1
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. Proc Natl Acad Sci U S A 2025; 122:e2422169122. [PMID: 40354538 PMCID: PMC12107164 DOI: 10.1073/pnas.2422169122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response and fibrosis is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via infection with the pathogenic bacterial species enterotoxigenic Bacteroides fragilis (ETBF) and implanted particulate material (mean particle size <600 μm) of the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation, increased levels of neutrophils in lymphoid tissues, and altered skeletal muscle gene expression. At the PCL implant site, we found significant changes in the transcriptome of sorted stromal cells between infected and control mice, including differences related to ECM components such as proteoglycans and glycosaminoglycans. However, we did not observe ETBF-induced differences in fibrosis levels. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant.
Collapse
Affiliation(s)
- Brenda Yang
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Natalie Rutkowski
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Anna Ruta
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Elise Gray-Gaillard
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - David R. Maestas
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Sean H. Kelly
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Kavita Krishnan
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Allen Chen
- Department of Biomedical Engineering, Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD21218
| | - Joscelyn C. Mejías
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Joshua S. T. Hooks
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Isabel Vanderzee
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Patricia Mensah
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Nazmiye Celik
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Marie Eric
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Peter Abraham
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
| | - Ada Tam
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Franck Housseau
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Drew M. Pardoll
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21287
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD21287
| | - Jennifer H. Elisseeff
- Department of Biomedical Engineering, Cellular and Molecular Medicine, or Ophthalmology, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD21231
- Sidney Kimmel Comprehensive Cancer Center, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
2
|
Better J, Estiri M, Wetstein M, Pervizaj-Oruqaj L, Malainou C, Ogungbemi-Alt V, Ferrero MR, Langelage M, Kuznetsova I, Vazquez-Armendariz AI, Kimmig L, Pak O, Mansouri S, Savai R, Wilhelm J, Alexopoulos I, Sommer N, Herold S, Matt U. Cell type-specific efferocytosis determines functional plasticity of alveolar macrophages. Sci Immunol 2025; 10:eadl3852. [PMID: 40315300 DOI: 10.1126/sciimmunol.adl3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025]
Abstract
Resolution of lung injuries is vital to maintain gas exchange, but there is an increased risk of secondary bacterial infections during this stage. Alveolar macrophages (AMs) are crucial to clear bacteria and control the resolution of inflammation, but environmental cues that switch functional phenotypes of AMs remain incompletely understood. Here, we found that AMs lack the capacity to mount an effective immune response against bacteria during resolution of inflammation. Neutrophil (PMN)-derived myeloperoxidase (MPO) fueled canonical glutaminolysis via the mitochondrial membrane transporter uncoupling protein-2 (UCP2), resulting in decreased mtROS-dependent killing of bacteria and secretion of pro-inflammatory cytokines. MPO-enhanced UCP2 expression inhibited mitochondrial hyperpolarization and boosted efferocytosis irrespective of the presence of bacterial pathogens. Conversely, efferocytosis of other cell types resulted in a distinct anti-inflammatory AM phenotype while maintaining antibacterial phenotypic plasticity. Overall, our findings indicate that the uptake of apoptotic PMNs or MPO switches AMs to prioritize resolution of inflammation over antibacterial responses, a feature that is conserved in murine extrapulmonary macrophages and human AMs.
Collapse
Affiliation(s)
- Julian Better
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Mohammad Estiri
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Michael Wetstein
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Learta Pervizaj-Oruqaj
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christina Malainou
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Victoria Ogungbemi-Alt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Maximiliano Ruben Ferrero
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Biomedicine Research Institute of Buenos Aires - CONICET-Partner Institute of the Max Planck Society (IBioBA-MPSP), Buenos Aires, Argentina
| | - Martin Langelage
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Irina Kuznetsova
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Lucas Kimmig
- University of Chicago Medicine, Chicago, IL, USA
| | - Oleg Pak
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Siavash Mansouri
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rajkumar Savai
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Lung Development and Remodeling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Natascha Sommer
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Department of Internal Medicine II, Pulmonary & Critical Care, UGMLC, member of the DZL, JLU, Giessen, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ulrich Matt
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL) and the German Center for Infection Research (DZIF), Justus-Liebig University (JLU) Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
3
|
Zainab I, Naseem Z, Batool SR, Waqas M, Nazir A, Nazeer MA. Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2025; 16:591-612. [PMID: 40297246 PMCID: PMC12035910 DOI: 10.3762/bjnano.16.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
The importance of electrospun membranes for biomedical applications has increased, especially when it comes to skin regeneration and wound healing. This review presents the production and applications of electrospun membranes based on polyurethane (PU) and silk fibroin (SF) and highlights their benefits as a skin substitute. This review also highlights the electrospinning technique used to prepare nanofibers for these biomedical applications. Silk, well-known for its excellent biocompatibility, biodegradability, structural properties, and low immunogenic response, is extensively investigated by addressing its molecular structure, composition, and medical uses. PU is a candidate for potential biomedical applications because of its strength, flexibility, biocompatibility, cell-adhesive properties, and high resistance to biodegradation. PU combined with silk offers a number of enhanced properties. The study offers a comprehensive overview of the advanced developments and applications of PU/SF composites, highlighting their significant potential in wound healing. These composite membranes present promising advancements in wound healing and skin regeneration by combining the unique properties of silk and PU, opening up the possibilities for innovative treatments.
Collapse
Affiliation(s)
- Iqra Zainab
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Zohra Naseem
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
| | - Syeda Rubab Batool
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Waqas
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ahsan Nazir
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Anwaar Nazeer
- Biomaterials and Tissue Engineering Research (BIOMATTER) Laboratory, National Textile University, Faisalabad 37610, Pakistan
- School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
4
|
Leinweber B, Pilorz V, Olejniczak I, Skrum L, Begemann K, Heyde I, Stenger S, Sadik CD, Oster H. Bmal1 deficiency in neutrophils alleviates symptoms induced by high-fat diet. iScience 2025; 28:112038. [PMID: 40124497 PMCID: PMC11930374 DOI: 10.1016/j.isci.2025.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Physiological processes, including metabolism and immune responses, are generated by the circadian clock, driven by clock genes. Disrupting circadian rhythms through a high-fat diet promotes obesity and inflammation. Studies show that deleting the clock gene, brain, and muscle ARNT-like 1 (Bmal1) in adipose tissue leads to overeating and weight gain. We now show that Bmal1 deletion in neutrophils protects against diet-induced obesity and reduces inflammatory macrophage infiltration into epididymal white adipose tissue (eWAT), despite increased food intake over 20 weeks of a high-fat diet. This protection is linked to enhanced energy expenditure, increased UCP1 expression in iBAT, improved insulin sensitivity, and altered expression of genes encoding chemokine receptors CXCR2, CXCR4, and the ligand Cxcl2 in eWAT. Our findings reveal a key role of Bmal1 in neutrophils in regulating high-fat diet-induced adipose inflammation and emphasize circadian regulation's importance in immuno-metabolic function.
Collapse
Affiliation(s)
- Brinja Leinweber
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Violetta Pilorz
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Iwona Olejniczak
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Ludmila Skrum
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Kimberly Begemann
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Isabel Heyde
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Sarah Stenger
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| | - Christian David Sadik
- University of Lübeck, Department of Dermatology, Allergy, and Venereology Ratzeburger Allee, 23562 Luebeck, Germany
| | - Henrik Oster
- University of Lübeck, Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, 23562 Luebeck, Germany
| |
Collapse
|
5
|
Potempa M, Hart PC, Rajab IM, Potempa LA. Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator. Front Immunol 2025; 16:1564607. [PMID: 40093010 PMCID: PMC11906453 DOI: 10.3389/fimmu.2025.1564607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Most early studies investigating the role of C-reactive protein (CRP) in tissue damage determined it supported pro-hemostatic and pro-inflammatory activities. However, these findings were not universal, as other data suggested CRP inhibited these same processes. A potential explanation for these disparate observations finally emerged with the recognition that CRP undergoes context-dependent conformational changes in vivo, and each of its three isoforms - pentameric CRP (pCRP), modified pentameric CRP (pCRP*), and monomeric CRP (mCRP) - have different effects. In this review, we consider this new paradigm and re-evaluate the role of CRP and its isoforms in the tissue repair process. Indeed, a growing body of evidence points toward the involvement of CRP not just in hemostasis and inflammation, but also in the resolution of inflammation and in tissue regeneration. Additionally, we briefly discuss the shortcomings of the currently available diagnostic tests for CRP and highlight the need for change in how CRP is currently utilized in clinical practice.
Collapse
Affiliation(s)
| | - Peter C. Hart
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| | - Lawrence A. Potempa
- Acphazin Inc., Deerfield, IL, United States
- College of Science, Health, and Pharmacy, Roosevelt University, Schaumburg, IL, United States
| |
Collapse
|
6
|
Li H, Shan W, Zhao X, Sun W. Neutrophils: Linking Inflammation to Thrombosis and Unlocking New Treatment Horizons. Int J Mol Sci 2025; 26:1965. [PMID: 40076593 PMCID: PMC11901051 DOI: 10.3390/ijms26051965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Neutrophils play a key role in inflammatory responses and thrombosis, but their complex interactions in disease pathogenesis are not fully understood. This review examines the multifaceted roles of neutrophils, focusing on their activation, cytokine release, and formation of neutrophil extracellular traps (NETs), which contribute to host defense and thrombosis. We discuss the interaction between inflammation and coagulation, the direct effect of neutrophils on thrombus stability, and their involvement in pathological thrombotic diseases. The therapeutic potential of neutrophil drug loading in the treatment of thrombosis, as well as the clinical implications and future research directions, are highlighted. The aim of this review is to gain insight into the critical neutrophil-inflammation-thrombus axis and its potential as a therapeutic target for thrombotic diseases and to suggest possible directions for neutrophil-loaded drug therapy for thrombosis.
Collapse
Affiliation(s)
| | | | | | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.L.); (W.S.); (X.Z.)
| |
Collapse
|
7
|
Li L, Zhang X, Yan H, Dai M, Gao H, Wang Y, Jiang P, Dai E. Different immunological characteristics of asymptomatic and symptomatic COVID-19 patients without vaccination in the acute and convalescence stages. PeerJ 2025; 13:e18451. [PMID: 39897496 PMCID: PMC11786710 DOI: 10.7717/peerj.18451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/14/2024] [Indexed: 02/04/2025] Open
Abstract
The immune status of Coronavirus disease 2019 (COVID-19) patients in different stages of infection remains difficult to determine. In this study, we performed high-throughput single-cell mass cytometry on peripheral blood samples from 10 COVID-19 patients and four healthy donors to analyze their immune status at acute and convalescence phases. During the acute stage, the proportion of neutrophils increased significantly while natural killer (NK) cells decreased. In contrast, during the convalescence phase, the proportion of plasma cells decreased from the acute stage of disease onset and was lower than normal. The proportions of B, mast and plasma cell subsets decreased significantly with the process of disease recovery. Further analysis of the subsets of major immune cell types in COVID-19 patients with different clinical presentations in different stages showed that in the acute stages of disease progression, the T helper cell 1 (Th1), IgD+ B and neutrophil subsets increased in COVID-19 patients, especially in symptomatic patients, while the central memory CD4+T cells (CD4 TCM), mucosa-associated invariant T (MAIT) and NK cell subsets decreased significantly, especially in symptomatic patients. Then CD4 TCM and MAIT returned to normal levels at the recovery phase. Dynamic assessment displayed that the immune imbalance at the onset of COVID-19 could be corrected during recovery. Our study provides additional information on the immune status of COVID-19 patients with different clinical manifestations in different stages. These findings may provide new insights into COVID-19 immunotherapy and immune intervention.
Collapse
Affiliation(s)
- Li Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Intensive Care Unit, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xin Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Tuberculosis, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Huimin Yan
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Clinical Research Center, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Muwei Dai
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University and Hebei Cancer Hospital, Shijiazhuang, Hebei, China
| | - Huixia Gao
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Yuling Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Ping Jiang
- Department of Cardiovascular Medicine, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Erhei Dai
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
- Department of Laboratory Medicine, The Fifth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Yang B, Rutkowski N, Ruta A, Gray-Gaillard E, Maestas DR, Kelly SH, Krishnan K, Wu X, Wu S, Chen A, Amelung CD, Mejías JC, Hooks JST, Vanderzee I, Mensah P, Celik N, Eric M, Abraham P, Tam A, Gerecht S, Housseau F, Pardoll DM, Sears CL, Elisseeff JH. Murine gut microbiota dysbiosis via enteric infection modulates the foreign body response to a distal biomaterial implant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632473. [PMID: 39868312 PMCID: PMC11760420 DOI: 10.1101/2025.01.13.632473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The gut microbiota influences systemic immunity and the function of distal tissues, including the brain, liver, skin, lung, and muscle. However, the role of the gut microbiota in the foreign body response (FBR) and fibrosis around medical implants is largely unexplored. To investigate this connection, we perturbed the homeostasis of the murine gut microbiota via enterotoxigenic Bacteroides fragilis (ETBF) infection and implanted the synthetic polymer polycaprolactone (PCL) into a distal muscle injury. ETBF infection in mice led to increased neutrophil and γδ T cell infiltration into the PCL implant site. ETBF infection alone promoted systemic inflammation and increased levels of neutrophils in the blood, spleen, and bone marrow. At the PCL implant site, we found significant changes in the transcriptome of sorted fibroblasts but did not observe gross ETBF- induced differences in the fibrosis levels after 6 weeks. These results demonstrate the ability of the gut microbiota to mediate long-distance effects such as immune and stromal responses to a distal biomaterial implant. Significance Statement The foreign body response to implants leads to chronic inflammation and fibrosis that can be highly variable in the general patient population. Here, we demonstrate that gut dysbiosis via enteric infection promoted systemic inflammation and increased immune cell recruitment to an anatomically distant implant site. These results implicate the gut microbiota as a potential source of variability in the clinical biomaterial response and illustrate that the local tissue environment can be influenced by host factors that modulate systemic interactions.
Collapse
|
9
|
Ou J, Li K, Yuan H, Du S, Wang T, Deng Q, Wu H, Zeng W, Cheng K, Nandakumar KS. Staphylococcus aureus vesicles impair cutaneous wound healing through p38 MAPK-MerTK cleavage-mediated inhibition of macrophage efferocytosis. Cell Commun Signal 2025; 23:14. [PMID: 39780180 PMCID: PMC11708000 DOI: 10.1186/s12964-024-01994-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown. METHODS Filtration, ultracentrifugation, and iodixanol density gradient centrifugation were used to purify the bacterial vesicles. Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot (WB) were used to characterize the vesicles. Macrophage efferocytosis efficiency was assessed using flow cytometry and confocal microscopy, while efferocytosis at wound sites was analyzed through WB, FACS, and TUNEL staining. Hematoxylin and eosin (H&E) staining and wound size measurements were used to evaluate the wound healing process. Phosphorylation of signaling pathways was detected by WB, and efferocytosis receptor expression was measured using RNA sequencing, qPCR, and flow cytometry. siRNA and pathway inhibitors were used to investigate the roles of key receptors and signaling pathways in efferocytosis. RESULTS We identified SAVs at infected wound sites, linking them to delayed healing of wounds. SAVs inhibit efferocytosis by activating the TLR2-MyD88-p38 MAPK signaling pathway, which regulates efferocytosis receptor genes. This activation promoted cleavage and shedding of MerTK, a crucial receptor for macrophage-driven efferocytosis. Notably, selective inhibition of p38 MAPK prevented MerTK shedding, restored efferocytosis and accelerated wound healing significantly, offering a promising therapeutic approach for chronic, non-healing wounds. CONCLUSION These findings uncover a novel mechanism in S. aureus-infected wounds, highlighting how the disruption of efferocytosis via the TLR2-MyD88-p38 MAPK-MerTK axis becomes a key force behind impaired healing of wounds. Targeting this pathway could open up a new therapeutic avenue facilitating the treatment of chronic, non-healing skin injuries.
Collapse
Affiliation(s)
- Jiaxin Ou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kangxin Li
- Henan International Joint Laboratory of Infection and Immunity, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China.
- Department of Respiratory and Critical Care Medicine, the Tenth Affiliated Hospital (Dongguan Peoples Hospital), Southern Medical University, Dongguan, 523059, China.
- Department of Endocrinology, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510030, China.
| | - Hui Yuan
- Henan International Joint Laboratory of Infection and Immunity, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Shaohua Du
- Department of Musculoskeletal Oncology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510642, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiannan Deng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510075, China
| | - Huimei Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiyan Zeng
- Department of Pharmacy, Sun Yat-Sen University Cancer Center, Guangzhou, 510030, China
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Marjanović V, Zečević M, Budić I, Živanović D, Lilić J, Marjanović L, Živanović V, Stević M, Simić D. Percentage of Neutrophils and Neutrophil-to-Lymphocyte Ratio in Distinguishing Late from Early Prehospital Presentation of Perforated Appendicitis in Children. Niger J Clin Pract 2024; 27:1435-1440. [PMID: 40033538 DOI: 10.4103/njcp.njcp_337_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/07/2024] [Indexed: 03/05/2025]
Abstract
INTRODUCTION White blood cell subtypes are commonly used to diagnose paediatric cases of perforated appendicitis (PA). In this study, an attempt was made to examine changes in white blood cell subtypes based on the duration of symptoms before hospitalization. Authors believe that findings will be able to describe cases of PA with delayed presentation, more accurately. MATERIALS AND METHODS A retrospective study was conducted on 139 children with diagnosis of PA admitted between 2020 and 2023. Children were divided into two groups: Group I (n = 95), with early prehospital presentation of PA (symptoms before hospitalization lasting less than 48 hours), and Group II (n = 44), with late prehospital presentation of PA (symptoms before hospitalization lasting more than 48 hours). Medical documentation and data referring to the clinical features and laboratory markers were gathered and compared between groups. RESULTS Delayed prehospital presentation of PA had 31.65% of patients. White blood cell counts, neutrophil percentages and absolute counts, and the ratios of neutrophils to lymphocytes (ANC/ALC) and neutrophils to monocytes (ANC/AMC) were all lower in Group II. Furthermore, Group II had notably greater levels of C-reactive protein and higher percentages of lymphocytes and monocytes. The percentage of neutrophils and cutoff value was 78.95%, whereas the ANC/ALC ratio cutoff was 6.58. The percentage of neutrophils had a sensitivity and specificity of 75.0% and 62.8%, respectively, while ANC/ALC had a sensitivity and specificity of 81.3% and 51.2%, respectively. CONCLUSIONS The percentage of neutrophils and neutrophil-to-lymphocyte ratio can help distinguish between the late and early prehospital presentation of PA in children and may improve the accuracy of prehospital diagnosis. Less than 78.95% and 6.58, percentage of neutrophils and neutrophil-to-lymphocyte ratio, respectively, are indicative in late prehospital presentation of paediatric PA.
Collapse
Affiliation(s)
- V Marjanović
- Clinic for Anaesthesiology, Reanimatology and Intensive Therapy, University Clinical Centre Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - M Zečević
- Faculty of Medicine, University of Nis, Nis, Serbia
- Clinic for Paediatric Surgery, Paediatric Orthopaedics and Traumatology, University Clinical Centre Nis, Nis, Serbia
| | - I Budić
- Clinic for Anaesthesiology, Reanimatology and Intensive Therapy, University Clinical Centre Nis, Nis, Serbia
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - D Živanović
- Faculty of Medicine, University of Nis, Nis, Serbia
- Clinic for Paediatric Surgery, Paediatric Orthopaedics and Traumatology, University Clinical Centre Nis, Nis, Serbia
| | - J Lilić
- Clinic for Anaesthesiology, Reanimatology and Intensive Therapy, University Clinical Centre Nis, Nis, Serbia
| | - L Marjanović
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - V Živanović
- Faculty of Medicine, University of Nis, Nis, Serbia
| | - M Stević
- Department of Anaesthesiology and Intensive Therapy, University Children's Hospital, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - D Simić
- Department of Anaesthesiology and Intensive Therapy, University Children's Hospital, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Salybekov AA, Tashov K, Sheng Y, Salybekova A, Shinozaki Y, Asahara T, Kobayashi S. Cardioimmunology in Health and Diseases: Impairment of the Cardio-Spleno-Bone Marrow Axis Following Myocardial Infarction in Diabetes Mellitus. Int J Mol Sci 2024; 25:11833. [PMID: 39519382 PMCID: PMC11546687 DOI: 10.3390/ijms252111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
A comprehensive understanding of the cardio-spleen-bone marrow immune cell axis is essential for elucidating the alterations occurring during the pathogenesis of diabetes mellitus (DM). This study investigates the dynamics of immune cell kinetics in DM after myocardial infarction (MI) over time. MI was induced in diabetic and healthy control groups using C57BL/N6 mice, with sacrifices occurring at days 1, 3, 7, and 28 post-MI to collect heart, peripheral blood (PB), spleen, and bone marrow (BM) samples. Cell suspensions from each organ were isolated and analyzed via flow cytometry. Additionally, the endothelial progenitor cell-colony-forming assay (EPC-CFA) was performed using mononuclear cells derived from BM, PB, and the spleen. The results indicated that, despite normal production in BM and the spleen, CD45+ cells were lower in the PB of DM mice at days 1 to 3. Further analysis revealed a reduction in total and pro-inflammatory neutrophils (N1s) in PB at days 1 to 3 and in the spleen at days 3 to 7 in DM mice, suggesting that DM-induced alterations in splenic neutrophils fail to meet the demand in PB and ischemic tissues. Infiltrating macrophages (total, M1, M2) were reduced at day 3 in the DM-ischemic heart, with total and M1 (days 1-3) and M2 (days 3-7) macrophages being significantly decreased in DM-PB compared to controls, indicating impaired macrophage recruitment and polarization in DM. Myeloid dendritic cells (mDCs) in the heart were higher from days 1 to 7, which corresponded with the enhanced recruitment of CD8+ cells from days 1 to 28 in the DM-infarcted myocardium. Total CD4+ cells decreased in DM-PB at days 1 to 3, suggesting a delayed adaptive immune response to MI. B cells were reduced in PB at days 1 to 3, in myocardium at day 3, and in the spleen at day 7, indicating compromised mobilization from BM. EPC-CFA results showed a marked decrease in definitive EPC colonies in the spleen and BM from days 1 to 28 in DM mice compared to controls in vitro, highlighting that DM severely impairs EPC colony-forming activity by limiting the differentiation of EPCs from primitive to definitive forms. Taking together, this study underscores significant disruptions in the cardio-spleen-bone marrow immune cell axis following MI in DM, revealing delayed innate and adaptive immune responses along with impaired EPC differentiation.
Collapse
Affiliation(s)
- Amankeldi A. Salybekov
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (Y.S.)
| | - Kanat Tashov
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (Y.S.)
| | - Yin Sheng
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (Y.S.)
| | - Ainur Salybekova
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (Y.S.)
| | - Yoshiko Shinozaki
- Teaching and Research Support Core Center, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takayuki Asahara
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
- Department of Advanced Medicine Science, Tokai University School of Medicine, Isehara 259-1193, Japan; (K.T.); (Y.S.)
| | - Shuzo Kobayashi
- Kidney Disease and Transplant Center, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan;
- Shonan Research Institute of Innovative Medicine, Shonan Kamakura General Hospital, Kamakura 247-8533, Japan
| |
Collapse
|
12
|
Gayathri SL, Bhakat M, Mohanty TK. Thermographic assessment of mastitis progression in sahiwal cattle: Insights into the patterns in the natural course of infection. Microb Pathog 2024; 196:106964. [PMID: 39313135 DOI: 10.1016/j.micpath.2024.106964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Mastitis is a global concern in the dairy sector, demanding innovative solutions for effective management for quality lifetime milk production. In this study, infrared thermography (IRT) as a non-invasive technology was integrated into routine farm activities for continuous health monitoring of animals. For 30 days, we systematically monitored the udder health status in 40 Sahiwal cows (160 quarters), employing IRT along with the California Mastitis Test (CMT). We also assessed somatic cell count (SCC), microbial identification, and milk quality parameters of representative samples. The thermal imaging data was analyzed, considering both backward propagation from the 0th day to the -10th day and forward propagation from the 0th day to the +10th day. Our findings revealed that on the 0th day, the mean temperatures of the udder surface skin temperature (USST) and teat skin surface temperature (TSST) exhibited differences (p < 0.05) between the quarters affected by sub-clinical mastitis (SCM) and clinical mastitis (CM) in comparison to the healthy quarters, with the highest degree of difference observed. The observed temperature differences between CM and SCM quarters compared to healthy ranged from 1.8 to 3.62 °C and 0.98 to 3.23 °C for USST, and from 1.68 to 3.16 °C and 0.56 to 2.32 °C for TSST, respectively. Furthermore, our observations indicated that both udder and teat quarters responded differently to mastitis. A temperature rise of 1.37 °C in SCM quarters and 1.75 °C in CM quarters was observed between the -10th and -8th day relative to day 0, with the increase being more pronounced in the morning hours. Also, a notable temperature surge occurred during the -2nd and -1st days relative to the 0th day. The log10SCC values and milk quality parameters significantly differed (p < 0.05) between mastitis-affected and healthy samples. In addition, Staphylococcus spp. was identified as the predominant mastitis-causing pathogen in the bacteriological identification conducted in this study. Therefore, IRT efficiently assesses the initiation point of udder infection in Sahiwal cows, aiding in effective udder health management.
Collapse
Affiliation(s)
- S L Gayathri
- Livestock Production Management Division, ICAR- National Dairy Research Institute, Karnal, Haryana-132001, India.
| | - M Bhakat
- Livestock Production Management Division, ICAR- National Dairy Research Institute, Karnal, Haryana-132001, India.
| | - T K Mohanty
- Livestock Production Management Division, ICAR- National Dairy Research Institute, Karnal, Haryana-132001, India.
| |
Collapse
|
13
|
Mihlan M, Wissmann S, Gavrilov A, Kaltenbach L, Britz M, Franke K, Hummel B, Imle A, Suzuki R, Stecher M, Glaser KM, Lorentz A, Carmeliet P, Yokomizo T, Hilgendorf I, Sawarkar R, Diz-Muñoz A, Buescher JM, Mittler G, Maurer M, Krause K, Babina M, Erpenbeck L, Frank M, Rambold AS, Lämmermann T. Neutrophil trapping and nexocytosis, mast cell-mediated processes for inflammatory signal relay. Cell 2024; 187:5316-5335.e28. [PMID: 39096902 DOI: 10.1016/j.cell.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/10/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024]
Abstract
Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.
Collapse
Affiliation(s)
- Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| | - Stefanie Wissmann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute for Biomechanics, ETH Zürich, Zürich 8092, Switzerland
| | - Alina Gavrilov
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Roche Pharma Research and Early Development (pRED), Cardiovascular, Metabolism, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center, Basel 4070, Switzerland
| | - Lukas Kaltenbach
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marie Britz
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Barbara Hummel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Andrea Imle
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Ryo Suzuki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manuel Stecher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Axel Lorentz
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart 70593, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, VIB Center for Cancer Biology, VIB, Leuven 3000, Belgium; Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Takehiko Yokomizo
- Department of Biochemistry, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Medical Research Council (MRC) Toxicology Unit and Department of Genetics, University of Cambridge, Cambridge CB21QR, UK
| | - Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Marcus Maurer
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Karoline Krause
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Berlin 12203, Germany; Charité-Universitätsmedizin Berlin, Institute of Allergology, Berlin 12203, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Universitätsklinikum Münster, Münster 48149, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Rostock 18057, Germany; Department Life, Light and Matter, Rostock University, Rostock 18051, Germany
| | - Angelika S Rambold
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster 48149, Germany.
| |
Collapse
|
14
|
Gordon RA, Cosgrove HA, Marinov A, Gingras S, Tilstra JS, Campbell AM, Bastacky SI, Kashgarian M, Perl A, Nickerson KM, Shlomchik MJ. NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7. JCI Insight 2024; 9:e178563. [PMID: 39042716 PMCID: PMC11343599 DOI: 10.1172/jci.insight.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haylee A. Cosgrove
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Jeremy S. Tilstra
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | | |
Collapse
|
15
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
16
|
Liu S, Chen Y, Jiang Y, Du J, Guo L, Xu J, Liu Y, Liu Y. The bidirectional effect of neutrophils on periodontitis model in mice: A systematic review. Oral Dis 2024; 30:2865-2875. [PMID: 37927000 DOI: 10.1111/odi.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To evaluate the regulatory role of neutrophils as the first line of host immune defense in the periodontal microenvironment of mice. METHODS A systematic search was performed using PubMed, Web of Science, and ScienceDirect databases for articles published between 2012 and 2023. In this review, articles investigating the effect of neutrophils on alveolar bone resorption in a mouse model of periodontitis were selected and evaluated according to eligibility criteria. Important variables that may influence outcomes were analyzed. RESULTS Eleven articles were included in this systematic review. The results showed that because of their immune defense functions, the functional homeostasis of local neutrophils is critical for periodontal health. Neutrophil deficiency aggravates alveolar bone loss. However, several studies have shown that excessive neutrophil infiltration is positively correlated with alveolar bone resorption caused by periodontitis in mice. Therefore, the homeostasis of neutrophil function needs to be considered in the treatment of periodontitis. CONCLUSIONS Pooled analysis suggests that neutrophils play a bidirectional role in periodontal tissue remodeling in mouse periodontitis models. Therefore, targeted regulation of local neutrophil function provides a novel strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Wang G, Ma X, Huang W, Wang S, Lou A, Wang J, Tu Y, Cui W, Zhou W, Zhang W, Li Y, Geng S, Meng Y, Li X. Macrophage biomimetic nanoparticle-targeted functional extracellular vesicle micro-RNAs revealed via multiomics analysis alleviate sepsis-induced acute lung injury. J Nanobiotechnology 2024; 22:362. [PMID: 38910259 PMCID: PMC11194988 DOI: 10.1186/s12951-024-02597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Patients who suffer from sepsis typically experience acute lung injury (ALI). Extracellular vesicles (EVs) contain miRNAs, which are potentially involved in ALI. However, strategies to screen more effective EV-miRNAs as therapeutic targets are yet to be elucidated. In this study, functional EV-miRNAs were identified based on multiomics analysis of single-cell RNA sequencing of targeted organs and serum EV (sEV) miRNA profiles in patients with sepsis. The proportions of neutrophils and macrophages were increased significantly in the lungs of mice receiving sEVs from patients with sepsis compared with healthy controls. Macrophages released more EVs than neutrophils. MiR-125a-5p delivery by sEVs to lung macrophages inhibited Tnfaip3, while miR-221-3p delivery to lung neutrophils inhibited Fos. Macrophage membrane nanoparticles (MM NPs) loaded with an miR-125a-5p inhibitor or miR-221-3p mimic attenuated the response to lipopolysaccharide (LPS)-induced ALI. Transcriptome profiling revealed that EVs derived from LPS-stimulated bone marrow-derived macrophages (BMDMs) induced oxidative stress in neutrophils. Blocking toll-like receptor, CXCR2, or TNFα signaling in neutrophils attenuated the oxidative stress induced by LPS-stimulated BMDM-EVs. This study presents a novel method to screen functional EV-miRNAs and highlights the pivotal role of macrophage-derived EVs in ALI. MM NPs, as delivery systems of key sEV-miRNA mimics or inhibitors, alleviated cellular responses observed in sepsis-induced ALI. This strategy can be used to reduce septic organ damage, particularly lung damage, by targeting EVs.
Collapse
Affiliation(s)
- Guozhen Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xiaoxin Ma
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Weichang Huang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shuanghu Wang
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China
| | - Anni Lou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jun Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Wanfu Cui
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wangmei Zhou
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenyong Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Li
- Department of Intensive Care Unit, General Hospital of Southern Theatre Command, Southern Medical University, Guangzhou 510515, China
| | - Shiyu Geng
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Ying Meng
- Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
18
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
19
|
Hu W, Zhang X, Sheng H, Liu Z, Chen Y, Huang Y, He W, Luo G. The mutual regulation between γδ T cells and macrophages during wound healing. J Leukoc Biol 2024; 115:840-851. [PMID: 37493223 DOI: 10.1093/jleuko/qiad087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Macrophages are the main cells shaping the local microenvironment during wound healing. As the prime T cells in the skin, γδ T cells participate in regulating microenvironment construction, determining their mutual regulation helps to understand the mechanisms of wound healing, and explore innovative therapeutic options for wound repair. This review introduced their respective role in wound healing firstly, and then summarized the regulatory effect of γδ T cells on macrophages, including chemotaxis, polarization, apoptosis, and pyroptosis. Last, the retrograde regulation on γδ T cells by macrophages was also discussed. The main purpose is to excavate novel interventions for treating wound and provide new thought for further research.
Collapse
Affiliation(s)
- Wengang Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Hao Sheng
- Urology Department, Second Affiliated Hospital, Third Military Medical University (Army Medical University), XinQiao District, Chongqing 400037, China
| | - Zhongyang Liu
- Department of Plastic Surgery, First Affiliated Hospital, Zhengzhou University, ErQi District, Zhengzhou, Henan 450000, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), ShaPingBa District, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, ShaPingBa District, Chongqing 400038, China
| |
Collapse
|
20
|
Najera J, Berry MM, Ramirez AD, Reyes BR, Angel A, Jellyman JK, Mercer F. Bovine neutrophils kill the sexually-transmitted parasite Tritrichomonas foetus using trogocytosis. Vet Res Commun 2024; 48:865-875. [PMID: 37968413 PMCID: PMC10998815 DOI: 10.1007/s11259-023-10260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
The protozoan parasite Tritrichomonas foetus (T. foetus) is the causative organism of bovine trichomonosis (also referred to as trichomoniasis), a sexually-transmitted infection that reduces fertility in cattle. Efforts to control trichomonosis on cattle farms are hindered by the discouragement of antibiotic use in agriculture, and the incomplete, short-lived protection conferred by the current vaccines. A more complete mechanistic understanding of what effective immunity to T. foetus entails could enable the development of more robust infection control strategies. While neutrophils, the primary responders to infection, are present in infected tissues and have been shown to kill the parasite in vitro, the mechanism they use for parasite killing has not been established. Here, we show that primary bovine neutrophils isolated from peripheral blood rapidly kill T. foetus in vitro in a dose-dependent manner, and that optimal parasite killing is reduced by inhibitors of trogocytosis. We also use imaging to show that bovine neutrophils surround T. foetus and trogocytose its membrane. These findings are consistent with killing via trogocytosis, a recently described novel neutrophil antimicrobial mechanism.
Collapse
Affiliation(s)
- Jonathan Najera
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Michael M Berry
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Ashley D Ramirez
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Bryan Ramirez Reyes
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Arielle Angel
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Juanita K Jellyman
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA
| | - Frances Mercer
- Department of Biological Sciences, California State Polytechnic University Pomona, Pomona, CA, 91768, USA.
| |
Collapse
|
21
|
Shi M, Chu F, Zhu F, Zhu J. Peripheral blood amyloid-β involved in the pathogenesis of Alzheimer's disease via impacting on peripheral innate immune cells. J Neuroinflammation 2024; 21:5. [PMID: 38178136 PMCID: PMC10765910 DOI: 10.1186/s12974-023-03003-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
A key pathological factor of Alzheimer's disease (AD), the most prevalent form of age-related dementia in the world, is excessive β-amyloid protein (Aβ) in extracellular aggregation in the brain. And in the peripheral blood, a large amount of Aβ is derived from platelets. So far, the causality between the levels of peripheral blood Aβ and its aggregation in the brain, particularly the role of the peripheral blood Aβ in the pathology of AD, is still unclear. And the relation between the peripheral blood Aβ and tau tangles of brain, another crucial pathologic factor contributing to the pathogenesis of AD, is also ambiguous. More recently, the anti-Aβ monoclonal antibodies are approved for treatment of AD patients through declining the peripheral blood Aβ mechanism of action to enhance plasma and central nervous system (CNS) Aβ clearance, leading to a decrease Aβ burden in brain and improving cognitive function, which clearly indicates that the levels of the peripheral blood Aβ impacted on the Aβ burden in brain and involved in the pathogenesis of AD. In addition, the role of peripheral innate immune cells in AD remains mostly unknown and the results obtained were controversial. In the present review, we summarize recent studies on the roles of peripheral blood Aβ and the peripheral innate immune cells in the pathogenesis of AD. Finally, based on the published data and our own work, we believe that peripheral blood Aβ plays an important role in the development and progression of AD by impacting on the peripheral innate immune cells.
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Feiqi Zhu
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
22
|
Deng Y, Li C, Huang L, Xiong P, Li Y, Liu Y, Li S, Chen W, Yin Q, Li Y, Yang Q, Peng H, Wu S, Wang X, Tong Q, Ouyang H, Hu D, Liu X, Li L, You J, Sun Z, Lu X, Xiao Z, Deng Y, Zhao H. Single-cell landscape of the cellular microenvironment in three different colonic polyp subtypes in children. Clin Transl Med 2024; 14:e1535. [PMID: 38264936 PMCID: PMC10807352 DOI: 10.1002/ctm2.1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The understanding of the heterogeneous cellular microenvironment of colonic polyps in paediatric patients with solitary juvenile polyps (SJPs), polyposis syndrome (PJS) and Peutz-Jeghers syndrome (PJS) remains limited. METHODS We conducted single-cell RNA sequencing and multiplexed immunohistochemistry (mIHC) analyses on both normal colonic tissue and different types of colonic polyps obtained from paediatric patients. RESULTS We identified both shared and disease-specific cell subsets and expression patterns that played important roles in shaping the unique cellular microenvironments observed in each polyp subtype. As such, increased myeloid, endothelial and epithelial cells were the most prominent features of SJP, JPS and PJS polyps, respectively. Noticeably, memory B cells were increased, and a cluster of epithelial-mesenchymal transition (EMT)-like colonocytes existed across all polyp subtypes. Abundant neutrophil infiltration was observed in SJP polyps, while CX3CR1hi CD8+ T cells and regulatory T cells (Tregs) were predominant in SJP and JPS polyps, while GZMAhi natural killer T cells were predominant in PJS polyps. Compared with normal colonic tissues, myeloid cells exhibited specific induction of genes involved in chemotaxis and interferon-related pathways in SJP polyps, whereas fibroblasts in JPS polyps had upregulation of myofiber-associated genes and epithelial cells in PJS polyps exhibited induction of a series of nutrient absorption-related genes. In addition, the TNF-α response was uniformly upregulated in most cell subsets across all polyp subtypes, while endothelial cells and fibroblasts separately showed upregulated cell adhesion and EMT signalling in SJP and JPS polyps. Cell-cell interaction network analysis showed markedly enhanced intercellular communication, such as TNF, VEGF, CXCL and collagen signalling networks, among most cell subsets in polyps, especially SJP and JPS polyps. CONCLUSION These findings strengthen our understanding of the heterogeneous cellular microenvironment of polyp subtypes and identify potential therapeutic approaches to reduce the recurrence of polyps in children.
Collapse
Affiliation(s)
- Yafei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Canlin Li
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Lanlan Huang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Yana Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Yongjie Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Songyang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Weijian Chen
- Department of PathologyHunan Children's HospitalChangshaChina
| | - Qiang Yin
- Department of Pediatric SurgeryHunan Children's HospitalChangshaChina
| | - Yong Li
- Department of Pediatric SurgeryHunan Children's HospitalChangshaChina
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Xiangyu Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Qin Tong
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Hongjuan Ouyang
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Die Hu
- Department of Clinical HematologyCollege of Pharmacy and Laboratory Medicine ScienceArmy Medical UniversityChongqingChina
| | - Xinjia Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
- The School of PediatricsHengyang Medical SchoolUniversity of South ChinaChangshaChina
| | - Liping Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Jieyu You
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| | - Zhiyi Sun
- Department of BiostatisticsSchool of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Xiulan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Zhenghui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency MedicineHunan Children's HospitalChangshaChina
| | - Youcai Deng
- Department of Clinical HematologyCollege of Pharmacy and Laboratory Medicine ScienceArmy Medical UniversityChongqingChina
| | - Hongmei Zhao
- Department of Digestive NutritionHunan Children's HospitalChangshaChina
| |
Collapse
|
23
|
Zhao X, Ting SM, Sun G, Bautista Garrido J, Obertas L, Aronowski J. Clearance of Neutrophils From ICH-Affected Brain by Macrophages Is Beneficial and Is Assisted by Lactoferrin and CD91. Stroke 2024; 55:166-176. [PMID: 38063014 PMCID: PMC10842928 DOI: 10.1161/strokeaha.123.045194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Within hours after intracerebral hemorrhage (ICH) onset, masses of polymorphonuclear neutrophils (PMNs) infiltrate the ICH-affected brain. After degranulation involving controlled release of many toxic antimicrobial molecules, the PMNs undergo rapid apoptosis and then are removed by phagocytic microglia/macrophages (MΦ) through a process called efferocytosis. Effective removal of PMNs may limit secondary brain damage and inflammation; however, the molecular mechanisms governing these cleanup activities are not well understood. We propose that scavenger receptor CD91 on myeloid phagocytes especially in presence of CD91 ligand, LTF (lactoferrin, protein abundant in PMNs), plays an important role in clearance of dead apoptotic PMNs (ANs). METHODS Mice/rats were subjected to an autologous blood injection model of ICH. Primary cultured microglia were used to assess phagocytosis of ANs. Immunohistochemistry was employed to assess CD91 expression and PMN infiltration. CD91 knockout mice selectively in myeloid phagocytes (Mac-CD91-KO) were used to establish the CD91/LTF function in phagocytosis and in reducing ICH-induced injury, as assessed using behavioral tests, hematoma resolution, and oxidative stress. RESULTS Masses of PMNs are found in ICH-affected brain, and they contain LTF. MΦ at the outer border of hematoma are densely packed, expressing CD91 and phagocytosing ANs. Microglia deficient in CD91 demonstrate defective phagocytosis of ANs, and mice deficient in CD91 (Mac-CD91-KO) subjected to ICH injury have increased neurological dysfunction that is associated with impaired hematoma resolution (hemoglobin and iron clearance) and elevated oxidative stress. LTF that normally ameliorates ICH injury in CD91-proficient control mice shows reduced therapeutic effects in Mac-CD91-KO mice. CONCLUSIONS Our study suggests that CD91 plays a beneficial role in improving ANs phagocytosis and ultimately post-ICH outcome and that the beneficial effect of LTF in ICH is in part dependent on presence of CD91 on MΦ.
Collapse
Affiliation(s)
- Xiurong Zhao
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | - Shun-Ming Ting
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | - Guanghua Sun
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | | | - Lidiya Obertas
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| | - Jaroslaw Aronowski
- Department of Neurology, University of Texas HSC, McGovern Medical School, Houston
| |
Collapse
|
24
|
Williams JG, Sluyter R, Sanderson-Smith ML. Streptococcus pyogenes emm98.1 variants activate inflammatory caspases in human neutrophils. Virulence 2023; 14:2264090. [PMID: 37830540 PMCID: PMC10578187 DOI: 10.1080/21505594.2023.2264090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
ABBREVIATIONS CovRS, control of virulence regulatory system; GAS, Group A Streptococcus; PMN, polymorphonuclear leukocyte.
Collapse
Affiliation(s)
- Jonathan G. Williams
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martina L. Sanderson-Smith
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
25
|
Wang X, Zhang Y, Wang Y, Liu J, Xu X, Liu J, Chen M, Shi L. The neutrophil percentage-to-albumin ratio is associated with all-cause mortality in patients with chronic heart failure. BMC Cardiovasc Disord 2023; 23:568. [PMID: 37980510 PMCID: PMC10657562 DOI: 10.1186/s12872-023-03472-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND In this study, we evaluated the predictive utility of neutrophil percentage-to-albumin ratio (NPAR) for all-cause mortality in patients with chronic heart failure (CHF). METHODS Patients diagnosed as CHF enrolled in this retrospective cohort study were from Beijing Chaoyang Hospital, capital medical university. Admission NPAR was calculated as neutrophil percentage divided by serum albumin. The endpoints of this study were defined as 90-day, 1-year and 2-year all-cause mortality. Multivariable Cox proportional hazard regression model was performed to confirm the association between NPAR and all-cause mortality. Receiver operating characteristics (ROC) curves were used to evaluate the ability for NPAR to predict all-cause mortality. RESULTS The 90-day (P = 0.009), 1-year (P < 0.001) and 2-year (P < 0.001) all-cause mortality in 622 patients with CHF were increased as admission NPAR increased. Multivariable Cox regression analysis found the higher NPAR value was still independently associated with increased risk of 90-day (Group III versus Group I: HR, 95% CI: 2.21, 1.01-4.86, P trend = 0.038), 1-year (Group III versus Group I: HR, 95% CI:2.13, 1.30-3.49, P trend = 0.003), and 2-year all-cause mortality (Group III versus Group I: HR, 95% CI:2.06, 1.37-3.09, P trend = 0.001), after adjustments for several confounders. ROC curves revealed that NPAR had a better ability to predict all-cause mortality in patients with CHF, than either albumin or the neutrophil percentage alone. CONCLUSIONS NPAR was independently correlated with 90-day, 1-year, and 2-year all-cause mortality in patients with CHF.
Collapse
Affiliation(s)
- Xin Wang
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Yuan Zhang
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Yuxing Wang
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Jia Liu
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Xiaorong Xu
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Jiamei Liu
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Mulei Chen
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China
| | - Linying Shi
- Heart Center and Beijing key laboratory of hypertension research, Beijing Chaoyang Hospital, Capital Medical University, 8# Gong-Ti South Road, 100020, Beijing, China.
| |
Collapse
|
26
|
Borgiani E, Nasello G, Ory L, Herpelinck T, Groeneveldt L, Bucher CH, Schmidt-Bleek K, Geris L. COMMBINI: an experimentally-informed COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse. Front Immunol 2023; 14:1231329. [PMID: 38130715 PMCID: PMC10733790 DOI: 10.3389/fimmu.2023.1231329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
Bone fracture healing is a well-orchestrated but complex process that involves numerous regulations at different scales. This complexity becomes particularly evident during the inflammatory stage, as immune cells invade the healing region and trigger a cascade of signals to promote a favorable regenerative environment. Thus, the emergence of criticalities during this stage might hinder the rest of the process. Therefore, the investigation of the many interactions that regulate the inflammation has a primary importance on the exploration of the overall healing progression. In this context, an in silico model named COMMBINI (COmputational Model of Macrophage dynamics in the Bone INjury Immunoresponse) has been developed to investigate the mechano-biological interactions during the early inflammatory stage at the tissue, cellular and molecular levels. An agent-based model is employed to simulate the behavior of immune cells, inflammatory cytokines and fracture debris as well as their reciprocal multiscale biological interactions during the development of the early inflammation (up to 5 days post-injury). The strength of the computational approach is the capacity of the in silico model to simulate the overall healing process by taking into account the numerous hidden events that contribute to its success. To calibrate the model, we present an in silico immunofluorescence method that enables a direct comparison at the cellular level between the model output and experimental immunofluorescent images. The combination of sensitivity analysis and a Genetic Algorithm allows dynamic cooperation between these techniques, enabling faster identification of the most accurate parameter values, reducing the disparity between computer simulation and histological data. The sensitivity analysis showed a higher sensibility of the computer model to the macrophage recruitment ratio during the early inflammation and to proliferation in the late stage. Furthermore, the Genetic Algorithm highlighted an underestimation of macrophage proliferation by in vitro experiments. Further experiments were conducted using another externally fixated murine model, providing an independent validation dataset. The validated COMMBINI platform serves as a novel tool to deepen the understanding of the intricacies of the early bone regeneration phases. COMMBINI aims to contribute to designing novel treatment strategies in both the biological and mechanical domains.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Gabriele Nasello
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Liesbeth Ory
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Tim Herpelinck
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Lisanne Groeneveldt
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Christian H. Bucher
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute, Berlin Institute of Health, Charitè – Universitätsmedizin Berlin, Berlin, Germany
| | - Liesbet Geris
- Biomechanics Research Unit, GIGA-In Silico Medicine, University of Liège, Liège, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Division of Biomechanics, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Crossley JL, Ostashevskaya-Gohstand S, Comazzetto S, Hook JS, Guo L, Vishlaghi N, Juan C, Xu L, Horswill AR, Hoxhaj G, Moreland JG, Tower RJ, Levi B. Itaconate-producing neutrophils regulate local and systemic inflammation following trauma. JCI Insight 2023; 8:e169208. [PMID: 37707952 PMCID: PMC10619500 DOI: 10.1172/jci.insight.169208] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
Modulation of the immune response to initiate and halt the inflammatory process occurs both at the site of injury as well as systemically. Due to the evolving role of cellular metabolism in regulating cell fate and function, tendon injuries that undergo normal and aberrant repair were evaluated by metabolic profiling to determine its impact on healing outcomes. Metabolomics revealed an increasing abundance of the immunomodulatory metabolite itaconate within the injury site. Subsequent single-cell RNA-Seq and molecular and metabolomic validation identified a highly mature neutrophil subtype, not macrophages, as the primary producers of itaconate following trauma. These mature itaconate-producing neutrophils were highly inflammatory, producing cytokines that promote local injury fibrosis before cycling back to the bone marrow. In the bone marrow, itaconate was shown to alter hematopoiesis, skewing progenitor cells down myeloid lineages, thereby regulating systemic inflammation. Therapeutically, exogenous itaconate was found to reduce injury-site inflammation, promoting tenogenic differentiation and impairing aberrant vascularization with disease-ameliorating effects. These results present an intriguing role for cycling neutrophils as a sensor of inflammation induced by injury - potentially regulating immune cell production in the bone marrow through delivery of endogenously produced itaconate - and demonstrate a therapeutic potential for exogenous itaconate following tendon injury.
Collapse
Affiliation(s)
| | | | | | | | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Lin Xu
- Department of Pediatrics, and
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gerta Hoxhaj
- Children’s Research Institute and Department of Pediatrics
| | | | | | | |
Collapse
|
28
|
Li H, Le L, Marrero M, David-Bercholz J, Caceres AI, Lim C, Chiang W, Majewska AK, Terrando N, Gelbard HA. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. RESEARCH SQUARE 2023:rs.3.rs-3459515. [PMID: 37961257 PMCID: PMC10635322 DOI: 10.21203/rs.3.rs-3459515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods We have applied a three-dose paradigm of 10μg/40μl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Linh Le
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Mariah Marrero
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | | | - Ana I Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Claire Lim
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
- Department of Immmunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY United States
| |
Collapse
|
29
|
Li H, Le L, Marrero M, David-Bercholz J, Caceres AI, Lim C, Chiang W, Majewska AK, Terrando N, Gelbard HA. Neutrophilia with damage to the blood-brain barrier and neurovascular unit following acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562508. [PMID: 37905036 PMCID: PMC10614777 DOI: 10.1101/2023.10.16.562508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Links between acute lung injury (ALI), infectious disease, and neurological outcomes have been frequently discussed over the past few years, especially due to the COVID-19 pandemic. Yet, much of the cross-communication between organs, particularly the lung and the brain, has been understudied. Here, we have focused on the role of neutrophils in driving changes to the brain endothelium with ensuing microglial activation and neuronal loss in a model of ALI. Methods We have applied a three-dose paradigm of 10μg/40μl intranasal lipopolysaccharide (LPS) to induce neutrophilia accompanied by proteinaceous exudate in bronchoalveolar lavage fluid (BALF) in adult C57BL/6 mice. Brain endothelial markers, microglial activation, and neuronal cytoarchitecture were evaluated 24hr after the last intranasal dose of LPS or saline. C57BL/6-Ly6g(tm2621(Cre-tdTomato)Arte (Catchup mice) were used to measure neutrophil and blood-brain barrier permeability following LPS exposure with intravital 2-photon imaging. Results Three doses of intranasal LPS induced robust neutrophilia accompanied by proteinaceous exudate in BALF. ALI triggered central nervous system pathology as highlighted by robust activation of the cerebrovascular endothelium (VCAM1, CD31), accumulation of plasma protein (fibrinogen), microglial activation (IBA1, CD68), and decreased expression of proteins associated with postsynaptic terminals (PSD-95) in the hippocampal stratum lacunosum moleculare, a relay station between the entorhinal cortex and CA1 of the hippocampus. 2-photon imaging of Catchup mice revealed neutrophil homing to the cerebral endothelium in the blood-brain barrier and neutrophil extravasation from cerebral vasculature 24hr after the last intranasal treatment. Conclusions Overall, these data demonstrate ensuing brain pathology resulting from ALI, highlighting a key role for neutrophils in driving brain endothelial changes and subsequent neuroinflammation. This paradigm may have a considerable translational impact on understanding how infectious disease with ALI can lead to neurodegeneration, particularly in the elderly.
Collapse
Affiliation(s)
- Herman Li
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Linh Le
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Mariah Marrero
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | | | - Ana I Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Claire Lim
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY United States
| | - Ania K Majewska
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY United States
- Department of Neurology, University of Rochester Medical Center, Rochester, NY United States
- Department of Immmunology, Microbiology, and Virology, University of Rochester Medical Center, Rochester, NY United States
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY United States
| |
Collapse
|
30
|
Ekstedt S, Lagebro V, Kumlien Georén S, Cardell LO. Prolonged inflammatory resolution in allergic asthma relates to dysfunctional interactions between neutrophils and airway epithelium. Ann Allergy Asthma Immunol 2023; 131:349-355.e3. [PMID: 37268244 DOI: 10.1016/j.anai.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Allergic asthma is a heterogeneous disorder involving chronic airway inflammation, reversible airflow limitation, and tissue remodeling, causing chronic airflow limitation. Most of the asthma research has been focused on elucidating the proinflammatory pathways underlying disease pathogenesis. Paradoxically, the necessity of appropriate termination and resolution of inflammation has not been recognized until recently. The latter has led to the concept of chronic inflammation developing as a result of lack of specific "stop" signals for the inflammatory process. OBJECTIVE To investigate the interaction between neutrophils and airway epithelium during inflammatory resolution in patients with allergic asthma. METHODS An in vitro scratch assay with cultured epithelial cells, based on live-imaging microscopy, was used to evaluate regeneration and the influence of neutrophils on resolution. Epithelial cells and autologous neutrophils were derived from healthy donors and patients with allergic asthma. Supernatants and cells were collected for enzyme-linked immunosorbent assay and transcriptional analyses at the end of the experiment. RESULTS Healthy epithelial cells regenerated faster than epithelial cells from patients with allergic asthma. Autologous neutrophils improved the regeneration of healthy epithelial cells but not asthmatic epithelial cells. Interleukin (IL)-8 and β-catenin were down-regulated in healthy epithelial cells after resolution, but not in allergic asthmatic epithelial cells. CONCLUSION The prolonged duration of inflammation in the respiratory tract in patients with allergic asthma could be due to the impaired healing pattern of epithelial cells and their compromised interactions with the neutrophils.
Collapse
Affiliation(s)
- Sandra Ekstedt
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Olaf Cardell
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of ENT Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Zheng H, Cheng X, Jin L, Shan S, Yang J, Zhou J. Recent advances in strategies to target the behavior of macrophages in wound healing. Biomed Pharmacother 2023; 165:115199. [PMID: 37517288 DOI: 10.1016/j.biopha.2023.115199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023] Open
Abstract
Chronic wounds and scar formation are widespread due to limited suitable remedies. The macrophage is a crucial regulator in wound healing, controlling the onset and termination of inflammation and regulating other processes related to wound healing. The current breakthroughs in developing new medications and drug delivery methods have enabled the accurate targeting of macrophages in oncology and rheumatic disease therapies through clinical trials. These successes have cleared the way to utilize drugs targeting macrophages in various disorders. This review thus summarizes macrophage involvement in normal and pathologic wound healing. It further details the targets available for macrophage intervention and therapeutic strategies for targeting the behavior of macrophages in tissue repair and regeneration.
Collapse
Affiliation(s)
- Hongkun Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinwei Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lu Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
32
|
Soliman AM, Barreda DR. The acute inflammatory response of teleost fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104731. [PMID: 37196851 DOI: 10.1016/j.dci.2023.104731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Acute inflammation is crucial to the immune responses of fish. The process protects the host from infection and is central to induction of subsequent tissue repair programs. Activation of proinflammatory signals reshapes the microenvironment within an injury/infection site, initiates leukocyte recruitment, promotes antimicrobial mechanisms and contributes to the resolution of inflammation. Inflammatory cytokines and lipid mediators are primary contributors to these processes. Uncontrolled or persistent induction results in delayed tissue healing. The kinetics by which inducers and regulators of acute inflammation exert their actions is essential for understanding the pathogenesis of fish diseases and identifying potential treatments. Although, a number of these are well-conserved across, others are not, reflecting the unique physiologies and life histories of members of this unique animal group.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences, University of Alberta, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Canada.
| |
Collapse
|
33
|
Chen K, Zhang Z, Fang Z, Zhang J, Liu Q, Dong W, Liu Y, Wang Y, Wang J. Aged-Signal-Eliciting Nanoparticles Stimulated Macrophage-Mediated Programmed Removal of Inflammatory Neutrophils. ACS NANO 2023; 17:13903-13916. [PMID: 37458397 DOI: 10.1021/acsnano.3c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Excessive infiltration of activated neutrophils is regarded as a predominant cause of tissue injury in neutrophilic inflammation. Although programmed cell death like apoptosis maintains the homeostasis of activated neutrophils, this process is disrupted by an abnormal inflammatory response. Unlike endogenous calreticulin exposed during apoptosis, exogenous calreticulin acts as an "aged" signal and initiates premature macrophage-mediated programmed cell removal (PrCR), which is independent of apoptosis. Here, we report a nano-mediated strategy to stimulate the precise clearance of activated neutrophils initiated with artificial aged signal and alleviated inflammation. Polymeric nanoparticles PC@PLGA were fabricated by cloaking poly(lactic-co-glycolic acid) (PLGA) with a hybrid membrane derived from platelet-derived extracellular vesicles (PEVs, denoted by P) and the calreticulin-expressed membrane obtained from doxorubicin-treated cells (denoted by C). P-selectin in PEVs favors PC@PLGA to anchor activated neutrophils, while calreticulin mimics exogenous "aged" signal secreted by macrophages to trigger PrCR. We showed that PC@PLGA specifically targeted activated neutrophils and misled macrophages to recognize them as "aged" neutrophils and then initiated premature PrCR and prevented proinflammatory response and tissue damage in a mouse model of acute lung injury and severe acute pancreatitis. The collective findings indicate the efficiency of specific elimination of activated neutrophils with exogenous aged signal in improving inflammation therapy.
Collapse
Affiliation(s)
- Kaige Chen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| | - Ziyuan Fang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiachen Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qian Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wang Dong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| |
Collapse
|
34
|
Chu X, Xiong Y, Knoedler S, Lu L, Panayi AC, Alfertshofer M, Jiang D, Rinkevich Y, Lin Z, Zhao Z, Dai G, Mi B, Liu G. Immunomodulatory Nanosystems: Advanced Delivery Tools for Treating Chronic Wounds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0198. [PMID: 37456931 PMCID: PMC10348408 DOI: 10.34133/research.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The increasingly aging society led to a rise in the prevalence of chronic wounds (CWs), posing a significant burden to public health on a global scale. One of the key features of CWs is the presence of a maladjusted immune microenvironment characterized by persistent and excessive (hyper)inflammation. A variety of immunomodulatory therapies have been proposed to address this condition. Yet, to date, current delivery systems for immunomodulatory therapy remain inadequate and lack efficiency. This highlights the need for new therapeutic delivery systems, such as nanosystems, to manage the pathological inflammatory imbalance and, ultimately, improve the treatment outcomes of CWs. While a plethora of immunomodulatory nanosystems modifying the immune microenvironment of CWs have shown promising therapeutic effects, the literature on the intersection of immunomodulatory nanosystems and CWs remains relatively scarce. Therefore, this review aims to provide a comprehensive overview of the pathogenesis and characteristics of the immune microenvironment in CWs, discuss important advancements in our understanding of CW healing, and delineate the versatility and applicability of immunomodulatory nanosystems-based therapies in the therapeutic management of CWs. In addition, we herein also shed light on the main challenges and future perspectives in this rapidly evolving research field.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhiming Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
35
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW The intricate interplay between inflammatory and reparative responses in the context of heart injury is central to the pathogenesis of heart failure. Recent clinical studies have shown the therapeutic benefits of anti-inflammatory strategies in the treatment of cardiovascular diseases. This review provides a comprehensive overview of the cross-talk between immune cells and fibroblasts in the diseased heart. RECENT FINDINGS The role of inflammatory cells in fibroblast activation after cardiac injury is well-documented, but recent single-cell transcriptomics studies have identified putative pro-inflammatory fibroblasts in the infarcted heart, suggesting that fibroblasts, in turn, can modify inflammatory cell behavior. Furthermore, anti-inflammatory immune cells and fibroblasts have been described. The use of spatial and temporal-omics analyses may provide additional insights toward a better understanding of disease-specific microenvironments, where activated fibroblasts and inflammatory cells are in proximity. Recent studies focused on the interplay between fibroblasts and immune cells have brought us closer to the identification of cell type-specific targets for intervention. Further exploration of these intercellular communications will provide deeper insights toward the development of novel therapeutics.
Collapse
Affiliation(s)
- Akitoshi Hara
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, 96825, USA.
| | - Michelle D Tallquist
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI, 96825, USA
| |
Collapse
|
37
|
Kapogiannis C, Zaggogianni T, Stergiou N, Kakleas K, Kapogiannis A, Gakiopoulou H, Kanaka-Gantenbein C. Cyclic neutropenia and concomitant IgA nephropathy: a case report. BMC Nephrol 2023; 24:124. [PMID: 37138249 PMCID: PMC10157981 DOI: 10.1186/s12882-023-03179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is universally recognized as one of the most common primary glomerular diseases in all ages. Cyclic neutropenia (CN) is a rare haematologic disorder that is associated with mutations of the ELANE gene. The co-occurrence of IgAN and CN is extremely rare. This is the first case report of a patient with IgAN and genetically confirmed CN. CASE PRESENTATION We report a case of a 10-year-old boy who presented with recurrent viral upper respiratory tract infections accompanied by several episodes of febrile neutropenia, haematuria, proteinuria and acute kidney injury. Upon first admission, his physical examination was unremarkable. His kidney function was impaired, whereas his urine microscopy showed evidence of macroscopic haematuria and proteinuria. Further workup showed elevated IgA. The renal histology was consistent with mesangial and endocapillary hypercellularity with mild crescentic lesions, while immunofluorescence microscopy showed IgA-positive staining, which was characteristic of IgAN. Moreover, genetic testing confirmed the clinical diagnosis of CN, therefore Granulocyte colony-stimulating factor (G-CSF) was initiated to stabilize the neutrophil count. Regarding proteinuria control, the patient was initially treated with an Angiotensin-converting-enzyme inhibitor for approximately 28 months. However, due to progressive proteinuria (> 1 g/24 h), Corticosteroids (CS) were added for a period of 6 months according to the revised 2021 KDIGO guidelines with favorable outcome. CONCLUSIONS Patients with CN are more susceptible to recurrent viral infections, which can trigger IgAN attacks. In our case CS induced remarkable proteinuria remission. The use of G-CSF contributed to the resolution of severe neutropenic episodes, viral infections and concomitant AKI episodes, contributing to better prognosis of IgAN. Further studies are mandatory to determine whether there is a genetical predisposition for IgAN in children with CN.
Collapse
Affiliation(s)
- C Kapogiannis
- Renal Unit, First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece.
- Renal Unit, Great Ormond Street Hospital, London, UK.
| | - T Zaggogianni
- First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - N Stergiou
- Renal Unit, First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - K Kakleas
- First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - A Kapogiannis
- Renal Unit, First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| | - H Gakiopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - C Kanaka-Gantenbein
- First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
38
|
Zhang Z, Wang A, Wang Y, Sun W, Zhou X, Xu Q, Mao L, Zhang J. Canthin-6-Ones: Potential Drugs for Chronic Inflammatory Diseases by Targeting Multiple Inflammatory Mediators. Molecules 2023; 28:3381. [PMID: 37110614 PMCID: PMC10141368 DOI: 10.3390/molecules28083381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic inflammatory disease (CID) is a category of medical conditions that causes recurrent inflammatory attacks in multiple tissues. The occurrence of CID is related to inappropriate immune responses to normal tissue substances and invading microbes due to many factors, such as defects in the immune system and imbalanced regulation of commensal microbes. Thus, effectively keeping the immune-associated cells and their products in check and inhibiting aberrant activation of the immune system is a key strategy for the management of CID. Canthin-6-ones are a subclass of β-carboline alkaloids isolated from a wide range of species. Several emerging studies based on in vitro and in vivo experiments reveal that canthin-6-ones may have potential therapeutic effects on many inflammatory diseases. However, no study has yet summarized the anti-inflammatory functions and the underlying mechanisms of this class of compounds. This review provides an overview of these studies, focusing on the disease entities and the inflammatory mediators that have been shown to be affected by canthin-6-ones. In particular, the major signaling pathways affected by canthin-6-ones, such as the NLR family pyrin domain containing 3 (NLRP3) inflammasome and the NF-κB signaling pathway, and their roles in several CIDs are discussed. Moreover, we discuss the limitations in studies of canthin-6-ones and provide possible solutions. In addition, a perspective that may suggest possible future research directions is provided. This work may be helpful for further mechanistic studies and possible therapeutic applications of canthin-6-ones in the treatment of CID.
Collapse
Affiliation(s)
- Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Anqi Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Weichen Sun
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
39
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
40
|
Palomino-Segura M, Sicilia J, Ballesteros I, Hidalgo A. Strategies of neutrophil diversification. Nat Immunol 2023; 24:575-584. [PMID: 36959290 PMCID: PMC10139675 DOI: 10.1038/s41590-023-01452-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/03/2023] [Indexed: 03/25/2023]
Abstract
Neutrophils are formidable defenders. Their vast numbers, constant production, high cytotoxicity and capacity to produce extracellular traps, underlie their ability to efficiently protect in a microorganism-rich world. However, neutrophils are much more than immune sentinels, as evidenced by the expanding repertoire of functions discovered in the context of tissue homeostasis, regeneration or chronic pathologies. In this Perspective, we discuss general functional features of the neutrophil compartment that may be relevant in most, if not all, physiological scenarios in which they participate, including specialization in naïve tissues, transcriptional noise in the bloodstream as a potential strategy for diversification and functional bias in inflammatory sites. We intentionally present the reader with more questions than answers and propose models and approaches that we hope will shed new light onto the biology of these fascinating cells and spark new directions of research.
Collapse
Affiliation(s)
- Miguel Palomino-Segura
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE) and Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain.
| | - Jon Sicilia
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Iván Ballesteros
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
- Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Adrover JM, McDowell SAC, He XY, Quail DF, Egeblad M. NETworking with cancer: The bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell 2023; 41:505-526. [PMID: 36827980 DOI: 10.1016/j.ccell.2023.02.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Neutrophils are major effectors and regulators of the immune system. They play critical roles not only in the eradication of pathogens but also in cancer initiation and progression. Conversely, the presence of cancer affects neutrophil activity, maturation, and lifespan. By promoting or repressing key neutrophil functions, cancer cells co-opt neutrophil biology to their advantage. This co-opting includes hijacking one of neutrophils' most striking pathogen defense mechanisms: the formation of neutrophil extracellular traps (NETs). NETs are web-like filamentous extracellular structures of DNA, histones, and cytotoxic granule-derived proteins. Here, we discuss the bidirectional interplay by which cancer stimulates NET formation, and NETs in turn support disease progression. We review how vascular dysfunction and thrombosis caused by neutrophils and NETs underlie an elevated risk of death from cardiovascular events in cancer patients. Finally, we propose therapeutic strategies that may be effective in targeting NETs in the clinical setting.
Collapse
Affiliation(s)
- Jose M Adrover
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada; Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
42
|
Aries ML, Hensley-McBain T. Neutrophils as a potential therapeutic target in Alzheimer's disease. Front Immunol 2023; 14:1123149. [PMID: 36936930 PMCID: PMC10020508 DOI: 10.3389/fimmu.2023.1123149] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States. Sporadic or late-onset AD remains incompletely understood, with age as the current greatest risk factor. Inflammation in general and neutrophils, a potent mediator of inflammation, have been shown to exacerbate AD associated dementia. This review explores the latest research on neutrophils in AD mouse models and in human cohort studies and discusses current gaps in research and needs for future studies. AD mouse models have shown neutrophil chemotactic migration towards amyloid beta plaques in the brain. Capillary blood flow stalling decreases blood perfusion to associated brain regions and mouse studies have demonstrated that anti-Ly6G antibodies lead to a decrease in capillary blood flow stalling and memory improvement. Several recent transcriptomic studies of blood and brain tissue from persons with AD have shown an upregulation in neutrophil-related genes, and studies have demonstrated neutrophil involvement in brain capillary adhesion, blood brain barrier breaching, myeloperoxidase release, and the propensity for neutrophil extracellular trap release in AD. Neutrophil-derived inflammation and regulation are a potential potent novel therapeutic target for AD progression. Future studies should further investigate neutrophil functionality in AD. In addition, other aspects of AD that may impact neutrophils including the microbiome and the APOE4 allele should be studied.
Collapse
|
43
|
Li W, Xiong F, Yao C, Zhang T, Zhou L, Zhang Z, Wang Z, Mao Y, Zhou P, Guan J. The impact of Allgower-Donati suture pattern and postoperative sweet foods on wound suture breakage in experimental rats. Heliyon 2023; 9:e13934. [PMID: 36915567 PMCID: PMC10006471 DOI: 10.1016/j.heliyon.2023.e13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
Background Wound gnawing and/or scratching in rats often occurs in experimental models, causing suture breakage and wound dehiscence, and consequently affecting experimental results and wasting resources. This study aimed to investigate the impact of the combined postoperative use of the Allgower-Donati (A-D) suture pattern and sweet foods on suture breakage, inflammation, and healing in wounds. Materials and methods Sprague Dawley (SD) rats (n = 48) were treated for linear wounds on the back by four procedures: simple suture, simple suture with postoperative sweet foods, A-D suture, and A-D suture with postoperative sweet foods. Additionally, CD68 immunofluorescence and CD31 immunohistochemistry were used to analyze wound inflammation and vascularization, respectively, on postoperative day 7. Sirius red staining was used to assess collagen deposition on postoperative day 14. Results Gnawing and scratching of wound sutures were significantly reduced in treated rats (P < 0.01). Neovascularization and collagen deposition were significantly increased (P < 0.001), and inflammatory responses were significantly reduced (P < 0.001) in animals receiving AD sutures and postoperative sweet foods. CD31/CD68 analyses showed that A-D suture and postoperative sweet foods regulated wound angiogenesis and attenuated wound inflammation. Conclusions Sweet food provision after A-D suture union surgery could reduce wound gnawing and/or scratching, suture breakage, incisional dehiscence, wound inflammation, and promote wound healing in rats.
Collapse
Affiliation(s)
- Weifeng Li
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- First Department of Orthopedics, People's Hospital of Lixin County, Bozhou, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Feng Xiong
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Cheng Yao
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Tingbao Zhang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Liangshuang Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
| | - Zhanyue Zhang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Zhaodong Wang
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Yingji Mao
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital, Bengbu Medical College, Bengbu, China
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu, China
| |
Collapse
|
44
|
Abstract
The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, "trained", neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
45
|
Putative Role of Neutrophil Extracellular Trap Formation in Chronic Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054497. [PMID: 36901933 PMCID: PMC10003516 DOI: 10.3390/ijms24054497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by gene mutations that promote myeloproliferation and resistance to apoptosis via constitutively active signaling pathways, with Janus kinase 2-signal transducers and the activators of transcription (JAK-STAT) axis as a core part. Chronic inflammation has been described as a pivot for the development and advancement of MPNs from early stage cancer to pronounced bone marrow fibrosis, but there are still unresolved questions regarding this issue. The MPN neutrophils are characterized by upregulation of JAK target genes, they are in a state of activation and with deregulated apoptotic machinery. Deregulated neutrophil apoptotic cell death supports inflammation and steers them towards secondary necrosis or neutrophil extracellular trap (NET) formation, a trigger of inflammation both ways. NETs in proinflammatory bone marrow microenvironment induce hematopoietic precursor proliferation, which has an impact on hematopoietic disorders. In MPNs, neutrophils are primed for NET formation, and even though it seems obvious for NETs to intervene in the disease progression by supporting inflammation, no reliable data are available. We discuss in this review the potential pathophysiological relevance of NET formation in MPNs, with the intention of contributing to a better understanding of how neutrophils and neutrophil clonality can orchestrate the evolution of a pathological microenvironment in MPNs.
Collapse
|
46
|
Distinctive role of inflammation in tissue repair and regeneration. Arch Pharm Res 2023; 46:78-89. [PMID: 36719600 DOI: 10.1007/s12272-023-01428-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/07/2023] [Indexed: 02/01/2023]
Abstract
Inflammation is an essential host defense mechanism in response to microbial infection and tissue injury. In addition to its well-established role in infection, inflammation is actively involved in the repair of damaged tissues and restoration of homeostatic conditions after tissue injury. The intensity of the inflammatory response and types of cells involved in inflammation have a significant impact on the quality of tissue repair. Numerous immune cell subtypes participate in tissue repair and regeneration. In particular, immune cell-derived secretants, including cytokines and growth factors, can actively modulate the proliferation of resident stem cells or progenitor cells to facilitate tissue regeneration. These findings highlight the importance of inflammation during tissue repair and regeneration; however, the precise role of immune cells in tissue regeneration remains unclear. In this review, we summarize the current knowledge on the contribution of specific immune cell types to tissue repair and regeneration. We also discuss how inflammation affects the final outcome of tissue regeneration.
Collapse
|
47
|
Li T, Yan Z, Fan Y, Fan X, Li A, Qi Z, Zhang J. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med 2023; 9:1077290. [PMID: 36698953 PMCID: PMC9868426 DOI: 10.3389/fcvm.2022.1077290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Myocardial infarction is the leading cause of death and disability worldwide, and the development of new treatments can help reduce the size of myocardial infarction and prevent adverse cardiovascular events. Cardiac repair after myocardial infarction can effectively remove necrotic tissue, induce neovascularization, and ultimately replace granulation tissue. Cardiac inflammation is the primary determinant of whether beneficial cardiac repair occurs after myocardial infarction. Immune cells mediate inflammatory responses and play a dual role in injury and protection during cardiac repair. After myocardial infarction, genetic ablation or blocking of anti-inflammatory pathways is often harmful. However, enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways may improve cardiac repair after myocardial infarction. A deficiency of neutrophils or monocytes does not improve overall cardiac function after myocardial infarction but worsens it and aggravates cardiac fibrosis. Several factors are critical in regulating inflammatory genes and immune cells' phenotypes, including DNA methylation, histone modifications, and non-coding RNAs. Therefore, strict control and timely suppression of the inflammatory response, finding a balance between inflammatory cells, preventing excessive tissue degradation, and avoiding infarct expansion can effectively reduce the occurrence of adverse cardiovascular events after myocardial infarction. This article reviews the involvement of neutrophils, monocytes, macrophages, and regulatory T cells in cardiac repair after myocardial infarction. After myocardial infarction, neutrophils are the first to be recruited to the damaged site to engulf necrotic cell debris and secrete chemokines that enhance monocyte recruitment. Monocytes then infiltrate the infarct site and differentiate into macrophages and they release proteases and cytokines that are harmful to surviving myocardial cells in the pre-infarct period. As time progresses, apoptotic neutrophils are cleared, the recruitment of anti-inflammatory monocyte subsets, the polarization of macrophages toward the repair phenotype, and infiltration of regulatory T cells, which secrete anti-inflammatory factors that stimulate angiogenesis and granulation tissue formation for cardiac repair. We also explored how epigenetic modifications regulate the phenotype of inflammatory genes and immune cells to promote cardiac repair after myocardial infarction. This paper also elucidates the roles of alarmin S100A8/A9, secreted frizzled-related protein 1, and podoplanin in the inflammatory response and cardiac repair after myocardial infarction.
Collapse
Affiliation(s)
- Tingting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhipeng Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajie Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aolin Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Zhongwen Qi,
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,Junping Zhang,
| |
Collapse
|
48
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Soliman AM, Barreda DR. Acute Inflammation in Tissue Healing. Int J Mol Sci 2022; 24:ijms24010641. [PMID: 36614083 PMCID: PMC9820461 DOI: 10.3390/ijms24010641] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
There are well-established links between acute inflammation and successful tissue repair across evolution. Innate immune reactions contribute significantly to pathogen clearance and activation of subsequent reparative events. A network of molecular and cellular regulators supports antimicrobial and tissue repair functions throughout the healing process. A delicate balance must be achieved between protection and the potential for collateral tissue damage associated with overt inflammation. In this review, we summarize the contributions of key cellular and molecular components to the acute inflammatory process and the effective and timely transition toward activation of tissue repair mechanisms. We further discuss how the disruption of inflammatory responses ultimately results in chronic non-healing injuries.
Collapse
Affiliation(s)
- Amro M. Soliman
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence: ; Tel.: +1-(780)492-0375
| |
Collapse
|
50
|
Masgrau-Alsina S, Wackerbarth LM, Lim DS, Sperandio M. MST1 controls murine neutrophil homeostasis via the G-CSFR/STAT3 axis. Front Immunol 2022; 13:1038936. [PMID: 36618429 PMCID: PMC9816424 DOI: 10.3389/fimmu.2022.1038936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The release of neutrophils from the bone marrow into the blood circulation is essential for neutrophil homeostasis and the protection of the organism from invading microorganisms. Granulocyte colony-stimulating factor (G-CSF) plays a pivotal role in this process and guides granulopoiesis as well as the release of bone marrow neutrophils into the blood stream both during homeostasis and in case of infection through activation of the G-CSF receptor/signal transduction and activation of transcription 3 (STAT3) signaling pathway. Here, we investigated the role of the mammalian sterile 20-like kinase 1 (MST1) for neutrophil homeostasis and neutrophil mobilization. We found increased plasma levels of G-CSF in Mst1 -/- mice compared to wild type mice both under homeostatic conditions as well as after stimulation with the proinflammatory cytokine TNF-α. In addition, G-CSF-induced mobilization of neutrophils from the bone marrow into the blood circulation in vivo was markedly reduced in the absence of MST1. Interestingly, this was not accompanied by differences in the number of blood neutrophils. Addressing the underlying molecular mechanism of MST1-regulated neutrophil mobilization, we found reduced STAT3 phosphorylation and impaired upregulation of CXCR2 in Mst1 -/- bone marrow neutrophils compared to wild type cells, while JAK2 phosphorylation was not altered. Taken together, we identify MST1 as a critical modulator of neutrophil homeostasis and neutrophil mobilization from the bone marrow, which adds another important aspect to the complex role of MST1 in regulating innate immunity.
Collapse
Affiliation(s)
- Sergi Masgrau-Alsina
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Lou Martha Wackerbarth
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Dae-sik Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians University Munich, Munich, Germany,*Correspondence: Markus Sperandio,
| |
Collapse
|