hepatitis B virus particle stimulation on iMDCs could also induce IL-10 production by the cells in a TLR2-dependent way. Our results have implications for our understanding of liver-specific tolerance and for the development of strategies to overcome T cell tolerance in situations such as chronic viral liver infections.
Collapse
Affiliation(s)
- Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.,Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; and
| | - Qing Yu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; and
| | - Weimin Wu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xuan Huang
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Melanie Werner
- Department of Gastroenterology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Michael Roggendorf
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; and
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
31
|
Le Sommer S, Morrice N, Pesaresi M, Thompson D, Vickers MA, Murray GI, Mody N, Neel BG, Bence KK, Wilson HM, Delibegović M. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia. Cancer Res 2018; 78:75-87. [PMID: 29122767 PMCID: PMC5756472 DOI: 10.1158/0008-5472.can-17-0946] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/29/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023]
Abstract
Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B-/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia.Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR.
Collapse
Affiliation(s)
| | - Nicola Morrice
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Martina Pesaresi
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Mark A Vickers
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Graeme I Murray
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Nimesh Mody
- Institute of Medical Sciences, University of Aberdeen, United Kingdom
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York University, New York, New York
| | - Kendra K Bence
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia
| | - Heather M Wilson
- Institute of Medical Sciences, University of Aberdeen, United Kingdom.
| | | |
Collapse
|
32
|
Matsuzawa A. Physiological roles of ASK family members in innate immunity and their involvement in pathogenesis of immune diseases. Adv Biol Regul 2017; 66:46-53. [PMID: 29122554 DOI: 10.1016/j.jbior.2017.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Cells are always exposed to various types of stress, including physical, chemical, and biological stresses, and are required to sense immediately and respond appropriately to these stresses. The apoptosis signal-regulating kinase (ASK) family members are stress-responsive kinases, which are activated by not only physicochemical stresses, such as oxidative stress, osmotic pressure, calcium overload, and anti-cancer drugs, but also biological stresses, such as inflammatory cytokines and pathogen infection. Recently, we found that ASK1, a member of ASK family, is activated by bacterial components, such as lipopolysaccharide, in a reactive oxygen species (ROS)-dependent manner, demonstrating that ASK1 is required for the innate immune response and plays a critical role in the regulation of innate immune signaling. Moreover, our findings indicate that ROS are common mediators in physicochemical stress signaling, including redox signaling, and biological stress signaling, including innate immune signaling. This review especially focuses on the roles of ASK family in innate immunity and provides recent progress in our knowledge on activation mechanisms and physiological functions of ASK family kinases in innate immune responses.
Collapse
Affiliation(s)
- Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
33
|
Xiao YT, Yan WH, Cao Y, Yan JK, Cai W. P38 MAPK Pharmacological Inhibitor SB203580 Alleviates Total Parenteral Nutrition-Induced Loss of Intestinal Barrier Function but Promotes Hepatocyte Lipoapoptosis. Cell Physiol Biochem 2017; 41:623-634. [PMID: 28214831 DOI: 10.1159/000457933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/14/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND & AIMS Our previous studies have provided evidence that p38 mitogen-activated protein kinase (MAPK) is involved in total parenteral nutrition (TPN)-associated complications, but its exact effects and mechanisms have not been fully understood. This study aimed to evaluate the roles of p38 MAPK inhibitor SB203580 in the TPN-induced loss of intestinal barrier function and liver disease. METHODS A rodent model of TPN was used to analyze the roles of SB203580 in TPN-associated complications.Intestinal barrier function was evaluated by transepithelial electrical resistance (TER) and paracellular permeability in Caco-2 cells. The palmitic acid (PA) was used to induce hepatic lipoapoptosis in vitro. The lipoapoptosis was detected using Caspase-3/7 and lipid staining. RESULTS In the present study, we showed that SB203580 treatment significantly suppressed TPN-mediated intestinal permeability in rats. SB203580 treatment significantly inhibited IL-1β-induced an increase in tight junction permeability of Caco-2 cells via repressing the p38/ATF-2 signaling. Unexpectedly, SB203580 treatment enhanced hepatic lipoapoptosis in the model of TPN. Palmitic acid (PA)-induced hepatic lipoapoptosis in human liver cells was significantly augmented by the SB203580 treatment. CONCLUSIONS We demonstrate that the p38 MAPK inhibitor SB203508 ameliorates intestinal barrier function but promotes hepatic lipoapoptosis in model of TPN.
Collapse
|
34
|
Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-Translational Modifications of the TAK1-TAB Complex. Int J Mol Sci 2017; 18:ijms18010205. [PMID: 28106845 PMCID: PMC5297835 DOI: 10.3390/ijms18010205] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. It is well established that activation status of TAK1 is tightly regulated by forming a complex with its binding partners, TAK1-binding proteins (TAB1, TAB2, and TAB3). Interestingly, recent evidence indicates the importance of post-translational modifications (PTMs) of TAK1 and TABs in the regulation of TAK1 activation. To date, a number of PTMs of TAK1 and TABs have been revealed, and these PTMs appear to fine-tune and coordinate TAK1 activities depending on the cellular context. This review therefore focuses on recent advances in the understanding of the PTMs of the TAK1-TAB complex.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tohru Morishita
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
35
|
Lee HM, Kim TS, Jo EK. MiR-146 and miR-125 in the regulation of innate immunity and inflammation. BMB Rep 2017; 49:311-8. [PMID: 26996343 PMCID: PMC5070718 DOI: 10.5483/bmbrep.2016.49.6.056] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 12/11/2022] Open
Abstract
Innate immune responses are primary, relatively limited, and specific responses
to numerous pathogens and toxic molecules. Protein expression involved in these
innate responses must be tightly regulated at both transcriptional level and
post-transcriptional level to avoid the development of excessive inflammation
that can be potentially harmful to the host. MicroRNAs are small noncoding RNAs
(∼22 nucleotides [nts]) that participate in the regulation of numerous
physiological responses by targeting specific messenger RNAs to suppress their
translation. Recent work has shown that several negative regulators of
transcription including microRNAs play important roles in inhibiting the
exacerbation of inflammatory responses and in the maintenance of immunological
homeostasis. This emerging research area will provide new insights on how
microRNAs regulate innate immune signaling. It might show that dysregulation of
microRNA synthesis is associated with the pathogenesis of inflammatory and
infectious diseases. In this review, we focused on miR-146 and miR-125 and
described the roles these miRNAs in modulating innate immune signaling. These
microRNAs can control inflammatory responses and the outcomes of pathogenic
infections. [BMB Reports 2016; 49(6): 311-318]
Collapse
Affiliation(s)
- Hye-Mi Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Tae Sung Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| |
Collapse
|
36
|
Jeong M, Lee EW, Seong D, Seo J, Kim JH, Grootjans S, Kim SY, Vandenabeele P, Song J. USP8 suppresses death receptor-mediated apoptosis by enhancing FLIP L stability. Oncogene 2016; 36:458-470. [PMID: 27321185 DOI: 10.1038/onc.2016.215] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/08/2016] [Accepted: 05/11/2016] [Indexed: 11/09/2022]
Abstract
FLICE-like inhibitory protein (FLIP) is a critical regulator of death receptor-mediated apoptosis. Here, we found ubiquitin-specific peptidase 8 (USP8) to be a novel deubiquitylase of the long isoform of FLIP (FLIPL). USP8 directly deubiquitylates and stabilizes FLIPL, but not the short isoform. USP8 depletion induces FLIPL destabilization, promoting anti-Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- and tumor necrosis factor alpha-induced extrinsic apoptosis by facilitating death-inducing signaling complex or TNFR1 complex II formation, which results in the activation of caspase-8 and caspase-3. USP8 mRNA levels are elevated in melanoma and cervical cancers, and the protein levels of USP8 and FLIPL are positively correlated in these cancer cell lines. Xenograft analyses using ME-180 cervical cancer cells showed that USP8 depletion attenuated tumor growth upon TRAIL injection. Taken together, our data indicate that USP8 functions as a novel deubiquitylase of FLIPL and inhibits extrinsic apoptosis by stabilizing FLIPL.
Collapse
Affiliation(s)
- M Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - E-W Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - D Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - J Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - J-H Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - S Grootjans
- Inflammation Research Center, VIB, Zwijnaarde-Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - S-Y Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea
| | - P Vandenabeele
- Inflammation Research Center, VIB, Zwijnaarde-Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - J Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
37
|
Boehme SA, Franz-Bacon K, DiTirro DN, Ly TW, Bacon KB. MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis. PLoS One 2016; 11:e0154874. [PMID: 27144281 PMCID: PMC4856290 DOI: 10.1371/journal.pone.0154874] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/20/2016] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, debilitating disease for which two medications, pirfenidone and nintedanib, have only recently been approved for treatment. The cytokine TGF-β has been shown to be a central mediator in the disease process. We investigated the role of a novel kinase, MAP3K19, upregulated in IPF tissue, in TGF-β-induced signal transduction and in bleomycin-induced pulmonary fibrosis. MAP3K19 has a very limited tissue expression, restricted primarily to the lungs and trachea. In pulmonary tissue, expression was predominantly localized to alveolar and interstitial macrophages, bronchial epithelial cells and type II pneumocytes of the epithelium. MAP3K19 was also found to be overexpressed in bronchoalveolar lavage macrophages from IPF patients compared to normal patients. Treatment of A549 or THP-1 cells with either MAP3K19 siRNA or a highly potent and specific inhibitor reduced phospho-Smad2 & 3 nuclear translocation following TGF-β stimulation. TGF-β-induced gene transcription was also strongly inhibited by both the MAP3K19 inhibitor and nintedanib, whereas pirfenidone had a much less pronounced effect. In combination, the MAP3K19 inhibitor appeared to act synergistically with either pirfenidone or nintedanib, at the level of target gene transcription or protein production. Finally, in an animal model of IPF, inhibition of MAP3K19 strongly attenuated bleomycin-induced pulmonary fibrosis when administered either prophylactically ortherapeutically. In summary, these results strongly suggest that inhibition of MAP3K19 may have a beneficial therapeutic effect in the treatment of IPF and represents a novel strategy to target this disease.
Collapse
Affiliation(s)
- Stefen A. Boehme
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Karin Franz-Bacon
- DNA Consulting, Inc., San Diego, California, United States of America
| | - Danielle N. DiTirro
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Tai Wei Ly
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| | - Kevin B. Bacon
- AxikinPharmaceuticals, Inc., San Diego, California, United States of America
| |
Collapse
|
38
|
Luo J, Liu M, Wu X, Dou Y, Xia Y, Dai Y, Wei Z. DGAEE, a newly synthesized derivative of glycyrrhetinic acid, potently attenuates mouse septic shock via its main metabolite DGA in an IL-10-dependent manner. Int Immunopharmacol 2015; 29:583-590. [DOI: 10.1016/j.intimp.2015.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
|
39
|
Differential outcome of TRIF-mediated signaling in TLR4 and TLR3 induced DC maturation. Proc Natl Acad Sci U S A 2015; 112:13994-9. [PMID: 26508631 DOI: 10.1073/pnas.1510760112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns by Toll-like receptors (TLRs) on dendritic cells (DCs) leads to DC maturation, a process involving up-regulation of MHC and costimulatory molecules and secretion of proinflammatory cytokines. All TLRs except TLR3 achieve these outcomes by using the signaling adaptor myeloid differentiation factor 88. TLR4 and TLR3 can both use the Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF)-dependent signaling pathway leading to IFN regulatory factor 3 (IRF3) activation and induction of IFN-β and -α4. The TRIF signaling pathway, downstream of both of these TLRs, also leads to DC maturation, and it has been proposed that the type I IFNs act in cis to induce DC maturation and subsequent effects on adaptive immunity. The present study was designed to understand the molecular mechanisms of TRIF-mediated DC maturation. We have discovered that TLR4-TRIF-induced DC maturation was independent of both IRF3 and type I IFNs. In contrast, TLR3-mediated DC maturation was completely dependent on type I IFN feedback. We found that differential activation of mitogen-activated protein kinases by the TLR4- and TLR3-TRIF axes determined the type I IFN dependency for DC maturation. In addition, we found that the adjuvanticity of LPS to induce T-cell activation is completely independent of type I IFNs. The important distinction between the TRIF-mediated signaling pathways of TLR4 and TLR3 discovered here could have a major impact in the design of future adjuvants that target this pathway.
Collapse
|
40
|
Singh P, Dejager L, Amand M, Theatre E, Vandereyken M, Zurashvili T, Singh M, Mack M, Timmermans S, Musumeci L, Dejardin E, Mustelin T, Van Ginderachter JA, Moutschen M, Oury C, Libert C, Rahmouni S. DUSP3 Genetic Deletion Confers M2-like Macrophage-Dependent Tolerance to Septic Shock. THE JOURNAL OF IMMUNOLOGY 2015; 194:4951-62. [PMID: 25876765 DOI: 10.4049/jimmunol.1402431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
DUSP3 is a small dual-specificity protein phosphatase with an unknown physiological function. We report that DUSP3 is strongly expressed in human and mouse monocytes and macrophages, and that its deficiency in mice promotes tolerance to LPS-induced endotoxin shock and to polymicrobial septic shock after cecal ligation and puncture. By using adoptive transfer experiments, we demonstrate that resistance to endotoxin is macrophage dependent and transferable, and that this protection is associated with a striking increase of M2-like macrophages in DUSP3(-/-) mice in both the LPS and cecal ligation and puncture models. We show that the altered response of DUSP3(-/-) mice to sepsis is reflected in decreased TNF production and impaired ERK1/2 activation. Our results demonstrate that DUSP3 plays a key and nonredundant role as a regulator of innate immune responses by mechanisms involving the control of ERK1/2 activation, TNF secretion, and macrophage polarization.
Collapse
Affiliation(s)
- Pratibha Singh
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Lien Dejager
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9000 Ghent, Belgium
| | - Mathieu Amand
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Emilie Theatre
- Laboratory of Animal Genomics, GIGA-Genetics Unit, University of Liège, B-4000 Liège, Belgium
| | - Maud Vandereyken
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Tinatin Zurashvili
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Maneesh Singh
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Matthias Mack
- Department of Internal Medicine II, University Hospital Regensburg, 93042 Regensburg, Germany
| | - Steven Timmermans
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9000 Ghent, Belgium
| | - Lucia Musumeci
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Tomas Mustelin
- Signal Transduction Program, Sanford-Burnham Institute, La Jolla, CA 92037; MedImmune, Gaithersburg, MD 20878
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Myeloid Cell Immunology Laboratory, VIB, B-1050 Brussels, Belgium; and
| | - Michel Moutschen
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium
| | - Cécile Oury
- Laboratory of Thrombosis and Hemostasis, GIGA-Cardiovascular Sciences Unit, University of Liège, B-4000 Liège, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, B-9000 Ghent, Belgium
| | - Souad Rahmouni
- Laboratory of Immunology and Infectious Diseases, GIGA-Signal Transduction Unit, University of Liège, B-4000 Liège, Belgium;
| |
Collapse
|
41
|
Souza CD. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis. Vet Immunol Immunopathol 2015; 164:1-9. [DOI: 10.1016/j.vetimm.2015.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/19/2014] [Accepted: 01/26/2015] [Indexed: 01/04/2023]
|
42
|
Ko CY, Chang WC, Wang JM. Biological roles of CCAAT/Enhancer-binding protein delta during inflammation. J Biomed Sci 2015; 22:6. [PMID: 25591788 PMCID: PMC4318212 DOI: 10.1186/s12929-014-0110-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/25/2014] [Indexed: 01/13/2023] Open
Abstract
CCAAT/enhancer-binding protein delta (CEBPD) belongs to the CCAAT/enhancer-binding protein family, and these proteins function as transcription factors in many biological processes, including cell differentiation, motility, growth arrest, proliferation, cell death, metabolism and immune responses. The functional diversity of CEBPD depends, in part, on the cell type and cellular context, which indicates that CEBPD could interpret a variety of cues to adjust cellular responses in specific situations. Here, we review the regulation of the CEBPD gene and its function in response to inflammatory stimuli. We also address its effects in inflammation-related diseases through a discussion of its recently discovered downstream targets. Regarding to the previous discoveries and new insights in inflammation-associated diseases, suggesting CEBPD could also be a central gene in inflammation. Importantly, the results of this study indicate that the investigation of CEBPD could open a new avenue to help better understand the inflammatory response.
Collapse
Affiliation(s)
- Chiung-Yuan Ko
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Ju-Ming Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan. .,Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan. .,Center of Molecular Inflammation, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
43
|
Conti F, Boucherit N, Baldassarre V, Trouplin V, Toman R, Mottola G, Mege JL, Ghigo E. Coxiella burnetii lipopolysaccharide blocks p38α-MAPK activation through the disruption of TLR-2 and TLR-4 association. Front Cell Infect Microbiol 2015; 4:182. [PMID: 25610812 PMCID: PMC4285172 DOI: 10.3389/fcimb.2014.00182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022] Open
Abstract
To survive in macrophages, Coxiella burnetii hijacks the activation pathway of macrophages. Recently, we have demonstrated that C. burnetii, via its lipopolysaccharide (LPS), avoids the activation of p38α-MAPK through an antagonistic engagement of Toll-like receptor (TLR)-4. We investigated the fine-tuned mechanism leading to the absence of activation of the p38α-MAPK despite TLR-4 engagement. In macrophages challenged with LPS from the avirulent variants of C. burnetii, TLR-4 and TLR-2 co-immunoprecipitated. This association was absent in cells challenged by the LPS of pathogenic C. burnetii. The disruption makes TLRs unable to signal during the recognition of the LPS of pathogenic C. burnetii. The disruption of TLR-2 and TLR-4 was induced by the re-organization of the macrophage cytoskeleton by C. burnetii LPS. Interestingly, blocking the actin cytoskeleton re-organization relieved the disruption of the association TLR-2/TLR-4 by pathogenic C. burnetii and rescued the p38α-MAPK activation by C. burnetii. We elucidated an unexpected mechanism allowing pathogenic C. burnetii to avoid macrophage activation by the disruption of the TLR-2 and TLR-4 association.
Collapse
Affiliation(s)
- Filippo Conti
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Nicolas Boucherit
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | | | - Virginie Trouplin
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Rudolf Toman
- Laboratory for Diagnosis and Prevention of Rickettsial and Chlamydial Infections, Institute of Virology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Giovanna Mottola
- UMR MD2, Faculté de Médecine NORD, Aix-Marseille Université and IRBA (Institute of Research in Biology of the French Army) Marseille, France ; Laboratory of Biochemistry, La Timone University Hospital, Assistance Publique Hôpitaux de Marseille Marseille, France
| | - Jean-Louis Mege
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| | - Eric Ghigo
- CNRS UMR 7278, IRD198, INSERM U1095, Aix-Marseille Université Marseille, France
| |
Collapse
|
44
|
He F, Guo FC, Li Z, Yu HC, Ma PF, Zhao JL, Feng L, Li WN, Liu XW, Qin HY, Dou KF, Han H. Myeloid-specific disruption of recombination signal binding protein Jκ ameliorates hepatic fibrosis by attenuating inflammation through cylindromatosis in mice. Hepatology 2015; 61:303-14. [PMID: 25145286 DOI: 10.1002/hep.27394] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/20/2014] [Indexed: 01/21/2023]
Abstract
UNLABELLED Macrophages play multidimensional roles in hepatic fibrosis, but their control has not been fully understood. The Notch pathway mediated by recombination signal binding protein Jκ (RBP-J), the transcription factor transactivated by signals from four mammalian Notch receptors, is implicated in macrophage activation and plasticity. In this study, by using mouse hepatic fibrosis models, we show that myeloid-specific disruption of RBP-J resulted in attenuated fibrosis. The activation of hepatic stellate cells and production of profibrotic factors including platelet-derived growth factor (PDGF)-B and transforming growth factor beta1 (TGF-β1) reduced significantly in myeloid-specific RBP-J deficient mice. The infiltration of inflammatory cells and production of proinflammatory factors were reduced in liver of myeloid-specific RBP-J-deficient mice during fibrosis. In RBP-J-deficient macrophages, the nuclear factor kappa B (NF-κB) activation was remarkably attenuated as compared with the control. This could be attributed to the up-regulation of cylindromatosis (CYLD), a negative regulator of NF-κB, in Notch signal-compromised macrophages, because the knockdown of CYLD in RBP-J-deficient macrophages or overexpression of p65 in RBP-J knockdown cells both restored NF-κB activation and the production of proinflammatory and/or profibrotic factors by macrophages. In human hepatic fibrosis biopsies, stronger Notch activation is correlated with more severe fibrosis, which is accompanied by a lower level of CYLD but irrespective of etiological reasons. CONCLUSION RBP-J-mediated Notch signaling is required for macrophages to promote hepatic fibrosis by up-regulation of NF-κB activation through CYLD.
Collapse
Affiliation(s)
- Fei He
- Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Volarevic V, Paunovic V, Markovic Z, Simovic Markovic B, Misirkic-Marjanovic M, Todorovic-Markovic B, Bojic S, Vucicevic L, Jovanovic S, Arsenijevic N, Holclajtner-Antunovic I, Milosavljevic M, Dramicanin M, Kravic-Stevovic T, Ciric D, Lukic ML, Trajkovic V. Large graphene quantum dots alleviate immune-mediated liver damage. ACS NANO 2014; 8:12098-12109. [PMID: 25415137 DOI: 10.1021/nn502466z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated the effect of large (40 nm) graphene quantum dots (GQDs) in concanavalin A (Con A; 12 mg/kg i.v.)-induced mouse hepatitis, a T cell-mediated liver injury resembling fulminant hepatitis in humans. Intravenously injected GQDs (50 mg/kg) accumulated in liver and reduced Con A-mediated liver damage, as demonstrated by histopathological analysis and a decrease in liver lipid peroxidation and serum levels of liver transaminases. The cleavage of apoptotic markers caspase-3/PARP and mRNA levels of proapoptotic mediators Puma, Noxa, Bax, Bak1, Bim, Apaf1, and p21, as well as LC3-I conversion to autophagosome-associated LC3-II and expression of autophagy-related (Atg) genes Atg4b, Atg7, Atg12, and beclin-1, were attenuated by GQDs, indicating a decrease in both apoptosis and autophagy in the liver tissue. This was associated with the reduced liver infiltration of immune cells, particularly the T cells producing proinflammatory cytokine IFN-γ, and a decrease in IFN-γ serum levels. In the spleen of GQD-exposed mice, mRNA expression of IFN-γ and its transcription factor T-bet was reduced, while that of the IL-33 ligand ST2 was increased. The hepatoprotective effect of GQDs was less pronounced in ST2-deficient mice, indicating that it might depend on ST2 upregulation. In vitro, GQDs inhibited splenocyte IFN-γ production, reduced the activation of extracellular signal-regulated kinase in macrophage and T cell lines, inhibited macrophage production of the free radical nitric oxide, and reduced its cytotoxicity toward hepatocyte cell line HepG2. Therefore, GQDs alleviate immune-mediated fulminant hepatitis by interfering with T cell and macrophage activation and possibly by exerting a direct hepatoprotective effect.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Centre for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac , 69 Svetozara Markovica Street, 34000 Kragujevac, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Santra M, Zhang ZG, Yang J, Santra S, Santra S, Chopp M, Morris DC. Thymosin β4 up-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the Toll-like proinflammatory pathway. J Biol Chem 2014; 289:19508-18. [PMID: 24828499 DOI: 10.1074/jbc.m113.529966] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymosin β4 (Tβ4), a G-actin-sequestering peptide, improves neurological outcome in rat models of neurological injury. Tissue inflammation results from neurological injury, and regulation of the inflammatory response is vital for neurological recovery. The innate immune response system, which includes the Toll-like receptor (TLR) proinflammatory signaling pathway, regulates tissue injury. We hypothesized that Tβ4 regulates the TLR proinflammatory signaling pathway. Because oligodendrogenesis plays an important role in neurological recovery, we employed an in vitro primary rat embryonic cell model of oligodendrocyte progenitor cells (OPCs) and a mouse N20.1 OPC cell line to measure the effects of Tβ4 on the TLR pathway. Cells were grown in the presence of Tβ4, ranging from 25 to 100 ng/ml (RegeneRx Biopharmaceuticals Inc., Rockville, MD), for 4 days. Quantitative real-time PCR data demonstrated that Tβ4 treatment increased expression of microRNA-146a (miR-146a), a negative regulator the TLR signaling pathway, in these two cell models. Western blot analysis showed that Tβ4 treatment suppressed expression of IL-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two proinflammatory cytokines of the TLR signaling pathway. Transfection of miR-146a into both primary rat embryonic OPCs and mouse N20.1 OPCs treated with Tβ4 demonstrated an amplification of myelin basic protein (MBP) expression and differentiation of OPC into mature MBP-expressing oligodendrocytes. Transfection of anti-miR-146a nucleotides reversed the inhibitory effect of Tβ4 on IRAK1 and TRAF6 and decreased expression of MBP. These data suggest that Tβ4 suppresses the TLR proinflammatory pathway by up-regulating miR-146a.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Chopp
- From the Departments of Neurology, the Department of Physics, Oakland University, Rochester, Michigan 48309
| | - Daniel C Morris
- Emergency Medicine, Henry Ford Health Systems, Detroit, Michigan 48202 and
| |
Collapse
|
47
|
Favila MA, Geraci NS, Zeng E, Harker B, Condon D, Cotton RN, Jayakumar A, Tripathi V, McDowell MA. Human dendritic cells exhibit a pronounced type I IFN signature following Leishmania major infection that is required for IL-12 induction. THE JOURNAL OF IMMUNOLOGY 2014; 192:5863-72. [PMID: 24808365 DOI: 10.4049/jimmunol.1203230] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmania major-infected human dendritic cells (DCs) exhibit a marked induction of IL-12, ultimately promoting a robust Th1-mediated response associated with parasite killing and protective immunity. The host cell transcription machinery associated with the specific IL-12 induction observed during L. major infection remains to be thoroughly elucidated. In this study, we used Affymetrix GeneChip (Affymetrix) to globally assess the host cell genes and pathways associated with early L. major infection in human myeloid-derived DCs. Our data revealed 728 genes were significantly differentially expressed and molecular signaling pathway revealed that the type I IFN pathway was significantly enriched. Addition of a neutralizing type I IFN decoy receptor blocked the expression of IRF7 and IL-12p40 during DC infection, indicating the L. major-induced expression of IL-12p40 is dependent upon the type I IFN signaling pathway. In stark contrast, IL-12p40 expression is not elicited by L. donovani, the etiological agent of deadly visceral leishmaniasis. Therefore, we examined the gene expression profile for several IFN response genes in L. major versus L. donovani DC infections. Our data revealed that L. major, but not L. donovani, induces expression of IRF2, IRF7, and IFIT5, implicating the regulation of type I IFN-associated signaling pathways as mediating factors toward the production of IL-12.
Collapse
Affiliation(s)
- Michelle A Favila
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Nicholas S Geraci
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Erliang Zeng
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN 46556
| | - Brent Harker
- Genomics and Bioinformatics Core Facility, University of Notre Dame, Notre Dame, IN 46556
| | - David Condon
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Rachel N Cotton
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Asha Jayakumar
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Vinita Tripathi
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556; and
| |
Collapse
|
48
|
Enteropathogenic Escherichia coli inhibits type I interferon- and RNase L-mediated host defense to disrupt intestinal epithelial cell barrier function. Infect Immun 2014; 82:2802-14. [PMID: 24733098 DOI: 10.1128/iai.00105-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily infects children in developing countries and causes diarrhea that can be deadly. EPEC pathogenesis occurs through type III secretion system (T3SS)-mediated injection of effectors into intestinal epithelial cells (IECs); these effectors alter actin dynamics, modulate the immune response, and disrupt tight junction (TJ) integrity. The resulting compromised barrier function and increased gastrointestinal (GI) permeability may be responsible for the clinical symptoms of infection. Type I interferon (IFN) mediates anti-inflammatory activities and serves essential functions in intestinal immunity and homeostasis; however, its role in the immune response to enteric pathogens, such as EPEC, and its impact on IEC barrier function have not been examined. Here, we report that IFN-β is induced following EPEC infection and regulates IEC TJ proteins to maintain barrier function. The EPEC T3SS effector NleD counteracts this protective activity by inhibiting IFN-β induction and enhancing tumor necrosis factor alpha to promote barrier disruption. The endoribonuclease RNase L is a key mediator of IFN induction and action that promotes TJ protein expression and IEC barrier integrity. EPEC infection inhibits RNase L in a T3SS-dependent manner, providing a mechanism by which EPEC evades IFN-induced antibacterial activities. This work identifies novel roles for IFN-β and RNase L in IEC barrier functions that are targeted by EPEC effectors to escape host defense mechanisms and promote virulence. The IFN-RNase L axis thus represents a potential therapeutic target for enteric infections and GI diseases involving compromised barrier function.
Collapse
|
49
|
Chowdhury FZ, Estrada LD, Murray S, Forman J, Farrar JD. Pharmacological inhibition of TPL2/MAP3K8 blocks human cytotoxic T lymphocyte effector functions. PLoS One 2014; 9:e92187. [PMID: 24642963 PMCID: PMC3958505 DOI: 10.1371/journal.pone.0092187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/19/2014] [Indexed: 12/27/2022] Open
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play a major role in defense against intracellular pathogens. During development, antigen-presenting cells secrete innate cytokines such as IL-12 and IFN-α, which drive CTL differentiation into diverse populations of effector and long-lived memory cells. Using whole transcriptome analyses, the serine/threonine protein kinase Tpl2/MAP3K8 was found to be induced by IL-12 and selectively expressed by effector memory (TEM) CTLs. Tpl2 regulates various inflammatory pathways by activating the ERK mediated MAP kinase pathway in innate immune cells such as macrophages and dendritic cells. In this study, we found that a specific small molecule Tpl2 inhibitor blocked IFN-γ and TNF-α secretion as well as cytolytic activity of human CTLs. This pathway was specific for human effector CTLs, as the Tpl2 inhibitor did not block IFN-γ and TNF-α secretion from murine effector CTLs. Further, IL-12 failed to induce expression of Tpl2 in murine CTLs, and Tpl2 deficient murine CTLs did not exhibit any functional deficiency either in vitro or in vivo in response to L. monocytogenes infection. In summary, we identified a species-specific role for Tpl2 in effector function of human CTLs, which plays a major role in adaptive immune responses to intracellular pathogens and tumors.
Collapse
Affiliation(s)
- Fatema Z. Chowdhury
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Leonardo D. Estrada
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sean Murray
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - James Forman
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - J. David Farrar
- Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail: .
| |
Collapse
|
50
|
Zunino SJ, Storms DH, Freytag TL, Mackey BE, Zhao L, Gouffon JS, Hwang DH. Dietary strawberries increase the proliferative response of CD3/CD28-activated CD8⁺ T cells and the production of TNF-α in lipopolysaccharide-stimulated monocytes from obese human subjects. Br J Nutr 2013; 110:2011-9. [PMID: 23597267 DOI: 10.1017/s0007114513000937] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Obesity increases the risk of developing bacterial and viral infections compared with normal weight. In a 7-week double-blind, randomised, cross-over trial, twenty obese volunteers (BMI between 30 and 40 kg/m²) were fed freeze-dried strawberry powder or strawberry-flavoured placebo preparations to determine the effects of dietary strawberries on immune function. Blood was collected at six time points during the study and peripheral blood mononuclear cells (PBMC) were isolated at each time point and activated with CD3 plus CD28 antibodies (T-lymphocyte activation) or lipopolysaccharide (LPS, monocyte activation). Interferon-γ, TNF-α, IL-4 and IL-10 were measured in supernatants from the activated T cells. Supernatants from the activated monocytes were analysed for the production of TNF-α, IL-1β, IL-6 and IL-8. PBMC were pre-stained with PKH (Paul Karl Horan) dye and activated with CD3 plus CD28 antibodies to determine the proliferative responses of CD4⁺ and CD8⁺ T-lymphocytes by flow cytometry. To detect global changes in gene expression, microarray analysis was performed on LPS- and vehicle-treated PBMC from two subjects before and after the strawberry intervention. No difference was observed for the production of T-cell cytokines between the intervention groups. The production of TNF-α was increased in the supernatants from LPS-activated PBMC in the group consuming strawberries compared with the placebo. A modest increase in the proliferation of the CD8⁺ T-lymphocyte population was observed at 24 h post-activation. These data suggest that dietary strawberries may increase the immunological response of T-lymphocytes and monocytes in obese people who are at greater risk for developing infections.
Collapse
Affiliation(s)
- Susan J Zunino
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, 430 West Health Sciences Drive, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|